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A B S T R A C T   

It was aimed to compare the performances of two spectroscopic methods, fluorescence and mid-infrared spec
troscopy, in terms of their adulteration detection and estimation of several chemical properties for various cold 
pressed seed oils. Spectroscopic profiles, fatty acid, free fatty acid and total phenol contents of pumpkin seed, 
grape seed, black cumin oil, and sesame seed oils were determined and these oils were mixed with sunflower oil 
at 1–50% (v/v). Both spectroscopic techniques provided comparable results for determination of adulteration of 
each oil type and the most successful prediction was obtained for pumpkin seed oil at levels >%1. Combined data 
set of oils resulted in successful quantification of their free fatty acid value, total phenol and major fatty acids 
contents with both spectroscopic methods regardless of oil type. Both techniques could be used as reliable, fast 
and environmentally friendly alternatives in the analyses of different types of seed oils.   

1. Introduction 

Various health benefits such as anti-diabetic, anti-hypertensive, anti- 
inflammatory properties of different types of cold pressed oils from 
plants and oilseeds have been reported in the literature (Ibrahim, Attia, 
Maklad, Ahmed, & Ramadan, 2017). These oils are generally quite rich 
sources of phenolic compounds, phytosterols, carotenoids and tocoph
erols (Bjelica, Vujasinović, Rabrenović, & Dimić, 2019). Due to their 
productions in lower amounts and reported health benefits, there is an 
increased demand that causes higher prices for these products in the 
market. Hence, they are good candidates for mixing with cheaper oils. 
Cold pressed seed oils obtained from grape, nigella (black cumin), 
pomegranate, pumpkin and sesame have been getting more attention 
due to their ease of availability and prominent health benefits preserved 
perfectly due to niche manufacturing. 

Authentication studies of cold pressed oils through the utilization of 
different methods such as the determination of fatty acid composition, 
lipid fractions, sterols and polycylic aromatic hydrocarbons based on 
wet chemical methods are available in the literature (Aparicio, García 
González, & Aparicio-Ruiz, 2018). As an alternative, fast spectroscopic 
methods have been also providing successful results for the authenti
cation of different types of oils (de Lima, Musso, & Menezes, 2020). 
Pomegranate seed oils have been recently authenticated with mid- 
infrared (mid-IR), UV–visible and fluorescence spectroscopic methods 

(Uncu, Napiórkowska, Szajna, & Ozen, 2020). There are also studies 
regarding adulteration of grapeseed, black cumin and sesame oils with 
different individual spectroscopic methods (Akin, Elmas, Arslan, Yılmaz, 
& Kenar, 2019; Elmas, Arslan, Akin, Kenar, Janssen, & Yilmaz, 2019; 
Fadzlillah, Che Man, & Rohman, 2014; Rohman & Ariani, 2013; Yuan, 
Wang, Wang, Cheng, Wu, & Kong, 2020). Whereas any authentication 
study for pumpkin seed oil using spectroscopic methods was not found 
in the literature except a very recent study of pumpkin seed-sesame oil 
mixture (Irnawati, Riyanto, Martono, & Rohman, 2020). In addition, 
limited studies exist in the literature comparing different spectroscopic 
techniques in cold pressed seed oil authentication (Arslan, Akin, Elmas, 
Yilmaz, Janssen, & Kenar, 2019) and most of the authentication studies 
are only focusing on one type of pure seed oil at a time (Deng, Xu, Ye, 
Cui, Cai, & Yu, 2012; Ozulku, Yildirim, Toker, Karasu, & Durak, 2017; 
Zhao, Dong, Zheng, Jiao, & Lang, 2015). In the present study, both mid- 
IR and fluorescence spectroscopy were used and compared in authen
tication of various seed oils. To the best of our knowledge, these tech
niques have not been compared thoroughly in authentication of the 
various cold pressed oils in a single study. 

These spectroscopic methods also allow estimation of compositional 
parameters of the analyzed samples; so that, it is possible to predict 
several parameters with a single measurement. Examples of these types 
of studies are more common especially for the determination of chem
ical constituents of olive oil such as fatty acid, phenolic and pigment 
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composition with mid-IR spectroscopy (Uncu, Ozen, & Tokatli, 2019; 
Uncu & Ozen, 2015). Limited studies are available regarding the pre
diction of chemical indices and constituents with fluorescence spec
troscopy. Saturated fatty acid profile of butterfat and total fat and fatty 
acid composition of beef were determined with front face fluorescence 
spectroscopy (Aït-Kaddour, Thomas, Mardon, Jacquot, Ferlay, & Gruf
fat, 2016; Ntakatsane, Liu, Zhou, Mothibe, Adegoke, & Odenya, 2014). 
In addition, quality indices of olive and cold pressed rapeseed oils were 
predicted from fluorescence spectra (Guzmán, Baeten, Pierna, & García- 
Mesa, 2015; Sikorska et al., 2019). However, data sets in these predic
tion studies, in general, were consisted of a single type of oil or product. 
It was intended to combine the chemical data of several cold pressed oils 
together in a single data set and to estimate the several parameters both 
from mid-IR and fluorescence spectral data in the current investigation. 
Therefore, it was aimed to construct a reliable multivariate statistical 
model that can be valid in screening quality parameters of different oil 
types as well as to provide a comparison of the efficiency of these two 
spectroscopic methods in the same type of application which have not 
been done before. 

It is hypothesized that mixing of lower priced sunflower oil with cold 
pressed pumpkin seed, grape seed, black cumin, and sesame oils could 
be determined with both fluorescence and mid-IR spectroscopy. Another 
hypothesis is that it could be possible to predict the several chemical 
parameters (free fatty acid value, fatty acid profile and total phenolic 
content) of importance for pure cold pressed oils with a single chemo
metric model from these two spectral data. 

2. Materials and methods 

2.1. Oil samples 

Cold pressed pumpkin seed, grape seed, black cumin and sesame oils 
were used in the investigation of adulteration and 15 pure oils from each 
oil type were obtained from reliable producers possessing a certification 
from a research center of a public university and applying Good 
Manufacturing (GMP), Good Agricultural (GAP) and Good Laboratory 
(GLP) Practices. Regular (linoleic type) commercial refined sunflower 
oil with free fatty acid content of 0.08% and major fatty acid profile as 
linoleic acid 56.90% and oleic acid 31.90% was used as an adulterant. 
Randomly chosen 7 samples from each oil were blended with sunflower 
oil, at 1, 5, 10, 15, 20, 30, 40 and 50% (v/v) ratio. The rest of the pure 
samples (8 oils) not involved in adulteration practice were used inde
pendently in statistical evaluation to increase diversity of the data set. As 
a result, 56 adulterated and 15 pure samples of each type of seed oils 
were used in authentication studies. 

