

VEHICLE TYPE CLASSIFICATION

WITH DEEP LEARNING

A Thesis Submitted to

the Graduate School of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Neriman YARAŞ

June 2020

İZMİR

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Mustafa

Özuysal for sharing his information with me, directing me throughout my thesis and

supporting me in this long period of time.

I am grateful to my friends for all the support and their motivation during busy and

tiring times.

Finally, I would like to express my infinite gratitude to my parents, my husband

Murat Yaraş and our daughter Arya Yaraş for their unconditional love, patience and endless

support during this thesis and all my life. I dedicate this thesis work to them.

ii

ABSTRACT

VEHICLE TYPE CLASSIFICATION WITH DEEP LEARNING

In this thesis, we studied the vehicle type classification problem from several

perspectives. We apply a deep learning technique with different parameters such as image

size and the number of images in data sets to the classification of an image as one of the

nine vehicle types. After choosing the most appropriate one among trained models, we

convert the problem into a hierarchical tree classification problem so that it could be

analyzed in three different tree hierarchies. Experiments are performed using three

computational methods for calculating possibilities for each of the nine classes that

correspond to the leaves of the hierarchical trees. These studies result in a conclusion that

0.762812 average accuracy is obtained when traditional arithmetic mean computation

applied on the hierarchical tree with level-2 using the Stanford Dataset by 224 image size

on ResNet34 architecture.

iii

ÖZET

DERİN ÖĞRENME İLE ARAÇ TİPİ SINIFLANDIRMA

Bu tez çalışmasında, taşıt tipi sınıflandırma problemi farklı açılardan incelenmiştir.

Bir imgeyi dokuz araç türünden biri olarak sınıflandırmak için imge boyutu, veri

kümelerindeki örnek sayısı gibi farklı parametreleri kullanan bir derin öğrenme tekniği

uygulanmıştır. Eğitimli modeller arasında en uygun olanını seçtikten sonra, sorunu

hiyerarşik bir ağaç sınıflandırma problemine dönüştürerek üç farklı ağaç hiyerarşisinde

analiz ettik. Deneyler, hiyerarşik ağaçların yapraklarına karşılık gelen dokuz sınıfın her biri

için olasılıkları hesaplamak için üç hesaplama yöntemi kullanılarak gerçekleştirilmiştir. Bu

çalışmalar, ResNet34 mimarisinde 224 görüntü boyutuna göre Stanford veri seti

kullanılarak seviye-2 ile hiyerarşik ağaçta geleneksel aritmetik ortalama hesaplama

uygulandığında 0.762812 ortalama doğruluğunun elde edildiği sonucuna varmaktadır.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

