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Abstract
Understanding the efficacy of viable emerging technologies in preserving overall quality attributes and antioxidant characteristics
of fruit juices is of great interest. This study aimed to evaluate the effect of high pressure (HP), ultrasound (US), and pulsed
electric fields (PEF) processes on natural microbiota inactivation, as well as changes in physicochemical attributes and phyto-
chemical content of strawberry juice (SJ). HP at 300 MPa (1 min), US at 55 °C (3 min) and 517.1 mW/mL acoustic energy
density, and PEF at 35 kV/cm (27 μs) using monopolar square pulses with 2 μs pulse width were applied, and then compared
with a conventional thermal pasteurization treatment (72 °C, 15 s). The nonthermal processes were equivalent in terms of
Escherichia coli (E. coli) inactivation since the selected processing conditions led to almost identical inactivation level (at
least 5-log) of inoculated E. coli. The current study analyzes why these equivalent processes had different effect on SJ quality.
All treatments significantly reduced the initial natural microbiota (i.e., total mesophilic aerobic bacteria and yeast-molds) below
2 log CFU/mL. No significant changes were observed on the total soluble solid content (7.83–8.00 °Brix), titratable acidity
(0.79–0.84 g/100 mL), and pH (3.45–3.50; except in sonication) between SJ processed samples and the untreated ones (p > 0.05).
HPP and PEF significantly promoted higher retention of total phenolic content (TPC) and radical scavenging activity (RSA) than
thermal pasteurization, and significantly enhanced total anthocyanin content (TAC) compared with unprocessed SJ. HPP and
PEF increased the TPC (4–5%), RSA (18–19%), and TAC (15–17%) in comparison with unprocessed SJ. Multivariate data
analysis tools, i.e., principal component analysis (PCA) and hierarchical cluster analysis (HCA), were successfully applied for
discrimination and classification of SJ samples based on the similarities or differences among physicochemical and phytochem-
ical characteristics. PCA and HCA indicated that HPP- and PEF-treated samples had similar enhanced properties in terms of
phytochemical content and were superior to sonicated, thermally pasteurized, and unprocessed samples. The multivariate data
analysis methods were very useful to compare and classify SJ quality characteristics as a function of the processing technology.
This study demonstrated that the application of the equivalent processing approach may reveal new opportunities to produce
equivalent or even enhanced quality fruit juices.
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Introduction

Consumption of fruits and fruit juices has been associated
with the risk reduction of several degenerative diseases.
Strawberry is a good source of nutrients and phytochemicals
such as flavonoids, anthocyanins, and phenolic acids [1].
Regardless of genetic and environmental factors,
pelargonidin-3-glucoside, cyanidin 3-glucoside, and
pelargonidin 3-rutinoside are the major anthocyanins in straw-
berries [2]. Strawberry phenolics benefit human health since
they are able to (i) block and detoxify free radicals, (ii) regu-
late gene expression by its involvement in metabolism and
antioxidant defense mechanisms, and (iii) avoid DNA damage
[1]. From a commercial point of view, strawberries are con-
sumed either fresh or in a processed form including juices,
jams, or jellies [3].

Strawberry juice (SJ) is one of the berry juices that is
gaining interest because of the availability and cost of the fruit,
and its positive effect on health, promoting benefits due to its
composition. However, this composition makes SJ susceptible
to microbial growth such as total aerobic bacteria, yeasts, and
molds [4, 5]. Even though berry juices have a relatively low
pH, between 3 and 4.5, pathogenic outbreaks of Escherichia
coli O157:H7 and Salmonella spp. are considered a serious
problem in terms of microbial safety [6]. Thermal processing
has been widely applied for the preservation of fruit juices
either as low-temperature long-time (63 °C for no less than
30 min) or high-temperature short-time (72 °C with holding
times of 15 s and above) treatments [7, 8]. However, the ap-
plied temperatures to reduce the initial microbial population
cause the reduction of nutritional and organoleptic quality as
well as the bioactive content of fruit juices. Therefore, non-
thermal food processing technologies have gained special at-
tention to avoid the undesired impact of thermal processing on
the fruit juice quality [9].

SJ has been previously processed by alternative technolo-
gies such as pulsed electric fields (PEF) [10, 11], ozone pro-
cessing [12], ultrasound (US) ([4, 13–15]; J. [16]), chemical
preservatives [17], and high pressure processing (HPP) [5].
The variances arising from the use of raw material with dif-
ferent initial quality and maturity levels as well as varying
processing and storage conditions make the case difficult to
compare the product quality as affected by different processes
[18]. Several scientific publications related to the effect of
HPP, PEF, and ultrasound on fruit juice quality characteristics
express how the processed juices are superior to their coun-
terparts treated by thermal or nonthermal processes [19–21].
This explanation is usually attributed to the different action
mechanism of the nonthermal processes or the reduced ther-
mal effect. However, it should be considered that irrelevant
comparisons may appear unless the applied nonthermal pro-
cessing conditions are selected on an equivalent basis [22].
The equivalence refers to the equivalent microbial safety as

described in the studies of Vervoort et al. [22] and Vervoort
et al. [23]. The equivalent degree of microbial inactivation
constitutes a basis for the comparison of chemical and bio-
chemical quality parameters of the final product [23]. Once
the nonthermal processes achieve an equivalent degree of mi-
crobial inactivation, then a more relevant comparison could be
conducted for the evaluation of quality characteristics of juice
products. Therefore, the equivalent processing approach was
proposed considering equivalent products in terms of
inactivated microorganisms [18].

