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Atomic collapse in disordered graphene quantum dots
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In this paper, we numerically study a Coulomb impurity problem for interacting Dirac fermions restricted in
disordered graphene quantum dots. In the presence of randomly distributed lattice defects and spatial potential
fluctuations, the response of the critical coupling constant for atomic collapse is mainly investigated by local
density of states calculations within the extended mean-field Hubbard model. We find that both types of disorder
cause an amplification of the critical threshold. As a result, up to a 34% increase in the critical coupling constant
is reported. This numerical result may explain why the Coulomb impurities remain subcritical in experiments,
even if they are supercritical in theory. Our results also point to the possibility that atomic collapse can be
observed in defect-rich samples such as Ar+ ion bombarded, He+ ion irradiated, and hydrogenated graphene.
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I. INTRODUCTION

Quantum electrodynamics predicts that the 1S1/2 state is
stable only up to a critical nuclear charge Zc ∼ 172; otherwise,
the formerly bound state becomes a resonant state [1]. In spite
of its long-standing history [2], the collapse of the vacuum
is far from being proven in experiments performed with real
atoms [3]. However, graphene reduces the critical threshold
to Zc � 1 through a larger fine-structure constant α = 2.2/κ

[4,5], where κ is the dielectric constant. Therefore, the idea of
creating an artificial supercritical atom with a smaller critical
valence charge has received considerable experimental atten-
tion [6–10]. In the condensed-matter analog, Dirac fermions
form the vacuum itself, and the Coulomb impurity acts as a
nucleus that couples to the vacuum by means of a dimension-
less coupling strength β = Zα [11]. When β exceeds a critical
coupling constant βc, the lowest-energy electron state first
turns into a quasibound state (QBS) [4], which corresponds to
the 1S1/2 state of the impurity, and an infinite number of QBSs
can appear for massless fermions, depending on the value of
β [5]. The critical coupling constant is estimated to be βc =
0.5 for a vacuum consisting of noninteracting massless Dirac
fermions [4,5], and it remains the same when these fermions
are confined in smaller-sized graphene quantum dots (GQDs)
[12,13]. A further extension of the problem takes electron
interactions into account [14,15] for which this critical value
is renormalized to βc = 0.6 due to off-site Coulomb repulsion
among Dirac particles [13]. However, until now, all theoretical
calculations have assumed disorder-free graphene by ignoring
the experimental facts [16,17], and the question of effects of
imperfections on atomic collapse in graphene has not been
addressed yet.

Atomic scale defects [18,19] and the intercalation of hy-
drogen (H) atoms [20–22] may arise during the growth
process, and these defects lead to an imperfect honeycomb
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lattice [23,24]. Furthermore, such a deformed vacuum can
fluctuate in response to spatial charge inhomogeneities caused
by the substrate [25,26]. To find the ambiguous consequences
of these distortions beyond the conventional perspective of
the theory, the hexagonal GQDs with armchair edges [27]
could provide a practical playground. These GQDs serve as
a bridge between the finite-size samples and bulk graphene
thanks to their special band gap characteristics [27,28], and
a sufficiently large number of them is enough to observe
atomic collapse, as evidenced by transmission coefficients of
the 1S1/2 state [13]. The latter could help in finding solutions
to such complex problems via exact diagonalization of the
Hamiltonian, even in the case of interacting fermions.

In this paper, the critical threshold is studied by placing
the Coulomb impurity at the center of disordered hexagonal
GQDs. Deviations from perfection in the vacuum are inten-
tionally created by (i) randomly distributed point vacancies
with different concentrations and (ii) electron-hole puddles
induced by Gaussian impurities. We find strong dependence
of the critical threshold on both types of disorder, leading to
up to a 34% increase in the critical coupling constant.

The rest of this paper is organized as follows. In Sec. II
computational models are introduced. The effects of both
point vacancies and charge inhomogeneities on the critical
threshold are discussed in Sec. III, and Sec. IV consists of
our conclusions.

II. COMPUTATIONAL MODELS

The extended mean-field Hubbard model is employed to
study the πz dynamics, and its Hamiltonian reads

HMFH = t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) + U

∑
iσ

(
〈niσ 〉 − 1

2

)
niσ

+
∑

i j

Vi j (〈n j〉 − 1)ni − h̄νFβ
∑

iσ

c†
iσ ciσ

ri
, (1)
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FIG. 1. LDOS spectra at the impurity site for (a) 2814, 5514, and 10 806 atoms, (b) spin-up QBS families, and (c) spin-down QBS families
in the presence of finite defect densities. Insets illustrate zoomed portions of (a) perfectly ordered and (b) disordered lattices with a central
Coulomb impurity. The inset in (c) is the averaged spin-down DOS that marks the FL at β̃ = 0.

