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Stacking sequence design and optimization of 64 layered symmetric-balance 
graphite/epoxy laminated composite have been performed. The optimization 
problems aim to find the optimum stacking sequence maximizing the critical 
buckling load by single objective optimization approach. Differential Evolution 
(DE) and Simulated Annealing (SA) optimization algorithms are proposed to 
solve the problems. The effect of the aspect ratios (a/b) and in-plane biaxial 
compressive loading ratios (Nx/Ny) on critical buckling load are investigated. In 
order to see the effect of discrete increments of fiber orientation angle on 
critical buckling load, 1°, 5°, 15°, 30° and 45° fiber angle increments are also 
considered. The results show that (i) the proposed algorithms DE and SA 
exhibit comparable performance in terms of critical buckling load when 
compared Genetic algorithm (GA) and Generalized pattern search algorithm 
(GPSA), (ii) DE and SA find distinct stacking sequence configurations in terms 
of buckling load for the same laminated structure design problems.    
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1. Introduction 

In recent years, laminated composites have been very popular due to their high specific 
modulus and high specific strength values in manufacturing industry both in high-class 
industries like aerospace applications and middle-class industries such as marine, 
automotive and military applications [1, 2]. In addition to these characteristics of the 
laminated structures, fiber reinforced composites have a distinctive feature that allows 
the structural properties of composite materials such as fiber orientation and stacking 
sequence to be adjusted. These distinguishing features provide great possibilities for 
designers as an alternative to isotropic materials. Despite all of these superior properties 
of these materials, there are critical problems in some specific working conditions. These 
special conditions can be classified as overstress, over deflection, resonant vibration, and 
buckling. It can be said that the determination of the buckling load capacity of the 
laminated composite plate under the in-plane compressive loads is very important for 
the design of composite structures [1, 3]. 
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Laminated composite plates are frequently exposed to uniaxial or biaxial pressures 
depending on the site of use. Thin and wide composite plates are exposed to a load in the 
compression plane, buckling in the plate is considered a critical failure mode. 
Determination of the buckling load capacity under in plane biaxial compression during 
the design of composite plates is crucial for understanding the post-buckling behavior 
especially in the engineering applications such as aircraft, automotive and ships design. 
Many studies have been carried out in the literature to solve this problem [1, 3]. For this 
purpose, Chao et al. [4] studied the optimization of buckling load under uniaxial 
compression conditions. Erdal and Sonmez [5] determined optimum stacking sequence 
design of composite plate to maximize critical buckling load. Aymerich and Serra [6] 
maximized buckling load capacity of laminated composite plate under strength, ply-
contiguity and symmetric-balance constraints. Deveci et al. [7] obtained optimum integer 
and discrete stacking sequences of laminated composite plates for maximum buckling 
load capacity considering Puck fiber and inter-fiber failure (IFF) criteria as nonlinear 
constraints. Many stochastic optimization methods have been used to optimize buckling 
behavior. Kim and Lee [8] reported that Genetic Algorithms (GA), Generalized Pattern 
Search Algorithm (GPSA), Differential Evolution (DE) and Simulated Annealing (SA) 
algorithms are suitable for the solution of buckling problems. Karakaya and Soykasap [9] 
used the GA method to maximize the critical buckling load factor of composite plates and 
designed optimum ones with conventional fiber angles. 

In the literature, studies on optimizing the stacking sequence of laminate composites 
have been carried out with GPSA [9], SA [10], Scatter Search [5], Tabu Search [11], Ant 
Colony Optimization (ACO) [6, 12] and GA, SA [13] algorithms in order to maximize the 
buckling load factor. 

In the present study, in order to maximize critical buckling load factor (objecitive 
function), single objective optimization of 64 layered symmetric-balance graphite/epoxy 
laminated composite plate is considered by utilizing modified version of two stochastic 
optimization methods: Differential Evolution and Simulated Annealing. Fiber orientations 
are selected as design variables. The effect of aspect ratio and loading ratios on critical 
buckling load are also investigated.  

