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A B S T R A C T   

Benchtop NMR systems offers various advantages such as being easy to use, not requiring constant maintenance 
and being available at affordable prices. In this study, multiple aspects of benchtop NMR spectroscopy were 
explored to analyze milk in an industrial context, either regarding the quality of production or regarding the 
differentiation of the final product. The first part focuses on the production conditions of lactose hydrolysis in 
milk and quantitative online NMR spectroscopy was adapted to follow lactose hydrolysis in milk in continuous 
flow mode. The second part focuses on differentiating milk samples having different properties. 36 milk samples 
from France and Turkey were analysed and glycerol, fat and sugar contents were measured from the NMR 
spectra. Combination of spectroscopic data with a proposed Artificial Neural Network model enabled to classify 
milk of different origins and different properties. This study shows that benchtop NMR spectroscopy is a versatile 
non-destructive control method that can help controlling milk quality both during and after production.   

1. Introduction 

Milk is a unique product including significant amounts of nutrients 
such as calcium, proteins and vitamins (Dutra Rosolen, Gennari, Vol-
pato, & Volken De Souza, 2015). It can be considered as the ‘magic 
liquid’ due to its rich and various composition and confirmed benefits on 
the newborns. In this context, accessible analytical tools are crucial to 
ensure the quality of milk, both to optimize the production processes 
and after production to ensure its characteristic properties. 

The first focus of this paper is about the production stage, on the 
example of the potential production of lactose-free milk. One of the milk 
constituents, lactose (aka milk sugar) is a disaccharide composed of 
glucose and galactose that are linked by a β-1,4 glycosidic bond (Dong & 
Zhong, 2019). However, lactose found in the milk or milk products cause 
digestion problems in some part of the population. The absence of the 
digestive enzyme lactase which is also known as ‘lactose intolerance’ is 
the reason of this problem. Significant amount of world population 
suffers from lactose intolerance thus demand for lactose free products is 
getting increasing attention (Churakova et al., 2019). Lactose free milk 
is produced by the pre-digestion of the lactose in milk with the addition 

of the lactase enzyme. Controlling the production of lactose-free milk 
during its production has a major industrial impact. There exist many 
different techniques recognized by analytical standard agencies to 
determine the lactose content of milk, such as polarimetry, mid-infrared 
detection, gravimetry, differential pH, enzymatic methods detecting 
either the glucose or galactose moiety of lactose and HPLC (Churakova 
et al., 2019). Each of these methods has its own advantages and disad-
vantages, but to our knowledge none of them have the ability to monitor 
the hydrolysis process online in the continuous mode. Therefore, 
developing new online tools for controlling this reaction is of major 
importance for the milk industry. 

On the other hand, the differentiation of milk products not only 
regarding the sugar type (lactose free or not) but also according to the 
other parameters such as process, origin, fat content, etc. requires 
considerable attention especially considering the regulatory specifica-
tions and quality of the milk. In recent years, several studies have 
focused on discriminating the products coming from different farming 
systems, animals or feeding strategies, origin etc. (Bergamaschi, 
Cipolat-Gotet, Cecchinato, Schiavon, & Bittante, 2020). Traditional 
methods like chromatographic techniques or sensory analyses might 
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require highly skilled operators and they could not be easily adapted to 
online monitoring. Moreover, they could be time consuming and 
expensive. Easy, quick to use, minimum chemical requiring methods 
have always been on the interest of manufacturers for ensuring the 
quality and authenticity. 