In prediction part, in addition to the four types of pure samples (4 ×
15) used in authentication studies, two other edible oils as 15 cold 
pressed pomegranate seed oils and 15 olive oils were also analyzed in 
order to add more different types of oils and also to increase the number 
of the samples. Therefore, a total of 90 pure samples belonging to six 
different types of edible oils were used in prediction of chemical 
parameters. 

2.2. Free fatty acid content 

Percent free fatty acid content of the pure samples was determined 
with a titrimetric method (EEC, 1991). The results are expressed in 
terms of % pucinic acid (for pomegranate seed oils) and oleic acid (for 
other oils) as an average of duplicated measurements. 

2.3. Fatty acid content 

After the methyl esterification reaction, fatty acid contents of pure 
oils were determined with gas chromatography (GC). Analyses were 
performed with a GC device (Agilent 6890, Agilent Technologies, Santa 
Clara, CA, USA) having an auto-sampler (Agilent 7863&FID) and a split/ 

splitless (1:50) injector. HP 88 capillary column (Agilent, USA) used in 
the analyses had dimensions of 100 m*0.25 mm ID*0.2 μm. Analyses 
were done using experimental conditions given in the literature (Uncu & 
Ozen, 2015). Results were expressed as averages of percentages of cor
responding individual fatty acid methyl esters for the samples repeated 
twice. Total fatty acid compositions were also determined in terms of 
total saturated fatty acids (SFAs), total monounsaturated fatty acids 
(MUFAs), and total polyunsaturated fatty acids (PUFAs) contents. 

2.4. Total phenolic content 

Folin-Ciocalteu spectrophotometric method from the literature was 
used for the determination of total phenolic content of pure oils (Mon
tedoro, Servili, Baldioli & Miniati, 1992). Results were calculated with 
respect to mg gallic acid equivalent (GAE)/kg oil. The measurements 
were repeated two times for each sample by using a UV–visible spec
trophotometer (Shimadzu UV-2450 Spectrophotometer, Kyoto, Japan). 

2.5. Fluorescence spectroscopy 

Fluorescence spectra of the samples were collected with a fluores
cence spectrometer (LS- 55, PerkinElmer Inc., Waltham, MA, USA) 
having a pulsed xenon lamp. All the studied samples were recorded two 
times under the emission spectra between 300 and 800 nm for each 
excitation wavelength (320, 330, 340, and 350 nm). Averaged spectra 
for each sample were used in the statistical model development. The 
constant measurement parameters were selected throughout the study 
for scanning as 0.5 nm data interval and 0.12 s integration time. Quartz 
sample cell (45 mm (H) × 12.5 mm (W) × 12.5 mm (D), PerkinElmer 
Inc., USA) having 10 mm light path was cleaned with hexane under the 
flow of nitrogen between each measurement. 

In the authentication part of the study, different slit widths as well as 
excitation wavelengths for each type of seed oils were used to obtain the 
best resolution with optimal signal-to-noise ratio to avoid over
saturation. Trial and error method were applied to select the best pa
rameters of interest to build statistical models. Slit widths were 15 and 
10 nm for grape seed oils, 5 and 20 nm for black cumin seed oils, 15 and 
5 nm for sesame seed oils, 10 and 20 nm for pumpkin seed oils for 
excitation and emission wavelengths, respectively. All seed oils except 
pumpkin seed oil (340 nm) were excited at 320 nm along with emission 
at 300–800 nm. Data from both scan types were used simultaneously in 
model building. 

In prediction of chemical parameters, besides the four seed oils 
pomegranate seed and olive oils were also recorded with the slit widths 
of 10 and 20 nm, 5 and 5 nm, for excitation and emission, respectively. 
To sustain compatibility, excitation at 320 nm with full emission range 
of each seed oils were used in prediction model building. 

2.6. Mid-infrared spectroscopy 

Mid-IR spectra of pure and blended samples were obtained with a 
FTIR spectrometer (Spectrum 100 FTIR spectrometer, Perkin Elmer Inc., 
Waltham, MA, USA) having ZnSe-ATR acccessory and DTGS detector. 
Measurement range was 4000–650 cm− 1 with two repetitions. Mea
surement parameters were 64 scans, 4 cm− 1 resolution and 1 cm/s scan 
speed. The same parameters were used in examining samples in both 
part of the study. 

2.7. Statistical analysis 

SIMCA 14.1 software (Umetrics, Umeå, Sweden) was used in both 
authentication and prediction of chemical parameters of seed oils. Full 
spectra of FTIR (4000–650 cm− 1) and fluorescence (300–800 nm) 
scanning were used in statistical evaluation. 

Prior to construction of the chemometric models, all the spectro
scopic data were pre-processed to remove noise. First, basic pre- 
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processing methods such as mean-centering and unit variance scaling 
were applied for signal enhancement in construction of both authenti
cation and prediction models. After that, further advanced pre- 
treatment techniques as first derivative (FD), second derivative (SD), 
standard normal variate (SNV), wavelet denoising techniques (WDTs) 
and orthogonal signal correction (OSC) were used for signal correction 
as individually and/or in suitable combinations and these were selected 
with the trial and error method for the development of specific models 
(Uncu et al., 2019). Derivatives were applied by moving quadratic sub- 
models of 15 data point long with a distance of 1 excluding the edge 
effects. WDTs were utilized in the form of wavelet function, Daubechies- 
10, with 99.5% confidence interval. 

All the pre-treated data obtained with both spectral techniques were 
divided randomly into calibration and validation sets corresponding to 
2/3 and 1/3 of total number of the samples, respectively. The optimum 
number of latent variables (LVs) to obtain OPLS-DA and PLS calibration 
models was calculated automatically by the SIMCA software internally 
with both 7-fold and leave-one-out cross validation (LOO-CV): samples 
were separated into 7 random subsets as well as LOO set. In detail, the 
strategy is based on dividing samples into n cancellation groups in which 
the first group included the first sample and one sample every n samples 
until their total number is reached. Process continues with the same 
logic, except the second group starts with sample 2 and the third group 
starts with sample 3 and goes like that in all the subsequent groups. As 
far as LOO-CV approach is concerned, the number of cancellation groups 
was the same with the number of samples (Pizarro, Rodríguez-Tecedor, 
Pérez-del-Notario, Esteban-Díez, & González-Sáiz, 2013). In this way, 
the corresponding models were protected from over and/or under 
fitting; otherwise, it would result in too optimistic or vice versa models. 

