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ABSTRACT 

 

VEHICLE TYPE CLASSIFICATION WITH DEEP LEARNING 

 

In this thesis, we studied the vehicle type classification problem from several 

perspectives. We apply a deep learning technique with different parameters such as image 

size and the number of images in data sets to the classification of an image as one of the 

nine vehicle types. After choosing the most appropriate one among trained models, we 

convert the problem into a hierarchical tree classification problem so that it could be 

analyzed in three different tree hierarchies. Experiments are performed using three 

computational methods for calculating possibilities for each of the nine classes that 

correspond to the leaves of the hierarchical trees. These studies result in a conclusion that 

0.762812 average accuracy is obtained when traditional arithmetic mean computation 

applied on the hierarchical tree with level-2 using the Stanford Dataset by 224 image size 

on ResNet34 architecture. 
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ÖZET 

 

DERİN ÖĞRENME İLE ARAÇ TİPİ SINIFLANDIRMA 

 

Bu tez çalışmasında, taşıt tipi sınıflandırma problemi farklı açılardan incelenmiştir. 

Bir imgeyi dokuz araç türünden biri olarak sınıflandırmak için imge boyutu, veri 

kümelerindeki örnek sayısı gibi farklı parametreleri kullanan bir derin öğrenme tekniği 

uygulanmıştır. Eğitimli modeller arasında en uygun olanını seçtikten sonra, sorunu 

hiyerarşik bir ağaç sınıflandırma problemine dönüştürerek üç farklı ağaç hiyerarşisinde 

analiz ettik. Deneyler, hiyerarşik ağaçların yapraklarına karşılık gelen dokuz sınıfın her biri 

için olasılıkları hesaplamak için üç hesaplama yöntemi kullanılarak gerçekleştirilmiştir. Bu 

çalışmalar, ResNet34 mimarisinde 224 görüntü boyutuna göre Stanford veri seti 

kullanılarak seviye-2 ile hiyerarşik ağaçta geleneksel aritmetik ortalama hesaplama 

uygulandığında 0.762812 ortalama doğruluğunun elde edildiği sonucuna varmaktadır. 
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CHAPTER 1 

 

INTRODUCTION 

 

Increased popularity and rapid development of novel algorithms for artificial 

intelligence lead to many new scientific experiments and approaches that include machine 

learning and deep learning as an important submodule. In this field, there are many problems 

and occasionally more than one specific approach to solve each problem. Deep learning 

achieves high performance by exploiting spatial coherence with convolutional layers and 

pretrained networks trained using large scale data sets with transfer learning. Increased size 

of the data sets forced technology to evolve around hardware in order to handle the 

availability of large-scale data sets. Thanks to the evolution of graphics processing units 

(GPUs) that specialize on processing large amounts of data in parallel, it became easier to 

work on the large-scale data sets and perform experiments in much shorter time frames. 

Increasing memory size along with the availability of powerful GPUs enabled researchers 

to obtain more accurate results for the complex real-world problems such as image 

classification, real-time pose estimation, and semantic segmentation. These improvements 

coupled with the availability of open source software libraries such as Keras (Chollet, 2015), 

Tensorflow (Abadi et al., 2016), and PyTorch (Paszke, 2017) for state-of-the-art algorithms 

makes it easier to apply deep learning to computer vision problems. 

Classification problems involving images are prime candidates for learning based 

solutions using convolutional neural network (CNN) techniques developed to take 

advantage of spatial consistency pioneered by Yann LeCun et al. (1998) in 1998. The 

increase in computation power has allowed deeper neural networks to be constructed, so a 

solution could be sought for the problem of increasing data volume by using more powerful 

CNNs. Thanks to its potential to jointly learn both features and classification rules, CNNs 

give better classification results especially if the datasets are large scale (Kosmopoulos, 

Paliouras and Androutsopoulos, 2015, Simonyan and Zisserman, 2015).  

In this thesis, we propose a deep learning solution for the vehicle type classification 

problem that builds upon the advances described above. Considering how much we use 

vehicles in our daily lives or how much we encounter them, we can understand how 

important it is to deduce information from the images that contain vehicles. Vehicle 

classification is important not only in the automotive field but also in the related fields such 

as traffic analysis and insurance (Jayawardena, 2013), it is demanded to create automated 
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solutions that produce robust and accurate classification output to put in use. Since it is 

potentially more difficult to learn features that separate all vehicle classes from each other, 

training a single classifier may not be the best possibility. With the aim of extracting rich 

features from the data, we propose a vehicle type classification approach utilizing multi-

level classifier hierarchies that we built in order to distinguish subsets of vehicle types from 

each other at each layer. 

We test our vehicle type classification approach by experimenting on two different 

data sets. BIT Dataset consists of images shot on the highway from a single front-view angle 

that contain vehicles of six different types. Stanford Dataset, on the other hand, contains 

images taken in different places from different angles and is organized in nine vehicle types. 

To classify vehicle types using these datasets, we first train single-level models by applying 

transfer learning (Pan and Yang, 2010) on four different pre-trained models. The aim is to 

show that with a relatively small number of images for each vehicle type, tangible results 

can be produced in the vehicle type classification problem. 

During the single layer experiments, using deep neural networks on different 

architectures, their suitability for vehicle type classification problem was determined. 

Different architectures show different suitability for transfer learning, and some of them 

produce more successful results. In the single-level classifier trainings, both the last layers 

of neural networks were trained initially followed by all layers of the architectures and the 

results of the experiments were shared. Besides the deep neural network architecture, the 

effect of image size on the classification is another variable that was measured. Also, image 

size affects both the training speed and the amount of GPU memory that must be used. The 

results show that even with small images, different types of cars can be separated. 

Evaluating the results of single-level training runs, we created a baseline model. 

Depending on the baseline model we build multi-level classifiers in order to distinguish nine 

vehicle types from each other; Hatchback, Mini, Minivan, Panel Van, Pick-up, Sedan, Sport, 

Station and SUV. We trained additional models corresponding to the nodes of the multi- 

level classifier trees of varying complexity. Then we computed the accuracy for each tree 

by employing three different computational methods that combines the classifier 

probabilities from the tree nodes into a single classification result over all nine classes. 

Experiments showed that multi-level classifier training approach yields higher 

performance than single-level classifiers by enabling overall model to predict more accurate 

results. Taken experimental studies into consideration, the best results are observed when 

traditional arithmetic mean computation applied on the hierarchical tree with level-2 using 

the Stanford Dataset by 224 image size on ResNet34 architecture and 0.762812 average 
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accuracy is obtained by repeating experiments. Additionally, this result was supported by 

repeating experiments for multi-level classifier training by providing twice number of 

images for each vehicle types.  

 

1.1 Motivation 

 

According to the survey (Won, 2020), accurate classification of vehicles to different 

types is essential for effective transportation planning and traffic operation. Vehicle type 

classification plays a significant role for reducing traffic congestion of future transportation 

systems. Thanks to increasing usage of cameras, studies on vehicle type classification 

focused mainly on image-based approaches. Since traffic surveillance cameras provides 

large number of vehicle images, accurate estimation of vehicle types on those images 

becomes more important for efficient management of transportation. However, the focus of 

image-based methods is generally on the images taken from a single viewpoint. In order to 

cover this issue, we performed experiments on images which are taken from different 

viewpoints.  

Accurate categorization of vehicles into different types is an important issue not only 

for sufficient transportation planning and management but also for effective damage 

detection of insurance solutions. In order to reduce the work accidents that may be caused 

by people during the assessment of damage, automation of the damage assessment process 

on vehicles is required. At this point, using deep learning techniques to classify vehicles into 

categories both reduce the wrongdoings and also accelerates the process of detection. By 

decreasing the discrepancies, deep learning enables to produce more accurate estimates. As 

already mentioned above, vehicles can be used in many different areas, it means that vehicle 

type classification subject is open to further development in order to contribute to these 

areas. 

 

1.2. Thesis Goals and Contributions 

 

This thesis aims to handle the vehicle type classification problem by building multi 

- level classifier hierarchy by differentiating classes among Hatchback, Mini, Minivan, 

Panel Van, Pick-up, Sedan, Sport, Station, SUV vehicle types. We employed more than one 

classification models to distinguish nine vehicle types from each other. We analyzed the 

machine learning and deep learning approaches for visual classification. To estimate the 

vehicle type class to which the vehicle, we evaluated several versions of convolutional 
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neural networks which varies in data sets, image sizes, computational methods and 

hierarchical tree structures. We applied transfer learning methodology to build single-level 

models and determined a baseline model for further analysis. Then, based on the baseline 

model, we built multi-level classifier trees and calculated the accuracy of each tree by 

computing the probabilities of each label via three computational methods. 

 

1.3. Outline of Thesis 

 

In the next section the related work is presented, while in Section 3 background 

search of this thesis is mentioned. Section 4 present experiments and discuss experiment 

results. In Section 5 proposed approach is introduces and related experiments are explained. 

Finally, Section 6 concludes and points to future work. 
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CHAPTER 2 

 

RELATED WORKS 

 

There has been a lot of literature on vehicle classification, and it is an inherently hard 

problem that has received significant attention over the years. In this section, we present 

previous work of vehicle type classification and hierarchical probability computing. 

Thanks to success of neural networks, experimental studies are carried out in almost 

every area which results in practical applications became available for various fields such 

as finance, health care, education (Jordan and Mitchell, 2015). For example, in health care 

sector, Yu et al. (2017) proposed a very deep neural network solution for the automated 

recognition of skin cancer (Melanoma). In order to increase success rate of trained model, 

they proposed a two-stage scheme. Firstly they performed segmentation on dermoscopic 

images by separating the skin lesions from the images. Then they categorized images into 

two categories which are melanoma and non-melanoma. Instead of performing 

classification on whole dermoscopy images, aiming for the lesion regions they enabled 

classifier to obtain more representative and discriminative features.  Secondly, they put a 

deep networks that has more than 50 layers into practice aiming for extracting discriminative 

features so that they trained model can make more accurate predictions. They utilized from 

residual learning technique (He et al., 2016) and built a fully convolutional residual network 

for effective and precise estimations for segmentation of skin injury and its classification. 

Lastly, connecting contextual information with each other they created a multi-scale system 

and aiming for overcoming of hardship melanoma recognition automatization they trained 

models with created with different set of schemes to determine for the most effective ones. 

Due to its strong capacity to handle formidable problems and to improve system 

performance, deep learning can be applied to every type of daily life problems including 

vehicle detection and classification. According to the survey of intelligent traffic monitoring 

systems (Won, 2020), thanks to technological advances through learning, sensing, and 

wireless communication, numerous innovative vehicle classification have been developed. 

One of the vehicle classification method for Intelligent Traffic Control is proposed by Fazli, 

Mohammadi and  Rahmani (2012) in 2012. They propose a deep learning algorithm in order 

to categorize mobile images into three vehicle types which are Heavy vehicles, Light 

vehicles and Motorcycle. The deep learning solution is explained in two-stages in general. 

The first step is about obtaining images from video of traffic scenes and applying some 
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image processing techniques such as background subtraction and edge detection. The 

second step is about extracting features from pre-processed images and creating a vector 

from these features such that a neural network can be trained on them in order to predict 

type of the vehicles. Another study is about automatic vehicle type classification using 

convolutional neural networks. Roecker et. al. (2018) proposed a convolutional neural 

network model for vehicle type classification that classifies vehicle types into six categories 

which are Bus, Microbus, Minivan, Sedan, SUV, Truck. They studied on images only with 

low resolution and taken from frontal perspective. These images are pre-processed by 

resizing and applying filters and the are given to the model as an input. In the convolutional 

stage of the model, using supervised learning with high-intensity data augmentation the 

model outputs a probability of each class. By getting more mature results from experiments 

and putting into practice, deep learning started to be served not only in traffic surveillance 

systems but also in other systems such as insurance systems. Patil et. al. (2017) studied on 

car damage classification problem aiming at car insurance industry. Since there is no public 

dataset for this problem, they started with preparing the dataset which is a difficult stage 

through the process of solving the problem. The dataset is created by collecting the image 

samples from the vehicle regions by taking damage types into consideration. In the first 

place, this study is carried on small sized dataset but it did not yield to good results using 

just neural network training, that's why fine-tuning process was applied to get better results. 

Furthermore, they investigated the effects of merging transfer learning to their solution. At 

last, experiments show that the most successful results was obtained by using transfer 

learning rather than applying just fine-tuning to the dataset. Visual classification is an 

important issue for insurance companies as well as vehicle owners. Insurance companies 

invest in deep learning methods. Because by providing solutions based on deep learning, 

delays in through visual inspections can be reduced and damage classification would be 

done in a reasonable amount of time. For example, a large amount of money would be 

wasted due to incorrect assessment of damage in the car insurance industry. Thanks to deep 

learning solutions, insurance companies can minimize money loss avoiding incorrect 

assessment of damage and reducing delays. Vehicle damage prediction is performed in 

another study in order to reduce insurance cost after traffic accidents (Jayawardena, 2013). 