Multivariate data analysis tools have been used in food
science and technology to compare the effect of food process-
ing technologies on food quality by simultaneously evaluating
the similarities or differences among several characteristics of
multiple samples [24–27]. Principal component analysis
(PCA) and hierarchical cluster analysis (HCA) are two repre-
sentatives of the unsupervised multivariate data analysis tech-
niques that visualize the data in sub-classes and agglomerative
algorithms [28]. PCA leads researchers to interpret in what
aspect a sample differentiates from another one [29]. HCA,
on the other hand, is a clustering method that displays the
relationships among the samples by depicting hierarchical
clusters [30]. PCA and HCA can be well applied for the dif-
ferentiation of fruit juices based on various attributes [10, 24,
26].

In a previous study, equivalent inactivation levels of an
inoculated target microorganism, E. coli 11775, were used to
identify HPP, US, and PEF treatment conditions that led to at
least 5-log reduction [31]. The current research focused on the
pasteurization of SJ by HPP, US, and PEF under the previ-
ously identified equivalent processing conditions. Thus, the
objective of this study was to evaluate the influence of equiv-
alent HPP, US, and PEF technologies on natural microbiota,
physicochemical properties, and phytochemical content of SJ
immediately after equivalent processing in comparison with a
conventional thermal treatment. Multivariate data analyses
(i.e., PCA and HCA) were utilized to define the similarities
and variations among the studied SJ samples.

Materials and Methods

Preparation of Strawberry Juice

Strawberries (Fragaria × ananassa) were purchased from a
local grocery store (Pullman, USA) at their commercial matu-
rity. Fruits stored at − 30 °C were defrosted overnight at am-
bient temperature in the dark. The fruits were homogenized
using a blender (Model K, Regal Ware, Inc., USA); then, the
homogenate was centrifuged (Beckman J2 HS centrifuge,
GMI, MIC Group, Inc., Minnesota, USA) at 6000 rpm and
4 °C for 5 min using a Fiberlite F14 6 × 250 rotor (Piramoon
Technologies, Inc., USA). The suspended particles were
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subsequently removed by filtering the juice through a double-
layer cheese cloth [31].

Processing Conditions

The Food and Drug Administration (FDA) recommends 5-log
reduction of the most pertinent microorganism for microbial
safety of food products [8]. In accordance with the FDA’s
pasteurization criteria, the SJ processing conditions were pre-
viously identified in an earlier study [31] where the target
microorganism (i.e., acid adapted E. coli 11775) rendered at
least 5-log reduction, and then adopted here as the equivalent
pasteurization conditions for SJ.

High Pressure Processing

A high hydrostatic pressure unit (Engineering Pressure
Systems, Inc., Andover, USA) with a cylindrical chamber
vessel having a volume of approximately 2 L (0.1-m internal
diameter, 0.25-m internal height) was used for HPP treat-
ments. Fresh SJ (100 mL) was packed into Nylon-/PE-type
plastic pouches (3 MIL, UltraSource, Kansas City, MO,
USA). The pouches were then carefully sealed by a hand-
operated sealer, placed into the cylindrical chamber vessel
containing the pressure transmitting liquid (5% mobil hydro-
sol 78 in water), and pressurized at 300 MPa for 1 min in
duplicate. Come-up time required to reach the desired pressure
was 0.5 s while the depressurizing time was recorded as less
than 0.5 s. The temperature of the pressurizing liquid inside
the chamber was 18.3 ± 1.0 °C and then it reached to a max-
imum temperature of 26.1 ± 1.1 °C during the holding period;
after decompression, the temperature went back to the original
one (temperature rise was 2.6 °C per 100 MPa increase).

Ultrasound

An ultrasonic device (Hielscher USA Inc., Ringwood, NJ)
equipped with a probe of 22-mm diameter, double-walled
vessel, and a water bath (Thermostat Physica Viscotherm
VT 10, Germany) was used. Four hundred milliliters of fresh-
ly squeezed SJ at 23.5 °C was placed into the vessel and
agitated with a magnetic stirrer; the probe was immersed into
the juice up to 2 cm. Once the sonicator was turned on, the
temperature of SJ increased to 55.1 ± 0.0 °C after a come-up
time of 4 min. US at 55 °C (i.e., thermosonication) was ap-
plied at 517.1 mW/mL acoustic energy density, 24 kHz fre-
quency, and 120 μm amplitude in continuous pulse mode for
3 min. The SJ temperature was controlled by circulating water
at 25 °C. The maximum temperature during sonication was
56.5 ± 0.3 °C. The processed juice was cooled down to ambi-
ent temperature by placing it into ice water.

Pulsed Electric Fields

The PEF process was performed by using a pilot plant
s c a l e P owe rmod™ PEF s y s t em (D i v e r s i f i e d
Technologies Inc., Bedford, MA, USA) equipped with
two pairs of co-field electrodes having a diameter of
0.50 cm and a gap distance of 0.65 cm. A freshly pre-
pared SJ (6 L) having an electrical conductivity of 4.1 ±
0.0 mS/cm and an initial temperature of 22.7 °C was
circulated through the PEF treatment chamber using a
peristaltic pump at a flow rate of 350 mL/min. SJ was
subjected to PEF at 35 kV/cm electric field intensity
(EFI), 27 μs treatment time, and 155 Hz frequency using
monopolar square pulses with 2 μs pulse width. EFI, fre-
quency, and pulse width were adjusted by using the con-
trol panel of the modulator cabinet. The maximum tem-
perature reached during PEF processing at the outlet of
the treatment chamber was 46 °C. Later on, the juice was
pumped through a cooling coil reaching a temperature of
4 °C and transferred to a previously sterilized bottle. All
further analyses were carried out at ambient temperature.