In the authentication part, two chemometric techniques as orthog
onal partial least square-discriminant analysis (OPLS-DA) and partial 
least squares (PLS) regression were used to differentiate pure and 
adulterated seed oil samples and quantify level of adulteration, respec
tively. OPLS-DA is a supervised data classification technique based on 
two main matrix block as X matrix (spectral data of FTIR and fluores
cence) and an artificially constructed dummy Y variable matrix con
sisting of class 1 pure (non-adulterated) and as class 2 adulterated seed 
oil samples (Uncu et al., 2020). The results of OPLS-DA of each spec
troscopic approach for each seed oils were given in terms of correct 
classification rate (%CC), sensitivity, specificity and precision. In OPLS- 
DA, any seed oil sample in classification list having a prediction value 
between 0.5 and 1.5 was accepted as correctly classified whereas out of 
range samples were considered as misclassified (Hirri, Bassbasi, Plati
kanov, Tauler, & Oussama, 2016). Another parameter in OPLS-DA, the 
%CC, also as known as accuracy, was based on the proportion of 
correctly classified samples to the total amount of calibration and/or 
validation set samples (Wang, Huang, & Wang, 2019). Sensitivity was 
determined by the ratio of true positive (TP) to the sum of TP and false 
negative (FN) samples whereas specificity was relying on proportion of 
true negative (TN) to the sum of TN and false positive (FP) samples. In 
addition, precision was formulated with ratio of TP to the sum of TP and 
FP samples. %CC, sensitivity, specificity and precision values were 
manually calculated based on the explained calculation methods while 
other statistical parameters such as LVs, coefficient of determination for 
calibration (R2

cal) and coefficient of determination for cross validation 
(R2

cv) were determined by automatic fitting function of the software for 
both OPLS-DA and PLS models. In addition, level of adulteration was 
quantified with PLS regression to see how well the ability of both 
spectroscopic methods in prediction of adulterant level is. With PLS 
regression, correlation of spectroscopic data of the seed oils as X matrix 
(adulterated and non-adulterated samples) with Y matrix consisting 
value of varying level of adulterated (1–50%) and non-adulterated (0%) 
pure seed oils were investigated (Gurdeniz & Ozen, 2009). The statis
tical information about PLS regression plot was given in terms of R2 

representing the goodness of fit in calibration (R2
cal), cross-validation 

(R2
cv) and external validation (R2

pred). Root mean square error 

(RMSE) is an absolute value similar to the standard deviation for the 
calibration (RMSEC), cross-validation (RMSECV), and prediction 
(RMSEP). Residual predictive deviation (RPD) and the slope of the 
regression plot were the other parameters for evaluating the perfor
mance of PLS models. The threshold value for a robust prediction model 
is associated with R2>0.90, RPD value>3.0 with a slope value 0.9–1.1 
(Uncu & Ozen, 2015). Along with these criteria, a good model should 
have also comparable and low error values for RMSEC, REMSECV and 
RMSEP (Uncu & Ozen, 2015). The statistical parameters except RPD 
were calculated by the software whereas the RPD values were calculated 
based on the ratio of standard deviation of predicted values to RMSEP 
values to obtain more comprehensive idea about prediction ability of the 
corresponding models. 

In the second part of the study, PLS regression was also used to 
quantify chemical parameters of the 6 types of oils. The same parameters 
for performance evaluation were also valid in prediction of chemical 
parameters of the edible oils. 

3. Results and discussions 

3.1. Spectral evaluation of seed oils 

Typical spectra of all the seed oils including pure and adulterated 
ones recorded by mid-IR and fluorescence spectroscopy are given in 
Fig. 1 for black cumin seed oils and in Figs. S1–S3 for the rest of the oils. 
Quantitative differences exist in the mid-IR peaks of pure and adulter
ated samples in the regions of 2924 cm− 1, 2852 cm− 1, 1723 cm− 1, and 
723 cm− 1 and more significant differences could be also observed in the 
fingerprint regions (1464–983 cm− 1) of the pure vs adulterated samples 
of each seed oil (Fig. 1a and Figs. S1a–S3a). These differences are hard to 
see in whole scale mid-IR spectra; therefore, FTIR spectra of only black 
cumin seed oil samples (around 1723 cm− 1 and part of the fingerprint 
region) are given in more detail (Fig. 1b) and the other seed oils have 
similar differences. Pure samples have higher and/or lower absorption 
at distinct wavelengths compared to increasing level of adulterant 
(sunflower oil) due to some significant chemical differences between 
pure and adulterated seed oils which are highly correlated with spectral 
information (Uncu et al., 2020). In detail, increasing adulteration level 
shows negative correlation for the peak at 1723 cm− 1 with respect to 
pure black cumin seed oils (Fig. 1b). This could be associated with lower 
free fatty acid content of sunflower oil compared to black cumin seed oil 
since that wavelength is attributed to stretching of C––O groups (Hirri 
et al., 2016). Additional differences were also observed in the fingerprint 
region of the pure and adulterated samples due to their compositional 
differences. These differences are mainly based on minor components 
such as phenolics and individual and total fatty acid compositions as will 
be explained at the beginning of section 3.3. The same arguments are 
also valid for black cumin seed oils with higher noticeable differences in 
the fingerprint region (Fig. 1b). The other three types of cold pressed oils 
also have similar spectral patterns (Fig. S1a–3a). 

Due to the nature of fluorescence spectra, differences between pure 
and adulterated samples are clearer compared to mid-IR spectra. The 
representative fluorescence spectra of each cold pressed oil samples with 
adulteration are shown in Fig. 1c and Fig. S1b-S3b. The spectral pattern 
was determined by characteristic bands of natural fluorophores which is 
highly affected by chemical compositions of the oil samples (Elmas et al., 
2019). The emission bands between 400 and 500 nm are attributed to 
oxidation and degradation products (Milanez, Nóbrega, Nascimento, 
Insausti, Band, & Pontes, 2017), while the peaks from 500 to 550 nm and 
660–690 nm are associated with vitamin E and fluorescent pigments, 
mainly chlorophylls and pheophytins, respectively (Yuan et al., 2020). 
All the pure cold pressed seed oils except sesame seed oils had higher 
fluorescence intensity with increasing level of adulteration due to the 
compositional differences (Fig. 1c and Fig. S1b-S3b). 

These differences are also investigated in more detail with the vari
able importance in projection (VIP) values obtained from multivariate 
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Fig. 1. Spectra of pure and adulterated black cumin seed oils with mid-IR (a), parts of mid-IR (b) and whole fluorescence (c) spectroscopy, respectively.  
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statistical analysis. VIP values>1 indicate significant wavelengths and 
wavenumbers in classification and/or prediction models (Fig. S4-S7). 