In this study, solution is proposed based on 3D CAD models which are used as ground truth 

to differentiate mild damages from the undamaged vehicle model by analyzing images even 

under the conditions of environmental factor. In order to create undamaged model of a 

vehicle, multi-view geometry techniques are applied on two photographs of the vehicle 

taken from different view points. They presented 3D pose estimation algorithms and applied 
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the 3D model projection at the recovered 3D pose so as to differentiate vehicle components 

from an image in which there could be a slightly damaged vehicle. Because of the reflective 

body of vehicles, there could be inter object reflections such as ambient light or accident 

scene in an image of the damaged vehicle which may lead to misclassification of images. 

To deal with the inter object reflections, they also introduced a method which determines 

reliable point correspondences through images. 

One of the common classification strategies for large scale datasets is building a 

hierarchy of classifiers. In 1989, Haskell and Noui-Mehidi (1989) defined the hierarchical 

classifiers as an agglomerative way of categorizing inputs into predefined output classes. 

With the aspect of “Divide and Conquer”, he explained that firstly low-level classifications 

is trained by highly specific pieces of input data. Then these low-level classification of 

individuals come together to form larger hierarchical systems on a higher level which 

determines the output classes of the overall system. Following the trails of Haskell and 

Noui-Mehidi’s thought, Ras, Dardzinska and Jiang (2010) proposes a cascade classification 

strategy investigated for musical instruments estimation. They introduce a methodology of 

building cascade classifiers for data sets that can be partitioned into non-singular subsets. 

They also worked on decreasing the incompleteness of the data before the knowledge 

extraction algorithms are applied. Then they built a multi-hierarchical decision system 

experimenting on two different classification hierarchy of instruments. The results showed 

that by implementing hierarchical decision system the identification of the pitch became 

easier in the process of recognizing a dominating musical instrument in a musical piece. 

Another study on the hierarchical classification subject proposes a generic and principled 

hierarchical architecture, Hierarchical Deep Convolutional Neural Network (HD-CNN). 

Yan et al. (2015) find subset of classes based on class confusion of a base network by 

decomposing the classification task into two steps. Firstly easy classes are separated from 

each other by using coarse category classifier. After that more formidable ones are directed 

through sub-level category classifiers for estimation to complete. In this proposed system, 

the classification is implemented by starting from general classifiers through ending detailed 

classifiers so that error rate could be lowered with the cost of complexity increase. 

 The problem covered by this thesis address to the many sectors and/or inter-sectors. 

It might be useful for traffic surveillance systems in terms of requirement for recognition of 

vehicle types. Or insurance companies might want to enhance their damage detection 

solutions by applying vehicle type classification in order to understand which types of 

vehicle mostly got damaged. Leading to more evidence-based decision-making across many 

walks of life, deep learning methods also help for creating for competitive solutions. They 
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enable us to not only reduce cost but also increase efficiency by enabling fast decision 

mechanisms for problems such as damage detection, face recognition, customer 

segmentation. 
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CHAPTER 3 

 

RESEARCH BACKGROUND 

 

In this section, ‘Machine Learning’, ‘Types of Machine Learning’, ‘Deep Learning’, 

‘Convolutional Neural Network’ and ‘Fastai’ concepts are introduced. 

 

3.1. Machine Learning 

 

Machine learning is a branch of Artificial Intelligence (AI). It focuses on teaching 

an algorithm to progressively improve itself upon a given set of tasks. In a nutshell, machine 

learning designs a model of how a process works and implements it for practically building 

applications that present iterative enhancement. Dynamic mechanism of machine learning 

enables itself to change when required without human intervention. When a new instance is 

arrived, it processes historical information to determine which path to take, and takes action 

for adapting the new instance. Fundamentally, it functions as learning and self-development. 

While all machine learning problems can be examined as artificial intelligence 

problem, on the other hand all artificial intelligence problems can not be assessed as machine 

learning problem. Because artificial intelligence problems cover machine learning 

problems. Machine learning is an applied form of artificial intelligence. It is for enabling 

machines to learn like humans by collecting, storing, analysing data and developing a 

decision making ability on its own. In order to extract predictable pattern or meaningful data 

whole data provided is needed to be analyzed. After that using statistical analysis a model 

to make predictions against new data is built which has the ability to make inferences 

according to the previous data provided to it. The most difficult part of this learning process 

is to ask right questions leaning on the collected data. In this case, it is necessary to have 

right data. For example, role information, such as an administrator role or a normal user 

role, can be important information about a user logged on to the management portal. 

 

3.1.1. Types of Machine Learning 

 

Machine learning algorithms are generally used to predict or classify data. There are three 

main categories: supervised learning, unsupervised learning and reinforcement learning. 
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3.1.1.1. Supervised Learning 

 

Supervised learning requires training a model that would be useful for classifying 

new data by making predictions on predetermined classes. Therefore, training data which 

includes data points and labels are given to the learning algorithm. In other words, data 

being used for training and its labels of classes or categories are already known within the 

training system so that the learning algorithm is able to estimate based on the learned data. 

In general, supervised learning is used to find a solution to classification and 

regression problems. For classification problems, data is needed to be divided into groups 

in accordance to the categories defined so that, the system is trained using these given 

categories and classifies new incoming data similarly to as it learns. For example, suppose 

that the task of recognizing a cat present within the given picture is given to the machine. 

On this account, the training dataset with containing a group of images with detail of 

whether there is a cat in image or not would be needed to be learned by the machine 

beforehand. Another example could be training a model by giving the size and the age of a 

group of people as input and expecting their weight as an output. And if enough data is given 

to the trained model, it would be able to make predictions of the weight of someone whose 

weight is unknown given his/her size and age. 

The challenge of supervised learning is that the learning algorithm depends on the 

accuracy of the class predictions because it estimates generalized rules that supports the 

training dataset. Accuracy of trained model gets better by providing enough number of 

images. However, focusing too much on the training dataset would result in over-fitting 

which means that trained model exhibits poor performance on real-world scenarios. As an 

example, if a training dataset mostly includes breed of Van cats, the machine may find it 

harder to recognize the presence of cats of other breeds. 

 

 3.1.1.2. Unsupervised Learning 

 

Unlike supervised learning, unsupervised learning does not require a labeled dataset, 

and no training dataset is provided to the machine anyway. Instead of a training dataset, 

unstructured data is given to the machine so that the machine work on exploring structures 

within the data provided. Unsupervised learning is often used to find patterns. It explores 

similarities in data in order to cluster related data close to each other. Therefore, this method 

is suitably used for clustering problems. To solve clustering problems, data should be 

divided into groups taking their similarities into account such that each group represent a 
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cluster. In order to minimize similarities between clusters, data that has different values from 

others should not be in a group and it should form another group. In terms of processing 

data, a new coming data is examined by the machine and assigned to a cluster which has 

similar data. Face recognition over an outsized dataset of photographs is an example of 

unsupervised learning.  The machines cluster the photographs together finding similarities 

of faces. The task of machine is recognizing which images belongs to the same person while 

ascertaining how many different people exists in the dataset. 

 

3.1.1.3. Reinforcement Learning 

 

In reinforcement learning, the machine tries to investigate the most appropriate 

actions in certain scenarios. The machine is required to explore cause and effect relationship, 

whether these actions have short or long term consequences. 

The idea behind reinforcement learning comes mainly from psychology of 

experiments on animal such as rats, and behaviors of these animals on certain situations like 

seeking for food. One example of reinforcement learning is that in order to make the rat to 

go and get the food, a stimulating sound is given to the mouse by an agent in the same 

environment. As a result the machine learns on its own behaviours that cause a gift or 

punishment according to  its previous attempts that caused positive or negative effects. The 

most famous example for reinforcement learning is that an artificial intelligence product 

AlphaGo defeated the world champion Ke Jie in  the game of go (Google AI Blog, 2016). 

Detailed information about types of machine learning can also be explained in (Baştanlar 

and Özuysal, 2014). 

 

3.2. Deep Learning 

 

 Deep learning is machine learning technique which extract feature from data like 

images, texts or sounds. Extracted features by this technique are learned and can be used for 

next tasks. The main difference between how machine learning and deep learning works is 

demonstrated in Figure 3.1. While in machine learning, the way to make correct estimation 

should be taught to algorithm by providing more information, on the other hand, the 

algorithm in deep learning can learn this by processing data. In simple words, feature 

extraction is performed by human in machine learning while deep learning model figure it 

out by itself. 
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Figure 3.1. Difference between Machine Learning and Deep Learning (Mathworks, 1994) 

 

Although deep learning is a new field of machine learning, it showed great 

development in a short time and became an important topic in artificial intelligence field. 

One of the reasons behind of this development is increasing dataset sizes. As technology 

evolves, hardware becomes more capable. Thanks to this, researchers can now work on huge 

datasets to get better results from their experiments. Another reason of success of deep 

learning is increasing memory size. After researchers performed experiment on very large 

datasets, another problem arose about how to process and store these huge amount of data. 

However, the obstacle has been overcome by the production of computers with superior 

features. Thanks to current CPUs and GPUs being faster and having larger memory, there 

happen to be enough resources to work on larger datasets. Last but not least, one of the 

reason behind success of deep learning is increasing accuracy, complexity and real world 

impact. After debut of deep learning, people did not use much is because larger datasets 

were needed to get better results. In order to extract every abstract features from hidden 

layers of network, large dataset should be given. Following the age of "Big Data", 

implementation of deep learning become much easier and effective. With the increasing 

digitization of daily life, computers have the power of taking more activities which result in 

increasing the number of computers connected together in network. 

In simple neural network which has one hidden layer as in left side of the Figure 3.2, 

in order to solve reasonable problems, it is necessary for it to have exponentially increasing 

number of parameters. On the other hand, if multiple layers can be added as in right side of 

Figure 3.2, super linear scaling can be obtained. So as to solve much more complex problem, 

a few more hidden layers can be added. The ‘deep’ in deep learning simply refers to having 
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multiple ‘hidden’ layers; that is layers that aren’t the input, or the final output, but 

somewhere in between. In brief, deep learning is neural networks with multiple hidden 

layers. 

 

 

Figure 3.2. Difference  between  Simple  Neural  Network  and  Deep  Learning  Neural  

       Network (Vazquez, 2017) 

 

3.2.1 Convolutional Neural Network (ConvNet/CNN) 

 

In neural networks, Convolutional Neural Network (CNN) is one of the main 

categories to work on problems such as image classification, image recognition. It is a Deep 

Learning algorithm that can take in an input image, process it and classify it under certain 

categories (Eg., sedan, hatchback categories for an vehicle image). In order to make good 

prediction, ConvNet aims at reducing the images into form that is easily processed without 

losing its important features. This is critical if an architecture is to be designed that it is 

required not only to be good at learning features but also is scalable to massive datasets. In 

deep learning, CNN algorithms train input data such as image by conveying them among 

convolutional layers to classify the input with probabilistic values between 0 and 1. 

Overview of the structure of CNN is explained below: 

● Convolutional Layer is used to extract features by applying filters 

● Non-Linearity Layer introduces non-linearity to the system 

● Pooling(Downsampling) reduces the number of weights and control overfitting 

● Flattening Layer prepares data for the fully connected layer 

● Fully-Connected Layer is Standard Neural Network for classification 

Using a very deep hierarchy of layers, ConvNet shows superior performance today. 

Thanks to the wide use of ConvNet, human-realizable tasks like voice recognition, object 
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detection, face recognition are now accomplished with deep learning algorithms 

programmed by researchers or IT companies (Jordan and Mitchell, 2015). 

 

3.2.1.1 CNN Parameters 

 

 Neural network is an infinitely flexible function. In case of where appropriate inputs 

are given, even a simple neural network is able to symbolize a wide range of various 

functions. As long as enough parameters are added, any problem can be solved using neural 

network with a close accuracy. In this section some of the hyperparameters will be 

explained. 

 

3.2.1.1.1. Stochastic Gradient Descent  

 

In deep learning, there exists different optimization methods that enables us to find 

optimum value for nonlinear problems. Some of the widely used algorithms are Adam, 

Adamax, Stochastic Gradient Descent algorithms (Ruder, 2016). In this thesis, we use 

Stochastic Gradient Descent algorithm while training neural networks.  

Gradient Descent is an algorithm that fits parameters of neural network to measure 

the quality a specific group of parameters depending on how well the final scores are in 

accordance to the ground truth labels in the training data. Suppose that we have given a set 

of parameters for training a network. Then gradient descent use these initial set of 

parameters and seeks out for a set of parameters that converges to local minima . It checks 

the current parameters and then estimates a slightly better set of parameters to predict how 

far it is from surface of the function by using current set of parameters. 

As it is demonstrated in Figure 3.3, different initial set of parameters at starting point 

may result in different local minima. Thankfully, there is not only one value that good for 

neural networks, there might be many that are equally good. In other words, in deep learning 

even though solutions are not truly minimal they are generally accepted, as long as they are 

in accordance with significantly lower values of the cost function (Goodfellow, Bengio and 

Courville, 2016). Detailed information about stochastic gradient descent can be found in 

(Loshchilov and Hutter, 2017). 
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Figure 3.3. Initial set of parameters move towards to local minima (Howard and Thomas, 

2017) 

 

3.2.1.1.2. Learning Rate 

 

The learning rate is one of the most significant hyper-parameters that adjust the 

weights of network while taken loss function gradients into account. It decides how much 

to change model in response to the error estimated when weights are updated. Suppose that 

there is a quadratic function and we would try to find a minimum of it using stochastic 

gradient descent technique that explained in 3.2.1.1.1. It starts by computing the value of 

the function and the slope at a point. Then, it goes down bit by bit of hill and make 

computation again. When it is seen that the value of is not decreasing anymore, it means 

that the value has reached its minimum. The difference between two consequent points 

which are pursuing slope through the downhill is called learning rate.  