2. Mechanical Analysis   

The used laminated composite plate is simply supported on four edge and specially 
orthotropic. The geometric dimension and fiber configuration of plate are length a, width 
b, total thickness h and fiber orientation angle θ in the x, y, z and 1 directions, respectively 
(Fig 1). The composite plate is subjected to biaxial in-plane loads per unit length Nx and 
Ny. The material of the composite laminated plate is assumed to be homogeneous and the 
layers have equal thickness. The governing equation of the buckling process based on the 
classical laminated plate theory for the described symmetric laminate is given as follow 
[14] 
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Fig. 1 Thin laminated composite plate subject to in-plane loading 

where w is the deflection in the z direction and Dij is the bending stiffness as 
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where N is the total number of plies, k is the ply number and  ( )k
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 is the transformed 

reduced stiffness of the kth layer  

The boundary conditions for the simply supported plate are given as 
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where, ,x y   are the normal stress resultants in x and y directions. 

For specially orthotropic laminate, the fiber configurations consist of only 0° and 90° and 
in this case, the element of stiffness matrix:  A16=A26=B16=B26=D16=D26=0. Nemeth [15] has 
given the detail explanation about the usage of specially orthotropic case in composite 
laminates for buckling problems. If the laminated composite is not specially orthotropic, 
the bending–twisting terms D16 and D26 will be neglected only when the non-dimensional 
parameters fulfill the conditions. 
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With the substitution of Eq. (2) into Eq. (1) under Eq. (4) boundary condition, and solving 
eigen function problem, buckling load factor expression can be obtained as [14] 
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where, m and n are integer numbers corresponding to different modes shapes; b  is 

buckling load factor; Nx and Ny are applied loads. Buckling loads are identified as Nxb=Nx 

b and Nyb=Ny b . Critical load factor cb is the lowest buckling load factor, and it can be 

found by using appropriate combinations of m and n. For the present problem, m and n 
are taken to be 1 or 2, and hence the smallest of 

b  (1,1), 
b  (1,2), 

b  (2,1), 
b  (2,2) 

yields 
b . Also, the critical load equals to 

cb when unit loads are applied. 

3. Optimization Algorithms  

Optimization techniques can be divided into two main categorize as traditional and non-
traditional. One of the traditional optimization techniques Lagrange Multipliers is used to 
find the optimum solution of only continuous and differentiable functions. Due to the fact 
that the design problems of the composites have discrete search spaces, the 
nontraditional optimization techniques can be used. In these cases, the stochastic 
optimization methods such as Genetic Algorithms (GA), Generalized Pattern Search 
Alogorithm (GPSA), Ant Colony Optimization (ACO), Differential Evolution (DE) and 
Simulated Annealing (SA) can be utilized. A detail explanation about stochastic 
optimization methods can be found in Rao [16] and in Gurdal et al. [17] for composite 
design problems and various applications. In this study, DE and SA methods are utilized 
to solve the defined laminated composite optimizations problems. Related parameters of 
the algorithms used in adjusting the options correctly are listed in Tables 1. 

 
3.1 Differential Evolution Method 

Differential Evolution is one of the stochastic optimization methods and a preferable to 
use in complex structured composite design problems such as a finding of critical 
buckling load, estimation of the natural frequency of the system and acquire the 
lightweight design. Differential Evolution algorithm contains the four main stages: 
initialization, mutation, crossover and selection as shown in Fig. 2. To find the optimum 
result, the effective parameters of the algorithm: scaling factor, crossover and population 
size. For more information about DE, can be referred to Storn and Price [18].                       
A population of solutions is handled instead of a single solution at each iteration in DE 
algorithm and also this algorithm is computationally expensive. Even if DE Algorithm is  
not guaranteed to find the global optima for all types of optimization problems, in some 
studies it is shown that it is relatively robust and efficient in finding global optimum 
compared to the other search techniques. In he Mathematica implementation of DE 
algorithm, it considers a population of r points, { θ 1, θ 2,…, θ j,…, θ r}. It is important that r 
should be much greater than the number of design variables. At the iteration proses, 
firstly, the algorithm generates a new population that is produced by selecting random 
points. By introducing the real scailing factor as “rsf” and defining θ rsf = θ w+rsf (θ u- θ v), ith 
iteration points can be obtained from the previous population. Secondly, a new point θ new 
is established by selecting jth coordinate from θ rsf with probability P. In Mathematica 
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software, P can be adjusted by the option  "CrossProbability". In that step, if the 
constraint f(θ new)<f(θ i) is valid then θ i is taken instead of θ new in the population. Stoping 
criteria for this process is that  

(i) if the difference between the optimum output values at the new and old 
populations, 

(ii) the difference between two (the new and old) points the new best points 
are less than the tolerances provided by the parameters which specifies 
how many effective digits of accuracy and precision should be sought in the 
final result. 