3.2. Comparison of spectroscopic methods for authentication 

In the first part of this study, performances of two common spec
troscopic techniques, fluorescence and mid-IR, in authentication studies 
of oils are compared by using data sets from 4 cold pressed oils, pumpkin 
seed, grape seed, black cumin and sesame oils. Statistical parameters of 
OPLS-DA classification and PLS regression models are listed in Tables 1 
and 2, respectively. 

OPLS-DA models of all seed oil samples using both spectroscopic 
methods provided clear separation of pure and adulterated samples 
located in the left (negative) and right (positive) side of the first latent 
variable (LV1) of the score plots, respectively (Fig. 2). 

In the present study, the most successful OPLS-DA and PLS regression 
models are obtained for pumpkin seed oil authentication with both 
spectroscopic methods compared to other seed oils. OPLS-DA model for 
each technique is constructed with similar statistical features as pre- 
processing SNV:FD, LVs: 1 + 4, R2

cal: 0.98, R2
cv: 0.44 for mid-IR spec

troscopy and pre-processing FD, LVs:1 + 5, R2
cal:0.87, R2

cv: 0.48 for 
fluorescence spectroscopy. Moreover, their CC% as well as sensitivity, 
specificity, precision as shown in Table 1 are identical for both cali
bration (100%) and external validation models (96%, 100%, 95%, 
80%), respectively. OPLS-DA score plots of each technique also provide 
clear differentiation between pure and adulterated pumpkin seed oil 
samples with respect to LV1 (Fig. 2a and e). The VIP values in the 
fingerprint region of the mid-IR (Fig. S4a) and 300–500 nm of fluores
cence (Fig. S4b) are found significant for separation of pure and adul
terated samples. 

In the literature, only a recent study regarding the authentication of 
pumpkin seed oil with sesame seed oil was found and 100% accuracy 
level was obtained for differentiation of pumpkinseed and sesame oils 
(Irnawati et al., 2020). There is also another study that aimed to classify 
pumpkin seed oils in terms of quality rather than authentication with 
different spectroscopic techniques as UV–Vis, NIR and FTIR spectros
copy (Lankmayr et al., 2004). 

As a quantitative approach, PLS regression was used with the data 
from both spectroscopic techniques to determine the limit of detection 
for adulteration. Quantification of adulterant level (0–50% v/v) of each 
sample was also accomplished with this analysis. PLS regression plots 
and statistical outputs are given in Fig. 3 and Table 2, respectively. In 
PLS regression, both models are pre-processed with the same statistical 
tool as OSC:SNV:FD and almost identical statistical performances such 

as R2 of 0.99, and close RPD (9.14 and 9.28) and low error values of the 
techniques were obtained (Table 2). It could be also seen that both FTIR 
and fluorescence spectroscopy have the same limit of detection (%1 > v/ 
v) according to Fig. 3a and e, respectively. In the light of these, it could 
be concluded that both techniques are successful in qualitative and 
quantitative authentication of pumpkin seed oils. 

Grape seed oil samples were authenticated perfectly with 100% CC 
%, sensitivity specificity and precision with calibration models of both 
spectroscopic techniques (Table 1). For validation models, CC% for mid- 
IR (96%) was found higher than the one for fluorescence spectroscopy 
(83%). The OPLS-DA models for SD of FTIR and WDTs: SD of fluores
cence were built with 1 predictive and 3 orthogonal components and 1 
predictive and 6 orthogonal components, respectively. First LVs 
explained 58% and 14% of the total variations of OPLS-DA models of 
mid-IR data (Fig. 2b) and fluorescence spectroscopy (Fig. 2f), orderly. 
Other statistical parameters of grape seed oil for these models were 
similar in terms of R2 values (Table 1). The VIP values of the models 
indicated that 2800–3000 cm− 1 region and a peak around 1743 cm− 1 

along with fingerprint region of mid-IR spectra (Fig S5a) and 300–500 
nm and 600–700 nm of fluorescence spectra (Fig. S5b) were the most 
influential wavelengths and wavenumbers which caused differentiation 
of pure and adulterated samples, respectively. 

PLS regression models for grape seed oils were built by applying pre- 
treatments of OSC: FD and OSC: SNV to mid-IR and fluorescence spectral 
data, respectively. The PLS model of mid-IR data (Fig. 3b) were built 
with 4 LVs with high regression coefficient for both calibration (0.99) 
and validation (0.98) data sets with low error values as 1.61% and 
2.87% for calibration and prediction, respectively (Table 2). In addition, 
limit of adulteration detection was found as ≥ 5% for grape seed oil by 
mid-IR spectroscopy (Fig. 3b) with a high RPD value (5.97) and robust 
slope (0.99) that show the validity of the PLS model (Table 2). Fluo
rescence spectroscopy was also used in quantification purposes. Three 
component PLS regression model for fluorescence spectral data pre- 
processed with OSC:SNV revealed robust prediction ability with R2 

value 0.96 for both calibration and external validation. However, higher 
error values with lower RPD value were obtained for fluorescence 
models of grape seed oils compared to mid-IR models (Table 2). This is 
also supported with the higher detection limit (≥10%) of the fluores
cence PLS model (Fig. 3f). In the literature, there are quite limited 
number of studies about grape seed oil authentication with any of these 
spectroscopic methods and the studies use only single method focusing 
on different adulterants. In one study, adulteration of cold pressed grape 
seed oil with refined soybean oil was investigated by reflectance mid-IR 
spectroscopy with a detection limit < 0.59% and R2 > 0.99 in cross- 

Table 1 
Statistical parameters of OPLS-DA calibration and validation models of pure and adulterated seed oils with spectroscopic methods.  