Learning rate decides how fast to reach local minima of a function. The biggest 

challenge is choosing a learning rate value to train a model. Because, by choosing a small 

value for learning rate, it would take so much time to get to the local minima, and choosing 

a large value might result in exceeding the minimum value trying to be reached. These are 

demonstrated in Figure 3.4. 

 



16 

 

 

Figure 3.4. Visualization   of   what   happens   choosing   three   different  learning  rate 

      (Jordan, 2018) 

 

 In order to eradicate the need to determine sensible values, one of the most robust 

techniques was proposed by (Smith, 2017). According L. N. Smith, if training is done using 

cyclical learning rates the accuracy of classification is enhanced and it does not reqire any 

tuning. 

If we divide the logic behind of Smith’s writing (2017) into steps, the first step is to 

start with a small learning rate and calculate the loss. Second is to increase the learning rate 

step by step and each time, calculate the loss. When the loss suddenly increase again, the 

increasing of learning rate should be stopped. Where the loss is still clearly improving, the 

highest learning could be chosen. Lastly, these steps are repeated in a cycle. Different 

implementation of cyclical learning rates can also be reviewed in Smith’s writing (2017). 

 

3.2.1.1.3. Number of Epochs 

 

 In deep learning, an epoch is a hyperparameter which refers to one cycle through 

full training data and it is determined before training the model. One epoch means passing 

through the neural network both forward and backward all at one. But one epoch is too big 

to feed to the network at once. Thats why, it is divided into several smaller batches such that 

more than one epoch is used to pass through the full dataset in multiple times. After each 

pass, it gives a chance to the network to evaluate success value and regulate model 

parameters taking previous data into account. Success value is generally lower in first epoch 

and as success rate will also increase as the number of epochs get bigger. This does not 

mean that the biggest value of number of epoch is best input for a network because after a 

certain step  the success rate will no longer get better. In other words, increasing the value 
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of number of epochs would not provide better efficiency for each setting. On the other hand, 

decreasing the value of number of epoch hyperparameters would be useful in case of a model 

that require a long training period. 

 

3.2.1.1.4. Batch size 

 

A ConvNet doesn’t process its inputs all at once, so as to increase performance, it 

processes the data in batches. The batch size is the number of training samples will be used 

in training in order to make an update to the model parameters. In an ideal way,  all the 

training samples would be used to calculate the gradients for every single update, however 

that is not efficient. In simple terms batch size tries to simplify the process of updating the 

parameters. 

One of the aspects of getting training right is adjusting the batch size. If chosen batch 

size is too small, then there will be a lot of variance within a batch, and the training loss 

would increase a lot. On the other hand, if it’s too large, GPU would use so much memory 

to maintain it, or training would progress too slowly to catch a glimpse of if it’s the 

optimization is diverging early on. Therefore, when choosing this value, neither too small 

nor too large should be selected. 

 

3.2.1.1.6. Dataset Augmentation 

 

As the more training is performed for the model, it will be more successful. When 

the number of data given for training is high enough it gets better fit for the model while 

preventing from overfitting. For the purpose of increasing size of the data, synthetic images 

can be produced so that prepared dataset will be augmented. There are several ways to create 

synthetic images such as  rotating the image, flipping of the picture, random translations, 

changing brightness, cropping the picture. After applying these transformations to data, with 

respect to deep learning, there will be different versions of the data in a dataset. Besides, 

cross validation techniques were implemented by splitting data into five different groups in 

order to evaluate models. 

Data augmentation technique is preferably used with other regularization method. It 

only increase the performance at a certain rate because, although data is synthetically 

generated, it does not replace completely different data. Detailed Information can be found 

in (Kukacka, Golgov and Cremers, 2017). 
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3.2.2 CNN Architectures 

 

Neural networks may vary in terms of sizes and shapes, as a result they can be 

different depending on how they are configured. Thankfully, there is no need to reinvent the 

wheel for every situation. In order to create a classifier, one of the architectures that have 

proven to be successful can be reused. In this thesis instead of building a model from the 

scratch, transfer learning (Section 3.3) approach is applied. Therefore, to solve vehicle type 

classification problem, experiments performed on data sets reuses four different architecture 

which are listed below (Simonyan and Zisserman, 2015, He et al.,2016): 

● resnet34 

● resnet50 

● resnext50 

● vgg16 

 

3.3. Transfer Learning 

 

 Transfer learning is a technique of machine learning in which an output of the 

algorithm can be reused as a starting point of another task even if it is designed for a specific 

work. In this method, knowledge gained while solving a problem is utilized for applying it 

to another but related problem. For example, knowledge gained while learning to drive a 

motorcycle can be used to some extent to when learning to drive a car. There is no need to 

acquire knowledge of everything from scratch when trying to learn something new. 

 In traditional learning, there is no knowledge that can be conveyed from a model to 

another and no knowledge is preserved. While traditional learning consist of specific tasks 

and training separate isolated models on different datasets, on the other hand, transfer 

learning comes from the idea of overcoming the isolated learning paradigm, and in order to 

train newer models it leverages knowledge from previously trained model.  Thats why, pre-

trained models make great contributions to solving new problems. 

 The most important advantage of transfer learning is saving time and resources 

needed thanks to leveraging a previously trained model. There is not much power is required 

for computing because weights are transferred from previous model. Transfer learning even 

get over with problems like having less data for newer tasks because there is no need for an 

extremely large training dataset when there is similarity between datasets for the original 

and new tasks. So, it reduces the need to re-collecting training data and time consumption 

drops to hours or even to minutes. Furthermore, Transfer Learning is easy to use in terms of 
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implementation on layers. Because instead of training all layers, some tasks can be defined 

by training only the last layers. 

 Using transfer learning approach, an application can be easily created to process a 

task that involves adjusting pretrained model. Firstly, it is started with choosing an existing 

network like GoogLeNet (Szegedy et al., 2015), and new data is fed in that architecture. 

After making some small adjustments to architecture, an application that can perform a new 

task can be produced. For example, this application can be used to categorize cats or dogs 

in an image set that hosts many unknown objects. Detailed information can be seen in (Pan 

and Yang, 2010). Transfer Learning is useful for creating applications that achieve many 

tasks including image recognition and classification, robotic process automation.  

 

3.4. Ensemble Learning 

 

Ensemble learning is a machine learning approach that merges several base models 

so that it produces a model that advances optimal prediction. In traditional ensembling, 

different models are combined and they predict on the same input. After that, averaging 

methods is used to firmly decide on the final prediction of the ensemble. It can be simple 

voting algorithm, calculating average, or even another model that predicts values and labels 

using model parameters. While some ensembling methods use different models to produce 

a optimal predictive model, on the other hand, models in the same architecture can also be 

combined and advance good results. One of the ensembling methods that makes use of this 

approach is Stochastic Weight Averaging. 

 

3.4.1 Stochastic Weight Averaging (SWA) 

 

Stochastic Weight Averaging technique is proposed in (Izmailov et al., 2018) and 

uses a novel ensembling in the weights space. In this approach, in order to make predictions 

it uses a model that takes advantage of an ensemble which is created by merging weights of 

the same network at different stages of training with weights itself.  

Working algorithm of swa starts by making a copy of the model that is training such 

that  it will be used for keeping track of the averaged weights. The weights of the copied 

model are updated after the each epoch of training using introduced averaging formula in 

(Izmailov et al., 2018). As a result, thanks working on one model at a time, SWA speeds up 

predictions. 
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3.5. Fastai 

 

The fast.ai is a small library built on top of Python which is heavily used in research 

and it helps to build neural networks. It implements Supervised Learning approach such that 

a dataset containing labeled images of vehicle types can be given as an input for training 

data (Section 3.1.1).  

 As datasets are generally prepared, structures for two datasets in this thesis includes 

the valid, train and test folders containing images to train and for validation and to test close 

to real world scenarios. While valid and train folders have subfolders for each classes, test 

folder is directly contains test images. There is also “model” folder which stores the versions 

of models saved. 

The training methodology of fastai is summarized into three step. First one is 

creating data variable to configure data for training. Creating data object in fastai it is 

required to specify two parameters. They are path of stored data, and selected architecture 

to apply its data transformations. These transformations may include resizing, normalizing 

or standardizing. Thanks to the transformations input data can be resized, rescales to values 

between 0 and 1. Second step is creating a learner object so as to train neural network on 

prepared dataset using selected pre-trained models. Fastai does not start training from zero 

but it uses a network architecture exist before in order to gain knowledge of pretrained model 

on a massive dataset like ImageNet  so that it can transfer the knowledge to trained model. 

It means that fastai library utilize from Transfer Learning (Section 3.5). Third step is fitting 

these data and learner objects into together. Once data and learner object are determined 

actual training may start with specifying a learning rate and the number of epochs (eg. 

learn.fit(0.02, 3)). The fit method takes two parameters. First one is learning_rate which is 

controlled for updating the weights of the model all the while training (Section 3.2.1.1.2). 

Providing helper classes, the fastai library proposes a level of abstraction for application. 

One is used to determine learning_rate for fit method using gradient descent approach 

described in Section 3.2.1.1.1. Second parameter to fit the model into data is number of 

epoch (Section. 3.2.1.1.3). 

In this thesis fast.ai library is used in order to build classifiers that categorizes an 

image it has never seen as one of the vehicle types like ‘sedan’, ‘suv’. Trained network will 

be able to distinguish among vehicle types based on the labelled images provided. Detailed 

information about output of classifying by fastai and evaluating them can be found in later 

chapters. 
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3.6. Technical Environment 

 

In order to perform experiments on data sets prepared, Fastai library founded on 

Pytorch is configured on a computer which has a GPU powered by 5.0 computing power. 

Codes written in Python have been visualized with jupyter notebook. The environment in 

which experiments are performed has characteristics described below: 

 

Table 3.1. The differences between BIT Vehicle Dataset and Stanford Car Dataset 

Name Value 

Processor Intel(R) Core(TM) i7-4510U CPU @ 2.0 GHz 2.60 GHz 

Memory 8.00 GB DDR3 

System 64-bit Operation System, x64-based processor 

GPU NVIDIA GeForce 840M 4GB shared 
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CHAPTER 4 

 

VEHICLE TYPE CLASSIFICATION 

 

In this section, we introduce the problem of vehicle type classification and present 

our approach to deal with it. Then we give information about dataset and details of training 

and evaluation for vehicle type classification. 

 

4.1. Approach 

 

 We approach the vehicle type classification problem from two different perspective. 

One uses a single - level classifier to categorize new instances and the other one uses a multi 

- level classifier. 

 Hierarchies are frequently used for the management of objects. Given a hierarchy of 

classes, these two approaches are also used to classify new instances labelling with a class 

name. Single - level classifier represents a traditional flat hierarchy which can be assumed 

as a tree with 1 unit - height (level-1). There is a node which acts as a classifier for an image 

given and gives probabilistic values for each class. In traditional flat hierarchies, these 

classes are independent of each other. In contrast to single - level classifier, there are some 

connections established in multi - level classifier in order to create hierarchical dependencies 

between nodes. Furthermore, the hierarchy is a cascade tree with height greater than one 

and the classification nodes are always the leaves of the hierarchy. It estimates the 

probability of each root-to-leaf path through cascade classification trees. It is also assumed 

that each image belongs to one class,  which means that single - label classification is 

applied. 

In this thesis, we handle vehicle type classification problem performing experiments 

using two different approaches which are single – level classifier training using transfer 

learning technique and multi – level classifier training using hierarchical cascade trees. 

According to experiment results provided by these two approaches, one can achieve better 

results with multi - level classification using three different computational methods 

compared to single - level classification. 

In the next section, information on data sets that are used to train classifiers are 

introduced.  
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4.2 Dataset Preparation and Training 

 

4.2.1. Information on Datasets 

 

Two different data sets were prepared to train deep neural networks for vehicle type 

classification. They are BIT Vehicle Dataset (Dong et al., 2015) and a reorganized vehicle 

type dataset manually prepared from Stanford Car Dataset (Krause et al., 2013). There are 

six types of vehicle in BIT Vehicle image data set and nine types of vehicle in Stanford Car 

Dataset. Next, details of each data set are explained. 

 

4.2.1.1. BIT Vehicle Dataset 

 

As described in (Dong et al., 2015), BIT-Vehicle dataset is consist of 9,850 vehicle 

images collected from two different cameras located in two different place at different time 

intervals. Image size of photographs captured are 1600x1200 and 1920x1080. They are all 

captured from high viewpoint with two different angle that’s why the top or bottom parts of 

some vehicles are not seen in the images. Some images are noisy because of motion, delay 

and illumination changes. Also there are no images of rear of a vehicle or side of a vehicle 

clearly. Total number of images used in this thesis are 9.652. Sample images of BIT Image 

Dataset for each classes are demonstrated in Figure 4.1.  