 

 

Fig. 2 Flowchart of the DE algorithm [19] 

3.2 Simulated annealing 

SA is the most popular search method based on the physical process of the annealing 
related to a metal object which is heated to a high temperature and permit to cool slowly. 
During the melting process, the material becomes a tougher material by means of the 
atomic structure settle to a lower energy state. In the optimization problems, SA 
algorithm can arrive at a better global optimum thanks to the annealing process allows 
the structure to get away from a local minimum. It is possible to solve mixed-integer, 
discrete, or continuous optimization problems by using SA. The main advantage related 
to SA is to be a talented algorithm for these problems [20]. 

Mathematica implementation of SA can be briefly explained as follows:  

Firstly, an initial guess is introduced as θin, Secondly, a new point, θ new, is produced in the 
neighborhood of the current point, θ at each iteration so far, θ best, is also tracked. The 
main idea is here that the radius of the neighborhood decreases with the iteration. If 

 f(θ new) <=f(θ best), θ new replaces θ best and θ. Otherwise, θ new replaces θ with a probability. 

The distance of the new point from the current point is based on Boltzmann’s probability 
distribution 𝑒𝐵(𝑖,𝛥𝑓,𝑓0). 

In this distribution “B” is the function defined by Boltzmann Exponent, i is the current 
iteration, Δf is the change in the fitness function value, and f0 represents the value of the 

objective function from the (i-1)th iteration. B is  
−𝜟𝒇𝒍𝒐𝒈(𝒊+𝟏)

𝟏𝟎
 if it is not introduced by the 

user. Instead of only one initial guess the Mathematica command “Simulated Annealing” 
uses two or more starting points. The number of initial points is given by the option 
Search Points, and is calculated as min (2 r, 50), where r is the number of variables. 

For each starting point, this is repeated until the maximum number of iterations is 
reached, the method converges to a point, or the method stays at the same point 
consecutively for the number of iterations given by Level Iterations. 
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Fig. 3 Flowchart of the SA algorithm [21] 

Table 1 Two optimization methods options  

Options Name DE SA 

Cross Over fractions 0.5 - 

Random Seed 0 0 

Scaling Factor 0.6 - 

Tolerance 0.001 0.001 

Mutation Fraction 0.1 - 

Level Iterations - 50 

Perturbation Scale - 1.0 

Search Point - 3000 

4. Problem Definition 

In this study, the optimum stacking sequence designs of 64 layered symmetric-balance 
graphite/epoxy laminated composite plates have been investigated. Single-objective 
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optimization formulation has been used for mathematical verification of model problems. 
The critical buckling load factor (𝜆𝑐𝑏) is considered as the objective function. Fiber 
orientation angles of laminated composite plate are taken as discrete design variables. 
The optimization has been conducted for various aspect ratios (a/b) and in plane biaxial 
compressive loading ratios (Nx/Ny) using Differential Evolution (DE) and Simulated 
Annealing (SA) stochastic algorithms. In the design process, thickness of each layer is 
0.127 mm and 𝑁𝑥 has been taken as 1 N/m. 𝑁𝑦 has been calculated from the load ratio 

(𝑁𝑥/𝑁𝑦).  In Tables 2 and 3, detailed descriptions of material properties and load cases 

are introduced.  

Table 2 The elastic properties of graphite/epoxy layers [9]  

Parameters Graphite/Epoxy 

E1, Longitudinal Modulus (MPa) 127600 

E2, Transverse Modulus (MPa) 13000 

G12, In-plane Shear Modulus (MPa) 6400 

v12, Poisson’s ratio 0.3 

t, Ply thickness (m) 0.127x10-3 

  

Table 3 Composite plate load cases 

Load case a (m) b (m) Nx (N/m) Ny (N/m) 

LC1 0.508 0.254 1 1 

LC2 0.508 0.508 1 1 

LC3 0.508 1.016 1 1 

LC4 0.508 0.254 1 0.5 

LC5 0.508 0.508 1 0.5 

LC6 0.508 1.016 1 0.5 

LC7 0.508 0.254 1 2 

LC8 0.508 0.508 1 2 

LC9 0.508 1.016 1 2 

 
In the following part, descriptions of the model problems (problems 1 and 3) are 

introduced. 