where the first term describes the tight-binding Hamiltonian
with a hopping amplitude of t = −2.8 eV in which the op-
erator c†

iσ (ciσ ) creates (annihilates) an electron with spin
σ at lattice site i. U = 16.52/κ eV is the on-site Coulomb
repulsion [28], where κ = 6 is equivalent to that of the SiO2

substrate under the effects of interband polarization [29]. 〈niσ 〉
is the spin-dependent expectation value of electron densities,
and niσ is the spin-dependent number operator. The third
term, Vi j , is associated with the off-site Coulomb repulsion,
which is set to be 8.64/κ eV, 5.33/κ eV, and 27.21/κdi j eV
for the nearest-neighbor, next-nearest-neighbor, and remote
atomic sites, respectively [28,30]. di j is the distance between
sites i and j at relatively large distances, and it is in atomic
units. The last term represents the Coulomb impurity placed
at the origin of the coordinate system, where ri is the distance
between the impurity and site i. νF ≈ 1 × 106 m/s is the Fermi
velocity.

Atomic vacancies with concentrations of 0.1%, 0.5%, 1%,
and 2%, which refer to the ratio of the number of point vacan-
cies Nvac to that of the lattice sites N , are created by randomly
and equally removing the two sublattices, A (50%) and B
(50%), of the bipartite lattice [31]. For a 1% concentration
of carbon vacancies, the electron-hole puddles are created
by the superposition of contributions of randomly distributed
Gaussian impurities [32] with a total number of Nimp = 16,
i.e., the impurity concentration nimp = 1.1 × 1013 cm−2. The
Gaussian potential at a position rn can be written as follows:
Vi = ∑Nimp

n=1 �nexp[−|ri − rn|2/(2ξ2)], where � is the impu-
rity strength, and the impurity correlation length is taken to
be ξ = 10a (a = 0.142 nm is the C-C distance) [33]. Half of
these impurities are chosen to be positive, and the other half
are chosen to be negative with the help of �, which randomly
fluctuates within three different intervals: (i) |�| < 0.1t , (ii)
|�| < 0.3t , and (iii) |�| < 0.5t .

The local density of states (LDOS) [5] is experimentally
accessible through a scanning tunneling microscope (STM)
[7] and is calculated by N (E , r) = ∑

i |
i(r)|2δ(E − Ei ),
where 
(r) is the normalized wave function, the energy E
is identical to the applied bias voltage in STM measurements,
and Ei is the eigenenergy of the ith state. The LDOS is the
spatially resolved density of states (DOS), which is calculated

by summing the discrete energy levels of the GQDs at a set of
radial distances from the impurity, ranging from r = 0.142 nm
up to r = 1.136 nm. The summations are performed by using
a Gaussian membership function with a standard deviation
of σ = 0.2 eV in a linearly spaced energy interval E ∈
[−2.5, 2.5]. Since the effects of random disorders may differ
from atom to atom, these calculations are separately carried
out for each individual atom at the predefined radial distances,
and this is repeated in ten random disorder distributions for
each of the above configurations [34]. Finally, the LDOS
spectra per lattice site at various distances are extracted by
averaging over these samples.

III. RESULTS AND DISCUSSION

It can be useful to discuss the effect of the vacuum size
from a different perspective before proceeding to the disor-
dered cases. Pristine hexagonal GQDs that differ in size are
created, and their discrete energy levels are summed over at
the impurity site r = 0.142 nm, as described above. Although
such a sum corresponding to a family of QBSs is not necessary
for perfect vacuums, it will provide a considerable advantage
in the following sections. All supercritical states are sequen-
tially arranged within this family, which contains the 1S1/2

state as the first component [5]. Atomic collapse occurs when
this sharp peak in the electronic LDOS crosses just below the
Dirac point (DP) [7], which will be the energy origin in our
calculations due to the formation of spatially extended reso-
nances at the negative energies [12]. Meanwhile, the Fermi
level (FL) moves down starting from the energy origin as
the coupling strength is increased within the half-filled model
[12,13]. To avoid too cumbersome notation, the critical cou-
pling constant of the families of QBSs is represented by β̃c,
and only the response of the spin-up Dirac fermions is studied
for perfect vacuums due to the presence of a spin-independent
central potential. The spin-up QBS families at the impurity
site are shown in Fig. 1(a) for perfect GQDs consisting of
2814, 5514, and 10 806 carbon atoms. All families are pinned
just below the DP at β̃c = 1.0, revealing that the effect of the
Coulomb impurity is the same for all these GQDs, and the
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FIG. 2. Defect-induced increase in the critical coupling constant
β̃c for concentrations of 0.1% in (a), 0.5% in (b), 1% in (c), and 2%
in (d). Here spin-up and spin-down QBS families exactly overlap,
and the different colored lines represent the corresponding radial
distances from the impurity.

critical bare valence charge is calculated to be Z̃c ≈ 2.73 by
taking κ = 6.