 

Table 4.1. Number of images for folder arrangement per vehicle type in BIT Vehicle 

Dataset 

 

Label Training Validation Total 

BUS 440 111 551 

MICROBUS 670 168 838 

MINIVAN 370 92 462 

SEDAN 4502 1125 5627 

SUV 1085 271 1356 

TRUCK 654 164 818 

TOTAL 7721 1931 9652 
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All vehicles in the dataset are divided into six categories: Bus, Microbus, Minivan, 

Sedan, SUV, and Truck. 80% of each class is allocated for training, the rest is placed in the 

validation folder. The number of vehicles per vehicle type are respectively given in Table 

4.1. 

 

 

Figure 4.1. Image examples from BIT Dataset for each classes 

 

4.2.1.2. Stanford Car Dataset 

 

 This dataset is prepared from Stanford Car Dataset (Krause et al., 2013) and consists 

of 888 manually chosen vehicle images. It includes pictures with different lighting values 

at different points of view from various places. There are images from different viewpoint 

of vehicles such as back, front, sides, diagonal. Some images demonstrate interior view like 

studio while others demonstrate outdoor view like seaside, bridge. Because of location of 

the sun lighting changes occur in some outdoor images. Also a few surprising elements can 
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be found in images such as reflection in water, people or trees. Sample images of Stanford 

Dataset for each classes are demonstrated in Figure 4.2.  

 

 

Figure 4.2. Image examples from Stanford Dataset for each classes 

 

All vehicles in the dataset are divided into nine categories: Hatchback, Mini, 

Minivan, Panelvan, Pickup, Sedan, Sport, Station and SUV. These categories are 



26 

 

determined  in  accordance  to  the  e - commerce   websites  such  as  sahibinden.com  and 

arabam.com. 80% of each class is allocated for training, the rest is in the validation folder. 

The number of vehicle images per vehicle type class in Stanford Dataset are respectively 

given in Table 4.2. 

 

Table 4.2. Number of images for folder arrangement per vehicle type in Stanford Car  

     Dataset 

Label Training Validation Total 

HATCHBACK 80 20 100 

MINI 71 17 88 

MINIVAN 80 20 100 

PANELVAN 80 20 100 

PICKUP 80 20 100 

SEDAN 80 20 100 

SPORT 80 20 100 

STATION 80 20 100 

SUV 80 20 100 

TOTAL 611 177 888 

 

The main differences of BIT and Stanford datasets are summed up in Table 4.3. The 

distinguishing features are specified as the number of classes, point of view as perspective, 

environmental elemets, and the number of images in total for each datasets. 

 

Table 4.3. The differences between BIT Vehicle Dataset and Stanford Car Dataset 

Name BIT Stanford 

# classes 6 9 

Perspective Only front Front, back, sides 

Environment Highway Studio, seaside, bridge... 

# images in total 9652 888 
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4.2.2. Training 

 

In this study, firstly the single - level classifier approach is studied to train classifiers 

on introduced data sets in Section 4.2.1. Then, the use of a multi level classifier hierarchy is 

explained for predicting labels by applying different computing methods. 

 

4.2.2.1. Single - Level Classifier Training with Transfer Learning 

 

 First, we studied the training of the single - level classifier on the BIT Dataset. We 

started to this training process by simply training our first model. So, the first step of training 

a model is creating data object. The data object contains the training and validation data. 

Training data is on what the model is trained upon while validation data is used to check 

how well our model performs on images it has not seen before. The data object carries 

information about not only labelled dataset but also image size, which decides the size of 

input image for training. In the first experiment we defined the class hierarchy of BIT 

Vehicle Dataset as a single - level hierarchy in Figure 4.3.  

Next, we created a learner object for hosting model to train and we transferred the 

information data object carries to it. We make use of transfer learning methodology for 

training, that’s why we introduced ResNet34 network to the single - level classifier learner 

object. In order to start training we determined learning rate for our training and number of 

epochs such that we will be able to manage how slowly or how quickly update the weights. 

For the first experiment of single - level classifier training, parameters are listed in Table 

4.4.  

 

Table 4.4. Parameters used for first experiment of  single level classifier training 

Name Value 

Dataset BIT Vehicle Dataset 

Image Size 32 x 32 

Architecture ResNet34 

Learning Rate 1e-2 

# Epoch 3 
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As a result, using given parameters with the single - level classifier represented in 

Figure 4.3, we train a classifier that predicts type of vehicle for labelling new instances as 

Bus, Microbus, Minivan, Sedan, Suv and Truck. 

 

 

 

Figure 4.3. Tree representation of single-level classifier for BIT Vehicle Dataset 

 

Secondly, we used augmentation methodology to increase the number of data from 

different perspectives, that's why restricted scaling and rotation transformations have been 

applied to add diversity to images during training. In this way, each time the data is used 

during the training, it is provided to perform training with various images. As examples can 

be seen in the Figure 4.4, six different synthetic pictures are created from one picture after 

transformations applied. 

 

 

 

Figure 4.4. Examples  of  transformations  applied  to  images from BIT Dataset (top) and 

       Stanford Dataset (bottom) 

 

Last but not least, we first opened and trained last layer of the network, then we 

unfreezed the remaining layers and released the lower convolutional layers so that the whole 

network can be trained as a one. Working on all layers, we assume that earlier layers need 

less fine-tuning for new datasets because they have more general purpose features. For this 

reason we used differential learning rates technique introduced in Fastai. In this technique, 
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learning rate is set as an array such that first learning rate is set for fully connected layers 

and as we go deeper in network layers, learning rate get smaller exponentially (Section 

3.2.1.1).  

In the rest of the thesis, the explanation of training above is referred as single training 

process because this process will be continued to be performed with different set of 

parameters. Three main categories were taken into consideration while forming set of 

parameters for conducting experiments. These categories are; two different data sets, 

architectures for training models and size of images. Details of the parameters can be found 

in Table 4.5. 

 

Table 4.5. Categories of parameters used in experiments 

Name Parameter_

1 

Parameter_

2 

Parameter

_3 

Parameter

_4 

Parameter

_5 

Data sets BIT Vehicle 

Dataset 

Stanford Car 

Dataset 

   

Architecture ResNet34 ResNet50 ResNext50 Vgg16  

Image Size 32 x 32 64 x 64 128 x 128 150 x 150 224 x 224 

 

While working with BIT Vehicle Dataset and Stanford Car Dataset, deep neural 

networks trained in various architectures and ImageNet are used. The architectures selected 

to work on are Resnet34, Resnet50, Resnext50 and Vgg16. Fastai library (Howard and 

Rachel, 2017) is used to train classifiers utilizing these pre-trained models. The latest layers 

of these architectures contain a fully-connected neural network structure, while the other 

layers are convoluted blocks. Therefore, different image sizes for different application areas 

can be fed into these architectures and a fully-connected final layer can be trained for a 

different number of classes. 

Aiming to interpret in a way that utilize from different viewpoints, in this study, 32, 

64, 128, 150 and 224 dimensions have been studied for the selected architectures. In 

experiments, both the last layer was trained keeping other convolutional layers fixed and 

also all the layers were trained in given two datasets.  The graphics card memory used for 

all stages is approximately 4 GB. Other technical information about experiment 

environment is given in Section 3.6. 

 As one can see from parameter categories detailed in Table 4.5, two different data 

sets can be given as parameter to training process. So experiments are also performed for 
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Stanford Dataset keeping other parameters fixed. Tree representation of single - level 

classifier training of Stanford Car Dataset can be found in Figure 4.5. In addition to these 

experiments, Ensemble Learning (Section 3.4) technique is used in order to improve 

accuracy of experiments performed on Stanford Dataset by averaging weights at the end of 

each epoch. So as to apply ensemble learning additional 14 experiments was conducted. In 

order to get best accuracy results of ensembling technique, the model trained with biggest 

image size on the same architecture is chosen as a second model for each architecture. For 

example, so as to implement ensemble learning on ResNet34 architecture, the model trained 

with the same architecture and has 224 image size is used as a second model for every other 

trained model with different image size. 

 

4.2.2.2. Multi - Level Classifiers and Their Training 

 

While the single - level classifier applies flat hierarchy that ignores the hierarchy, on 

the other hand multi - level classifier hierarchy traverse the hierarchy from the root to the 

predicted leaf. In this section, we study the cases where multi - level classifier hierarchy is 

constructed to estimate class probabilities.   

 

 

Figure 4.5: Tree representation of single - level classifier for Stanford Dataset 

 

The aim is to classify new images through the hierarchy built which represents is-a 

relations. Two different multi - level classifier hierarchies are manually constructed for this 

purpose. The tree represents multi - level classifier hierarchy with tree height is 2 (level-2) 

can be found in Figure 4.6 and tree representation of multi - level classifier hierarchy with 

tree height is 3 (level-3) can be seen in Figure 4.7 respectively. In hierarchical trees, each 

node usually apply one classification to given test images. The problem can be divided into 
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smaller problems using hierarchical cascade classification such that fewer features are 

required to train each classifier compared to using overall dataset. 

 

 

Figure 4.6: Level-2 tree hierarchy example 
 

As already mentioned, for multi - level classifier hierarchy approach one classifier 

is trained for each of node of the hierarchy. For example, using the hierarchy of Figure 4.6, 

total of four classifiers are trained for each of the nodes vehicle_type, terrain, automobile 

and van. The classifier of any node is trained using the samples of that node's leaf 

descendants. That is, the vehicle_type node is trained using the train and validation image 

samples of the terrain, auto and van nodes.  

 

 

Figure 4.7: Level-3 tree hierarchy example 

 

Similar situation also occurs in Figure 4.7. For the binary classifier of node 

auto_nonauto, all instances belonging to hatchback and sedan would be positive examples 

whereas all the instances belonging to Terrain and Van would be negative. Similarly, for the 

binary classifier of node auto, all hatchback and mini images belonging to hatchback class 
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would be positive instances while sedan, spor and station images belongs to sedan class 

would be negative. Comparing to flat hierarchy, these classifiers require fewer resources to 

be trained. Also they give more accurate results thanks to distinguishing between fewer 

classes compared to flat ones. For example, terrain node in Figure 4.6 has 2 leaves such that 

this classifier distinguishes between two classes, on the other hand the classifier of 

vehicle_type node in Figure 4.5 needs to distinguish between nine classes. For the flat 

hierarchy, if a node have 100 leaves then the classifier would need to separate one class 

from 99 others. So, hierarchical cascading may be a preferable option for large databases, 

as images only have to be separated between sibling classes. 

The main disadvantage of multi - level classifier hierarchy is that any mistake due 

to wrong prediction is carried over from root to leaves. The severity of this mistake may be 

greater if it occurs closer to the root, in the same way smaller if it is farther away. Suppose 

that there is an instance belonging to sedan class and it is estimated to be non automobile by 

the binary classifier of auto_nonauto node in Figure 4.7. It means that this image classified 

wrongly at the beginning of hierarchical cascading tree even without taking into 

consideration the classifiers of sedan. Therefore, it lost a chance of getting high probability 

of its own class. Given this disadvantage, three different computational method are used to 

calculate the probability for each class at the end of hierarchical trees. Probabilistic 

cascading, traditional arithmetic mean and weighted average computation methods are used 

to compute estimated probability of a given instance. These three methods compute the 

probability of each root-to-leaf path for a testing image then the most probable path is 

determined.  

If looking at the computation methods, Probabilistic Cascading (Kosmopoulos, 

Paliouras and Androutsopoulos, 2015), referred as PC, is one of the method studied to 

compute probabilities for testing images. It implements like standard cascading such that 

probabilities through root-to-leaf path are multiplied to find a class for a given image d (4.1). 

In order to find probabilities of each class for image d, a leaf C, a set S of all the ancestors 

of C, are needed to taken into computation. So its general formula is: 

 

 

   

  (4.1) 
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 As an example, determining the probable path of an image d belonging to Hatchback 

class for level-3 hierarchical tree in Figure 4.7 would be explained below for each 

computational methods. Assume that probabilities are determined from classifiers of each 

ancestor node of Hatchback class is given below: 

P(Auto|Root, x) = 0.9  *Root refers to vehicle_type node 

P(Hatchback|Auto, x) = 0.8 

P(Hatchback, x) = 0.7 

With calculated probabilities of classifiers of each ancestor nodes  taking formula 

(4.1) into calculations, probability of an image d being Hatchback class is computed as 

0.504. 

Second computation method to calculate probabilities of test images is Traditional 

Arithmetic Mean, referred as TAM. In this method, probabilities calculated from classified 

from root to leaf nodes are added together and a total value is obtained. To compute the final 

probability, this total value is divided by the number of probabilities which are added to sum 

(4.2). It was assumed that initial probabilities given in above 0.9, 0.8 and 0.7. Using (4.2), 

the final probability of Hatchback class in level-3 hierarchical tree would be 0.8. 