Problem 1 

The problem given in Karakaya and Soykasap [9] and Deveci [22] is selected as 
benchmark. Stacking sequence design and optimization of 64 layered symmetric-balance 
graphite/epoxy composites are considered so as to maximize critical buckling load. The 
considered laminated composite plate is subjected to Nx= 1 N/m, Ny=1 N/m (LC1)and Nx= 
1 N/m, Ny=2 N/m (LC9) in-plane biaxial compressive loading. Fiber orientation angles of 
the layers are considered in the range of 0 and 90° with 45° increments for the aspect 
ratio a/b=2 (LC1) and a/b=0.5 (LC9). The stochastic optimization methods DE, SA are 
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utilized and the performances of these methods are compared with those of Generalized 
Pattern Search Algorithm (GPSA) by Karakaya and Soykasap [9] and Genetic Algoritm 
(GA) by Karakaya and Soykasap [9] and Deveci [22] in terms of critical buckling load. 

Problem 2  

Organization of the problem is similar to problem 1 such that single objective 
optimization in order to maximize critical buckling load comprising aspect ratios a/b=2 
(LC1) and a/b=0.5 (LC9) of the laminated composite plates for biaxial compressive 
loading Nx= 1 N/m, Ny=1 N/m (LC1) and Nx= 1 N/m, Ny=2 N/m (LC9). However, in order 
to see the effect of discrete increments of fiber orientation angle on the critical buckling 
load, 1°, 5o, 15°, 30° and 45° fiber angle increments are considered. The stochastic 
optimization methods DE and SA are utilized. 

Problem 3 

The aim of the optimization problem is to determine the effect of the aspect ratios a/b 
and in-plane biaxial compressive loading ratios Nx/Ny for all the cases (LC1-LC9)on 
critical buckling load. Fiber orientation angles of the layers are considered in the range of 
0 and 90° with 5° increments. The stochastic optimization method DE is used for the 
optimization process. 

5. Results and Discussions 

In this section, the results of buckling problems (1-3) are given based on DE and SA 
methods. Table 4 shows the result of the Problem 1. This problem is solved to validate 
the proposed Differential Evolution and Simulated Annealing optimization algorithms. It 
is shown that DE and SA exhibit comparable performance in terms of critical buckling 
load when compared Generalized Pattern Search Algorithm (GPSA) by Karakaya and 
Soykasap [9] and Genetic Algorithm (GA) by Karakaya and Soykasap [9] and Deveci [22]. 
As it is seen from the results given in the Table 4 that stochastic algorithms (DE and SA) 
work correctly thus they have a potential to obtain reliable results for the Problems 2 and 
3.  

Table 4 Optimum stacking sequence designs for load cases 1 and 9 under 45° increment 
using DE and SA 

Loading 
cases 

Stacking sequence (DE) Stacking sequence (SA) 

LC1 [908/±452/904/±453/±455]s [904/±45/906/±45/904/±452/904/±45/904]s 

LC9 [±454/08/04/±453/02/±452]s [06/906/902/±45/06/±453/902/02]s 

 

Table 4 cont. Optimum stacking sequence designs for load cases 1 and 9 under 45° 
increment using DE and SA 

Loading cases λcb [9] λcb [22] λcb ( Present DE) λcb( Present SA) 

LC1 695,781.3 695,663.1 695,822.2 695,822.2 

LC9 132,243.5 132,237.8 132,244.6 132,232.9 
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Table 5 shows optimum stacking sequence designs of 64-layered symmetric-balance 
graphite/epoxy laminated composites for maximum critical buckling load utilizing the 
proposed DE algorithm. The increments of fiber orientation angles of the plies are 
selected as 1°, 5°, 15°, 30° and 45°. For LC1, the buckling load values of graphite/epoxy 
composite vary in the range of 695,822.2 and 722,978.4 N/m. The lowest buckling load 
value (695,822.2) of graphite/epoxy is gained for the configuration [908/±452/904/±458]s 
while the highest value of that  (722,978.4) is obtained for the configuration[(±72/
±73)2/±722/±74/±73/±72/±71/±72/±71/±74/±81/±66/902]𝑠 . For the case LC9, 
the buckling load values of graphite/epoxy composite vary in the range of 132,244.6 and 
140,664.3 N/m. The lowest buckling load value (132,244.6) of graphite/epoxy is 
obtained for [(±45/02)4/04/±453/02/±452]𝑠  while the highest value of that  
(140,664.3) is obtained for the configuration[±275/±28/±27/±26/±27/±28/±27/
±26/±30/±29/±23/±27]𝑠. 