Nuclear magnetic resonance (NMR) spectroscopy, is a powerful, 
fingerprint tool for the simultaneous identification and quantification of 
compounds in complex mixtures (Monakhova, Kuballa, Leitz, Andlauer, 
& Lachenmeier, 2012). It is recognized as a valuable tool for food 
analysis enabling not only the characterization of food matrices in terms 
of authenticity and quality but also identification of counterfeits 
(Sobolev et al., 2019). Also, studies of 1H NMR-based metabolomics to 
get metabolite profiles during storage (Jansson et al., 2014) or to 
analyze heritability of individual milk metabolites (Buitenhuis et al., 
2013) in animal based products have been explored (Bertram, 2018). 
However, most of the NMR spectroscopy instruments work at high field 
(1H frequencies >300 MHz) and requires a massive dedicated place with 
specific installation and trained staff as well as a substantial investment 
cost and expensive cryogenic fluids for maintenance (Bouillaud, Farjon, 
Gonçalves, & Giraudeau, 2019). To overcome such limitations, bench-
top systems capable of conducting spectroscopy experiments have been 
developed (Perlo et al., 2005). These systems have been successfully 
used to monitor authenticity in some kind of foods such as in coffee 
(Defernez et al., 2017) and in meat (Jakes et al., 2015). Furthermore, 
thanks to their compact character, NMR spectroscopy can easily be used 
for online monitoring under flow conditions (Anderssen & McCarney, 
2020;Bouillaud, Heredia, et al., 2019; Knox, Parkinson, Stone, & War-
ren, 2019; Rönnols, Danieli, Freichels, & Aldaeus, 2020; Soyler, Bouil-
laud, Farjon, Giraudeau, & Oztop, 2020), which makes them ideal 
candidates for the online control of food production processes. For 
instance, benchtop NMR spectroscopy has been used to monitor 
continuous processes such as enzymatic hydrolysis of marine 
by-products (Anderssen & McCarney, 2020), sucrose hydrolysis (Soyler, 
Bouillaud, Farjon, Giraudeau, & Oztop, 2020), in vivo monitoring of lipid 
accumulation in microalgae (Bouillaud et al., 2020) and lignin analysis 
(Rönnols et al., 2020). However it is important to note that imple-
menting NMR spectroscopy in a flow system is challenging and can 
introduce additional complexity relative to static samples (Knox et al., 
2019). The impact of flow rate on signal intensities should be investi-
gated carefully and the parameters should be set accordingly (Soyler, 
Bouillaud, Farjon, Giraudeau, & Oztop, 2020). 

To our knowledge, this will be 1st study where milk will be inves-
tigated by using a bench top NMR spectroscopy system from different 
aspects. We have explored the versatility of benchtop NMR on milk 
samples for two different purposes. In the first part of the study, 
benchtop NMR spectroscopy was utilized in conditions mimicking the 
online control of lactose hydrolysis in milk and lactose hydrolysis was 
monitored first in a model system, then in a milk sample -with no need 
for deuterated solvents through the use of a tailored solvent suppression 
pulse sequence (Gouilleux, Charrier, Akoka, & Giraudeau, 2017). Ki-
netic analysis of the reaction was also performed. In the second part, 36 
milk samples from Turkey and France; having different fat and sugar 
contents; production styles (conventional vs organic) were analysed by 
NMR spectroscopy together with multivariate approaches to assess the 
potential of benchtop NMR as a differentiation tool. 

2. Materials and methods 

2.1. Materials 

Lactose in the form of D-(+)-Lactose monohydrate was purchased 
from Fluka BioChemika, Switzerland. Lactase enzyme (Maxilact® LGi 
5000) for lactose hydrolysis was supplied from DSM, (Heerlen, The 
Netherlands). D-(+)-Glucose, D-(+)-Galactose, imidazole and 3-(Tri-
methylsilyl) propionic-2,2,3,3-d4 acid (TSP) were provided from Sigma- 
Aldrich Co. (St. Louis, MO, USA). HPLC grade water from a water 

purification system (Nanopure Infinity, Barnstead International, IA) was 
used for the preparation of the solutions. For the lactose hydrolysis ex-
periments in milk, a UHT whole milk (Lactel, France) bought from a 
grocery store in France was used. 

For the second part of the study, 36 different samples of milk 
(different cow milks: whole milk, organic whole milk, low-fat milk, 
lactose-free milk and goat milk) were purchased from local Turkish and 
French supermarkets. Information on the milk samples are given in 
Table 1. 

2.2. Sample preparations 

For online monitoring analysis, hydrolysis reactions were performed 
both for a model system and on a milk sample. As the model solution, a 
solution of glucose, galactose and lactose was used. 5% (w/w) glucose, 
galactose and lactose solutions were prepared separately by dissolving 
in non-deuterated HPLC grade water in a 50 mL tube. TSP was used as 
the internal standard. 