 

 

     

(4.2) 

    

 

 

 Last but not least, the third computation method to calculate probabilities of testing 

images is Weighted Average Computation, referred as WAC. In this method, probabilities 

produced from classifiers are multiplied by certain numbers that are weights of probabilities 

and added to sum. To compute the final probability, this total value is divided by the sum 

of weights (4.3). To compute the final probability, this total value is divided by the sum of 

weights (4.3). We assigned the weights according to the level that classifier resides.  The 

lowest weight was assigned to classifier which is on lowest level, and weights were 

increased as the level gets bigger. In this case, when weights are set as 0.1 for vehicle_type 

classifier, 0.3 for auto classifier and 0.6 for hatchback classifier regards to initial 

probabilities given as 0.9, 0.8 and 0.7, the final probability would be 0.75. 
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(4.3) 

 

 

When computing final probabilities, for each image and an image’s each class 

different probability is calculated. After calculation is done according to computing 

methods, results are saved in a file and presented in Chapter 5.  

 To conclude, in this chapter, we have introduced the datasets and classification 

techniques used in the thesis. In addition, we have explained the approaches we applied to 

vehicle classification problem along with the solutions we proposed. In the next chapter, 

results of the all experiments performed in this chapter are presented. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 In this section, we present experiment results of both single level classifier and multi 

level classifier approaches. We compare the results of experiments performed on BIT 

Dataset and Stanford Dataset when single level classifier applied. Also, multi level classifier 

and single level classifier approaches are compared by presenting their experiment results 

performed on Stanford Dataset. 

 

5.1. Single Level Classifier Experiment Results 

 

During the single level classifier training, the last layers were firstly trained. Then 

the lower convolution layers were also released and the whole neural network was trained. 

However, since the number of data was low, the lower layers were trained with a lower 

learning speed.  

 

5.1.1. BIT Vehicle Dataset 

 

 In first experiments, models are trained on BIT Vehicle Type Dataset giving 

different architectures to the environment. Single level classifier training approaches is used 

to train on the dataset using ResNet34 architecture with different image sizes.The results for 

both last layer training and training all layers are recorded in Table 5.1 including loss of 

training, loss of validation, accuracy values and time spent on training. 

Looking at the results of the last layer training for each image size, it is observed 

that accuracy gradually increase as image size get bigger. While training last layer with 

image size 32x32 gives 0.44786 accuracy value, on the other hand training with images 

which have 224x224 image size result in 0.65424 accuracy. It means that increasing image 

size from 32 to 224 can give better accuracy values by 46%. Besides, it can be observed that 

training loss and validation loss are inversely proportional to image size. To sum up, 

increasing image size decreases the loss of training and validation and enables models make 

more accurate predictions but it also requires more time to spent for training. 
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Table 5.1: Detailed result of training models on BIT Vehicle Dataset with different image  

     sizes using ResNet34 

Architec 

ture 

Image 

size 

Trained 

layers 

Training 

loss 

Validation 

loss 

Accuracy  

(%) 

 

Time 

ResNet34 32 Last Layer 

All Layers 

0.63913 

0.3936 

1.88168 

1.92105 

0.44786 

0.48298 

11 min 05s 

26 min 59s 

 64 Last Layer 

All Layers 

0.49206 

0.23368 

1.72825 

1.61256 

0.52788 

0.57277 

11 min 17s 

27 min 44s 

 128 Last Layer 

All Layers 

0.28462 

0.02740 

1.62993 

1.21851 

0.61694 

0.74366 

12 min 17s 

36 min 10s 

 224 Last Layer 

All Layers 

0.29082 

0.08114 

1.36875 

1.01714 

0.65424 

0.77009 

15 min 33s 

1h 20min 36s 

 

When comparing last layer experiment results to all layers’, time spent on training 

last layer with 32 image size is ~11 minutes and gives 0.44786 accuracy, and time spent on 

training all layers with the same image size takes ~27 minutes and gives 0.48298 accuracy. 

The time increase is by 146% while the accuracy increase is by 8%. But when we increase 

image size from 32 to 224 we observed that accuracy is increased from 0.48298 to 0.77009 

by 60% on the other hand time spent is increased from 27 minutes to 81 minutes by 200%. 

This feature can be useful for a task requires high accuracy while time can be ignored.      

 

 

  Figure 5.1: Graph of single level training accuracy values with respect to different image 

        size of  BIT Dataset images 
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Subsequent experiments were carried out by training different architectures. In 

addition to ResNet34 architecture, ResNet50, ResNext50 and Vgg16 architectures were 

used to perform experiments of vehicle type classification. Single level hierarchy training 

results of both last layer and all layers with 128 image size on BIT Vehicle Dataset using 

different architectures are represented in Table 5.2. Because of memory issues, with 224 

image size experiments could not be performed on ResNet50 and other architectures. Again 

memory was insufficient for experimenting on ResNext50 with 150 image size. That’s why 

the biggest image size which is 128 was able to be experimented in all of four architectures. 

Looking at accuracy values of last layer training results for each architecture, the best 

scenario occurs when using ResNet34 architecture. Compared to other architectures, it has 

high accuracy value and it spent least time for training. Furthermore, taking all layers 

experiments' results into consideration, ResNet34 has highest accuracy and best time usage 

again. The best values in terms of accuracy with respect to time usage are taken in ResNet34 

architecture with the lowest loss of a training value and highest accuracy. Compared to 

training last layer, after opening all layers and training the network as a whole by ResNet34, 

it is observed that accuracy is increased by 21%, while training loss decrease by 90%. One 

can interpret from looking at Figure 5.2 that training loss gradually increases on 

architectures in order ResNet 34, ResNet50, ResNet50 and Vgg16. With the least time spent 

in training, the worst accuracy value was taken in ResNext50 architecture. Most time has 

been spent in Vgg16 architecture and has received relatively good accuracy. 

 

Table 5.2: Training  result  of  all layers with  128  image size of  BIT Dataset images on  

     different architecture models 

Architectu

re 

Image 

size 

Trained 

layers 

Training 

loss 

Validation 

loss 

Accuracy  

(%) 

 

Time 

ResNet34 128 Last Layer 

All Layers 

0.28462 

0.02740 

1.62993 

1.21851 

0.61694 

0.74366 

12 min 17s 

36 min 10s 

ResNet50 128 Last Layer 

All Layers 

0.33033 

0.08073 

1.50944 

1.09149 

0.61007 

0.73316 

12 min 20s 

48 min 

ResNext50 128 Last Layer 

All Layers 

0.32642 

0.18623 

1.41776 

1.49338 

0.61405 

0.64446 

13 min 24s 

30 min 05s 

Vgg16 128 Last Layer 

All Layers 

0.3853 

0.96889 

1.46764 

1.22042 

0.59232 

0.71325 

18 min 36s 

1h 31min 20s 
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Figure 5.2: Graph of  training all layers with  128  image size of  BIT Dataset images on  

       different architecture models 

 

On BIT Vehicle Dataset, experiments are performed with ResNet34, ResNet50, 

ResNext50 and Vgg16. For each of these architectures, trainings are studied by different 

image sizes. 32x32, 64x64, 128x128 images size are used for each architecture. 

Additionally, 150x150 is used for ResNet50 and 224x224 is used for ResNet34. Giving 

these parameters as input to experiment environment, we got fourteen variation of single 

level classifier training. For each of fourteen variation, we trained fourteen models for 3 

epoch with cyclical learning rate. Including training loss, validation loss and accuracy values 

the detailed results of all experiments performed on BIT Dataset are further detailed in Table 

A.1 in Appendix. 

 

5.1.2. Stanford Dataset 

 

 In this section, single level hierarchy training approach is used to train models in 

order for classification of vehicles into nine vehicle type categories of the dataset. Models 

are trained on Stanford Car Dataset by differentiating parameters given to experiment 

environment such as image size and architectures. For first experiments ResNet34 

architecture is used with different image sizes. Experiment results for both last layer training 
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and training all layers are recorded in Table 5.3 including loss of training, loss of validation, 

accuracy values and time spent on training. 

 

Table 5.3: Detailed results of training models on BIT Vehicle Dataset with different  

     image sizes using ResNet34 

Architect

ure 

Image 

Size 

Trained 

layers 

Training 

loss 

Validation 

loss 

Accuracy 

(%) 

 

Time 

ResNet34 32 Last Layer 

All Layers 

2.20407 

2.08773 

2.08856 

2.04804 

0.28488 

0.29349 

18s 

1 min 40 

 64 Last Layer 

All Layers 

2.067591 

1.88601 

1.90531 

2.01203 

0.30233 

0.32651 

26s 

2 min 05s 

 128 Last Layer 

All Layers 

1.55797 

1.27692 

1.33347 

1.33658 

0.51744 

0.54753 

37s 

3 min 19s 

 224 Last Layer 

All Layers 

1.32541 

0.83031 

1.09792 

1.05054 

0.55814 

0.65116 

1 min 25s 

8 min 20s 

  

If we look at accuracy column of Table 5.3 for 32x32 image size, it can be seen that 

the accuracy increases when all layers are opened as it is in BIT Vehicle Dataset 

experiments. But this increase is relatively small comparing to increase between trained 

layers in BIT Vehicle Dataset. On the other hand, comparing accuracy values of different 

image sizes, it become clear that accuracy increases as image size get bigger. While training 

last layer with image size 32x32 gives 0.28488 accuracy value, on the other hand training 

with images which have 224x224 image size result in 0.55814 accuracy. So, accuracy is 

increased by 96%. Looking at all layers training accuracy values, it can be interpreted that 

the percentage through accuracy values of bigger image sizes is even more increased. While 

training all layers with image size 32x32 gives 0.29349 accuracy value, on the other hand 

training with images which have 224x224 image size result in 0.65116 accuracy. The result 

is accuracy can be increased by 122% through increasing image size from 32 to 224. 

According to line graph representation of accuracy values versus image size in 

Figure 5.3, it become clear that accuracy gradually increase as image size increases. This 

inference also can be supported with experiment results further detailed in Table A.2 in 

Appendix. As in BIT Vehicle Dataset, for Stanford Car Dataset experiments are also 

performed with ResNet34, ResNet50, ResNext50 and Vgg16 architectures. For each of 

these architectures, trainings are studied by different image sizes. 32x32, 64x64, 128x128 

images size are used for each architecture. In addition to these sizes, 150x150 is used for 

ResNet50 and 224x224 is used for ResNet34. Giving these parameters as input to 
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experiment environment, fourteen variation of single level classifier training is conducted 

using Stanford Car Dataset. Including training loss, validation loss and accuracy values the 

detailed results of all experiments performed on Stanford Car Dataset are further detailed in 

Table A.2 in Appendix. 

 

 

Figure 5.3: Graph of single level training accuracy values with respect to different image  

      size of Stanford Car Dataset images 

 

 Comparing experiments results of single level classifier on BIT Vehicle Dataset with 

results on Stanford Car Dataset, we see that Stanford Car Dataset experiments are performed 

in less time than BIT Vehicle Dataset experiments. Main reason behind is that, while BIT 

Dataset has minimum 462 images per class of vehicle type, Stanford Dataset has 100 images 

per vehicle type label. Because the greater number of the images becomes, it takes more 

time to process those images. Another important difference between experiment results of 

two datasets is that the accuracy of the same architecture and same image size is smaller on 

Stanford Dataset than on BIT Dataset. For example while the accuracy value of last layer 

training experiment performed with 32x32 image size and ResNet34 architecture on BIT 

Dataset is 0.44786, on the other hand the accuracy value with the same parameters on the 

Stanford Dataset is 0.28488. The first reason comes to mind is that, number of the class of 

the Stanford Dataset is 9 while it is 6 for BIT Dataset. Another reason could be the lack of 

feature for a single label classifier can learn because Stanford Dataset has low number of 

images for each vehicle type class. For these reasons we focus on the accuracy of the models 
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trained on Stanford in the rest of the thesis. Firstly, we would like to improve accuracy by 

applying ensemble learning and perform fourteen experiments. Results of ensembling 

learning experiments are further detailed in Table A.3 in Appendix. Although we 

experienced that ensemble learning technique can give relatively better results on accuracy, 

we would like to examine the effects of multi - level classifier training for vehicle type 

classification problem. Next, we discuss the experiment results of multi - level classifier 

trainings. 

 

5.2. Multi Level Classifier Experiment Results 

 

In this section, we give information about experiments performed on Stanford 

Dataset using multi level hierarchy approaches. So as to implement multi level hierarchical 

classifier training, we visualize the vehicle type classification problem with trees and create 

dependency connections in order to build hierarchy as described in Section 4.2.2.2. 

Exploiting the dependencies between nodes, we performed experiments on three different 

hierarchy level proposed which estimates the probability of each root-to-leaf path through 

cascade classification trees. We provide experimental results which indicate that, one can 

achieve better results with cascade classifications compared to traditional flat classification. 

In order to proceed with multi level classifier experiments Stanford Dataset is re-organized 

and test folder was added as in the distribution of folders shown in Table 5.4. 

In tree representation the flow starts from root and goes through the leaf nodes such 

that each node represents a classifier. Through the achieving at building multi level 

hierarchies, following the path from root to the leaves of each hierarchical cascade tree, ten 

classifiers are trained in total. Details of each classifier are given below with relation of 

nodes in Figures. 