The same problem (Problem 2) have also been solved by SA and the maximum critical 
buckling load values corresponding to stacking sequences are given in Table 6. For the 
case LC1, the buckling load values of graphite/epoxy composite vary between 695,822.2 
and 721,500.6 N/m. Unlike DE method, the maximum critical buckling load value of 
graphite/epoxy composite is obtained for 5° fiber angle increment by SA. Even though 
the stacking sequences design of laminated composite under symmetric balance 
constraint based on DE and SA are different for 30° and 45° fiber angle increments, the 
maximum critical buckling load values are the same. When it is compared for 1°, 5° and 
15° fiber angle increments, both optimum stacking sequence and critical buckling load 
have been found as distinct and DE gives higher critical buckling load values than that of 
SA. 

Table 5 Optimum stacking sequence designs for load cases 1 and 9 under different fiber 
orientation increments using DE (D1, D2, D3, D4 and D5, correspond to 1°, 5°, 15°, 30° 
and 45° increments, respectively). 

Loading Cases LC1 LC9 

Stacking 
Sequence (D1) 

[(±72/±73)2/±722/±74/±73/
±72/±71/±72/±71/±74/±81/
±66/902]𝑠  

[±275/±28/±27/±26/±27/±28/
±27/±26/±30/±29/±23/±27]𝑠  

Stacking 
Sequence (D2) 

[±70/±752/±70/±75/±702/
±752/±702/±753/±80/±50]𝑠  

[±252/±302/±25/(±25/±30)3/
±30/±252/±30/02]𝑠  

Stacking 
Sequence (D3) 

[±756/±60/±75/±603/±75/
908]𝑠  

[±304/±15/±30/(±30/±15)2/
±15/±302/±152/±30]𝑠  

Stacking 
Sequence (D4) 

[902/(902/±60)4/±603/(902/
±60)2]𝑠  

[±305/02/±302/02/±302/04/
±303]𝑠  

Stacking 
Sequence (D5) 

[908/±452/904/±458]𝑠  [(±45/02)4/04/±453/02/±452]𝑠  
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Table 5 cont. Optimum stacking sequence designs for load cases 1 and 9 under different 
fiber orientation increments using DE (D1, D 2, D3, D4 and D5, correspond to 1°, 5°, 15°, 
30° and 45° increments, respectively). 

Loading Cases λcb (D1) λcb(D2) λcb(D3) λcb(D4) λcb(D5) 

LC1 722,978.4 722,659.5 720,153.0 714,584.3 695,822.2 

LC9 140,664.3 140,510.2 139,954.5 139,660.0 132,244.6 

 

Table 6 Optimum stacking sequence designs for load cases 1 and 9 under different fiber 
orientation increments using SA. (D1, D 2, D3, D4, D5, corresponds to 1°, 5°, 15°, 30°, 45° 
increments, respectively) 

Loading Cases LC1 LC9 

Stacking 
Sequence(D1) 

[±69/±732/902/±72/±78/±65/
±82/±62/±65/±67/±71/±76/ 
902/±62/±63]s 

[±29/±27/±292/±28/±272/±20/±5/
±33/±10/±30/±44/±46/ ±63/±12]s 

Stacking 
Sequence(D2) 

[±702/±75/±80/±75/±70/+80/
±65/±80/±60/±65/±75/±85/ 
±80/±60/±50] 

[±25/±35/±20/±35/±30/±253/±20
/±25/±10/±30/±35/±20/ 
±15/±25]s 

 Stacking 
Sequence(D3) 

[±754/902/±75/±603/902/±603

/±752/±60]s 

[±305/±15/±30/±152/±302/ ±152/ 
02/±75/02]s 

Stacking 
Sequence(D4) 

[904/±602/906/±604/902/±603

/ 902]s 

[±306/04/±302/02/±302/02/±30/±6
/0]s  

Stacking 
Sequence(D5) 

[904/±45/906/±45/904/±452/ 
904/±45/904]s 

[06/906/902/±45/06/±453/902/02]s 

 

Table 6 cont. Optimum stacking sequence designs for load cases 1 and 9 under different 
fiber orientation increments using SA. (D1, D 2, D3, D4, D5, corresponds to 1°, 5°, 15°, 30°, 
45° increments, respectively) 

Loading Cases λcb (D1) λcb(D2) λcb(D3) λcb(D4) λcb (D5) 