For milk differentiation experiments, 0.5% (w/w) imidazole was 
added to the 36 milk samples (Table 1) as the internal reference for NMR 
measurements since TSP was masked with the peaks of the fats present 
in the milk. Imidazole had 1H chemical shifts of 7.26 ppm and 8.11 ppm. 
All the samples were stirred for 5 min for complete dissolution of 
imidazole in the milk. Afterwards, the samples were transferred into 5 
mm NMR tubes and stored in the dark and refrigerated before analysis to 
prevent spoilage. 

2.3. NMR spectroscopy 

NMR spectroscopy experiments were performed on a benchtop 
spectrometer operating at a 43 MHz 1H frequency with a compact per-
manent magnet based on the Halbach design (Magritek Spinsolve, 
Wellington, NZ) (E. Danieli, Perlo, Blümich, & Casanova, 2013; Ernesto 
Danieli, Perlo, Blümich, & Casanova, 2010). The spectrometer was 
equipped with a gradient coil along the B0 axis in the transverse plane of 
the NMR tube that could produce a maximum field gradient of 0.16 T 
m− 1 and also had an external lock system which allowed the use of 
non-deuterated solvents. The experiments were performed at 29 ◦C since 
this was the temperature at which the magnet stability was optimal. 
Since deuterated solvents were not used, an experiment to suppress the 
water signal was used, based on a WET-180-NOESY (Gouilleux, Char-
rier, Akoka, & Giraudeau, 2017). This pulse sequence provides an 
optimal solvent suppression for small molecules on a benchtop spec-
trometer, leading to a lower and narrower water signal with a clean 
phase with a minimal impact on nearby peaks. 

An inversion recovery sequence was used for measuring longitudinal 
relaxation times T1 using an inversion time range of 0.1–10,000 ms with 
15 points. 

The 1D 1H spectra were obtained with 64 scans for a total experiment 
time of 6 min for model lactose solution hydrolysis and 7 min for milk 
hydrolysis and ‘milk differentiation’ experiments. The 90◦ pulse angle 
was achieved by a pulse length of 6.7 μs at 0 dB. The FIDs were recorded 
with 16 K points, a dwell time of 200 μs, and a repetition time of 6 s for 
model lactose solution and 7 s for milk, corresponding to 5 times the 
longest T1 in the sample to ensure quantitative conditions. 1D data were 
processed with MestReNova. To align all the spectra correctly, TSP was 
used to calibrate the chemical shift axis at 0 ppm for the hydrolysis 
experiments. For milk spectra, the signal of imidazole at 7.26 ppm was 
used as the chemical shift reference. All spectra were processed with a 
0.2 Hz exponential apodization, an automatic phase correction and an 
automatic baseline correction via a Whittaker smoother algorithm. 
Manual phase correction and manual baseline correction were also 
performed in addition to the automatic corrections. Relevant peak in-
tegrals were calculated by integration with the MestReNova software. 
Deconvolution tools were also evaluated but yielded a slightly lower 
performance than integration, probably due to the non-ideal line shapes. 

A. Soyler et al.                                                                                                                                                                                                                                  



LWT 139 (2021) 110557

3

2.4. Lactose hydrolysis in continuous flow system 

For on-line monitoring, the system included a glass flow cell with 5 
mm outer diameter, a peristaltic pump (Reglo Digital, Ismatec, Wer-
theim, Germany) and PEEK tubing. A heating plate (RCT Basic, IKA- 
Werke GmbH & Co. KG, Staufen, Germany) was added to the system 
to control the temperature of the hydrolysis reaction. 

NMR signal is very sensitive to the flow rates as the signal becomes 
broader and the resolution decreases with increasing flow rates. The 
approach followed in a previous study (Soyler, Bouillaud, Farjon, Gir-
audeau, & Oztop, 2020) was used to determine the optimal flow rate of 
0.5 mL/min. 

2.5. Differentiation milk samples 

Experiments were performed in 5 mm NMR tubes in static mode. For 
the quantitative analysis, lactose, glycerol and fat contents were deter-
mined from the spectra as will be shown later. 