Thermal Pasteurization

Conventional thermal pasteurization (T) at 72 °C for 15 s
was performed as a reference treatment in a double-walled
sample unit connected to a water bath (Viscotherm VT
10). The sample unit containing 400 mL of SJ and a
magnetic stir bar was placed on a magnetic stirrer adjust-
ed to 250 rpm. The juice was heated from 23.3 to 72 °C
by circulating hot water at 74 °C between the walls of
sample unit. Once SJ reached the desired temperature,
thermal pasteurization was conducted for 15 s. The treated
juice was then transferred into a previously sterilized bot-
tle and immediately cooled down to ambient temperature
by placing it into ice water.

Overall Quality Properties and Phytochemical
Characteristics

Microbial Quality

The microbial quality of SJ samples was evaluated in terms of
total mesophilic aerobic count (TMAC) and yeast-mold (YM)
count. The samples were plated on plate count agar (PCA) and
potato dextrose agar (PDA) acidified with 10% of tartaric
acid, for TMAC and YM count, respectively. The plates were
then incubated at 37 °C for 48 h and 25 °C for 5 days for
TMAC and YM count, respectively. The number of viable
cells was counted, and the results were expressed as log
CFU/mL.
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Physicochemical Properties

Regarding the physicochemical properties of SJ, pH, total
soluble solids (TSS), and titratable acidity were measured.
pH measurement was performed by using 10 mL of SJ and a
bench top pH meter (Mettler Toledo™ FE20 FiveEasy) at
22 °C. A digital handheld refractometer (PAL-α, Atago
CO., LTD.) was used to determine the TSS (°Brix) of the
samples. Titratable acidity was determined using 0.1 N
NaOH according to the method of AOAC [32] and expressed
as g citric acid per 100 mL.

Phytochemical Characteristics

SJ samples were centrifuged at 5000 rpm for 5 min at 4 °C and
the supernatant was used for the phytochemical assays. The
total phenolic content (TPC) was determined according to the
Folin-Ciocalteu method [33, 34]. Results were expressed as
mg gallic acid equivalents (GAE)/100 mL.

A pH differential method was used for the determination of
total anthocyanin content (TAC) of SJ [35] using two different
buffers, i.e., 0.025-M potassium chloride at pH 1.0 and 0.4 M
sodium acetate at pH 4.5. In this case, 1 mL of SJ was trans-
ferred to glass tubes and added with 9 mL of each buffer. The
absorbance values of the mixtures at pH 1 and 4.5 were then
measured at 510 and 700 nm. TAC was expressed as mg
pelargonidin-3-glucoside/L.

The free-radical scavenging activity (RSA) of SJ was de-
termined by the stable radical 1,1-diphenyl-2-picrylhydrazyl
(DPPH) [11]. The SJ supernatant was diluted 20 times by
using MeOH-H2O (3:2) solution. A 3.9 mL of methanolic
DPPH solution (0.025 g/L) was added to 0.01 mL of diluted
supernatant. Then, the mixture was thoroughly shaken and
kept in the dark for 30 min. Absorption of the samples was
measured at 515 nm by spectrophotometer (HP 8452A,
Agilent Technologies, Palo Alto, USA). A control tube was
prepared by using 0.01 mL of MeOH-H2O (3:2) solution in-
stead of juice samples. The antioxidant activities of the sam-
ples were then calculated as % inhibition:

%inhibition ¼ ADPPH−Asample

� �

ADPPH
ð1Þ

where A is the absorbance of the methanolic DPPH solution
without sample and Asample is the absorbance of the sample
after 30 min of incubation with methanolic DPPH solution.

Data Analysis

All tests related to the microbial quality and physicochemical
properties were performed in duplicate, while the phytochem-
ical properties were conducted in triplicate. Results were
expressed as mean ± standard deviation. The Excel worksheet

(Microsoft Office 2010, USA) and Minitab 16 data analysis
software (Minitab Inc., State College, PA, USA)were used for
data analysis. The means of measured properties of SJ sam-
ples were compared by analysis of variance (ANOVA) con-
sidering Tukey’s comparison test at 95% of confidence inter-
val. Multivariate data analysis including principal component
analysis (PCA) and hierarchical cluster analysis (HCA) was
utilized to visualize the data structure and to classify the SJ
samples subjected to different treatments with respect to their
physicochemical and phytochemical properties. In this con-
text, a data matrix was constructed using the physicochemical
and phytochemical properties of SJ as columns and pasteuri-
zation technologies as rows and introduced into Minitab 16.
Computation of PCA was conducted considering correlation
type of matrix and 5 components. The score values, coeffi-
cients, and eigenvalues were saved as storage data. Score and
loading plots were drawn as PCA output. PC scores of interest
were then used as new input data for HCA. The cluster anal-
ysis was implemented considering Ward’s linkage as amal-
gamation method and Euclidean distance as similarity mea-
surement. Thereby, the similarities/dissimilarities among un-
treated and treated SJ samples were classified in terms of their
physicochemical and phytochemical characteristics and plot-
ted on a tree-shaped map (i.e., dendrogram).