1. vehicle_type: Determines probabilities of an image for hatchback, mini, minivan, 

panelvan, pickup, sedan, sport, station, suv labels (see Figure 4.5) 

2. vehicle_type: Determines probabilities of an image for terrain, automobile and van 

categories (see Figure 4.6) 

3. auto_nonauto: Determines probabilities of an image for automobile and non-

automobile categories (see Figure 4.7) 

4. auto: Determines probabilities of an image for hatchback and sedan categories (see 

Figure 4.7) 

5. auto: Determines probabilities of an image for hatchback, mini, sedan, sport and 

station labels (see Figure 4.6) 
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6. nonauto: Determines probabilities of an image for terrain and van categories (see 

Figure 4.7) 

7. terrain: Determines probabilities of an image for pick-up and suv labels (see Figure 

4.6 and Figure 4.7) 

8. hatchback: Determines probabilities of an image for hatchback and mini labels (see 

Figure 4.7) 

9. sedan: Determines probabilities of an image for sedan, sport and station labels (see 

Figure 4.7) 

10. van: Determines probabilities of an image for minivan and panelvan labels (see 

Figure 4.7 and 4.7) 

 

Table 5.4: Distribution of images per class for 100~ Stanford Car dataset 

Class Train Valid Test TOTAL 

Hatchback 70 15 15 100 

Mini 70 9 9 88 

Minivan 70 15 15 100 

Panelvan 70 15 15 100 

Pick-up 70 15 15 100 

Sedan 70 15 15 100 

Sport 70 15 15 100 

Station 70 15 15 100 

Suv 70 15 15 100 

TOTAL 630 129 129 888 

 

Next, experiments are performed by implementing three probabilistic computation 

method explained in Section 4.2.2.2. With given dataset information, multi level classifiers 

are trained on ResNet34 architecture with image size 224. Classification is only performed 

on the leaves of hierarchical cascade tree and each image belongs to only one class. The 

number of  images in the test folder are 129 and the results are mainly evaluated on 

measuring accuracy. Experiments to compute different methods following different tree 

hierarchies are done in five times and recorded in detailed Table A.5 in Appendix. 

Calculated mean values are demonstrated in Table 5.5. The time required to train all 
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classifiers of level-2 and level-3 hierarchies including computing final estimation for test 

images took about 3 to 4 minutes for each cycle. For whole 5 five times experimenting it 

took 17 minutes and 50 seconds. 

 

Table 5.5: Mean and standard deviation values for computation methods on hierarchical  

     trees 

Method Level-1 Level-2 Level-3 

PC 0.675723 0.686169 0.679479 

std 0.055763 0.051349 0.063217 

WAC 0.675723 0.644069 0.655853 

std 0.055763 0.057612 0.054077 

TAM 0.675723 0.69018 0.681934 

std 0.055763 0.044716 0.057676 

 

According to computed mean values for each computation method-hierarchical tree 

level tuples in Table 5.5, the best accuracy result is appear to be for Traditional Arithmetic 

Mean (referred as TAM in Section 4.2.2.2) computation method applied on the hierarchical 

tree with level-2. On the one hand, the Weighted Average Computation (referred as WAC 

in Section 4.2.2.2) method for all tree levels get the worst results, while on the other hand, 

the Probabilistic Cascading (referred as PC in Section 4.2.2.2) computation method applied 

on the hierarchical tree with level-2 is second, and the TAM computation method applied 

on the hierarchical tree with level-3 gets the third in the ranking. Looking at Table A.5 in 

Appendix, because of the accuracy values being close to each other, standard deviation is 

calculated for each computation method-hierarchical tree level tuples. Standard deviation 

gives information about distribution of measurements for a specific group, that is how far 

they are distanced from its average value. It assesses the amount of dispersion or 

unsteadiness around the mean. Dispersion is the difference between the actual value and the 

mean value. The larger the dispersion between these two values is, the higher the standard 

deviation gets. Therefore, a low standard deviation indicates that distribution is stable thanks 

to most values are at near of average, while a high standard deviation states that the values 

are distanced from aveage, which results in distribution becoming unstable. Standard 

deviation is computed using its general formula as in (5.1) and computed values are 

demonstrated as std in Table 5.5.  
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 (5.1) 

 

 

 

The recorded standard deviation values in Table 5.5 also supports the first inference. 

The smallest standard deviation value is calculated for TAM computation method applied 

on level-2 hierarchical tree which means that accuracy values of each experiments of five is 

close to each other and dispersion is stable. For the purpose of supporting this conclusion, 

the same experiments were repeated by increasing the number of images in the data set. 

Number of images per class for new experiment are detailed below in Table 5.6. 

 

Table 5.6: Distribution of images per class for 200~ Stanford Car dataset 

Class Name Train Valid Test TOTAL 

Hatchback 163 33 33 229 

Mini 141 30 30 201 

Minivan 160 34 34 228 

Panelvan 138 29 29 196 

Pick-up 140 30 30 200 

Sedan 165 32 32 229 

Sport 147 32 32 211 

Station 151 31 32 214 

Suv 157 33 33 223 

TOTAL 1362 284 285 1931 

 

With newly added images, total number of instances of the data set is doubled from 

888 to 1931. Experiments performed for each computation method-hierarchical tree level 

tuple are performed five times using the new data set that is doubled in number of images, 

and keeping other values such as picture size and architecture fixed. So as to make 

comparisons, the mean of five experimental results was calculated for each tuple and 

recorded in the Table 5.7. The time required to train all classifiers of level-2 and level-3 
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hierarchies including computing final estimation for test images took about 7 to 8 minutes 

for each cycle. For whole 5 five times experimenting it took 41 minutes and 42 seconds. 

 

Table 5.7: Mean values for computation methods applied on hierarchical trees for the  

     number of images increased dataset 

Method Level-1 Level-2 Level-3 

PC 0.695387 0.755859 0.721313 

std 0.024096 0.047230 0.041244 

WAC 0.695387 0.695875 0.712125 

std 0.024096 0.047037 0.040596 

TAM 0.695387 0.762812 0.731125 

std 0.024096 0.027773 0.042588 

 

As a result in these calculations, the best accuracy value is appear to be for TAM 

computation method applied on  the hierarchical tree with level-2. The same order also 

occurs in last experiment results is that the PC computation method applied on the 

hierarchical tree with level-2 is second, and the TAM computation method applied on the 

hierarchical tree with level-3 gets the third in the ranking. In Figure 5.4, final accuracy 

values for each probability computation method are represented for both initial dataset and 

number of images increased. 
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Figure 5.4: Mean values for computation methods applied on hierarchical trees for two  

       datasets with 100~ per images (top) and with 200~ per images (bottom)  
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

6.1. Conclusion 

 

 In this study, utilizing from transfer learning methodology, models are trained in 

order to construct multi - level classifier hierarchies, each of which determine types of 

vehicles. Two datasets were selected for classification and the results were shared. In the 

first, single - level classifier training experiments are performed for BIT Dataset and 

Stanford Dataset, while in the second multi - level classifier training experiments are carried 

out for three different classifier hierarchy. The results were evaluated using the same 

Stanford Dataset class arrangement for both single - level classifier training and multi - level 

classifier training experiments.  

 Experimental studies were started by preparing data sets in first. BIT Dataset is 

acquired by contacting Beijing Institute of Technology and Stanford Dataset is obtained 

from Stanford University’s CarComp Dataset. BIT Dataset has six vehicle type classes 

which are Bus, Microbus, Minivan, Sedan, Truck, Suv, on the other hand, Stanford Dataset 

is manually arranged to have nine vehicle type classes which are Hatchback, Mini, Minivan, 

Panelvan, Pick-up, Sedan, Sport, Station, Suv. The number of images per class, the number 

of classes and their effects to results are represented in this thesis using two different datasets 

of which has different number of classes. The number of images per class in BIT Dataset 

and Stanford Dataset is different to the point that for same classes there is a difference of 

forty five times. For example, BIT Dataset has 5627 images for Sedan class while Stanford 

Dataset has 100 images. Due to the high number of images per class in BIT Dataset, trained 

model learn more about each class which allows the trained model to yield to better results. 

Furthermore thinking in terms of number of classes, it is expected for the dataset which have 

the lower number of classes to give more accurate predictions. Because as the number of 

classes increase it becomes more ambiguous for the classifier to make predictions. 

Naturally, the Stanford Dataset with the less number of classes gave relatively less accurate 

results but we enhanced the model by providing synthetic data and applying ensembling 

methodology. Furthermore, ensembling experiments prove that applying ensembling using 

two different models with different image sizes for the same architecture enables the merged 
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model to make more accurate predictions even better than the dataset that has more number 

of classes than itself. 

In single - level classifier training, last layer or all layers training of pre-trained deep 

neural networks for vehicle type classification has been studied for two different datasets. 

For each dataset, experiments are carried out with different image size and different pre-

trained deep neural networks are used. Image sizes differs from 32x32 to 224x224, including 

64x64, 128x128, 150x150 image sizes. Pre-trained deep neural networks used in this thesis 

are ResNet34, ResNet50, ResNext50 and Vgg16. In experiments performed on both data 

sets, best results were obtained when image size is bigger for each network choice in terms 

of accuracy comparison. However, some situations may require involving low resolution 

images such as zooming when taking a photo. This the main reason why we include 32x32 

images in experiments. It is to give insight about how model behave in certain conditions. 

When the same biggest image size in all networks are taken into consideration for each 

architecture, the results are very close to each other that it only differs in terms of decimals 

among architectures. In addition, although Stanford Dataset has more classes than BIT 

Dataset, training of Stanford Dataset requires much less time than training of BIT Dataset. 

That’s why we researched on how to increase accuracy of training of Stanford Dataset by 

performing multi - level hierarchy training. 

 In multi - level training experiments, Stanford Dataset was used to perform 

experiments by building different training hierarchies on account of studying effects of 

cascade probability computation. The results of three different computational methods 

applied on three hierarchies were compared. In order to compare multi - level classifier 

training experiments results to, a base case scenario with flat hierarchy is created by 

separating test images from Stanford Dataset and training on ResNet34 with 224x224 image 

size. Next, the hierarchies with 2 unit height and 3 unit height are built by training 10 models 

for each of node of hierarchical trees with the same configuration to the base scenario. 

Therefore, probabilities for each class of each image in test folder are calculated by 

following the hierarchies. Three different computational techniques are compared in terms 

of number of correctly classified images and their percentage. As a result, it was observed 

how accurate the overall hierarchies make predictions by following three different training 

paths with different hierarchical structure and computing probabilities with three 

computational methods. After repeating experiments 5 times and calculating the mean of 5 

results of applying each computational methods on multi - level training hierarchies, it was 

observed that level - 2 hierarchical tree makes better prediction than other hierarchies when 

Traditional Arithmetic Mean (TAM) computation is applied. Repeating the same 
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experiment by increasing the number of images from ~100 to ~200 per class in Stanford 

Dataset we repeated the same experiments. Again the more accurate prediction is performed 

by following level - 2 hierarchy applying TAM technique. 

 

6.2. Future Work 

 

 In this thesis, it was observed how a data set was achieved by following three 

different training mechanisms/paths with different hierarchical structure. Studies have been 

done with a limited size image with Stanford Dataset. The main limitation here are the 

shortcomings in the existing graphics card infrastructure. It is foreseen that better results can 

be obtained if the data set is enlarged and the studies are repeated especially with larger 

images. It is considered to include more images into the dataset which are taken from 

different angles or vehicles that are more covered by surrounding objects. The results 

obtained at this stage are promising for successful classification for more difficult data. 

 One of the aspect that this study can be improved is applying pre-processing before 

training a model. The effects of removing background from the images or cropping the parts 

other than a vehicle can be studied. By separating the external factors from the pictures, the 

success rate can also be increased. Besides, techniques for creating synthetic data can also 

be applied for pre-processing such as virtually creating by predicting how an image can be 

of a larger image size. 

 Another future aspect could be observing the effects of different hierarchies. For 

example, firstly a model can be trained to recognize from which angle an image taken. Then, 

according to the prediction of firstly trained classifier, secondly trained classifiers are able 

to predict the vehicle type in an image among the dataset that has only one point of view of 

vehicle types. Furthermore, the effects of different cascade probabilistic computation 

methods can be studied. 

 The results in the study show that multi - level classifier training also increases the 

success when there is sufficient data. This increase in success is relatively long during multi 

- level training, but it is a fact that it should not be ignored that more accurate results can be 

produced in cases where there is no time problem.  
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APPENDIX A 

 

DETAILED EXPERIMENT RESULTS 

 

1. BIT Vehicle Type Dataset Experiment Results Comparison 

 

Table A.1: Experiment result of training last layer and all layers of each architecture using  

      BIT Dataset images with six classes. 