Considering the factors given in Table 1 (country (TR/FR), milk type 
(Goat/Cow), production style (Conventional/Organic), processing 
(UHT/Pasteurized), fat and sugar content), Analysis of Variance 
(ANOVA), was conducted on the responses of glycerol; lactose and fat 
contents to see if any of the responses showed differences with milk type. 
If significant difference was detected, means were compared by the 
Tukey test (p < 0.05) using MINITAB (Version 19, Coventry, U.K) 
software. 

In addition, to obtain some grouping info for the given data set, an 
Artificial Neural Networks (ANN) model was developed by using NMR 
spectra results. Artificial Neural Networks (ANN) model is a nonlinear 
mathematical model with the capability of developing meaningful re-
lationships between input and output variables through a learning 

process (Zheng et al., 2011). The function and organization of the 
human brain gave inspiration to its function and structure (Bila et al., 
1999). The mathematical model designed to classify milk samples with 
respect to their fat and sugar contents, milk source, production and 
processing type was based on nonlinear ANNs. These intelligent algo-
rithms have been used to link chemical information coming from 36 
milk samples with milk type to achieve a potential tool for accurate 
differentiation and quality control. 

ANN model was implemented with the ‘neural net package’ (Version 
1.44.2) in R (Stefan Fritsch, Frauke Guenther, Marvin N. Wright, Marc 
Suling, & Sebastian M. Mueller, 2019). For training (calibration), 2/3 of 
the data were used and 1/3 was separated to test the model (external 
validation). In order to obtain the best score, ANN model was trained 
using different number of neurons between 2 and 15 in the hidden 
layers. ANN model yielded possible classifications of the samples and 
possibility ratios. R2

cal was used to investigate the prediction ability of 
the trained ANN model and R2

pred for external validation. Error values 
were stated as root mean square error of calibration (RMSEC) and root 
mean square error of prediction (RMSEP). R2 values should be close to 1 
while error values should be low to obtain a robust prediction model 
(Uncu & Ozen, 2019). Optimal number of learning steps was selected 
according to the minimum root means square error cross validation 
(RMSECV) value for the calibration dataset. A value for R2 between 0.50 
and 0.65 can be used for discrimination between high and low con-
centrations. A value for R2 between 0.66 and 0.81 shows approximate 
quantitative predictions., R2 between 0.82 and 0.90 are considered as 
good prediction and above 0.91 are excellent (Saeys, Mouazen, & 
Ramon, 2005). Categorical variables were used as binary data, while 
numeric data was used for normalization and scaling. 

Table 1 
Milk samples used in the study.  

Sample Name Country Fat Content Sugar Content Milk Source Production Style Processing 

WMF-1 France Whole Regular Cow Conventional UHT 
WMF-2 France Whole Regular Cow Conventional UHT 
WMF-3 France Whole Regular Cow Conventional Pasteurized 
WMF-4 France Whole Regular Cow Conventional Pasteurized 
OMF-5 France Whole Regular Cow Organic UHT 
OMF-6 France Whole Regular Cow Organic Pasteurized 
OMF-7 France Whole Regular Cow Organic Pasteurized 
HFMF-8 France Half Regular Cow Conventional UHT 
OHFMF-9 France Half Regular Cow Organic Pasteurized 
HFMF-10 France Half Regular Cow Conventional Pasteurized 
HFMF-11 France Half Regular Cow Conventional Pasteurized 
HFMF-12 France Half Regular Cow Conventional UHT 
OHFMF-13 France Half Regular Cow Organic UHT 
WMF-14 France Whole Regular Cow Conventional UHT 
OHFMF-15 France Half Regular Cow Organic UHT 
HFMF-16 France Half Regular Cow Conventional UHT 
OMF-17 France Whole Regular Cow Organic Pasteurized 
OHFMF-18 France Half Regular Cow Organic UHT 
GMF-19 France Half Regular Goat Conventional UHT 
GMF-20 France Whole Regular Goat Organic UHT 
GMF-21 France Whole Regular Goat Organic UHT 
GMF-22 France Whole Regular Goat Organic UHT 
WMT-23 Turkey Whole Regular Cow Conventional UHT 
WMT-24 Turkey Whole Regular Cow Conventional UHT 
WMT-25 Turkey Whole Regular Cow Conventional UHT 
WMT-26 Turkey Whole Regular Cow Conventional UHT 
WMT-27 Turkey Whole Regular Cow Conventional UHT 
WMT-28 Turkey Whole Regular Cow Conventional UHT 
OMT-29 Turkey Whole Regular Cow Organic UHT 
GMT-30 Turkey Whole Regular Goat Conventional UHT 
LFMF-31 France Half Lactose-Free Cow Conventional UHT 
LFMF-32 France Half Lactose-Free Cow Conventional UHT 
LFMT-33 Turkey Half Lactose-Free Cow Conventional UHT 
LFMT-34 Turkey Half Lactose-Free Cow Conventional UHT 
LFMT-35 Turkey Half Lactose-Free Cow Conventional UHT 
LFMT-36 Turkey Half Lactose-Free Cow Conventional UHT  
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3. RESULTS and DISCUSSION 

