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A B S T R A C T   

Tracking control of marine vessels in the presence of parametric uncertainty and additive periodic disturbances is 
considered. For optimal estimation of environmental forces, periodic disturbance estimation method inspired 
from Fourier series expansion have been applied. Stability of the closed–loop system and the convergence of the 
tracking error under the closed–loop operation are established via Lyapunov based arguments. Simulation 
studies are provided to support the theoretical results and the effectiveness of the proposed method.   

1. Introduction 

In an effort to utilize the environmental resources of oceans, in a 
more effective way, research on dynamical positioning of marine sys
tems used in offshore operations have gained momentum in recent years. 
Significant amount of those operations are for offshore oil and gas dril
ling, underwater pipeline and cable laying, offshore wind farm con
structing turbines, and also for marine rescue and wreck investigation. 

Automatic control of marine vessels, to our best knowledge, has 
started with the invention of electrically driven gyroscopes in early 
marine control systems (Fossen, 2002). These early controllers were 
followed by linear controller approaches applied onto the simplified 
system model of marine vessels obtained from the linearization about 
pre–specified yaw angles (Fossen and Grovlen, 1998). Proportional in
tegral derivative (PID) type controller (Balchen et al., 1980) and linear 
optimal control laws (Balchen et al., 1976), (Grimble et al., 1980), 
(Sorensen et al., 1996) are some examples of the linear controller ap
proaches. Sliding mode controllers as in (Agostinho et al., 2009), 
(Tannuri et al., 2010) and H∞ control (Katebi et al., 2001) were also 
presented as a feasible solution for the control of the linearized system 
model. 

Problems inherited by linearization motivated researchers to apply 
nonlinear control techniques for the accurate control of marine vehicles. 
Singular perturbation theory supported robust nonlinear control law 
was proposed for the control of an underwater vehicle in (De Wit et al., 

1998). In (Fjellstad and Fossen, 2014), position regulation of under
water vehicles was provided via nonlinear proportional derivative (PD) 
type controller while higher order sliding mode controller was proposed 
for the similar purpose in marine vessel control in (Tannuri and Agos
tinho, 2010). A full–state feedback nonlinear robust control design was 
used to provide position tracking control of marine vessels in (Bidikli 
et al., 2017a). In (Zhang et al., 2017), a novel robust model predictive 
control method was proposed for the path following control of under
actuated marine vessels. Interpolation of the Riccati equation solution 
based robust H∞ control design was realized for the control of under
water vehicles in (Zhang et al., 2018). In (Chen et al., 2013), positioning 
of a marine vessel was provided via a robust adaptive control design 
having dynamic control allocation. Trajectory tracking control of fully 
actuated marine vessels was provided via a robust adaptive finite time 
tracking control design in (Wang et al., 2016). In (Du et al., 2015), a high 
gain observer based robust adaptive output feedback controller was 
designed to ensure dynamic positioning of ships while an observer based 
robust adaptive nonlinear control design was realized to ensure the 
position tracking control of marine vessels in (Bidikli et al., 2017b). Path 
following of an underactuated marine vessel was provided via a fuzzy 
unknown observer based robust adaptive controller in the presence of 
unmodeled dynamics, uncertainties and disturbances in (Wang et al., 
2019). In (Zhang et al., 2019), dynamic positioning system of marine 
vessels was designed by utilizing a Lyapunov based robust adaptive 
control approach. 
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As highlighted in many studies on control of marine vehicles, para
metric uncertainty and environmental disturbances are crucial cases that 
have to be taken into account. In some of the control studies about these 
type of systems, it was observed that designing a robust controller may 
not cope with external disturbances and parametric uncertainty together. 
In these type of situations, the designed robust controller can be sup
ported with an extra tool as it was preferred in some of the aforemen
tioned robust control designs. In (Balchen et al., 1980), PID controller was 
cascaded with a low pass filter, in (Balchen et al., 1976), (Grimble et al., 
1980) and (Sorensen et al., 1996) linear optimal control laws were used in 
conjunction with Kalman filtering techniques, in (Fjellstad and Fossen, 
2014) nonlinear PD type controller was supported with an extended 
Kalman filter to reach the mentioned aim. Disturbance observer (Zhang 
et al., 2017), (Wang et al., 2016) and fuzzy unknown observer (Wang 
et al., 2019) are among the preferred tools to cope with the effects of 
external disturbances in marine control systems. From the examination of 
these studies, one may conclude that using extra tools to estimate external 
disturbances usually provide increased control performance compared to 
the classical robust controllers. However, the use of the aforementioned 
extra tools generally increase the complexity of controller’s structure. It is 
clear that, proposing a novel control approach that can cope with the 
external disturbances and parametric uncertainty without needing 
additional tools is a valid contribution for this research area. 