Results and Discussion

Microbial Quality

The initial counts of total mesophilic aerobic bacteria
(TMAC) and yeasts and molds (YM) in untreated SJ were
3.1 ± 0.1 log CFU/mL and 3.4 ± 0.0 log CFU/mL, respective-
ly. Populations of yeasts are more likely to be predominant in
SJ. This could be attributed to the low pH values and high
content of sugars of the juice [36]. The natural microbiota of
SJ was significantly reduced below 2 log CFU/mL by HPP,
ultrasonication, PEF, and thermal pasteurization (Fig. 1). No
significant differences were observed for TMAC and YM
counts among all treated samples (p > 0.05). HPP reduced
TMAC and YM counts to 1.6 ± 0.1 and 1.7 ± 0.0 log CFU/
mL, respectively. As reported by Cao et al. [5], more severe
conditions such as processing at 600 MPa up to 6 min could
result in complete inactivation of TMAC and YM counts
when the initial microbial load was less than 4 log CFU/mL
in strawberry juices. In another study, HPP at 500 and
600 MPa for 1 min at 20 °C reduced total plate count in carrot
juice by approximately 4 log CFU/mL [37].

Ultrasound reduces the microbial load due to acoustic cav-
itation that can damage biological species by creating local
temperature and pressure differences inside the product [38].
However, sonication at 20 °C may not be sufficient to achieve
a significant inactivation for the total mesophilic aerobics and
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yeast-molds [4] which could be attributed to the resistance of
microorganisms or presence of bacteria or fungi spores [39].
In general, fungi might show higher resistance compared with
bacteria due to the cell wall composition [40]. Thus, sonica-
tion at mild temperatures can be considered to increase the
lethal effect of the treatment. For instance, natural microbiota
of apple juice was reported to be completely inactivated by
ultrasound at 60 °C (5min, 25 kHz, 70% of power) [41]. In the
case of this study, ultrasound at 55 °C successfully reduced
TMAC and YM counts to 1.7 ± 0.2 log CFU/mL and 1.7 ±
0.1 log CFU/mL, respectively.

PEF reduced TMAC and YM counts to 1.9 ± 0.1 and 1.8 ±
0.2 log CFU/mL, respectively. These findings were in accor-
dance with the results of the study of Elez-Martinez et al. [36],
where high-intensity PEF (35 kV/cm for 1000 μs with 4-μs
bipolar pulses at 200 Hz) was applied to orange juice having
initial total aerobics and yeast-mold count of 3.5 and
2.9 log CFU/mL, respectively. The authors reduced the initial
microbial counts below 1 log CFU/mL after PEF processing.
Walkling-Ribeiro et al. [42] applied PEF (34 kV/cm, 60 μs) in
combination with mild heat (55 °C, 60 s) and reduced natural
flora of a fruit smoothie to 1.9 log CFU/mL and 1.1 log CFU/
mL in terms of total aerobic and yeast-mold counts, respec-
tively [42].

Thermal pasteurization at 72 °C at 15 s reduced the TMAC
and YM counts below 2 log CFU/mL. This finding was in line
with previously published studies. Bull et al. [43] reduced the
total aerobic bacteria from 7.8 to 4.3 log CFU/mL and YM
from 4.8 to 3.0 log CFU/mL in orange juice after applying a
thermal treatment at 65 °C for 60 s. Elez-Martinez et al. [36]
demonstrated that the initial TMAC and YM counts were

reduced below 1 log CFU/mL by applying conventional ther-
mal pasteurization at 90 °C for 1 min. Thermal pasteurization
at 72 °C at 71 s was reported to reduce the natural microbiota
of lemon-melon juice blend below detection limits [26].

It is relevant to mention that the natural microbiota may
show greater resistance than the inoculated targeted microor-
ganism. The identified equivalent processing conditions re-
sulted in at least 5-log reduction of inoculated E. coli in ac-
cordance with the FDA’s 5-log inactivation criteria [31],
whereas the same conditions resulted in lower inactivation
levels in natural microbiota as presented in the current study.

Physicochemical Properties

TSS, pH, and titratable acidity of SJ samples are reported in
Table 1. TSS of control sample was 7.9 ± 0.1 °Brix, and no
significant difference was observed among all samples. Some
studies also reported TSS of SJ as 7.0 ± 0.01 [44] and 7.2 ± 0.2
°Brix [45], where no significant differences were observed
after PEF processing of SJ.

pH and acidity are important parameters in food processing
to obtain products with consistent and well-defined properties
to meet regulatory requirements. Moreover, such parameters
affect consumer acceptability towards palatability of the prod-
uct [46, 47]. In this study, untreated SJ had a pH of 3.5 ± 0.0
while the pH of treated samples varied between 3.45 and 3.48
(Table 1). Even though the numerical values were very close
to each other, ultrasound resulted in statistically significant
changes in pH compared with control (p < 0.05). This finding
contradicted a previous study conducted by Abid et al. [38],

Fig. 1 Natural microbial
population of strawberry juice
before and after processing by
high pressure, ultrasonication,
pulsed electric fields, and thermal
treatment (HPP, high pressure
processing; US, ultrasonication;
PEF, pulsed electric fields;
thermal, thermal treatment)
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where no significant changes were observed in pH values of
apple juice after sonication at 20 °C, 25 kHz up to 90 min.