3.1. Lactose hydrolysis in continuous flow system 

3.1.1. 1D solvent suppression enhanced NMR spectra 
At first, 1D 1H NMR experiments were carried out with a water signal 

suppression pulse sequence on model solutions of isolated compounds to 
identify the peaks which could be used to monitor the lactose hydrolysis 
reactions. Fig. 1 shows the stacked spectra of glucose, galactose and 
lactose alone. Due to low magnetic field, the spectra of the sugars were 
highly overlapped. The suppressed water peak was observed at 4.9 ppm. 
As can be seen in Fig. 1, alpha anomeric proton peaks of glucose, 
galactose and lactose are overlapped at 5.3 ppm. Although beta 
anomeric proton peaks of glucose and galactose are masked by the water 
peak, the beta anomeric proton peak of lactose is seen as a distinctive 
peak at 4.4 ppm. Despite the fact that it is difficult to integrate only 
alpha lactose site due to alpha glucose and galactose signal overlap, it is 
still possible to monitor the lactose hydrolysis with the isolated beta 
anomeric signal. Moreover, anomeric ratio between alpha and beta 
anomers is constant during the monitoring therefore it is reliable to 
follow the beta anomeric site along the course of the hydrolysis. 

3.1.2. Online monitoring and kinetic modelling of lactose hydrolysis in the 
model system 

Lactose when hydrolyzed yields glucose and galactose as seen below. 
For model lactose solution hydrolysis, a 5% lactose solution was 

hydrolyzed with 20 μL lactase enzyme. The NMR spectra were obtained 
at 6 min intervals for 240 min (Fig. 2a). The consumption of lactose can 
be seen from β-lactose peaks (Fig. 2b). 

Concentrations of lactose for each time point were calculated using 
Equation (1). The number of protons contributing to the signal was 9 for 
TSP, and 3 for imidazole. 

Cx =
Ax/Nx

AREF/NREF
.

MWx

MWREF
CREF (Eq.1) 

C, and MW were the concentrations in mg/g, the molecular weight. 

REF referred to the internal reference. A and N, denoted the integral area 
in a fully relaxed 1H NMR spectrum and the number of hydrogens 
contributing to the signals. Hydrolysis experiments were repeated three 
times and the change on the average concentrations of lactose from the 
experiments were plotted as a function of time in Fig. 3. 

Lactose data were fitted to Equation (2) (R2 > 0.99) and the average 
rate constant was found as k = 1.66*10− 2 min− 1 at 29 ◦C. 

C − C∞

Co − C∞
= e− kt (Eq. 2)  

3.1.3. Lactose hydrolysis in milk 
Based on the good repeatability of the model lactose solution hy-

drolysis, milk was also hydrolyzed with 20 μL of enzyme. Milk is a much 
more complex fluid than the model lactose solution. The major con-
stituents of milk are water, fat, proteins and lactose. Milk also contains 
trace amounts of vitamins, minerals, organic acids, enzymes. Therefore, 
1D 1H NMR spectrum of milk was quite different than the model lactose 
solution (Fig. 4a). The NMR spectra were obtained at each 7 min for 280 
min. As seen in Fig. 4b, the consumption of lactose was followed using 
the peak of β-lactose. The average rate constant from the fractional 
conversion model yield a value of 1.52 × 10− 2 min− 1 at 29 ◦C which was 
consistent with the previous study of Panesar (2007) where it was found 
as 1.56 × 10− 2 min− 1 at 30 ◦C (Fig. 5). 