To address this open research problem by compensating for external 
disturbances and parametric uncertainties, recently in (Du et al., 2018), 
external disturbances of a marine vehicle dynamics were modeled as 
periodic disturbances and a robust adaptive controller was designed that 
yielded a globally uniformly ultimately bounded tracking result. 
Inspired mainly from the idea of modeling low frequency disturbances of 
the ocean environment as summation of a series of sinusoidal compo
nents having different frequencies, amplitudes and phases in (Du et al., 
2018), in this study we have designed a robust controller that ensures 
the position tracking of marine vessel in the presence of parametric 
uncertainty and unknown but periodic external disturbances. In contrast 
to the widely used repetitive learning controller where the period of 
periodic signal is required to be known exactly, in this work, by using a 
Fourier series expansion–like method, the external disturbance is 
modeled without needing additional information. Then, backstepping 
control technique is utilized to design a robust control structure sup
ported with a periodic disturbance estimation method. At this point, it 
should be noted that, disturbance estimation is not made available by 
the use of an extra tool, but is constructed as a part of the controller 
designed. To the authors’ best knowledge a robust control structure that 
efficiently provides the position tracking control of marine vessels sub
ject to periodic disturbance without using additional information about 
the type of the disturbance which also does not utilize additional tools 
for disturbance estimation, has been designed for the first time. While 
the concept of representing disturbances and noise terms using a Fourier 
series expansion–like method is firstly applied to marine vessel control 
in this work, this method was previously applied to robotic systems in 
(Delibasi et al., Cansever), (Delibasi et al., 2006). The robotic systems 
are commonly represented with similar dynamical equations to that of 
marine vehicles however the periodic disturbances affecting the robotic 
systems are commonly modeled with known periods which allows the 
use of repetitive learning techniques. However, the use of this method 
on marine vehicles where the main source of external disturbance terms 
being oceanic waves is, to our best knowledge, is limited to the proposed 
work. When compared with (Du et al., 2018), in this work, asymptotic 
convergence of the error signals is achieved without requiring an initial 
bound or projection type bounding requirements on the parameter 
estimation signals. 

The remaining parts of the paper is organized as follows: Section 2 
represents a dynamic model of the 3 degree of freedom marine vessel 
while Section 3 shows the error system and the control objective. Sta
bility analysis and numerical results are presented in Sections 4 and 5, 
respectively. Section 6 contains concluding remarks. 

2. System model 

The mathematical model for the dynamically positioned ship has the 
following form (Fossen, 2002) 

η̇= Jν (1)  

Mν̇+Dν + d = τ (2)  

where η(t), ν(t) ∈ R3 represent the position and the velocity vectors of 
the ship, respectively, d(t) ∈ R3 is the vector that contains uncertain 
periodic disturbances, τ(t) ∈ R3 denotes the vector of control inputs, 
M ∈ R3×3 is the constant, positive definite, symmetric, uncertain mass 
inertia matrix, D ∈ R3×3 is the constant uncertain damping matrix, 
J(η) ∈ R3×3 represents the orthogonal rotation matrix between the earth 
and body fixed coordinate frames that satisfies J− 1 = JT and has the 
following structure 

J(η)=

⎡

⎣
cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

⎤

⎦.

In (1) and (2), η≜[ x(t) y(t) φ(t) ]T contains translational positions 
denoted by x(t), y(t) ∈ R and the rotation about yaw angle of the ship 
denoted by φ(t) ∈ R while ν≜[ u(t) v(t) r(t) ]T contains translational 
velocities denoted by u(t), v(t) ∈ R and the rotational velocity about yaw 
angle denoted by r(t) ∈ R. 