Titratable acidity of untreated SJ was 0.8 ± 0.0 g/100 mL
while the acidity of treated samples varied from 0.79 to 0.84 g/
100 mL. US-, HPP-, and PEF-treated samples showed no
significant differences in the acidity compared with fresh SJ
(control). Titratable acidity of thermally pasteurized and son-
icated samples were statistically different from each other.
Likewise, acidity of SJ used for sonication trials was reported
to be 0.73 g/100 mL [14]. Other studies also showed that
product acidity and pHwere not affected in several fruit juices
treated by HPP, US, and PEF [46, 48, 49]. Thus, the results of
our study are in accordance with the previously published
studies indicating that nonthermal technologies did not cause
significant changes in SJ total soluble solids, pH, and acidity.

Phytochemical Characteristics

Total Phenolic Content

The impact of HPP, ultrasound, PEF, and thermal pasteuriza-
tion on total phenolics, total anthocyanins, and antioxidant
activity is shown in Table 2. Untreated SJ had TPC of 137.8
± 0.9 mg/100 mL while TPCs of treated samples varied from
132 to 145 mg/100 mL. These values are in the range of those
previously reported byVarela-Santos et al. [49]. PEF and HPP
treatments resulted in a slight but nonsignificant (p > 0.05)
increase in TPC compared with untreated SJ. Thus, PEF-
and HPP-treated samples contained the highest amount of
phenolics at a concentration of 145 ± 1.5 mg/100 mL and
143.5 ± 2.80 mg/100 mL, respectively. Patras et al. [50] also
reported a slight but nonsignificant increase in TPC of straw-
berry and blackberry purees after HPP treatment at 400 and
500 MPa. Corrales et al. [51] indicated an increase in TPC of
grape by-products in the fol lowing order : HPP,
ultrasonication, and PEF. In the current study, pasteurization
by HPP and PEF retained significantly higher amount of TPC
in SJ compared with thermal treatment (p < 0.05) (Table 2).

The findings indicated that HPP and PEF resulted in 4.16 and
5.20% increase, whereas thermal processing and ultrasound
caused 4.06 and 0.16% decrease in TPC of SJ, respectively, in
comparison with that of untreated sample. The slight increase
in TPC of HPP-treated products could be related to the in-
creased extractability of some of the antioxidant components
due to high pressure [52]. In the case of PEF, improving the
phenolic content of the juice could be attributed to the increase
in the extraction efficiency of intracellular metabolites due to
the applied electrical field [53]. Although the initial TPC was
slightly reduced by thermal pasteurization (132.2 ± 1.7 mg/
100 mL) and ultrasound (137.6 ± 1.9 mg/100 mL), no signif-
icant difference was observed among heat-treated,
ultrasonicated, and untreated juice samples (p > 0.05). A sim-
ilar trend was also observed for thermosonicated watermelon
juice at varying temperature (25–45 °C), amplitude (24.1–
60 μm), and a constant frequency (20 kHz) for 2–10 min,
concluding that TPC significantly decreased as the amplitude
and processing time increased [54]. Besides, thermal pasteur-
ization at more severe conditions (90 °C for 30 min) caused a
considerable amount of loss in TPC of apple juice [46].

Total Anthocyanin Content

TAC of SJ samples varied from 153 to 179 mg/L. The results
were higher than those reported for TAC of cloudy strawberry
juices (67.8 to 133.5 mg/L) obtained from different kinds of
cultivars since varietal and agronomic factors highly affect the
anthocyanin content in juices [55]. The stability of anthocya-
nins in food product depends on many factors such as pH,
processing temperature, molecular structure, light, oxygen,
enzymes, the presence of other accompanying substances,
storage time, and temperature [15, 55]. In this study, HPP
and PEF treatments significantly enhanced TAC by 15.24
and 16.90%, respectively, compared with untreated samples
(Table 2). This finding was in good agreement with the studies
conducted by Odriozola-Serrano et al. [11] and Barba et al.
[56]. Likewise, PEF at 35 kV/cm achieved a remarkable in-
crease in anthocyanin content of SJ [11] and blueberry juice
[56]. Some other studies also assessed the efficacy of PEF for
improving the anthocyanin extraction from the grape pomace
and juice [57, 58]. Similar to TPC, the increase in TAC after
HPP and PEF can be attributed to the extraction efficiency of
these technologies [51, 53]. Thus, HPP enables extraction of
anthocyanins and makes them more accessible [59]. PEF, on
the other hand, provides enhancement of anthocyanins due to
cell membrane permeabilization and subsequent release of
intracellular compounds [60].

Anthocyanin content during sonication can be highly af-
fected by the amplitude level, time, and temperature [61].
Ultrasound at 55 °C and 120 μm amplitude increased the SJ
initial TAC (153.3 mg/L) by 8.9% after 3 min. However, the
increment was not statistically significant (p > 0.05) (Table 2).