Results of this part showed that lactose hydrolysis can be controlled 
online in a continuous mode successfully by using benchtop NMR 
spectroscopy, thus the method has high potential to be adapted for in-
dustrial processes. For lactose free milk production, it should be ensured 
that residual lactose amounts are within the legal limits for that product 
category. This can further be confirmed by other high-resolution spec-
troscopic techniques. 

3.1.4. Differentiation of milk samples by benchtop 1H NMR profiling and 
chemometrics 

In this part of the study, 36 milk samples of which the properties 
have been listed in Table 1 were analysed. A sample spectrum of milk 

Fig. 1. Stacked spectra of glucose, galactose and lactose.  
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was given in Fig. 4a. As seen in the spectrum, there were broad fat peaks 
between 0.5 and 2.5 ppm. For the differentiation experiment of the 
samples, integral area of glycerol, lactose and fat peak were used. The 
imidazole peak integral area was used for the normalization of other 
peaks. The normalized integral areas are given in Table 2. Lactose-free 

milks (LFM(T/F)) were found to have no lactose and half-fat milks 
(HFM(T/F)) had nearly half fat content compared to whole milk 
samples. 

Glycerol peak was observed next to β-lactose peak between 4.0 and 
4.25 ppm. When the glycerol contents were compared, Turkish and 

Fig. 2. a) Full superimposed spectra of lactose hydrolysis of model lactose solution b) β-lactose region.  
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French milks were found to be significantly different from each other; 
glycerol contents of French milks being higher (p < 0.05). 

Two reasons could suggest for the presence of glycerol in the milk. 
Firstly, glycerol is used for the treatment of ketosis which is a metabolic 
disease caused by the negative energy balance during lactation (John-
son, 1954). And secondly, glycerol is used in the feed as an energy 
source. Expansion of the biodiesel industry decreased the availability of 
corn for animal feed and increased its prices. Therefore, glycerol which 
is also a by-product of the biodiesel industry has started to be used as an 
energy source for cows (Carvalho, Schmelz-Roberts, White, Doane, & 
Donkin, 2011). The energy concentration of glycerol (1.98–2.29 
Mcal/kg) is almost equal to corn starch (Schröder & Südekum, 1999). 
And inclusion of that in the diet was eventually observed in the milk. 

According to ANOVA results, only the fat and sugar status of the milk 
were found to be significant for fat and lactose contents (p < 0.05). 
Production type, country and processing were found to be insignificant 
on lactose and fat content (p > 0.05). 

3.1.5. Artificial Neural Network (ANN) model 
As stated before, ANN was used as the multivariate approach for 

classification of the different milk samples based on the outputs of the 
NMR spectra. The most commonly used quantitative prediction multi-
variate technique is Partial Least Square Regression (PLSR), which is 
mostly used to analyze spectroscopic data, especially FTIR. However, 
ANN was found to show much better differentiative prediction ability as 
compared to other classification models (Efenberger-Szmechtyk, 
Nowak, & Kregiel, 2018). This is explained with several reasons. ANNs 
learn relationship between the input variables and the output values 
through successive trainings and the non-linear technique allows model 
to fit the data better. Analysis is noise insensitive which provides ac-
curate prediction in the presence of noisy data (Berrueta, Alonso-Salces, 
& Heberger, 2007). There has been several studies on foods which show 
that ANN is superior to PLSR in prediction (Panagou, Mohareb, Argyri, 
Bessant, & Nychas, 2011; Perai, Moghaddam, Asadpour, Bahrampour, & 
Mansoori, 2010; Vasquez et al., 2018). 