CHAPTER 1. INTRODUCTION ... 1

1.1 Motivation ... 3

1.2. Thesis Goals and Contributions ... 3

1.3. Outline of Thesis .. 4

CHAPTER 2. RELATED WORKS ... 5

CHAPTER 3. RESEARCH BACKGROUND ... 9

3.1. Machine Learning .. 9

3.1.1. Types of Machine Learning ... 9

3.1.1.1. Supervised Learning ... 10

3.1.1.2. Unsupervised Learning .. 10

3.1.1.3. Reinforcement Learning ... 11

3.2. Deep Learning .. 11

3.2.1 Convolutional Neural Network (ConvNet/CNN) 13

3.2.1.1 CNN Parameters .. 14

3.2.1.1.1. Stochastic Gradient Descent ... 14

3.2.1.1.2. Learning Rate .. 15

3.2.1.1.3. Number of Epochs ... 16

3.2.1.1.4. Batch size .. 17

3.2.1.1.6. Dataset Augmentation ... 17

3.2.2 CNN Architectures .. 18

3.3. Transfer Learning ... 18

3.4. Ensemble Learning ... 19

3.4.1 Stochastic Weight Averaging (SWA) ... 19

3.5. Fastai .. 20

3.6. Technical Environment .. 21

CHAPTER 4. VEHICLE TYPE CLASSIFICATION .. 22

4.1. Approach .. 22

4.2 Dataset Preparation and Training .. 23

v

4.2.1. Information on Datasets ... 23

4.2.1.1. BIT Vehicle Dataset ... 23

4.2.1.2. Stanford Car Dataset .. 24

4.2.2. Training .. 27

4.2.2.1. Single - Level Classifier Training with Transfer Learning 27

4.2.2.2. Multi - Level Classifiers and Their Training 30

CHAPTER 5. EXPERIMENTAL RESULTS .. 35

5.1. Single Level Classifier Experiment Results ... 35

5.1.1. BIT Vehicle Dataset ... 35

5.1.2. Stanford Dataset ... 38

5.2. Multi Level Classifier Experiment Results .. 41

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 47

6.1. Conclusion .. 47

6.2. Future Work ... 49

REFERENCES ... 50

APPENDICES .. 53

APPENDIX A. DETAILED EXPERIMENT RESULTS .. 54

1. BIT Vehicle Type Dataset Experiment Results Comparison 54

2. Stanford Vehicle Type Dataset Experiment Results Comparison 55

3. Ensembling Results ... 56

4. Multi-Level Experiment Results with 100~ Images per Class 59

5. Multi - Level Experiment Results with 200~ Images per Class 60

APPENDIX B. DEEP LEARNING SCRIPT DEVELOPED IN THIS THESIS............61

vi

LIST OF FIGURES

Figure Page

Figure 3.1. Difference between Machine Learning and Deep Learning12

Figure 3.2. Difference between Simple Neural Network and Deep Learning

 Neural Network ...13

Figure 3.3. Initial set of parameters move towards to local minima15

Figure 3.4. Visualization of what happens choosing three different learning rate................16

Figure 4.1. Image examples from BIT Dataset for each classes..24

Figure 4.2. Image examples from Stanford Dataset for each classes....................................25

Figure 4.3. Tree representation of single-level classifier for BIT Vehicle Dataset...............28

Figure 4.4. Examples of transformations applied to images from BIT Dataset (top)

 and Stanford Dataset (bottom) ...28

Figure 4.5. Tree representation of single - level classifier for Stanford Dataset30

Figure 4.6. Level-2 tree hierarchy example..31

Figure 4.7. Level-3 tree hierarchy example..31

Figure 5.1. Graph of single level training accuracy values with respect to

 different image size of BIT Dataset images ..36

Figure 5.2. Graph of training all layers with 128 image size of BIT Dataset

 images on different architecture models ..38

Figure 5.3. Graph of single level training accuracy values with respect to

 different image size of Stanford Car Dataset images 40

Figure 5.4. Mean values for computation methods applied on hierarchical trees

 for two datasets with 100~ per images and with 200~ per images46

Figure A.1. Graph of comparing accuracy values of ensembling on

 ResNet34 architecture..56

vii

LIST OF TABLES

Table Page

Table 3.1. The differences between BIT Vehicle Dataset and Stanford Car Dataset..........21

Table 4.1. Number of images for folder arrangement per vehicle type

 in BIT Vehicle Dataset ... 23

Table 4.2. Number of images for folder arrangement per vehicle type

 in Stanford Car Dataset...26

Table 4.3. The differences between BIT Vehicle Dataset and Stanford Car Dataset...........26

Table 4.4. Parameters used for first experiment of single level classifier training...............27

Table 4.5. Categories of parameters used in experiments ... 29

Table 5.1. Detailed result of training models on BIT Vehicle Dataset with

 different image sizes using ResNet34.. 36

Table 5.2. Training result of all layers with 128 image size of BIT Dataset

 images on different architecture models.. 37

Table 5.3. Detailed results of training models on BIT Vehicle Dataset with

 different image sizes using ResNet34.. 39

Table 5.4 Detailed results of training models on BIT Vehicle Dataset with

 different image sizes using ResNet34 ... 42

Table 5.5. Mean and standard deviation values for computation methods

 on hierarchical trees .. 43

Table 5.6. Distribution of images per class for 200~ Stanford Car dataset 44

Table 5.7. Mean values for computation methods applied on hierarchical

 trees for the number of images increased dataset .. 45

Table A.1. Experiment result of training last layer and all layers of each

 architecture using BIT Dataset images with six classes 54

Table A.2. Experiment results of training last layer and all layers of each

 architecture using Stanford Dataset images with nine classes 55

Table A.3. Experiment results of ensembling on ResNet34 architecture56

Table A.4. Experiment results of applying ensembling learning for models

 trained on ResNet34, ResNet50, ResNext50 and Vgg16 architectures 57

Table A.5. Mean values for computation methods applied on hierarchical trees

 for initial dataset .. 59

viii

Table A.6. Mean values for computation methods applied on hierarchical trees

 for the number of images increased dataset ... 60

1

CHAPTER 1

INTRODUCTION

Increased popularity and rapid development of novel algorithms for artificial

intelligence lead to many new scientific experiments and approaches that include machine