After taking the time derivative of (1) and using the orthogonality 
property of the rotation matrix, the following expression is obtained 

ν̇= JT
(

η̈ − J̇JT η̇
)
. (3) 

Therefore, (2) can be rewritten as 

MJT
(

η̈ − J̇JT η̇
)
+DJT η̇+ d = τ. (4) 

In view of (4), the mathematical model of the ship consisting of the 
desired position ηd(t) ∈ R3 and its time derivatives can be written as 
follows 

Ydθ=MJT(ηd)

[

η̈d − J̇(ηd)J
T(ηd)η̇d

]

+ DJT(ηd)η̇d (5)  

where Yd(ηd, η̇d, η̈d) ∈ R3×p is a function of desired position and its time 
derivatives and θ ∈ Rp is an uncertain parameter vector. 

3. Error system development and control input design 

Our control objective is to make η(t) track a sufficiently smooth, 
bounded desired trajectory under the restriction that the dynamic model 
is uncertain (i.e., the entries of M and D are not known) and the additive 
uncertain periodic disturbances are effective onto it. 

The position tracking error, denoted by z1(t) ∈ R3, is defined as 

z1 ≜ η − ηd. (6) 

An auxiliary error, denoted by z2(t) ∈ R3, is defined as 

z2 ≜ ν − α (7)  

where α(t) ∈ R3 is an auxiliary input like term designed as 

α= JT
(

η̇d − K1z1

)

(8)  

where K1 ∈ R3×3 is a positive definite diagonal control gain matrix. 
Substituting (7) and (8) into the time derivative of (6) yields 

ż1 = − K1z1 + Jz2 (9) 
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where (1) and orthogonality of J(η) were made use of. Following the foot 
steps of the literature on backstepping based control design, for the 
stability analysis, consider a non–negative function, denoted by V1(t) ∈
R3, 

V1≜
1
2
zT

1 z1. (10) 

The time derivative of V1(t) is obtained as 

V̇1 = − zT
1 K1z1 + zT

1 Jz2 (11)  

where (9) was substituted. To obtain the dynamics for z2(t), taking the 
time derivative of z2(t) yields 

ż2 = ν̇ − α̇. (12) 

The time derivative of (8) is taken to obtain 

α̇= J̇T
(

η̇d − K1z1

)

+ JT
(

η̈d − K1 ż1

)

(13) 

Which contains the time derivative of rotation matrix obtained as J̇ =

JS(r) where S(r) ∈ R3×3 is a skew symmetric matrix defined as 

S(r)≜

⎡

⎣
0 − r 0
r 0 0
0 0 0

⎤

⎦ (14) 

Satisfying ST = − S. By utilizing the given property, the time de
rivative of α is rearranged as 

α̇= − SJT η̇d + SJT K1z1 + JT η̈d − JT K1η̇ + JT K1η̇d. (15) 

Premultiplying (12) with M and utilizing (2) and (15) yields 

Mż2 = τ − Dν − d + MSJT η̇d − MSJT K1z1 (16)  

− MJT η̈d + MJT K1η̇ − MJT K1η̇d.

To obtain a compact form of (16), W(η, η̇, ηd, η̇d, η̈d) ∈ R3×p is intro
duced as 

Wθ=Dν − MSJT η̇d + MSJT K1z1 (17)  

+MJT η̈d − MJT K1η̇ + MJT K1η̇d 

By which (16) is rewritten as 

Mż2 = τ − d − Wθ. (18) 

Assumption 1. By assuming that the disturbance is periodic, it can 
be expressed in the following form by utilizing Fourier series expan
sion–like techniques (Delibasi et al., Cansever) (Delibasi et al., 2006), 

d =ET Tanh(z2)+
∑h

ℓ=1

DT
ℓCos(ℓz2) +

∑h

ℓ=1

FT
ℓ Sin(ℓz2) (19)  

where E ∈ R3×3 is unknown, mean value disturbance weights, Dℓ, Fℓ ∈

R3×3, ℓ = 1,⋯, h are constant matrices with unknown parameters and 
h ∈ R+ is harmonic limit of the approximation with ℓ = 1,⋯, h repre
senting different error frequencies where 

Tanh(z2)= [ tanh(z21) tanh(z22) tanh(z23) ]
T (20)  

Sin(ℓz2)= [ sin(ℓz21) sin(ℓz22) sin(ℓz23) ]
T (21)  

Cos(ℓz2)= [ cos(ℓz21) cos(ℓz22) cos(ℓz23) ]
T (22) 

While z2(t) = [ z21 z22 z23 ]
T. 