Table 1 Strawberry juice physicochemical properties after processing
as compared with control

Process TSS (°Brix) pH Titratable acidity (g/100 mL)

Control 7.85 ± 0.07a 3.50 ± 0.01a 0.81 ± 0.00ab

T 7.88 ± 0.04a 3.48 ± 0.02ab 0.79 ± 0.00b

US 8.00 ± 0.14a 3.45 ± 0.01b 0.84 ± 0.02a

HPP 7.83 ± 0.04a 3.46 ± 0.00ab 0.81 ± 0.00ab

PEF 7.83 ± 0.04a 3.48 ± 0.00ab 0.82 ± 0.00ab

(T thermal treatment, US ultrasonication, HPP high pressure processing,
PEF pulsed electric fields, TSS total soluble solids). Different letters in the
same column show the significant differences among treatments on a
95% of confidence interval (p < 0.05)
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Similarly, Herceg et al. [62] also indicated negligible effects of
sonication on TAC of strawberry and blackberry juice. Tiwari
et al. [14] sonicated SJ at varying amplitude levels (40–100%)
and time (2–10 min) at a constant frequency of 20 kHz. The
authors indicated a slight enhancement (< 1.0%) of anthocya-
nins in SJ at low amplitude and treatment time while higher
amplitude levels and treatment time (> 5 min) caused degra-
dation of anthocyanins (3.2%). Enhancement of TAC by son-
ication was attributed to the extraction of bound anthocyanins
from suspended particles [14], while degradation of anthocy-
anins was related to the extreme physical conditions occuring
within the bubbles during cavitational collapse [63] or oxida-
tion reactions by free radicals formed during sonication [64].
Bhat and Goh [4] also observed an increase in the TAC of SJ
after both 15 and 30 min of sonication at 25 kHz and 20 °C.
On the opposite, initial concentrations of major anthocyanins
in strawberry juice were degraded by 0.7–4.4% after sonica-
tion treatments up to 6 min. Nevertheless, the degradation
caused by sonication was not as intense as thermal pasteuri-
zation (5.3–5.8%) except sonication at 55 °C/9 min (5.8–
7.1%) [61].

Thermal processing applies heating at varying tempera-
tures depending on the type of food product and desired shelf
life (Patras, Brunton, O’Donnell, & Tiwari, 2010). Even
though inter- and intramolecular co-pigmentation with other
substances could provide more stability for the anthocyanins
towards pH, heat, and light [65], heating has a remarkable
influence on anthocyanin stability [66]. Dubrovic et al. [61]
applied thermal and ultrasound processes to SJ obtained from
seven different cultivars. They observed that thermal pasteur-
ization at 85 °C for 2 min resulted in the lowest levels of
anthocyanins in cloudy strawberry juices compared with un-
treated or sonicated samples. Likewise, heat-treated SJ sam-
ples contained the lowest TAC in this study. However, ther-
mal processing at 72 °C for 15 s did not significantly change

the TAC of SJ compared with untreated and treated SJ sam-
ples (Fig. 2).

Radical Scavenging Activity

Antioxidant activities of SJ measured on the basis of DPPH
radical are presented in Table 2 as radical scavenging activity
(RSA) in percentage. RSA of SJ samples varied from approx-
imately 30 to 40% of DPPH inhibition. This finding is in line
with that of previous studies where the antioxidant activity of
SJ was reported as 38.5% [11] and 30.42% [4] of DPPH
inhibition. The initial antioxidant activity was 33.7 ± 2.7%.
Antioxidant activities of HPP (39.98 ± 1.8%)- and PEF
(40.3 ± 0.5%)-treated juice samples were found significantly
higher than thermally pasteurized SJ (29.9 ± 3.6%) (p < 0.05).
Results indicate that HPP and PEF treatments increased RSA
by 18.56 and 19.36%, respectively, with respect to untreated
SJ. Figure 2 shows the changes in bioactive compounds of SJ
immediately after processing. HPP- and PEF-treated SJ
showed greater antioxidant activity than thermally pasteurized
SJ (p < 0.05), following a similar trend to the TPC results. This
similarity can be attributed to the better retention of phenolic
compounds by HPP and PEF, thus contributing to RSA of the
juice [67, 68]. Likewise, Patras et al. [50] found that HPP and
PEF were able to retain significantly higher antioxidant activ-
ities in strawberry and blackberry puree compared with ther-
mal pasteurization. The effect of sonication on RSA of SJ
samples was also significantly different than those from the
thermal pasteurization (p < 0.05). Bhat and Goh [4] reported
that sonication (at 25 kHz with a power set at 70%) for 15 and
30 min increased the RSA of SJ to 31.78 and 33.61%, respec-
tively. With respect to heat treatment, the samples showed
significantly lower antioxidant activity than sonicated, HPP-
and PEF-treated juices (Table 2). The heat treatment was the
only process that caused reduction in RSA (11%) compared

Table 2 Strawberry juice
phytochemical retention after
processing as compared with
control

Process TPC (mg GAE/100 mL) TAC (mg/L) RSA (%) Changes in percentage

TPC TAC RSA

Control 137.81 ± 0.91ab 153.31 ± 2.57b 33.72 ± 2.74ab 0.0 0.0 0.0

T 132.21 ± 1.65b 166.42 ± 2.42ab 29.94 ± 3.60b − 4.1 8.6 − 11.2
US 137.59 ± 1.93ab 166.97 ± 0.39ab 39.55 ± 1.92a − 0.2 8.9 17.3