learning and deep learning as an important submodule. In this field, there are many problems

and occasionally more than one specific approach to solve each problem. Deep learning

achieves high performance by exploiting spatial coherence with convolutional layers and

pretrained networks trained using large scale data sets with transfer learning. Increased size

of the data sets forced technology to evolve around hardware in order to handle the

availability of large-scale data sets. Thanks to the evolution of graphics processing units

(GPUs) that specialize on processing large amounts of data in parallel, it became easier to

work on the large-scale data sets and perform experiments in much shorter time frames.

Increasing memory size along with the availability of powerful GPUs enabled researchers

to obtain more accurate results for the complex real-world problems such as image

classification, real-time pose estimation, and semantic segmentation. These improvements

coupled with the availability of open source software libraries such as Keras (Chollet, 2015),

Tensorflow (Abadi et al., 2016), and PyTorch (Paszke, 2017) for state-of-the-art algorithms

makes it easier to apply deep learning to computer vision problems.

Classification problems involving images are prime candidates for learning based

solutions using convolutional neural network (CNN) techniques developed to take

advantage of spatial consistency pioneered by Yann LeCun et al. (1998) in 1998. The

increase in computation power has allowed deeper neural networks to be constructed, so a

solution could be sought for the problem of increasing data volume by using more powerful

CNNs. Thanks to its potential to jointly learn both features and classification rules, CNNs

give better classification results especially if the datasets are large scale (Kosmopoulos,

Paliouras and Androutsopoulos, 2015, Simonyan and Zisserman, 2015).

In this thesis, we propose a deep learning solution for the vehicle type classification

problem that builds upon the advances described above. Considering how much we use

vehicles in our daily lives or how much we encounter them, we can understand how

important it is to deduce information from the images that contain vehicles. Vehicle

classification is important not only in the automotive field but also in the related fields such

as traffic analysis and insurance (Jayawardena, 2013), it is demanded to create automated

2

solutions that produce robust and accurate classification output to put in use. Since it is

potentially more difficult to learn features that separate all vehicle classes from each other,

training a single classifier may not be the best possibility. With the aim of extracting rich

features from the data, we propose a vehicle type classification approach utilizing multi-

level classifier hierarchies that we built in order to distinguish subsets of vehicle types from

each other at each layer.

We test our vehicle type classification approach by experimenting on two different

data sets. BIT Dataset consists of images shot on the highway from a single front-view angle

that contain vehicles of six different types. Stanford Dataset, on the other hand, contains

images taken in different places from different angles and is organized in nine vehicle types.

To classify vehicle types using these datasets, we first train single-level models by applying

transfer learning (Pan and Yang, 2010) on four different pre-trained models. The aim is to

show that with a relatively small number of images for each vehicle type, tangible results

can be produced in the vehicle type classification problem.

During the single layer experiments, using deep neural networks on different

architectures, their suitability for vehicle type classification problem was determined.

Different architectures show different suitability for transfer learning, and some of them

produce more successful results. In the single-level classifier trainings, both the last layers

of neural networks were trained initially followed by all layers of the architectures and the

results of the experiments were shared. Besides the deep neural network architecture, the

effect of image size on the classification is another variable that was measured. Also, image

size affects both the training speed and the amount of GPU memory that must be used. The

results show that even with small images, different types of cars can be separated.

Evaluating the results of single-level training runs, we created a baseline model.

Depending on the baseline model we build multi-level classifiers in order to distinguish nine

vehicle types from each other; Hatchback, Mini, Minivan, Panel Van, Pick-up, Sedan, Sport,

Station and SUV. We trained additional models corresponding to the nodes of the multi-

level classifier trees of varying complexity. Then we computed the accuracy for each tree

by employing three different computational methods that combines the classifier

probabilities from the tree nodes into a single classification result over all nine classes.