Substituting (19) into (18) yields, 

Mż2 = − Wθ+ τ − ET Tanh(z2) −
∑h

ℓ=1

DT
ℓCos(ℓz2) −

∑h

ℓ=1

FT
ℓ Sin(ℓz2). (23) 

Based on the error system development and the subsequent stability 
analysis, the control input is designed as 

τ = − K2z2 − JT z1 + Yd θ̂ + Ê
T
Tanh(z2)

+
∑h

ℓ=1

D̂ℓ
T
Cos(ℓz2) +

∑h

ℓ=1

F̂ℓ
T
Sin(ℓz2)

(24)  

where K2 ∈ R3×3 is a positive definite control gain matrix, θ̂(t) ∈ Rp is 
the estimate of uncertain model parameters, Ê(t) ∈ R3×3, D̂ℓ(t) ∈ R3×3, 
F̂ℓ(t) ∈ R3×3 stand for the estimates of E, Dℓ and Fℓ for ℓ = 1, ⋯, h, 
respectively, that are designed as follows 

˙̂θ = − ΓYT
d z2 (25)  

˙̂E = − ψTanh(z2)zT
2 (26)  

˙̂Dℓ = − ψℓCos(ℓz2)zT
2 ,ℓ= 1,⋯, h (27)  

˙̂Fℓ = − ψℓSin(ℓz2)zT
2 ,ℓ= 1,⋯, h (28)  

where Γ ∈ Rp×p, ψ, ψℓ ∈ R3×3 ℓ = 1,⋯, h are positive definite, diagonal 
adaptive gain matrices. 

After substituting (24) into (23), the closed loop error system for z2 
yields 

Mż2 = − Wθ + Yd θ̂ − K2z2 − JT z1

− ẼT Tanh(z2) −
∑h

ℓ=1

D̃T
ℓCos(ℓz2)

−
∑h

ℓ=1

F̃T
ℓSin(ℓz2)

(29)  

where θ̃(t) ∈ Rp, Ẽ(t), D̃ℓ(t), F̃ℓ(t) ∈ R3×3 ℓ = 1,⋯, h are defined as 

θ̃ ≜ θ − θ̂ (30)  

Ẽ ≜ E − Ê (31)  

D̃ℓ ≜ Dℓ − D̂ℓ (32)  

F̃ℓ ≜ Fℓ − F̂ℓ. (33) 

To quantify the difference between the previously defined parame
trizations Ydθ and Wθ, the auxiliary term χ(t) ∈ R3 is defined as 

χ ≜ Ydθ − Wθ (34) 

Whose norm can be proven to be upper bounded as given below 

||χ|| ≤ c1||z1|| + c2||z2|| + c3||z1||
2 (35)  

where c1, c2, c3 ∈ R are positive bounding constants. In view of (34), 
(29) is obtained as 

Mż2 = χ − Ydθ̃ − K2z2 − JT z1 − ẼT Tanh(z2)

−
∑h

ℓ=1

D̃T
ℓCos(ℓz2) −

∑h

ℓ=1

F̃T
ℓSin(ℓz2).

(36)  

4. Stability analysis 

Theorem 1. The control input in (24), consisting of the parameter esti
mation update rules in (25)–(28), ensures the stability in the sense that 

‖z1(t)‖, ||z2(t)||→ 0 as t→∞ (37) 

And provided that 
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min{λmin{K1}, λmin{K2}} > max
{c1

2
+

c3

4δ
2V(0),

c1

2
+ c2 + δ

}
(38) 

Is satisfied where δ is a positive damping constant and V(0) repre
sents the initial value of the subsequently designed Lyapunov function 
V(t). 