In this work, ANN model has been designed and optimized to 
discriminate milk samples according to their glycerol, lactose and fat 
peak areas obtained from the 1D NMR spectra. The mathematical tool 
employed six categorical parameters (country, fat content, sugar con-
tent, milk source, production type and processing type) as variables to 

accurately classify the milk samples. 
RMSECV values of the model were used to determine ruggedness of 

the model. The breakpoint in the RMSECV vs. iteration number (step) 
plot were identified as the number of iteration (step) parameter for the 
analyses. Following such an approach prevented overtraining of the 
model. Since the RMSECV values are usually an integral part of the ANN 
analysis, they were not saved thus not reported in the model. Feedfor-
ward supervised method was used for training ANN model with 5 neu-
rons and 2 neurons in the two hidden layers. Multilayer feedforward 
neural network diagrams are also given in the supplement. RMSEC value 
was obtained as 0.017 and R2

cal was 0.997. When external validation 
data was fitted to model, RMSEP was observed as 0.128 and R2

pred was 
0.819 and these values indicated good prediction. Each sample was 
correctly classified in the cross validation (24/24), while one of the 12 
samples was misclassified in the external validation set (Fig. 6). These 
results showed that glycerol, fat and lactose contents, supplied with 
information such as production type, processing method, milk source 
and analysed with ANN, could be used to locate the origin (geography) of 
milk. 

ANN was also used to differentiate organic milk samples from con-
ventional milks samples, and pasteurized milk samples from UHT pro-
cessed milk samples. For classification of organic and conventional 
samples, RMSEC value was obtained as 0.121 and R2

cal was 0.893. When 
external validation data was fitted to model, RMSEP was observed as 
0.232 and R2

pred was 0.419. Although R2
pred was relatively low, 0.42 is 

adequate for discrimination between distinct classes. Prediction ability 
of model according to samples’ production type was 24 out of 24 for 
calibration set and 9 out of 12 for validation set. In the validation set, 
two organic samples were misclassified as conventional and one sample 
was misclassified as organic. 

Same ANN parameters were used to classify pasteurized milk sam-
ples and UHT processed milk samples. RMSEC for calibration set was 
0.018 and RMSEP for prediction was 0.153. R2 for calibration was ob-
tained as 0.999 while R2 for prediction was 0.851. Each sample in 
calibration set and pasteurized samples in validation set were classified 
correctly while two of UHT processed milk samples in validation set 
were misclassified. R2 for prediction value showed that model was good 
enough for prediction. 

In summary, the ANN model was successfully used to predict origins 
of milk samples, production type and process type. For all parameters 

Fig. 3. Hydrolysis of lactose for the model system.  
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Fig. 4. 1D 1H NMR spectrum of milk with the assignment for its main constituents (a) Superimposed spectra of lactose hydrolysis in milk (b).  
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evaluated in the study, the maximum number of incorrect matches was 2 
which was a good indicator for the strong classification ability of the 
model. These results confirmed the existence of a relationship between 
the six categorical parameters and three main components in the clas-
sification of milks, leading to potential design of an objective evaluating 
method for classification of diverse milk samples. The model supported 
potential use of benchtop NMR spectra for differentiating milk samples 
and provided input for a more comprehensive authentication study. 

4. Conclusion 

Milk is a very valuable food for the human being. Ensuring its quality 
and authenticity is significant. In this study, multiple aspects of bench-
top NMR spectroscopy have been evaluated to investigate its potential as 

a multi-scale control tool at different stages of milk production. The first 
part of the study focused on the online monitoring of lactose hydrolysis 
in milk. Enzymatic hydrolysis of lactose was successfully followed and a 
kinetic model was obtained in agreement with previous studies. In the 
second part, milk samples that have different properties were examined. 
Glycerol, fat, sugar content of the milks was obtained from the NMR 
spectra and an Artificial Neural Network (ANN) model was developed to 
seek for classifications based on the production, processing type, milk 
source and geographic origin. The developed model supported the po-
tential use of benchtop NMR spectra for differentiating milk samples. 
Overall, it was shown that even for a complex fluid like milk, benchtop 
NMR spectroscopy provides valuable information and the technique 
after a full analytical validation that is out of the scope of this proof-of- 
concept study has the potential to be used in industry for monitoring 

Fig. 5. Hydrolysis of lactose in a real milk sample.  