HPP 143.53 ± 2.80a 176.67 ± 1.73a 39.98 ± 1.84a 4.2 15.2 18.6

PEF 144.97 ± 1.52a 179.21 ± 8.47a 40.25 ± 0.51a 5.2 16.9 19.7

(T thermal treatment, US ultrasonication, HPP high pressure processing, PEF pulsed electric fields, TPC total
phenolic content, TAC total anthocyanin content, RSA radical scavenging activity). All measurements were done
at least in triplicate. The results were given as mean ± standard deviation. Different letters within the same column
indicate significant differences among processes considering 95% of confidence interval (p < 0.05). Changes in
each phytochemical property were calculated in percentage with respect to untreated SJ considering the following
formula

TreatedTPC;TCA;RSA−UntreatedTPC;TCA;RSAð Þ
UntreatedTPC;TCA;RSA

� 100
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with control juice. Sánchez-Moreno et al. [20] stated that HPP
and PEF did not alter the antioxidant activity of orange juice;
however, thermal pasteurization at high temperature (90 °C
for 1 min) was reported to cause a significant decrease in
antioxidant activity by 6.56%. In the current study, even
though heat-treated juice samples showed significantly lower
antioxidant activity than sonicated, HPP- and PEF-treated
samples, it is noticeable to indicate that thermal pasteurization
at 72 °C for 15 s was able to maintain the initial antioxidant
activity of untreated SJ with a nonsignificant difference. Thus,
reduced pasteurization temperatures can be used in cases
where the practitioner needs to preserve bioactive constituents
in addition to microbial quality.

Principal Component Analysis

PCA is an unsupervised method that identifies the data pat-
tern, displays the systematic variation in the matrix, and clas-
sifies the data based on their similarities and differences [69,
70]. Two-dimensional or three-dimensional projection can be
generated for the visual analysis of the samples by locating the
significant principal components (PC) on the axes as the fac-
tors. Each PC is actually a linear combination of the original
responses and obtained in a way that PC1 explains more data
variation compared with PC2, and PC2 explains more data
variation than the PC3, and so on [24]. In this study, the data
were analyzed by PCA to identify the systematic variation and
to highlight the relationship between SJ quality attributes and
equivalent processing technologies. PCA enabled a simulta-
neous evaluation of the physicochemical properties and phy-
tochemical characteristics of all SJ samples by reducing the

dimension of the data matrix. Figure 3 a shows the distribution
of SJ samples in space considering the first two principal
components (PC). According to the Kaiser criterion [71], ei-
genvalues higher than 1 represent a significant factor in PCA
evaluation. The first PC had the highest eigenvalues of 2.73
and accounted for 45.5% of the total variation, while the sec-
ond PC had the eigenvalues of 1.98 and explained 32.9% of
the total variation in the current data set. Thus, the total vari-
ance explained in PCA procedure was 78.4% (Table 3).

The factor loadings represent the correlation between the
tested quality attributes and the components. PC1 was posi-
tively correlated to the phytochemical properties, i.e., TPC,
TAC, and RSA, that had loadings greater than 0.41 for the
PC1. pH and titratable acidity also showed positive correla-
tion; however, TSS was negatively correlated to PC1 with the
lowest contribution (− 0.121). With respect to the PC2, the
loadings had a different pattern. PC2 showed a positive cor-
relation with the phytochemical properties and pH, while TSS
and titratable acidity values were negatively correlated
(Table 3). Overall, PC1 was mainly represented by the phyto-
chemical properties while the physicochemical properties
made larger contributions to the PC2.

As shown in Fig. 3a, the first PC distinctively separated
nonthermal pasteurization technologies from the rest. HPP-
and PEF-treated SJ samples are located in the same region,
while untreated and thermally pasteurized SJ samples fell
close to each other. Locations of the untreated and treated
samples were based on the physicochemical and phytochem-
ical properties of the juice. The distribution of SJ quality at-
tributes in space is presented in Fig. 3b. When Fig. 3a and b
are evaluated together, it can be seen that the locations of

Fig. 2 Effect of different
treatments on the content of total
phenolic, total anthocyanin, and
radical scavenging activity of
strawberry juice (TPC, total
phenolic content; TAC, total
anthocyanin content; RSA,
radical scavenging activity; HPP,
high pressure processing; US,
ultrasonication; PEF, pulsed
electric fields; thermal, thermal
treatment)
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HPP- and PEF-treated SJ samples were far from the control
due to their higher levels of total phenolics, total anthocyanins,
and antioxidant activity compared with control and the heat-
treated ones. Thus, it could be inferred that HPP and PEF
treatments were able to enhance the phytochemical character-
istics of SJ. Since SJ physicochemical properties before and
after treatments were relatively close to each other, the dom-
inating effect for PCA was the phytochemical content which
led to a clear separation of the samples. Thus, PCA revealed
differentiation of untreated and treated SJ samples based on
the phytochemical characteristics and physicochemical prop-
erties by explaining 78.5% of total cumulative variance
(Table 3). Likewise, PCA has been successfully applied for
the estimation of correlations among quality parameters (L*,
a*/b*, BI, HMF, viscosity, PME, and PG) of strawberry juice
by Aguilo-Aguayo et al. [10]. The authors were able to ex-
plain 99.04% of the total variance considering the first two
principal components. By means of PCA, Kaya et al. [26]
classified lemon-melon juice blends immediately after sub-
jecting them to conventional thermal pasteurization and UV-
C light combined with mild heating as well as during subse-
quent storage up to 30 days. The authors differentiated un-
treated and treated blends during storage with respect to the
physicochemical properties such as pH, acidity, TSS, turbid-
ity, and color parameters by using the first two principal com-
ponents that explained 51.1% of the total variance.