When point defects are evenly distributed between the sub-
lattices, i.e., A (50%) and B (50%), the FL continues to stay at
the energy origin in the absence of impurity [35–37], as shown
in the inset of Fig. 1(c). In fact, the FL is the same for both
the perfect and disordered cases, which validates the previous
discussion on the DP and the FL in our defect configurations
when β̃ is turned on. As for the spin symmetry, it is naturally
broken in the disordered lattices [31]. However, there is no
difference between the spin-up and spin-down families near
β̃c, as shown in Figs. 1(b) and 1(c), respectively. As is clear
from these two figures, all QBS families at the impurity site
retreat from the DP depending on the concentrations of these
defects, which are randomly distributed in the GQD lattice
consisting of 5514 atoms in the pristine case. Figures 1(b) and
1(c) point out that β̃ = 1.0 is no longer a critical coupling
constant, and it is the first effect of point defects on atomic
collapse.

These families transit from above to the edge of the DP at
different β̃c, which is evident in Figs. 2(a)–2(d). The critical
coupling constant gradually increases in proportion to the de-
fect densities and reaches β̃c = 1.27 for random dilution at 2%
[see Fig. 2(d)]. Actually, these defects are ubiquitous in the
crystal structure [23]. For example, the Raman spectrum has
an ∼0.5G to 2D intensity ratio for the high-quality graphene
monolayer grown by chemical vapor deposition (CVD) [38],
and this ratio indicates that there is a finite defect density
in graphene. As is clear from our numerical results, these
structural peculiarities can cause an increase in the critical
threshold. On the other hand, the spectral shapes of all QBS
families are the same as that of the defect-free case, especially
in the vicinity of the impurity. It can be inferred that atomic

FIG. 3. Response of the empty defect states below the DP to the
Coulomb field for a representative sample with 1% defect density.
Their spatial distributions are shown in (a)–(d) for β̃ = 0.5, 0.6, 0.7,
and 0.8, respectively. Upward (downward) triangles belong to the
unoccupied spin-up (spin-down) vacancy-induced states. As is clear
from (d), the 1S1/2 state is formed at the center of the QD marked by
green dots.

collapse can be similarly observed in the imperfect lattices
with the help of a higher valance charge.

In the half-filled Hubbard model, the lowest-energy states
in the conduction band are unoccupied vacancy-induced states
whose energies are in the range 0 < E < 0.4 eV for the 1%
defect concentration [see the global DOS in the inset of
Fig. 1(c)]. As β̃ is increased, these states successively dive into
the negative energies. However, there is no explicit crossing
from the higher-energy conduction states within the energy
spectrums. Therefore, of particular interest are these merging
states below the DP, and their total probability density is cal-
culated by p(r) = (1/2)[

∑
E<0 |
(r)|2 − ∑

E<EF
|
(r)|2], in

which both spin components are included. For a representative
sample, p(r) is projected into space at different coupling con-
stants, ranging from β̃ = 0.5 up to β̃ = 0.8. Figures 3(a)–3(d)
clearly show that whenever defect states dive just below the
DP, they are localized around the missing atoms by preserving
their characteristic triangular shapes and then demonstrate a
striking stability against the Coulomb impurity. On the other
hand, the weight of the probability density around the im-
purity progressively increases, but there is no formation of
the first supercritical state at β̃ = 0.5 or at β̃ = 0.6, which
are the critical coupling constants of the 1S1/2 state for the
noninteracting [5] and interacting [13] fermions in a clean
vacuum, respectively. Finally, the 1S1/2 state [39] appears at β̃

= 0.8, despite not being a direct contribution of the bulk states
to p(r). Such a formation of the 1S1/2 state is presumably due
only to the hybridized components of the diving defect states,
and the defect-induced increases in Figs. 2(a)–2(d) actually
originate from the formation mechanism of the 1S1/2 state.