Proof 1. To prove the above result, the non–negative Lyapunov function 
V(z1, z2, θ̃, Ẽ, D̃ℓ, F̃ℓ) ∈ R is defined as 

V≜V1 +
1
2
zT

2 Mz2 +
1
2
θ̃

T Γ− 1θ̃

+
1
2

tr
{

ẼT ψ − 1Ẽ
}
+

1
2

tr

{
∑h

ℓ=1

D̃T
ℓψT

ℓD̃ℓ

}

+
1
2

tr

{
∑h

ℓ=1

F̃T
ℓψ − 1

ℓ F̃ℓ

}

(39)  

where tr{ ⋅} is the trace operator. 
The time derivative of the Lyapunov function (39) is obtained as 

V̇ = V̇1 + zT
2 Mż2 + θ̃

T Γ− 1 ˙̃θ + tr
{

ẼT ψ − 1 ˙̃E
}

+tr

{
∑h

ℓ=1

D̃T
ℓψ − 1

ℓ
˙̃Dℓ

}

+tr

{
∑h

ℓ=1

F̃T
ℓψ − 1

ℓ
˙̃Fℓ

}

. (40) 

Utilizing (11), (36) and (30)–(33) along with θ, E, Dℓ, Fℓ being 
constant yields 

V̇ = − zT
1 K1z1 + zT

1 Jz2 + zT
2

[
χ − Ydθ̃

− K2z2 − JT z1 − ẼT Tanh(z2)

−
∑h

ℓ=1

D̃T
ℓCos(ℓz2) −

∑h

ℓ=1

F̃T
ℓSin(ℓz2)

]

+θ̃
T
YT

d z2 + tr
{

ẼT Tanh(z2)zT
2

}

+tr

{
∑h

ℓ=1

D̃T
ℓCos(ℓz2)zT

2

}

+tr

{
∑h

ℓ=1

F̃T
ℓSin(ℓz2)zT

2

}

.

(41) 

By using the trace property tr{aTbcT} = tr{cTaTb}, V̇ is rearranged as 

V̇ = − zT
1 K1z1 + zT

2 χ − zT
2 K2z2. (42) 

Therefore by utilizing (35), the upper bound for the right hand side 
of (42) can be obtained as 

V̇ ≤ − λmin{K1}||z1||
2
− λmin{K2}||z2||

2
+ c1z1||z2||

+c2z2
2 + c3

⃦
⃦z1

2
⃦
⃦‖z2‖

≤ − λmin{K1}||z1||
2
− λmin{K2}z2

2 +
c1

2
||z1||

2

+
c1

2
||z2||

2
+ c2

⃦
⃦z2

2
⃦
⃦+

c3

4δ
||z1||

4
+ δ||z2||

2

= −
[
λmin{K1} −

c1

2
−

c3

4δ
||z1||

2
]
||z1||

2

−
[
λmin{K2} −

c1

2
− c2 − δ

]
||z2||

2

≤ −
[
λmin{K1} −

c1

2
−

c3

4δ
2V(t)

]
||z1||

2

−
[
λmin(K2) −

c1

2
− c2 − δ

]
||z2||

2

(43) 

Provided that 

min{λmin{K1}, λmin{K2}} − max
{c1

2
+

c3

4δ
2V,

c1

2
+ c2

}
> 0 (44) 

Then 

V̇ ≤ − β
(
||z1||

2
+ ||z2||

2
)

(45) 

For some β > 0. Since the maximum value V(t) that can take is its 
initial value V(0) then a more conservative relationship is obtained as 

min{λmin{K1}, λmin{K2}} > max
{c1

2
+

c3

4δ
2V(0),

c1

2
+ c2 + δ

}
. (46) 

Provided that (46) is satisfied then z1(t) and z2(t) go to zero as time 
increases. 

5. Numerical results 

To validate the performance of the proposed controller along with 
the periodic disturbance estimation method, a numerical simulation 
with Matlab Simulink is conducted for trajectory tracking problem of a 
ship model. The parameters of the inertia and damping matrices in the 
ship model in (2) are (Fossen and Grovlen, 1998) 

M =

⎡

⎣
1.0852 0 0

0 2.0575 − 0.4087
0 − 0.4087 0.2153

⎤

⎦,D=

⎡

⎣
0.08656 0 0

0 0.0762 0.1510
0 0.0151 0.0031

⎤

⎦.