 

Architectu

re 

Image 

size 

Trained 

layers 

Training 

loss 

Validation 

loss 

Accuracy  

(%) 

 

Time 

ResNet34 32 Last Layer 

All Layers 

0.63913 

0.3936 

1.88168 

1.92105 

0.44786 

0.48298 

11 min 05s 

26 min 59s 

 64 Last Layer 

All Layers 

0.49206 

0.23368 

1.72825 

1.61256 

0.52788 

0.57277 

11 min 17s 

27 min 44s 

 128 Last Layer 

All Layers 

0.28462 

0.02740 

1.62993 

1.21851 

0.61694 

0.74366 

12 min 17s 

36 min 10s 

 224 Last Layer 

All Layers 

0.29082 

0.08114 

1.36875 

1.01714 

0.65424 

0.77009 

15 min 33s 

1h 20min 36s 

ResNet50 32 Last Layer 

All Layers 

0.57006 

0.33643 

1.87802 

1.82212 

0.46742 

0.49457 

10 min 52s 

26 min 19s 

 64 Last Layer 

All Layers 

0.47035 

0.18029 

1.8501 

1.40715 

0.52824 

0.62925 

11 min 19s 

27 min 49s 

 128 Last Layer 

All Layers 

0.33033 

0.08073 

1.50944 

1.09149 

0.61007 

0.73316 

12 min 20s 

48 min 

 150 Last Layer 

All Layers 

0.29839 

0.06378 

1.52645 

1.1183 

0.63903 

0.75634 

14 min 14s 

1h 8 min 21s 

ResNext50 32 Last Layer 

All Layers 

0.54844 

0.34427 

1.81678 

1.84558 

0.49131 

0.49819 

10 min 50s 

25 min 53s 

 64 Last Layer 

All Layers 

0.45647 

0.15135 

1.71525 

1.40161 

0.5344 

0.64337 

12 min 02s 

27 min 32s 

 128 Last Layer 

All Layers 

0.32642 

0.18623 

1.41776 

1.49338 

0.61405 

0.64446 

13 min 24s 

30 min 05s 

Vgg16 32 Last Layer 

All Layers 

0.59981 

0.29486 

1.87465 

0.66550 

0.48226 

0.53005 

11 min 12 s 

26 min 26s 

 64 Last Layer 

All Layers 

0.51266 

0.17884 

1.71787 

1.52944 

0.53983 

0.61115 

12 min 

35 min 43s 

 128 Last Layer 

All Layers 

0.3853 

0.96889 

1.46764 

1.22042 

0.59232 

0.71325 

18 min 36s 

1h 31min 20s 
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2. Stanford Vehicle Type Dataset Experiment Results Comparison 

 

Table A.2: Experiment results  of  training last layer and all layers  of  each  architecture 

      using Stanford Dataset images with nine classes 

 

Architecture 

Image 

Size 

Trained 

layers 

Training 

loss 

Validation 

loss 

Accuracy 

(%) 

 

Time 

ResNet34 32 Last Layer 

All Layers 

2.20407 

2.08773 

2.08856 

2.04804 

0.28488 

0.29349 

18s 

1 min 40 

 64 Last Layer 

All Layers 

2.067591 

1.88601 

1.90531 

2.01203 

0.30233 

0.32651 

26s 

2 min 05s 

 128 Last Layer 

All Layers 

1.55797 

1.27692 

1.33347 

1.33658 

0.51744 

0.54753 

37s 

3 min 19s 

 224 Last Layer 

All Layers 

1.32541 

0.83031 

1.09792 

1.05054 

0.55814 

0.65116 

1 min 25s 

8 min 20s 

ResNet50 32 Last Layer 

All Layers 

2.14952 

2.07112 

1.98640 

1.99301 

0.27326 

0.28535 

24s 

1 min 32s 

 64 Last Layer 

All Layers 

1.75417 

1,63388 

1.81545 

1.76889 

0.36628 

0.38884 

24s 

1 min 55s 

 128 Last Layer 

All Layers 

1.24560 

0.33438 

1.20947 

1.24685 

0.61628 

0.63372 

48s 

4 min 38s 

 150 Last Layer 

All Layers 

1.09324 

0,6944 

1.16414 

1.03003 

0.59883 

0.68023 

1 min 07s 

6 min 54s 

ResNext50 32 Last Layer 

All Layers 

2.00160 

1,96781 

1.94285 

1.9163 

0.23256 

0.24186 

20s 

1 min 15s 

 64 Last Layer 

All Layers 

1.80058 

1.60042 

1.79406 

1.76686 

0.37209 

0.39651 

26s 

2 min 20s 

 128 Last Layer 

All Layers 

1.2377 

- 

1.0685 

- 

0.60465 

- 

59s 

- 

Vgg16 32 Last Layer 

All Layers 

2.25661 

2.02498 

2.09126 

2.05267 

0.26163 

0.27419 

19s 

1 min 24s 

 64 Last Layer 

All Layers 

2.06965 

1.74158 

1.75912 

1.67859 

0.37791 

0.45349 

42s 

3 min 20s 

 128 Last Layer 

All Layers 

1.65253 

1.15283 

1.41063 

1.11932 

0.49419 

0.61047 

1 min 47s 

9 min 12s 
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3. Ensembling Results 

 

In order to improve accuracy of experiments performed on Stanford Dataset, 

ensemble learning technique is applied. So as to apply ensemble learning additional 14 

experiments was conducted. In order to get best accuracy results of ensembling technique, 

the model trained with biggest image size on the same architecture is chosen as a second 

model for each architecture. For example, implementing ensemble learning on ResNet34 

architecture, the model trained with the same architecture and 224 image size is used as a 

second model for every other trained model with different image size. The result accuracy 

values for ResNet34 architecture can be seen in Table A.3. 

 

Table A.3: Experiment results of ensembling on ResNet34 architecture 

 

Architecture 

Image 

Size 

Accuracy 

(%) 

Accuracy  

(by ensembling) 

Second Model 

Image Size 

ResNet34 32 0.28488 0.488372 224 

 64 0.30233 0.552326 224 

 128 0.51744 0.593721 224 

 224 0.55814 0.602791 224 

 

 

Figure A.1: Graph of comparing accuracy values of ensembling on ResNet34 architecture 



57 

 

When the experimental results of the last layer trainings on the ResNet34 

architecture using different image sizes were compared, it was found that the accuracy 

values obtained when the ensembling technique was applied were better. As the image size 

gets smaller, the accuracy improvement rate increases. Experiment on size 224 shows that 

accuracy is improved from 0.55814 to 0.602791 with increase of 0.044651 by 8% while 

experiment on size 32 shows that accuracy is improved from 0.28488 to 0.488372 with the 

increase of 0.203492 by 71%. As for the experiment results on other selected architectures 

can be found in Table A.4. For ResNet50, ResNext50 and Vgg16 architectures, ensembling 

learning is applied with trained models by sizes 150, 128 and 128 in respectively. 

 

Table A.4: Experiment results of applying ensembling learning for models trained on  

      ResNet34, ResNet50, ResNext50 and Vgg16 architectures 

 

Architecture 

Image 

Size 

Accuracy 

(%) 

Accuracy  

(by ensembling) 

Second 

Model 

Image Size 

ResNet34 32 0.28488 0.488372 224 

 64 0.30233 0.552326  

 128 0.51744 0.593721  

 224 0.55814 0.602791  

ResNet50 32 0.27326 0.50814 150 

 64 0.36628 0.551395  

 128 0.61628 0.633721  

 150 0.59883 0.636977  

ResNext50 32 0.23256 0.494186 128 

 64 0.37209 0.552326  

 128 0.60465 0.616279  

Vgg16 32 0.26163 0.446512 128 

 64 0.37791 0.493023  

 128 0.49419 0.510465  

 

Comparing the accuracy values of each single level classifier of Ensemble learning 

experiments to BIT Dataset experiments, we can say that accuracy values obtained by 
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applying ensemble learning only better from Stanford Dataset experiment results but not 

better from the accuracy values obtained by experimenting on BIT Dataset. 
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4. Multi-Level Experiment Results with 100~ Images per Class 

 

Table A.5: Mean values for computation methods applied on hierarchical trees for initial  

      dataset 

Method Level-1 Level-2 Level-3 

PC 0.604419 0.648438 0.671875 

 0.680687 0.625 0.612812 

 0.622308 0.664062 0.612812 

 0.75 0.736472 0.773438 

 0.7212 0.756875 0.726457 

mean 0.675723 0.686169 0.679479 

std 0.055763 0.051349 0.063217 

    

WAC 0.604419 0.64979 0.689688 

 0.680687 0.558925 0.568125 

 0.622308 0.601362 0.617188 

 0.75 0.709125 0.703125 

 0.7212 0.701141 0.701141 

mean 0.675723 0.644069 0.655853 

std 0.055763 0.057612 0.054077 

    

TAM 0.604419 0.664062 0.671875 

 0.680687 0.63465 0.61467 

 0.622308 0.65625 0.632812 

 0.75 0.769062 0.773438 

 0.7212 0.726875 0.716875 

mean 0.675723 0.69018 0.681934 

std 0.055763 0.044716 0.057676 
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5. Multi - Level Experiment Results with 200~ Images per Class 

 

Table A.6: Mean values for computation methods applied on hierarchical trees for the  

      number of images increased dataset 

Method Level-1 Level-2 Level-3 

PC 0.701754 0.78125 0.734375 

 0.69338 0.78523 0.726562 

 0.723183 0.710938 0.710938 

 0.707317 0.8125 0.78125 

 0.651303 0.689375 0.653438 

mean 0.695387 0.755859 0.721313 

std 0.024096 0.047230 0.041244 

    

WAC 0.701754 0.758438 0.752188 

 0.69338 0.745312 0.757812 

 0.723183 0.65375 0.691875 

 0.707317 0.645312 0.647812 

 0.651303 0.676562 0.710938 

mean 0.695387 0.695875 0.712125 

std 0.024096 0.047037 0.040596 

    

TAM 0.701754 0.789062 0.734375 

 0.69338 0.765625 0.757812 

 0.723183 0.733125 0.710938 

 0.707317 0.796875 0.789062 

 0.651303 0.729375 0.663438 

mean 0.695387 0.762812 0.731125 

std 0.024096 0.027773 0.042588 
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APPENDIX B 

 

DEEP LEARNING SCRIPT DEVELOPED IN THIS THESIS 

 

# Put these at the top of every notebook, to get automatic reloading and inline plotting 

%reload_ext autoreload 

%autoreload 2 

%matplotlib inline 

# This file contains all the main external libs we'll use 

from fastai.imports import * 

from fastai.transforms import * 

from fastai.conv_learner import * 

from fastai.model import * 

from fastai.dataset import * 

from fastai.sgdr import * 

from fastai.plots import * 

 

PATH_test = "test/" 

sz=224# size that images will be resized to 

arch=resnet34 

result_ct_mult = [] 

result_ct_cond = [] 

result_ct_avg = [] 

 

def trainModel(path, v_test_with_labels): 

    if v_test_with_labels == True: 

        data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz), 

test_name=PATH_test, test_with_labels=v_test_with_labels) 

        learn = ConvLearner.pretrained(arch, data, precompute=True) 

        learn.fit(0.01, 3) 

    else: 

        data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz), 

test_name=PATH_test) 

        learn = ConvLearner.pretrained(arch, data, precompute=True) 

        learn.fit(0.01, 3) 

    return data, learn 

 

def trainAndSave(path, nameToSave, v_test_with_labels, isReset=False): 

    if(isReset): 

        shutil.rmtree(f'{path}tmp', ignore_errors=True) 

         

    data, learner = trainModel(path, v_test_with_labels); 

    learner.save(nameToSave) 

    return data, learner 

 

def loadModel(path, saved_model_name, v_test_with_labels): 

    if v_test_with_labels == True: 
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        data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz), 

test_name=PATH_test, test_with_labels=v_test_with_labels) 

        learn = ConvLearner.pretrained(arch, data, precompute=True) 

        learn.load(saved_model_name) 

    else: 

        data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz), 

test_name=PATH_test) 

        learn = ConvLearner.pretrained(arch, data, precompute=True) 

        learn.load(saved_model_name) 

    return data, learn 

 

def createImgProbPairForGroundTruth(fpaths, preds):#an array of an img name relative to 

its probability [img name] 

    img_names = [os.path.basename(d) for d in fpaths] 

    return np.asarray(img_names) 

 

def getPreds(learn):#an array of an img name relative to its probability [img name] 

    log_preds = learn.predict(is_test=True)#log_preds.shape 

    preds = np.argmax(log_preds, axis=1)  # from log probabilities to 0, 1, 2,3,4,5,6,7,8 

    probs = np.exp(log_preds[:])        # pr(hatchback) 

    return preds, probs 

 

def arrangeProbs(img_names_truth, img_names_new, preds_new, probs_new, 

class_count): 

    probs_result = np.zeros(len(img_names_truth)*class_count) 

    probs_result = probs_result.reshape(len(img_names_truth), class_count) 

    preds_result = np.zeros(len(preds_new)) 

    #img_names_result = [] 

    for i in range(len(img_names_truth)): 

        img_idx = np.where(img_names_new == img_names_truth[i]) 

        preds_result[i] = preds_new[img_idx[0][0]]; 

        probs_result[i] = probs_new[img_idx[0][0]]; 

    return preds_result, probs_result 

 

def calculateAccuracy(v_preds, v_labels): 

    sum = 0 

    for i in range(len(v_preds)): 

        x = v_preds[i] 

        y = v_labels[i] 

        if x == y: 

            sum = sum +1 

    print(sum/len(v_preds)) 

    return sum/len(v_preds) 