Prior to the collapse experiments [6–9], monolayer
graphene is grown by CVD and then is transferred onto a
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FIG. 4. (a) Averaged potential fluctuations for |�| < 0.3t (only
|�| are averaged); (b) the total electron-hole puddles accordingly are
formed at β̃ = 0, and (c) the reformation of these charge puddles
is formed at β̃ = 1.2. (d)–(f) The same as (a)–(c), but now for
|�| < 0.5t .

hexagonal boron nitride (hBN) flake placed on a SiO2/Si
substrate. To model the spatial potential fluctuations caused by
such a substrate, we randomly distributed Gaussian impurities
for the set of vacuum disordered by the 1% concentration
of carbon vacancies. The averaged potential landscapes of
|�| < 0.3t and |�| < 0.5t are shown in Figs. 4(a) and
4(d), respectively. The resulting electron-hole puddles of both
spin components show that the electron puddles (red) appear
in the positive potential regions, whereas the hole puddles
(blue) manifest themselves in the negative potential regions,
as can be seen in Fig. 4(b) for |�| < 0.3t and Fig. 4(e) for
|�| < 0.5t . As β̃ is turned on, the charge inhomogeneities
rearrange themselves under the effect of the Coulomb poten-
tial. For example, at β̃ = 1.2, the electron-hole puddles of
|�| < 0.3t and those of |�| < 0.5t are mapped in Figs. 4(c)
and 4(f), respectively. Even if there is no significant change in
the positions of the hole puddles formed at the distances away
from the center, those close to the center leave their positions
and are centered around the stronger Coulomb impurity. As
will be seen below, such a reformation has a significant effect
on the critical threshold.

FIG. 5. The effect of electron-hole puddles on the critical thresh-
old in (a)–(c), which is the same for both spin components. The inset
in (c) shows averaged total DOS at β̃ = 0, where black, red, blue,
and purple lines represent � = 0, |�| < 0.1t , |�| < 0.3t , and
|�| < 0.5t , respectively. For the sake of simplicity, a space between
these lines is intentionally added.

LDOS spectra in Figs. 5(a)–5(c) are calculated for the
spin-up QBS family at the corresponding radial distances,
starting from the impurity site. When the positive and negative
Gaussian impurities are distributed evenly, the total DOS of
the spin-up fermions at β̃ = 0 clearly reveals that the FL
is again around the energy origin for these configurations
[see the inset in Fig. 5(c)]. There is no significant shift in
the minimum-energy point at β̃ = 0, allowing us to take the
energy origin as the DP for the nonzero values of β̃. Similar
to the previous cases, whenever the sharp peak enters the
negative energy spectrum, the atomic collapse has occurred.
The addition of Gaussian impurities causes an increase in the
critical threshold from β̃c = 1.20 [Fig. 2(c)] to β̃c = 1.34
[Fig. 5(c)], and the critical valance charge is estimated to be
as high as Z̃c = 3.65. In addition, we also study the point-
defect-free GQD consisting of 5514 atoms for ten random
distributions of |�| < 0.5t , and the critical threshold reaches
β̃c = 1.10 (not shown here), which is β̃c = 1.0 [Fig. 1(a)] in its
clean case. It can be noted that the increments in the critical
threshold are independent of the sign of the substrate-induced
potential where the Coulomb impurity is placed and are di-
rectly proportional to the strengths of Gaussian impurities. As
a result, β̃c seems to be highly influenced by the disorders
within the vacuum itself.

IV. CONCLUSION

In bulk graphene, a series of LDOS measurements per-
formed by a STM revealed that a cluster, composed of four
calcium dimers in the charge state of +1|e|, is needed to
form an infinite family of QBSs at just above the DP (see
Fig. 1(D) in Ref. [7]). Therefore, the critical bare valance
charge should be slightly greater than Z̃c � 4 in the exper-
iment. Accordingly, the calculated values of Z̃c approach that
of the experiment, and adding these experimentally relevant
factors to the Coulomb impurity problem opens a new route
towards such experimental results [6,7]. These findings can
be useful in interpreting the experimental results of positively
charged Coulomb impurities, even if they exceed the theo-
retical critical value. The results of this paper can be tested
via Ar+ ion bombarded [40], He+ ion irradiated [41], and
hydrogenated [42] graphene. The latter can be achieved by
transferring CVD graphene samples at different H coverages
[42] onto a hBN/SiO2/Si device, which facilities control bias
and back-gate voltages. Impurities such as cobalt trimmers
[6] and calcium dimers [7,9] can be gathered in a defect-rich
region by atomic manipulation of them with the help of STM,
and an artificial supercritical atom can be created from these
subcritical impurities. Once the DP has been determined,
LDOS spectra can be measured at different radial or lateral
distances. There should be an increase in the critical threshold
due to the partial removal of the πz states depending on the
concentration of H.
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[26] H. U. Özdemir, A. Altıntaş, and A. D. Güçlü, Phys. Rev. B 93,
014415 (2016).

[27] A. D. Güçlü, P. Potasz, and P. Hawrylak, Phys. Rev. B 82,
155445 (2010).

[28] A. D. Güçlü, P. Potasz, M. Korkusinski, and P. Hawrylak,
Graphene Quantum Dots (Springer, Berlin, 2014).

[29] T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).
[30] P. Potasz, A. D. Güçlü, and P. Hawrylak, Phys. Rev. B 82,

075425 (2010).
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