Table 2 
Integral areas of glycerol, lactose and fat NMR peaks of analysed milks, normalized to the imidazole signal.  

Sample Name Glycerol Lactose Fat Sample Name Glycerol Lactose Fat 

WMF-1 1.126 ± 0.0003 18.023 ± 0.0108 40.585 ± 0.0209 GMF-19 0.723 ± 0.0006 20.1 ± 0.0301 27.899 ± 0.0089 
WMF-2 1.204 ± 0.0037 21.068 ± 0.0582 49.632 ± 0.1252 GMF-20 0.749 ± 0.0004 17.719 ± 0.0146 47.585 ± 0.0178 
WMF-3 0.845 ± 0.0005 18.416 ± 0.0047 44.177 ± 0.0169 GMF-21 0.841 ± 0.0017 20.372 ± 0.0191 46.935 ± 0.0752 
WMF-4 1.022 ± 0.0019 21.37 ± 0.0097 49.785 ± 0.0029 GMF-22 1.006 ± 0.0012 18.727 ± 0.0215 52.168 ± 0.0439 
OMF-5 1.006 ± 0.0001 18.631 ± 0.0031 47.615 ± 0.0068 WMT-23 0.863 ± 0.0006 19.08 ± 0.0208 44.018 ± 0.0429 
OMF-6 1.043 ± 0.0003 20.927 ± 0.0033 55.941 ± 0.0076 WMT-24 1.007 ± 0.0024 19.483 ± 0.0295 48.226 ± 0.0474 
OMF-7 0.576 ± 0.0010 19.352 ± 0.0090 48.897 ± 0.0210 WMT-25 0.279 ± 0.0020 22.412 ± 0.0668 45.022 ± 0.0609 
HFMF-8 0.687 ± 0.0008 20.311 ± 0.0015 25.845 ± 0.0284 WMT-26 0.428 ± 0.0010 18.615 ± 0.0257 41.632 ± 0.0496 
OHFMF-9 0.275 ± 0.0002 19.461 ± 0.0211 20.38 ± 0.0286 WMT-27 0.772 ± 0.0004 18.911 ± 0.0092 44.755 ± 0.0124 
HFMF-10 0.472 ± 0.0004 20.384 ± 0.0047 25.257 ± 0.0235 WMT-28 0.23 ± 0.0006 19.651 ± 0.0275 44.747 ± 0.0299 
HFMF-11 0.195 ± 0.0012 22.737 ± 0.0488 24.772 ± 0.0430 OMT-29 0.175 ± 0.0005 22.332 ± 0.0176 46.65 ± 0.0544 
HFMF-12 0.55 ± 0.0004 22.638 ± 0.0188 25.964 ± 0.0748 GMT-30 0.163 ± 0.0012 19.955 ± 0.0248 44.893 ± 0.0698 
OHFMF-13 0.7 ± 0.0015 23.062 ± 0.0313 28.13 ± 0.0998 LFMF-31 0.436 ± 0.0014 0 24.89 ± 0.0947 
WMF-14 0.956 ± 0.0007 21.808 ± 0.0065 57.543 ± 0.0135 LFMF-32 0.123 ± 0.0004 0 24.288 ± 0.0186 
OHFMF-15 0.522 ± 0.0009 18.763 ± 0.0165 22.294 ± 0.0364 LFMT-33 0.412 ± 0.0016 0 22.52 ± 0.0412 
HFMF-16 0.502 ± 0.0052 18.866 ± 0.04292 22.594 ± 0.1573 LFMT-34 0.297 ± 0.0009 0 23.29 ± 0.01711 
OMF-17 0.817 ± 0.0007 22.858 ± 0.0236 57.398 ± 0.0498 LFMT-35 0.373 ± 0.0006 0 20.793 ± 0.0204 
OHFMF-18 0.482 ± 0.0005 20.006 ± 0.0202 26.536 ± 0.0403 LFMT-36 0.059 ± 0.0417 0 27.991 ± 0.0841  
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production, quality control and authenticity determination (but on larger 
sample set). 
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