Seed oils1 Techniques Specifications2 Model3 %CC Sensitivity Specificity Precision 

PuSOs Mid-IR Pre-treatment: SNV:FD, LVs:1 + 4, R2
cal:0.98, R2

cv:0.44 Cal 100 100 100 100 
Val 96 100 95 80 

Fluorescence Pre-treatment: FD, LVs:1 + 5, R2
cal:0.87, R2

cv:0.48 Cal 100 100 100 100 
Val 96 100 95 80 

GSOs Mid-IR Pre-treatment: SD, LVs:1 + 3, R2
cal:0.99, R2

cv:0.33 Cal 100 100 100 100 
Val 96 100 95 80 

Fluorescence Pre-treatment: WDTs:SD, LVs:1 + 6, R2
cal:0.98, R2

cv:0.53 Cal 100 100 100 100 
Val 83 57 94 80 

BSOs Mid-IR Pre-treatment: FD, LVs:1 + 5, R2
cal:0.99, R2

cv:0.40 Cal 100 100 100 100 
Val 92 80 95 80 

Fluorescence Pre-treatment: WDTs: FD, LVs:1 + 5, R2
cal:0.98, R2

cv:0.16 Cal 100 100 100 100 
Val 92 100 90 60 

SSOs Mid-IR Pre-treatment: SD, LVs:1 + 3, R2
cal:0.99, R2

cv:0.42 Cal 100 100 100 100 
Val 92 80 95 80 

Fluorescence Pre-treatment: WDTs: SD, LVs:1 + 7, R2
cal:0.99, R2

cv:0.31 Cal 100 100 100 100 
Val 92 80 95 80  

1 PuSOs: pumpkin seed oils, GSOs: grape seed oils, BSOs: black cumin seed oils, SSOs: sesame seed oils, 2FD: first derivative, SD: second derivative, SNV:FD: 
combination of standard normal variate and first derivative, WDTs:FD: combination of wavelet denoising techniques and first derivative, WDTs:SD: combination of 
wavelet denoising techniques and second derivative 3Models for each oil and each technique consist of 47 samples for calibration (Cal) and 24 samples for external 
validation (Val). 
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validation (Akin et al., 2019). In another study, synchronous fluores
cence spectroscopy was used with a determination level < 0.55% for 
blending with refined soybean oil (Elmas et al., 2019). 

Score plots of OPLS-DA models constructed with FD of FTIR and 
WDTs:FD of fluorescence spectra are shown in Fig. 2c and g, respectively 
for black cumin seed oils. In both techniques, pure vs adulterated sam
ples are clearly separated from each other according to LV1. A clear 
separation is obtained between pure and adulterated samples as cali
bration set (100%) and external validation set (92%) in the same rate for 
both techniques (Table 1). The similar differentiation pattern for mid-IR 
and fluorescence spectral data is also visualized in the Fig. 2c and g, 
orderly. Both OPLS-DA models were constructed with the same number 
of LVs with similar R2

cal values. The VIP values of the models revealed 
the significant contribution of the specific band patterns. For the mid-IR 
spectral differentiation (Fig. S6a), the highest VIP values are found 
around 1800–1700 cm− 1 (carbonyl C––O stretching vibration) and 
approximately 1200–1000 cm− 1 (C–O stretching vibration) regions. 
For fluorescence (Fig. S6b), the same parameters are determined be
tween 450 and 700 nm. 

PLS regression models of black cumin seed oils with mid-IR and 
fluorescence spectra are presented in Fig. 3c and g, respectively. Com
parable statistical evaluation is shown in Table 2. It is found that fluo
rescence and mid-IR spectroscopy have similar performances for 
prediction of adulteration levels for black cumin oils. Statistical model 
(Table 2) developed with 2 LVs after 3 pre-treatment of FTIR spectral 
data (OSC:SNV:FD) whereas 4 LVs with single pre-treatment (OSC) are 
required for fluorescence data. R2 values of each model are high and 
close to each other. With fluorescence data, lower error values except 
RMSECV are obtained compared to mid-IR data which also explain 
higher RPD value of fluorescence evaluation. Limit of detection was 
found as > 5% and ≥ 5% for FTIR and fluorescence, respectively. Few 
studies existing about black cumin seed oil authentication in literature 
used different adulterants than the current study. Authentication of 
black cumin seed oil in binary and ternary mixtures with corn oil and 
soybean oil was investigated by using FTIR with high R2 (0.99) and low 
error values (0.47–1.34% v/v) (Rohman & Ariani, 2013). In another 
study, FTIR and synchronous fluorescence spectroscopy were used in 
detection of adulteration of cold pressed black cumin seed oil with 
soybean oil (Arslan et al., 2019). It was found that fluorescence spec
troscopy (below 5%) was more successful than mid-IR (below 8.56%) in 
terms of limit of detection (Arslan et al., 2019). These results are in 
accordance with the findings of the present study using a different 
adulterant (sunflower). 

Sesame seed oil samples were also authenticated with two spectro
scopic techniques. OPLS-DA score plots reveal the similar and perfect 
differentiation pattern of both methods with respect to LV1 (Fig. 2d and 
h). This is also supported with the same classification ability between 
pure and adulterated sesame seed oil samples with 100% and 92% CC% 
of calibration and validation sets, respectively (Table 1). Sensitivity, 
specificity and precision for validation set for both techniques are 
calculated as 80%, 95% and 80%, in order. Other statistical parameters 

as R2
cal and R2

cv are also similar for both models. The VIP values 
(Fig. S7a) indicated that 1267–1209 cm− 1 (stretching of -C–H, bending 
in CH2), 1121–1045 cm− 1 (-C–O esters, stretching) and 896–814 cm− 1 

(–CH2 wagging) wavelengths are the most important in differentiation 
with respect to FTIR spectra (Guillén & Cabo, 1997; Ozulku et al., 2017). 
The same wavenumbers of fluorescence spectra (Fig. S7b) for the pre
vious seed oils are also effective for sesame seed oil. 

Fluorescence spectroscopy (Fig. 3h) is more successful than mid-IR 
(Fig. 3d) in determination of adulterant level of sesame seed oil ac
cording to PLS regression analysis. PLS model of OSC:FD mid-IR spectra 
consisted of 3 LVs along with high R2 ≥ 0.96 and relatively low error 
values (1.37–4.87% v/v) with approximate RPD value of 6.57 (Table 2). 
However, fluorescence spectroscopy possessed lower and close error 
values (1.31–1.37% v/v) with higher RPD value (12.44). These findings 
are also supported in favor of fluorescence spectroscopy (>1% v/v) with 
lower limit of detection than mid-IR (≥5% v/v) as can be seen in Fig. 3h 
and d, respectively. Scientific literature indicated that authentication 
studies about sesame oil mostly performed with mid-IR spectroscopy 
than fluorescence and relatively few studies exist in fluorescence about 
authentication of this oil. In addition, there is no comparable study in 
the literature about sesame oil by using these methods. Some studies 
aimed at detection of a single adulterant whereas some were performed 
with multiple. In one study, FTIR was used to determine corn oil adul
teration of sesame seed oil successfully with high R2 of 0.99 and low 
error values of 0.53% and 1.31% v/v (Fadzlillah et al., 2014). In another 
study, FTIR was used to detect adulteration with 3% (w/w) or more of 
various oils, including rapeseed, soybean, palm and peanut oils (Deng 
et al., 2012). Potential of mid-IR spectroscopy in authentication was also 
proven with detection of different adulterants mixed into sesame oil as 
three kinds of edible oils (corn, sunflower, blended oil), and sesame oil 
flavor (Zhao et al., 2015) as well as hazelnut, canola, and sunflower oils 
(Ozulku et al., 2017). In a recent work, mid-IR spectroscopy was used to 
determine presence of four possible adulterants as corn, peanut, soybean 
and sunflower oils in chia and sesame oils with acceptable prediction 
errors ranging between 1% and 5% (Rodríguez, Gagneten, Farroni, 
Percibaldi, & Buera, 2019). Recently, excitation-emission matrix fluo
rescence spectroscopy was used to determine the authenticity and 
adulteration of sesame oil (Yuan et al., 2020). 3D fluorescence spec
troscopy and convolutional neural network was also applied for the 
same purpose (Wu, Zhao, Tian, Shang, & Liu, 2020). 