LC1 721,044.0 721,500.6 719,280.4 714,584.3 695,822.2 

LC9 140,013.0 139,691.0 139,734.4 139,649.0 132,232.9 

 
In order to ensure convergence performances of the proposed algorithms, two 
convergence graphs have been performed and presented in Fig. 4. It is seen that both of 
the algorithms show good performance to reach optimum fitness values. 
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a) Differential Evolution Algorithm 

 
b)Simulated Annealing Algorithm 

 
Fig. 4 The convergence graphs based on  DE and SA for LC9 

 
Figure 5 shows the effect of loading cases including different aspect ratios a/b= 0.5, 1, 2 
and loading ratios Nx/Ny=0.5, 1 and 2 on critical buckling load (Problem 3). According to 
results, it can be stated that (i) Load case 4 (a/b = 2; Nx/Ny =2) gives the highest critical 
buckling load, (ii) Load case 9  (a/b =0.5; Nx/Ny =0.5) gives the lowest critical buckling 
load, (iii) Load case 3, 6 and 8 give the approximately the same result. 
 

 
 

Fig. 5 The effect of load case on critical buckling load (Problem 3) 
 

Table 7 shows the optimum stacking sequence designs of 64-layered symmetric-balance 
graphite/epoxy laminated composites for maximum critical buckling load utilizing the 
proposed DE algorithm (Problem 3). The increments of fiber orientation angles of the 
plies are selected as 5°. According to results, the stacking sequence configurations of 
laminated composite plates are obtained as [±4516]s for LC2, LC5 and LC8 cases. It is mean 
that Although biaxial compressive loading ratios (Nx/Ny) are distinct for Square 
composite plates (a/b=1, shown in Table 3 for LC2, LC5 and LC8), stacking sequence 
configurations do not change.  
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Table 7 Optimum stacking sequence designs for load cases 1 - 9 under 5-degree fiber 
orientation increments using DE.  

Loading 
Cases 

Stacking Sequence λcb 

LC1 [±70/±752/±70/±75/±702/±752/±702/±753/±80/±50]s
 

722,659.5 
LC2 [±4516]s

 
242,844.4 

LC3 [±202/±155/±204/±15/±20/±15/±25/0]s
 

180,667.2 
LC4 [±60/±65/±60/±654/±602/±653/±60/±652/±60]s

 
1,124,072.3 

LC5 [±4516]s
 

323,792.5 
LC6 [±52/±102/±5/±102/±5/±10/04/±52/06]s

 
208,273.4 

LC7 [902/±85/±80/±852/±80/±853/±80/902/±853/±80/902]s
 

416,550.6 
LC8 [±4516]s

 
161,896.2 

LC9 [±252/±302/±254/±304/±252/±30/02]s
 

140,510.2 

6. Conclusion 

In this study, the optimum stacking sequence designs of 64 layered symmetric-balance 
graphite/epoxy laminated composite plates have been investigated using Differential 
Evolution (DE) and Simulated Annealing (SA) algorithms. For this reason, three 
optimization problems have been introduced to see the effect of different load cases 
(LC1-LC9) correspond to aspect ratios a/b and loading ratios Nx/Ny on critical buckling 
load. Also the effect of fiber orientation angle increments (1°, 5°, 15°, 30°, 45°) on 
buckling load are investigated. It can be concluded from the results that  

 The stochastic optimization algorithms DE and SA have been performed for the 
same laminated composite design problems (Problem1 and Problem 2), 
successfully. Thus, this attempt has improved reliability and robustness of the 
process and also provided to avoid inherent scattering of the proposed 
algorithms. According to given convergence graphs, it is seen that both of the 
algorithms show good performance to reach optimum fitness values. 

 The results based on stochastic optimization algorithms DE and SA have been 
compared to results given in Karakaya and Soykasap [9] by GA and GPSA 
methods and Deveci [22] by GA method for the same laminated composite 
structure design and optimization problems. Regarding the results, DE and SA 
show comparable performance to obtain the maximum critical buckling load. 

 The critical buckling load performance of graphite/epoxy laminated composite 
obtained using conventional design variable (45° increment) is approximately 
3.75%  and 5.5%  lower than that obtained utilizing 1° increment design variable 
for LC1 and LC9, respectively. These results are also valid for both Table 5 and 
Table 6.    

 LC 4 (a/b=2; Nx/Ny=2) gives the highest critical buckling load and LC 9 (a/b=0.5; 
Nx/Ny=0.5) gives the lowest critical buckling load for 64 layered graphite/epoxy 
composite. 
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