(47) 

The desired trajectory was selected as follows 

ηd =

⎡

⎣
10sin(0.2t)

(
1 − exp

(
− 0.3t3))[m]

10cos(0.2t)
(
1 − exp

(
− 0.3t3))[m]

5sin(0.2t)
(
1 − exp

(
− 0.3t3))[deg]

⎤

⎦ (48) 

With the initial positions η(0) = [ 1 − 1 1 ]
T while the initial ve

locities were set to zero and the periodic disturbance was adjusted as 
d(t) = [ sin(t) sin(t) sin(t) ]T. For the harmonic limit h = 5 and the 
following gains 

K1 = diag{ 7.25 7.25 8 }

K2 = diag{ 6 4 4.5 }

Γ= diag{ 4 5 6 4 5 7 8 5 6 }

ϕ= diag{2 4 6 }

ϕℓ = diag{ 2 4 6 }, ℓ= 1,⋯, 5.

The results are presented in Figs. 1–4 where Figs. 1–3 present the 
tracking error z1(t), the auxiliary error z2(t) and the input torque τ(t), 
respectively, while the entries of the parameter estimate vector are 
presented in Fig. 4. From Fig. 1, it is clear that the tracking objective is 
met. 

Additionally, numerical simulations were conducted for different 
values of h. Specially, for h = 0,1, 3,5, simulations were run and L 2 
norms and maximum values of the entries of z1 were evaluated and 
presented in Table 1. From the results given in Table 1, it is clear that as 
h increases, the L 2 norm of the entries of the tracking error decreases. 

A comparison was made with the robust adaptive controller in (Du 
et al., 2018). The robust adaptive controller of (Du et al., 2018) was run 
on the model given in this paper where the following gains were 
adjusted after trial and error 

K1 = diag{ 27 25 22 }

K2 = diag{ 15 16 14 }

G= diag{ − 1.205, − 1.260, − 1.315, − 1.370, − 1.425, − 1.480 

− 1.535, − 1.590, − 1.645, − 1.655, − 1.710, − 1.765}
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Fig. 1. The tracking error z1(t).  

Fig. 2. The auxiliary error z2(t).  
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Fig. 3. The input torque τ(t).  

Fig. 4. Estimations of constant values of D and M matrices.  

D. Kurtoglu et al.                                                                                                                                                                                                                               



Ocean Engineering 219 (2021) 108351

7

Qα1 = 6 × 10− 4I6  

Qα2 = 7 × 10− 4I6  

Qα3 = 5.5 × 10− 4I6  

Qκ1 = 2 × 10− 4I228  

Qκ1 = 2 × 10− 4I228  

Qκ1 = 2 × 10− 4I228 

L.=

⎡

⎣
2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 0 0 0 0
0 0 0 0 0 0 0 0 2 2 2 2

⎤

⎦

T

.

The results obtained are compared with the results of the proposed 
controller in L 2 norm sense and are presented in Table 2. As can be seen 
from the numerical validations, the proposed controller performs as 
good as the controller in (Du et al., 2018). 

6. Conclusions 

In this paper, a robust control design supported with a periodic 
disturbance estimation was addressed for the position tracking control 
of marine vessels. A backstepping control technique was utilized to 
realize the control design while the disturbance estimation was realized 
via a Fourier series expansion based method. Lyapunov based arguments 
were utilized to prove that the designed controller guarantees the 
convergence of the tracking error in the presence of parametric uncer
tainty and unknown periodic external disturbances. The presented 
theoretical results were supported with simulation studies. In these 
studies, it was assumed that the system is disturbed by sinusoidal per
turbations. As a result of different simulation studies conducted for 
different values of harmonic limit, it was observed that the designed 
controller can be efficiently used to reach the control purpose. We would 
like to point out that, motivated by the resemblance between the re
petitive structure of oceanic waves and sinusoidal disturbance terms, 
estimation of wave dependent disturbances in the marine vessel 

dynamical system via a Fourier series representation is novel. However 
our assumption in this study is validated only with numerical studies. In 
order for a more effective validation experimental studies with actual 
oceanic conditions is required. Unfortunately we were unable to conduct 
experimental studies to further prove our assumption. The proposed 
controller needs measurements of all system states as feedback infor
mation. Designing the output feedback version of the proposed 
controller may be focused as a future work to prevent possible problems 
that may be encountered in velocity measurement. 
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