For the most of the examined oils of this study, a comparison be
tween the performances of mid-IR and fluorescence spectroscopy is 
provided for the first time in terms of their adulteration with sunflower 
oil. Overall, both spectroscopic methods provided quite close results for 
differentiation of adulterated and pure oils with similar detection levels. 
OPLS-DA and PLS regression methods are also quite effective in the 
analysis of all spectroscopic data. 

3.3. Prediction of chemical parameters 

Basic chemical characteristics of the studied seed oils were 

Table 2 
Statistical parameters of PLS regression models for prediction of various seed oils adulteration with spectroscopic methods.  

Seed oils1 Techniques Pre-treatment2 LVs R2
cal R2

cv R2
pred RMSEC RMSECV RMSEP RPD Slope 

PuSOs Mid-IR OSC:SNV:FD 3  0.99  0.99  0.99  1.13  2.83  1.87  9.14  0.99 
Fluorescence OSC:SNV:FD 3  0.99  0.99  0.99  1.25  1.70  1.90  9.28  0.99 

GSOs Mid-IR OSC:FD 4  0.99  0.95  0.98  1.67  5.55  2.87  5.97  0.99 
Fluorescence OSC:SNV 3  0.96  0.95  0.96  3.61  3.80  3.37  5.08  0.96 

BSOs Mid-IR OSC:SNV:FD 2  0.99  0.98  0.99  1.27  2.94  2.08  8.21  0.99 
Fluorescence OSC 4  0.99  0.99  0.99  0.96  3.73  1.21  14.11  0.99 

SSOs Mid-IR OSC:FD 3  0.99  0.96  0.98  1.37  4.81  2.60  6.57  0.99 
Fluorescence OSC:SNV 3  0.98  0.97  0.96  1.31  1.35  1.37  12.44  0.98  

1 PuSOs: pumpkin seed oils, GSOs: grape seed oils, BSOs: black cumin seed oils, SSOs: sesame seed oils, 2 OSC: orthogonal signal correction, OSC:FD: combination of 
orthogonal signal correction and first derivative, OSC:SNV: combination of orthogonal signal correction and standard normal variate, OSC:SNV:FD: combination of 
orthogonal signal correction, standard normal variate, and first derivative. 
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determined to obtain general information about the samples (Table S1). 
Average free fatty acid values of grape seed, black cumin, sesame seed 
and pumpkin seed oils were determined as 1.81%, 7.34% 0.79% and 
0.72%, respectively. Grape seed, black cumin, sesame seed and pumpkin 
seed oils have average TPC content in terms of mg/kg as 76.35, 459.27, 

63.00 and 71.80, in order. The major fatty acid profiles were similar in 
the studied oils except their quantity. In grape seed oil, average palmitic 
acid (8.63%), stearic acid (4.55%), oleic acid (19.79%), linoleic acid 
(66.01%), SFAs (13.49%), MUFAs (20.29%), PUFAs (66.22%) are found 
in accordance with the values from literature (Dabetic et al., 2020). The 

Fig. 2. OPLS-DA score plots of pure and adulterated pumpkin seed oil (a) and (e), grape seed oil (b) and (f), black cumin seed oil (c) and (g) and sesame seed oil (d) 
and (h) samples from mid-IR and fluorescence spectral data, respectively (class 1: pure seed oil samples class 2: adulterated seed oil samples (1–50% v/v)). 
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same parameters for black cumin seed oil were determined as palmitic 
acid (11.95%), stearic acid (3.52%), oleic acid (25.36%), linoleic acid 
(55.01%), SFAs (15.98%), MUFAs (26.36%), PUFAs (57.66%) and this 
fatty acid profile is also similar to a previous study (Kiralan, Çalik, 
Kiralan, Özaydin, Özkan, & Ramadan, 2019). Other seed oils as sesame 
and pumpkin are found similar to each other with respect to fatty acid 
profiles and also free fatty acid and TPC values. Average SFAs, MUFAs, 
PUFAs for sesame and pumpkin seed oils were determined as 16.04% 

and 19.36%, 39.62% and 34.89%, 44.33% and 45.19%, respectively. 
The results for the sesame oil are in agreement with the literature 
(Hama, 2017). For pumpkin seed oils, results are comparable with a 
previous study (Neđeral, Škevin, Kraljić, Obranović, Papeša, & Batal
jaku, 2012). 

The chemical characteristics of analyzed seed oils are predicted from 
mid-IR and fluorescence spectra of pure oils using multivariate statisti
cal analysis, PLS regression, and the ranges of these chemical properties 

Fig. 3. PLS regression plots of actual versus predicted adulteration volume of pumpkin seed oil (a) and (e), grape seed oil (b) and (f), black cumin seed oil (c) and (g) 
and sesame seed oil (d) and (h) samples from mid-IR and fluorescence spectral data, respectively (red dashed line: the threshold line for limit of adulteration 
detection). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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are listed in Table 3. Since it is essential to use a large data set as much as 
possible to obtain accurate prediction models, two additional oil types, 
pomegranate seed and olive oils, from our previous studies are also 
included to the data set to increase the number of the samples so that the 
capacity, validity and inclusiveness of prediction models could be 
enhanced. Number of the samples for each oil is 15; therefore, a data set 
containing 90 samples were used in generating the PLS prediction 
models. 2/3 of these samples are used as calibration data set and the rest 
are included to external validation set. While prediction studies in the 
literature are mostly based on the statistical models for a single type of 
oil (Karunathilaka, Mossoba, Chung, Haile, & Srigley, 2017; Uncu et al., 

2019; Uncu & Ozen, 2015) data from different types of oils are combined 
here to test if it is possible to obtain a model that can estimate these 
chemical parameters regardless of the type of the oil. While prediction 
studies are more common with mid-IR spectroscopy, fluorescence 
spectroscopy has been used less for this purpose (Aït-Kaddour et al., 
2016; Guzmán et al., 2015; Ntakatsane et al., 2014; Sikorska et al., 
2019). In addition, it was not encountered any study in the literature 
regarding the comparison of these two techniques in any prediction 
study. Statistical measures of developed PLS regression models from 
mid-IR and fluorescence spectral data are shown in Table 3. Models 
having high R2 (R2

cal, R2
cv, R2

pred) values with low RMSE (RMSEC, 

Fig. 3. (continued). 
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RMSECV, RMSEP) with respect to measured concentration ranges, high 
RPD values and slopes close to 1 show the reliability and the robustness 
of the constructed models (Munawar, von Hörsten, Wegener, Pawelzik, 
& Mörlein, 2016). 