Hierarchical Cluster Analysis

As a clustering method, HCA explores the organization of
samples and their relationships in groups and among groups
depicted in a hierarchy [30]. The samples are considered as a
cluster which then forms pairs of agglomerated clusters. As an
output of HCA, the similarities and differences among the SJ
samples treated by HPP, ultrasonication, PEF, and thermal
pasteurization were described based on a dendrogram. The
plot obtained by considering Ward’s linkage method and
Euclidean distance is given in Fig. 4. The cluster analysis
verified the results of PCA indicating higher similarity in the
quality of HPP- and PEF-treated SJ samples. HPP and PEF
technologies were grouped into the same cluster and located
far from the untreated juice since these technologies enhanced
the SJ phytochemical content immediately after equivalent
processing compared with control (Fig. 4). The sonicated
samples located closer to the cluster of HPP and PEF treat-
ments on the dendrogram (Fig. 4) show higher similarity to
HPP- and PEF-treated juices than thermally pasteurized and
untreated SJ. Untreated and thermally treated SJ samples, on
the other hand, fell close to each other and located far from the
HPP and PEF clusters on the dendrogram indicating less

Fig. 3 Score (a) and loading (b) plot of principal component analysis
(PCA) for the differentiation of pasteurization treatments based on the
physicochemical and phytochemical attributes of strawberry juice. PCA
graph highlights the relationship between SJ quality attributes and pro-
cessing technologies

Table 3 Factor loadings and eigen analysis of principal components

Factor loadings PC 1 PC 2

TSS (°Brix) 0.12 − 0.68
pH − 0.40 0.30

Titratable acidity 0.40 − 0.41
TPC 0.43 0.44

TAC 0.42 0.25

RSA 0.55 0.14

Eigen analysis PC 1 PC 2

Eigenvalue 2.73 1.98

Proportion of variance 0.455 0.329

% Cumulative variance 45.50 78.40

(TSS total soluble solid content, TPC total phenolic content, TAC total
anthocyanin content, RSA radical scavenging activity). Regardless of the
plus or minus sign, numerically higher factor loadings indicate higher qual-
ity attributes defined by each PC. Higher positive factor loadings point out
that the factor will be higher in the positive axis of that PC. For instance, for
TAC, PC1 factor loading of 0.42 means that the SJ samples located on the
top right of the PCA graph (i.e., HPP and PEF) have higher anthocyanin
content than the rest of the samples located on the other sides of the PCA
graph (Fig. 3). Likewise, higher numerical magnitude of the negative factor
loadings shows that the factor will be higher in the negative axis of the
corresponding PC. For instance, a negative factor loading of − 0.68 for TSS
obtained with PC2 indicates that the SJ samples (i.e., US-treated juices)
located on the bottom right of the PCA graph (Fig. 3) contained higher
soluble solids compared with the other samples
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similarity to HPP- and PEF-treated samples in terms of phy-
tochemical characteristics and physicochemical properties.
Discrimination of these technologies was achieved due to
the effect of HPP and PEF increasing the total phenolics, total
anthocyanins, and antioxidant activity compared with either
untreated or heat-treated SJ (Table 2, Fig. 4). Kaya et al. [26]
also successfully applied HCA for the differentiation of UV-C
light–treated, heat-treated, and untreated lemon-melon juice
blends during 30 days of refrigerated storage. Thus, HCA
was very useful to visualize the clusters of fruit juice samples
treated by different technologies based on their physicochem-
ical or phytochemical attributes.

Conclusions

The equivalent processing approach as applied to SJ using
HPP, US, and PEF led to a relevant comparison of these tech-
nologies in terms of microbial quality, physicochemical prop-
erties, and phytochemical characteristics. Natural microbial
counts were below 2 log CFU/mL in all processed SJ. Since
microbial safety of the final product is the first prerequisite for
regulatory acceptance, this result is a promising outcome sug-
gesting that nonthermal pasteurization at the applied condi-
tions was able to reduce the initial microbial population to
an acceptable level. The use of multivariate data analysis tools
(i.e., principal component analysis and hierarchical cluster
analysis) facilitated an effective way for visualization of the
data set and interpretation of the results to achieve the under-
standing of how similar/different products were obtained once
the equivalent food processing technologies were applied.
PCA and HCA successfully discriminated and classified the
pasteurization technologies based on the physicochemical at-
tributes and phytochemical content of the SJ. This study
showed that the applied equivalent processes (resulting in an
equivalent degree of E. coli inactivation) may lead to different
outcomes in terms of SJ physicochemical and phytochemical

quality. It is remarkable to indicate that SJ quality attributes
were better retained, even enhanced, by HPP and PEF com-
pared with a conventional thermal pasteurization treatment
while microbial safety was achieved regardless of the treat-
ment type under the adopted equivalent processing conditions.
Finally, multivariate analysis techniques were very useful
tools to characterize the strawberry juice samples subjected
to equivalent processes in terms of several quality-related pa-
rameters. This study also demonstrated that the equivalent
processing approach offers excellent opportunities to attain
equivalent or even enhanced quality fruit juices in comparison
with a given benchmark
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