Experiments showed that multi-level classifier training approach yields higher

performance than single-level classifiers by enabling overall model to predict more accurate

results. Taken experimental studies into consideration, the best results are observed when

traditional arithmetic mean computation applied on the hierarchical tree with level-2 using

the Stanford Dataset by 224 image size on ResNet34 architecture and 0.762812 average

3

accuracy is obtained by repeating experiments. Additionally, this result was supported by

repeating experiments for multi-level classifier training by providing twice number of

images for each vehicle types.

1.1 Motivation

According to the survey (Won, 2020), accurate classification of vehicles to different

types is essential for effective transportation planning and traffic operation. Vehicle type

classification plays a significant role for reducing traffic congestion of future transportation

systems. Thanks to increasing usage of cameras, studies on vehicle type classification

focused mainly on image-based approaches. Since traffic surveillance cameras provides

large number of vehicle images, accurate estimation of vehicle types on those images

becomes more important for efficient management of transportation. However, the focus of

image-based methods is generally on the images taken from a single viewpoint. In order to

cover this issue, we performed experiments on images which are taken from different

viewpoints.

Accurate categorization of vehicles into different types is an important issue not only

for sufficient transportation planning and management but also for effective damage

detection of insurance solutions. In order to reduce the work accidents that may be caused

by people during the assessment of damage, automation of the damage assessment process

on vehicles is required. At this point, using deep learning techniques to classify vehicles into

categories both reduce the wrongdoings and also accelerates the process of detection. By

decreasing the discrepancies, deep learning enables to produce more accurate estimates. As

already mentioned above, vehicles can be used in many different areas, it means that vehicle

type classification subject is open to further development in order to contribute to these

areas.

1.2. Thesis Goals and Contributions

This thesis aims to handle the vehicle type classification problem by building multi

- level classifier hierarchy by differentiating classes among Hatchback, Mini, Minivan,

Panel Van, Pick-up, Sedan, Sport, Station, SUV vehicle types. We employed more than one

classification models to distinguish nine vehicle types from each other. We analyzed the

machine learning and deep learning approaches for visual classification. To estimate the

vehicle type class to which the vehicle, we evaluated several versions of convolutional

4

neural networks which varies in data sets, image sizes, computational methods and

hierarchical tree structures. We applied transfer learning methodology to build single-level

models and determined a baseline model for further analysis. Then, based on the baseline

model, we built multi-level classifier trees and calculated the accuracy of each tree by

computing the probabilities of each label via three computational methods.

1.3. Outline of Thesis

In the next section the related work is presented, while in Section 3 background

search of this thesis is mentioned. Section 4 present experiments and discuss experiment

results. In Section 5 proposed approach is introduces and related experiments are explained.

Finally, Section 6 concludes and points to future work.

5

CHAPTER 2

RELATED WORKS

There has been a lot of literature on vehicle classification, and it is an inherently hard

problem that has received significant attention over the years. In this section, we present

previous work of vehicle type classification and hierarchical probability computing.

Thanks to success of neural networks, experimental studies are carried out in almost

every area which results in practical applications became available for various fields such

as finance, health care, education (Jordan and Mitchell, 2015). For example, in health care

sector, Yu et al. (2017) proposed a very deep neural network solution for the automated

recognition of skin cancer (Melanoma). In order to increase success rate of trained model,

they proposed a two-stage scheme. Firstly they performed segmentation on dermoscopic

images by separating the skin lesions from the images. Then they categorized images into

two categories which are melanoma and non-melanoma. Instead of performing

classification on whole dermoscopy images, aiming for the lesion regions they enabled

classifier to obtain more representative and discriminative features. Secondly, they put a

deep networks that has more than 50 layers into practice aiming for extracting discriminative

features so that they trained model can make more accurate predictions. They utilized from

residual learning technique (He et al., 2016) and built a fully convolutional residual network

for effective and precise estimations for segmentation of skin injury and its classification.

Lastly, connecting contextual information with each other they created a multi-scale system

and aiming for overcoming of hardship melanoma recognition automatization they trained

models with created with different set of schemes to determine for the most effective ones.

Due to its strong capacity to handle formidable problems and to improve system

performance, deep learning can be applied to every type of daily life problems including

vehicle detection and classification. According to the survey of intelligent traffic monitoring

systems (Won, 2020), thanks to technological advances through learning, sensing, and

wireless communication, numerous innovative vehicle classification have been developed.