The best transformation for all PLS regression models of fluorescence 
spectral data is OSC. FFA and TPC are predicted from fluorescence 
spectra with models having 3 LVs. R2 values are quite high for these 
models and their ranges are 0.92–0.98 for FFA and 0.93–0.97 for TPC. 
Slopes (0.97 and 0.98) of the calibration curves for these parameters are 
very close to 1. While FFA range of the samples are in 0.27–11.70%, 
RMSE values vary between 0.47 and 0.61. RMSE values for TPC are 
29.92–45.75 for a measurement range of 38.5–653.5 mg/kg. These 
measures are indications of very good prediction models for FFA and 
TPC obtained from fluorescence spectra. In a study from the literature, 
acidity and oxidation indices (peroxide value, K values) of the olive oils 
were estimated from fluorescence spectral data with PLS and the best 
result was obtained for K270 value (Guzmán et al., 2015). Front face 
fluorescence spectroscopy was also used in prediction of some oxidation 
parameters along with tocopherol, carotenoid and pheophytin content 
of cold pressed rapeseed oil (Sikorska et al., 2019). 

In general, accurate estimations of individual fatty acids and total 
saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) 
are also acquired with the analysis of fluorescence spectroscopy data 
with PLS (Table 3). The worst models are obtained for linolenic (R2 

values of 0.87–0.94, RPD: 2.81), catalpic (R2 values of 0.78–0.86, RPD: 
1.92) and behenic (R2 values of 0.84–0.92, RPD: 2.49) acids. Studied oils 
have relatively lower amounts of these fatty acids with a narrow con
centration range. As our experience indicates, PLS regression models, in 
general, result in more accurate models when the measured concen
tration ranges of the constituents are wide. According to studies in the 
literature, SFA compositions of butterfat and beef were successfully 
determined using front face fluorescence spectroscopy while the same 
success was not obtained for UFA in both studies (Aït-Kaddour et al., 
2016; Ntakatsane et al., 2014). However, prediction of both SFA and 
UFA were achieved with reliable and robust models in the current study. 

Good PLS prediction model with high R2 values (0.95–0.97) and low 
RMSE of 0.48–0.61% was obtained for FFA using mid-IR spectra. RPD 
value (4.78) of this model is high enough for reliability. Same conclusion 
could be also reached for TPC model having R2 of 0.92–0.96 and RPD of 
3.46 with a slope of 0.97. Calibration R2 values of the models for all fatty 

Table 3 
Comparison of statistical parameters for PLS regression models of chemical parameters with fluorescence and mid-IR spectroscopy.  

Parameter Range Techniques Pre-treatment LVs R2
cal. R2

cv. R2
pred. RMSEC RMSECV RMSEP RPD Slope 

FFA1 0.27–11.70 Fluorescence OSC 3  0.98  0.96  0.92  0.47  0.65  0.61  3.33  0.98 
Mid-IR FD 3  0.97  0.95  0.96  0.48  0.61  0.58  4.78  0.97 

TPC2 38.46–653.81 Fluorescence OSC 3  0.97  0.93  0.96  29.92  45.75  30.20  4.70  0.97 
Mid-IR OSC 4  0.96  0.93  0.92  34.94  37.90  40.14  3.46  0.96 

C14:03 0.00–0.17 Fluorescence OSC 3  0.98  0.97  0.98  0.01  0.01  0.01  6.44  0.98 
Mid-IR OSC 3  0.97  0.95  0.99  0.01  0.01  0.01  8.19  0.97 

C16:04 2.52–15.85 Fluorescence OSC 6  0.96  0.94  0.94  0.77  0.92  0.91  3.96  0.94 
Mid-IR SD 4  0.99  0.98  0.96  0.77  0.92  0.68  5.29  0.99 

C16:15 0.00–1.16 Fluorescence OSC 5  0.99  0.99  0.99  0.03  0.04  0.02  11.28  0.99 
Mid-IR SD 4  0.99  0.92  0.95  0.03  0.09  0.06  4.30  0.99 

C17:06 0.04–0.19 Fluorescence OSC 8  0.98  0.94  0.97  0.01  0.01  0.01  5.58  0.98 
Mid-IR FD 8  0.99  0.76  0.56  0.01  0.02  0.02  1.51  0.99 

C17:17 0.00–0.29 Fluorescence OSC 4  0.99  0.99  0.99  0.01  0.01  0.01  10.49  0.99 
Mid-IR SD 5  0.99  0.89  0.87  0.01  0.03  0.05  1.90  0.99 

C18:08 1.88–7.38 Fluorescence OSC 6  0.98  0.96  0.96  0.26  0.34  0.36  4.62  0.98 
Mid-IR FD 5  0.98  0.94  0.95  0.21  0.45  0.37  4.34  0.98 

C18:1n9c9 4.06–72.47 Fluorescence OSC 4  0.98  0.98  0.99  2.80  3.28  2.44  8.32  0.98 
Mid-IR FD 3  0.99  0.99  0.99  1.64  2.28  2.01  10.22  0.99 

C18:2n6c10 4.14–67.90 Fluorescence OSC 4  0.97  0.94  0.97  4.15  6.39  4.28  5.30  0.97 
Mid-IR SD 3  0.99  0.99  0.99  1.22  2.90  2.37  9.51  0.99 

C20:011 0.15–0.65 Fluorescence OSC 3  0.97  0.95  0.93  0.03  0.03  0.04  3.94  0.97 
Mid-IR SD 5  0.99  0.95  0.94  0.01  0.05  0.04  3.45  0.99 

C18:3n312 0.14–2.55 Fluorescence OSC 8  0.94  0.89  0.87  0.07  0.11  0.10  2.81  0.94 
Mid-IR OSC 4  0.94  0.80  0.88  0.10  0.25  0.10  2.73  0.94 