 

def getProbs(img_names, learn, data, classCount=2):#an array of an img name relative to 

its probability [img name] 

    preds, probs = getPreds(learn); 

    img_names_created = 

createImgProbPairForGroundTruth(np.asarray(data.test_ds.fnames),preds) 

    res_preds, res_probs = arrangeProbs(img_names, img_names_created, preds, probs, 

classCount) 

    return res_probs 
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#hierachical classifiers computation methods 

def computeWeightedAverage(v_prob_list):#1=WAC 

    x = 0 

    v_arr = v_prob_list 

    if len(v_prob_list) == 2: 

        return 0.3*v_arr[0]+0.7*v_arr[1] 

    else: 

        return 0.1*v_arr[0]+0.3*v_arr[1]+0.6*v_arr[2] 

 

def computeMeanProbability(v_prob_list):#2=TAM 

    x = 0 

    calculated_prob = 0 

    v_arr = v_prob_list 

    if len(v_prob_list) == 2: 

        return (v_arr[0]+v_arr[1])/2 

    else: 

        return (v_arr[0]+v_arr[1]+v_arr[2])/3 

 

def computeProbabilisticCascading(v_prob_list):#3=PC 

    x = 0 

    calculated_prob = 0 

    v_arr = v_prob_list 

    if len(v_prob_list) == 2: 

        return v_arr[0]*v_arr[1] 

    else: 

        return v_arr[0]*v_arr[1]*v_arr[2] 

 

def computeProbs(v_prob_list, methodType): 

    if methodType == 1: 

        return computeWeightedAverage(v_prob_list) 

    elif methodType == 2: 

        return computeMeanProbability(v_prob_list) 

    else: 

        return computeProbabilisticCascading(v_prob_list) 

 

def computeTreeHeightProbs(treeHeight, methodType, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class): 

    if treeHeight == 2: 

        return calculateProbsH2(methodType, probs_vehicle_type_3class, 

probs_auto_5class, probs_van, probs_arazi) 

    else: 

        return calculateProbsH3(methodType, probs_auto_nonauto, probs_auto_2class, 

probs_nonauto, probs_hatchback, probs_van, probs_arazi, probs_sedan) 

     

def calculateProbsH2(methodType, probs_vehicle_type_3class, probs_auto_5class, 

probs_van, probs_arazi): 

    probs_hier = np.ones((128, 9)) 

    for i in range(len(probs_hier)): 
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        probs_hier[i][0] = 

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][0]],methodType)#h

atchback 

        probs_hier[i][1] = 

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][1]],methodType)#m

ini 

        probs_hier[i][2] = 

computeProbs([probs_vehicle_type_3class[i][2],probs_van[i][0]],methodType)#minivan 

        probs_hier[i][3] = 

computeProbs([probs_vehicle_type_3class[i][2],probs_van[i][1]],methodType)#panelvan 

        probs_hier[i][4] = 

computeProbs([probs_vehicle_type_3class[i][0],probs_arazi[i][0]],methodType)#pickup 

        probs_hier[i][5] = 

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][2]],methodType)#se

dan 

        probs_hier[i][6] = 

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][3]],methodType)#sp

or 

        probs_hier[i][7] = 

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][4]],methodType)#st

ation 

        probs_hier[i][8] = 

computeProbs([probs_vehicle_type_3class[i][0],probs_arazi[i][1]],methodType)#suv 

    return probs_hier 

 

def calculateProbsH3(methodType, probs_auto_nonauto, probs_auto_2class, 

probs_nonauto, probs_hatchback, probs_van, probs_arazi, probs_sedan): 

    probs_hier = np.ones((128, 9)) 

    for i in range(len(probs_hier)): 

        probs_hier[i][0] = 

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][0],probs_hatchback[i][0]],

methodType)#hatchback 

        probs_hier[i][1] = 

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][0],probs_hatchback[i][1]],

methodType)#mini 

        probs_hier[i][2] = 

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][1],probs_van[i][0]],methodTy

pe)#minivan 

        probs_hier[i][3] = 

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][1],probs_van[i][1]],methodTy

pe)#panelvan 

        probs_hier[i][4] = 

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][0],probs_arazi[i][0]],methodT

ype)#pickup 

        probs_hier[i][5] = 

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][0]],meth

odType)#sedan 

        probs_hier[i][6] = 

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][1]],meth

odType)#spor 
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        probs_hier[i][7] = 

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][2]],meth

odType)#station 

        probs_hier[i][8] = 

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][0],probs_arazi[i][1]],methodT

ype)#suv 

    return probs_hier 

 

def computeTreeHeightPreds(probs_hier): 

    tmp_arr_probs_hier = [] 

    tmp_arr_probs_class_idx_hier = [] 

    for i in range(len(probs_hier)): 

        tmp_arr_probs_hier = probs_hier[i,:] 

        max_prob_hier = np.max(tmp_arr_probs_hier)#max class prob for each image 

        max_prob_idx_hier = np.where(tmp_arr_probs_hier == max_prob_hier) 

        tmp_arr_probs_class_idx_hier.append(max_prob_idx_hier[0][0]) 

    return tmp_arr_probs_class_idx_hier 

 

def doExperiment(PATH, i, isReset): 

    #train and save classifiers 

    data_9class, learner_9class = trainAndSave(PATH + "vehicle_type_9class/", 

"vehicle_type_9class", True, isReset);#hatchback, mini, minivan, panelvan, pickup, sedan, 

spor, station suv 

    data_auto_nonauto, learner_auto_nonauto = trainAndSave(PATH + "auto_nonauto/", 

"auto_nonauto", False, isReset);#auto, nonauto 

    data_auto_2class, learner_auto_2class = trainAndSave(PATH + "auto_2class/", 

"auto_2class", False, isReset);#hatchback, sedan 

    data_nonauto, learner_nonauto = trainAndSave(PATH + "nonauto/", "nonauto", False, 

isReset);#arazi, van 

    data_hatchback, learner_hatchback = trainAndSave(PATH + "hatchback/", "hatchback", 

False, isReset);#hatchback, mini 

    data_sedan, learner_sedan = trainAndSave(PATH + "sedan/", "sedan", False, 

isReset);#sedan, spor, station 

    data_arazi, learner_arazi = trainAndSave(PATH + "arazi/", "arazi", False, 

isReset);#pickup, suv 

    data_van, learner_van = trainAndSave(PATH + "van/", "van", False, isReset);#minivan, 

panelvan 

    data_vehicle_type_3class, learner_vehicle_type_3class = trainAndSave(PATH + 

"vehicle_type_3class/", "vehicle_type_3class", False, isReset);#arazi, automobile, van 

    data_auto_5class, learner_auto_5class = trainAndSave(PATH + "auto_5class/", 

"auto_5class", False, isReset);#hatchback, mini, sedan, spor, station 

 

    #calculate accuracy for height=1 tree 

    preds_9class, probs_9class = getPreds(learner_9class); 

    #ground truth labels 

    labels = [d[1] for d in data_9class.test_ds] 

    img_names = 

createImgProbPairForGroundTruth(np.asarray(data_9class.test_ds.fnames),preds_9class) 

     

    #compute probs 

    probs_auto_nonauto = getProbs(img_names, learner_auto_nonauto, 

data_auto_nonauto);#probs_auto_nonauto 
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    probs_auto_2class = getProbs(img_names, learner_auto_2class, 

data_auto_2class);#probs_auto_2class 

    probs_nonauto = getProbs(img_names, learner_nonauto, data_nonauto);#probs_nonauto 

    probs_hatchback = getProbs(img_names, learner_hatchback, 

data_hatchback);#probs_hatchback 

    probs_sedan = getProbs(img_names, learner_sedan, data_sedan,3);#probs_sedan 

    probs_arazi = getProbs(img_names, learner_arazi, data_arazi);#probs_arazi 

    probs_van = getProbs(img_names, learner_van, data_van);#probs_van 

    probs_vehicle_type_3class = getProbs(img_names, learner_vehicle_type_3class, 

data_vehicle_type_3class,3);#probs_vehicle_type_3class 

    probs_auto_5class = getProbs(img_names, learner_auto_5class, 

data_auto_5class,5);#probs_auto_5class 

     

    #compute accuracy for each tree and computational method 

    probs_h3_conditional = computeTreeHeightProbs(3,1, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

    probs_h3_mean = computeTreeHeightProbs(3,2, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

    probs_h3_multiplication = computeTreeHeightProbs(3,3, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

    probs_h2_conditional = computeTreeHeightProbs(2,1, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

    probs_h2_mean = computeTreeHeightProbs(2,2, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

    probs_h2_multiplication = computeTreeHeightProbs(2,3, probs_auto_nonauto, 

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi, 

probs_sedan, probs_vehicle_type_3class, probs_auto_5class); 

 

    preds_h3_conditional = computeTreeHeightPreds(probs_h3_conditional); 

    preds_h3_mean = computeTreeHeightPreds(probs_h3_mean); 

    preds_h3_multiplication = computeTreeHeightPreds(probs_h3_multiplication); 

    preds_h2_conditional = computeTreeHeightPreds(probs_h2_conditional); 

    preds_h2_mean = computeTreeHeightPreds(probs_h2_mean); 

    preds_h2_multiplication = computeTreeHeightPreds(probs_h2_multiplication); 

     

    #height=1 

    h1a = calculateAccuracy(preds_9class,labels) 

    h1b = calculateAccuracy(preds_9class,labels) 

    h1c = calculateAccuracy(preds_9class,labels) 

    #height=2 

    h2a = calculateAccuracy(preds_h2_conditional,labels) 

    h2b = calculateAccuracy(preds_h2_mean,labels) 

    h2c = calculateAccuracy(preds_h2_multiplication,labels) 

    #height=3 

    h3a = calculateAccuracy(preds_h3_conditional,labels) 

    h3b = calculateAccuracy(preds_h3_mean,labels) 

    h3c = calculateAccuracy(preds_h3_multiplication,labels) 
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    #h1_tree = [h1a,h1b,h1c] 

    #h2_tree = [h2a,h2b,h2c] 

    #h3_tree = [h3a,h3b,h3c] 

     

    ct_mult = [h1c, h2c, h3c] 

    ct_cond = [h1a, h2a, h3a] 

    ct_avg = [h1b, h2b, h3b] 

     

    result_ct_mult.append(ct_mult) 

    result_ct_cond.append(ct_cond) 

    result_ct_avg.append(ct_avg) 

     

    return 

 

def calculateStandartDeviation(n_times, result_file, result_ct, ct_name): 

    arr0 = [] 

    arr1 = [] 

    arr2 = [] 

    for i in range(n_times): 

        arr_ct = result_ct[i] 

        result_file.write(str(ct_name)+" \t " + str(round(arr_ct[0], 6))+" \t " + 

str(round(arr_ct[1], 6))+" \t " + str(round(arr_ct[2], 6))+" \r\n") 

        arr0.append(arr_ct[0]) 

        arr1.append(arr_ct[1]) 

        arr2.append(arr_ct[2]) 

         

    result_file.write("mean \t " + str(round(np.mean(arr0), 6))+" \t " + 

str(round(np.mean(arr1), 6))+" \t " + str(round(np.mean(arr2), 6))+" \r\n") 

    result_file.write("stnd \t " + str(round(np.std(arr0), 6))+" \t " + str(round(np.std(arr1), 

6))+" \t " + str(round(np.std(arr2), 6))+" \r\n") 

    result_file.write("\r\n") 

    return 

 

def printResults(result_file, n_times): 

    result_file.write("x \t height=1 \t height=2 \t height=3 \r\n") 

     

    calculateStandartDeviation(n_times, result_file, result_ct_mult, "mult") 

    calculateStandartDeviation(n_times, result_file, result_ct_cond, "cond") 

    calculateStandartDeviation(n_times, result_file, result_ct_avg, "mean") 

 

    result_file.close()    

    return 

 

def computeNtimes(n_times, isReset): 

    result_file= open("experiment_results_200_cv_22.txt","w+") 

    result_file.write("START: \t " + str(np.datetime64('now'))+" \r\n") 

 

    doExperiment("../../data_200/", 1, isReset) 

    result_file.write("1. Exp: \t " + str(np.datetime64('now'))+" \r\n") 

    doExperiment("../../data_200_f2/", 2, isReset) 

    result_file.write("2. Exp: \t " + str(np.datetime64('now'))+" \r\n") 
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    doExperiment("../../data_200_f3/", 3, isReset) 

    result_file.write("3. Exp: \t " + str(np.datetime64('now'))+" \r\n") 

    doExperiment("../../data_200_f4/", 4, isReset) 

    result_file.write("4. Exp: \t " + str(np.datetime64('now'))+" \r\n") 

    doExperiment("../../data_200_f5/", 5, isReset) 

    result_file.write("5. Exp: \t " + str(np.datetime64('now'))+" \r\n END.\r\n\r\n") 

    printResults(result_file, n_times) 

    return 