C20:113 0.00–0.35 Fluorescence OSC 6  0.97  0.95  0.96  0.02  0.03  0.02  5.14  0.97 
Mid-IR SD 4  0.99  0.96  0.95  0.01  0.03  0.02  4.64  0.99 

C20:214 0.00–2.62 Fluorescence OSC 3  0.98  0.97  0.97  0.13  0.17  0.14  5.92  0.98 
Mid-IR FD 4  0.96  0.89  0.97  0.18  0.27  0.16  5.68  0.96 

C22:015 0.00–0.20 Fluorescence OSC 4  0.92  0.86  0.84  0.02  0.02  0.02  2.49  0.92 
Mid-IR SD 5  0.98  0.71  0.72  0.01  0.04  0.03  1.91  0.98 

C20:3n616 0.00–0.11 Fluorescence OSC 6  0.98  0.97  0.96  0.01  0.01  0.01  4.79  0.98 
Mid-IR FD 1  0.99  0.98  0.99  0.01  0.01  0.01  7.60  0.99 

C20:4n617 0.00–0.71 Fluorescence OSC 3  0.99  0.98  0.97  0.03  0.03  0.04  5.44  0.98 
Mid-IR OSC 3  0.92  0.89  0.90  0.03  0.03  0.06  3.27  0.92 

C18:3n5(c, t, c)18 0.00–81.12 Fluorescence OSC 6  0.97  0.96  0.95  5.01  6.18  6.92  4.15  0.97 
Mid-IR SD 1  0.99  0.99  0.99  1.14  1.34  1.29  21.60  0.99 

C18:3n5(c, t, t)19 0.00–10.42 Fluorescence OSC 6  0.95  0.93  0.96  0.61  0.78  0.45  4.36  0.95 
Mid-IR SD 3  0.99  0.96  0.98  0.28  0.68  0.36  5.55  0.99 

C18:3n5(t, t, c)20 0.00–4.07 Fluorescence OSC 6  0.86  0.78  0.82  0.32  0.38  0.24  1.92  0.86 
Mid-IR FD 6  0.98  0.89  0.94  0.11  0.25  0.18  3.80  0.98 

SFAs21 4.87–19.99 Fluorescence OSC 6  0.97  0.96  0.96  0.79  0.93  1.05  4.41  0.97 
Mid-IR FD 4  0.99  0.98  0.99  0.47  0.68  0.40  11.49  0.99 

MUFAs22 4.06–74.18 Fluorescence OSC 4  0.98  0.98  0.99  2.90  3.39  2.51  8.22  0.98 
Mid-IR FD 3  0.99  0.99  0.99  1.85  2.51  1.69  12.21  0.99 

PUFAs23 8.72–90.80 Fluorescence OSC 4  0.98  0.97  0.99  3.53  4.11  3.19  7.55  0.98 
Mid-IR FD 3  0.99  0.99  0.99  1.42  2.22  1.43  16.83  0.99  

1 free fatty acid,2total phenolic content,3mystric acid, 4palmitic acid, 5palmitoleic acid, 6heptadecanoic acid, 7cis-10-heptadecanoic acid, 8stearic acid, 9oleic acid, 
10linoleic acid, 11arachidic acid, 12linolenic acid, 13cis-11-eicosenoic acid, 14cis-11,14-eicosadienoic acid, 15behenic acid, 16cis-8,11,14-eicosatrienoic acid, 17arach
idonic acid, 18punicic acid, 19α-eleostearic acid, 20catalpic acid, 21saturated fatty acids, 22monounsaturated fatty acids, 23polyunsaturated fatty acids. 
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acids are quite high and R2 0.94 of linoleic acid is the lowest one. 
However, external validation R2

pred of heptadecanoic (0.56) and 
behenic (0.72) acids are lower than 0.8 and cis-10-heptadecenoic acid 
and linolenic acids have R2

pred of lower than 0.9. R2 values of 0.8–0.9 
provide approximate predictions and are still acceptable. RPD values of 
the models having R2

pred lower than 0.8 is also lower compared to 
others. Successful estimation of FFA, TPC and fatty acid profiles of olive 
oils (Gurdeniz, Ozen, & Tokatli, 2010; Uncu & Ozen, 2015) and PUFA 
composition of marine oils (Vongsvivut, Heraud, Zhang, Kralovec, 
McNaughton, & Barrow, 2012) are the several examples of the use of 
mid-IR spectroscopy in prediction studies from the literature. More 
could be also found in the literature; however, it was not encountered 
any investigation regarding the application of this technique in deter
mination of chemical measures as FFA, TPC and fatty acid profile for the 
combination of various cold pressed oils. 

It could be concluded that prediction models constructed using mid- 
IR and fluorescence data provide, in general, comparable results. Models 
are especially very good at estimating the amounts of fatty acids with 
higher concentrations and having large concentration variations such as 
palmitic, oleic and linolenic acids. Less success was obtained with 
linolenic, behenic and catalpic acid predictions with both spectroscopic 
techniques. Although PLS regression models of both mid-IR and fluo
rescence spectroscopy resulted in good predictions for cis-10-heptade
canoic, cis 11, 14 eicosadienoic, cis 8, 11, 14 eicosatrienoic, punicic, 
α-eleostearic and catalpic acids, these fatty acids exist in only one type of 
oil. Consequently, models for them should be used with caution. How
ever, high prediction power of these models are still the indications of 
the capacity of these spectroscopic methods in prediction of the amounts 
of these fatty acids. 

4. Conclusions 

In the first part of the present study, it could be concluded that both 
mid-IR and fluorescence techniques are quite successful and comparable 
in determination of mixtures of sunflower oil with different cold pressed 
seed oils. Among the studied oils, it was found that adulteration of 
pumpkin seed oil could be detected with the lowest threshold (>%1 v/v) 
for both spectroscopic techniques followed by sesame seed oils with 
fluorescence (>1%) and mid-IR spectroscopy (≥5%). However, mid-IR 
spectroscopy (≥5%) worked better than fluorescence (≥10%) for 
grape seed oils and limit of detection for black cumin seed oil was found 
quite similar for both mid-IR (>5%) and fluorescence (≥5%) techniques. 

In the second part, predictability of some important chemical pa
rameters of different edible oils in a single comprehensive model was 
tested by both spectroscopic approaches. The outputs of the PLS 
regression models for each technique revealed that FFA, TPC and major 
fatty acid profile could be determined robustly with these techniques. As 
a result, both spectroscopic techniques have similar advantages of rapid 
analysis, cost and ease of use and they could be used in quick detection 
of adulterated minor oils and quantification of important chemical 
characters of these oils regardless of oil type. Therefore, one or the other 
could be used for authentication and prediction purposes as an alter
native to tedious wet chemical techniques. 
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