One of the vehicle classification method for Intelligent Traffic Control is proposed by Fazli,

Mohammadi and Rahmani (2012) in 2012. They propose a deep learning algorithm in order

to categorize mobile images into three vehicle types which are Heavy vehicles, Light

vehicles and Motorcycle. The deep learning solution is explained in two-stages in general.

The first step is about obtaining images from video of traffic scenes and applying some

6

image processing techniques such as background subtraction and edge detection. The

second step is about extracting features from pre-processed images and creating a vector

from these features such that a neural network can be trained on them in order to predict

type of the vehicles. Another study is about automatic vehicle type classification using

convolutional neural networks. Roecker et. al. (2018) proposed a convolutional neural

network model for vehicle type classification that classifies vehicle types into six categories

which are Bus, Microbus, Minivan, Sedan, SUV, Truck. They studied on images only with

low resolution and taken from frontal perspective. These images are pre-processed by

resizing and applying filters and the are given to the model as an input. In the convolutional

stage of the model, using supervised learning with high-intensity data augmentation the

model outputs a probability of each class. By getting more mature results from experiments

and putting into practice, deep learning started to be served not only in traffic surveillance

systems but also in other systems such as insurance systems. Patil et. al. (2017) studied on

car damage classification problem aiming at car insurance industry. Since there is no public

dataset for this problem, they started with preparing the dataset which is a difficult stage

through the process of solving the problem. The dataset is created by collecting the image

samples from the vehicle regions by taking damage types into consideration. In the first

place, this study is carried on small sized dataset but it did not yield to good results using

just neural network training, that's why fine-tuning process was applied to get better results.

Furthermore, they investigated the effects of merging transfer learning to their solution. At

last, experiments show that the most successful results was obtained by using transfer

learning rather than applying just fine-tuning to the dataset. Visual classification is an

important issue for insurance companies as well as vehicle owners. Insurance companies

invest in deep learning methods. Because by providing solutions based on deep learning,

delays in through visual inspections can be reduced and damage classification would be

done in a reasonable amount of time. For example, a large amount of money would be

wasted due to incorrect assessment of damage in the car insurance industry. Thanks to deep

learning solutions, insurance companies can minimize money loss avoiding incorrect

assessment of damage and reducing delays. Vehicle damage prediction is performed in

another study in order to reduce insurance cost after traffic accidents (Jayawardena, 2013).

In this study, solution is proposed based on 3D CAD models which are used as ground truth

to differentiate mild damages from the undamaged vehicle model by analyzing images even

under the conditions of environmental factor. In order to create undamaged model of a

vehicle, multi-view geometry techniques are applied on two photographs of the vehicle

taken from different view points. They presented 3D pose estimation algorithms and applied

7

the 3D model projection at the recovered 3D pose so as to differentiate vehicle components

from an image in which there could be a slightly damaged vehicle. Because of the reflective

body of vehicles, there could be inter object reflections such as ambient light or accident

scene in an image of the damaged vehicle which may lead to misclassification of images.

To deal with the inter object reflections, they also introduced a method which determines

reliable point correspondences through images.

One of the common classification strategies for large scale datasets is building a

hierarchy of classifiers. In 1989, Haskell and Noui-Mehidi (1989) defined the hierarchical

classifiers as an agglomerative way of categorizing inputs into predefined output classes.

With the aspect of “Divide and Conquer”, he explained that firstly low-level classifications

is trained by highly specific pieces of input data. Then these low-level classification of

individuals come together to form larger hierarchical systems on a higher level which

determines the output classes of the overall system. Following the trails of Haskell and

Noui-Mehidi’s thought, Ras, Dardzinska and Jiang (2010) proposes a cascade classification

strategy investigated for musical instruments estimation. They introduce a methodology of

building cascade classifiers for data sets that can be partitioned into non-singular subsets.

They also worked on decreasing the incompleteness of the data before the knowledge

extraction algorithms are applied. Then they built a multi-hierarchical decision system

experimenting on two different classification hierarchy of instruments. The results showed

that by implementing hierarchical decision system the identification of the pitch became

easier in the process of recognizing a dominating musical instrument in a musical piece.

Another study on the hierarchical classification subject proposes a generic and principled

hierarchical architecture, Hierarchical Deep Convolutional Neural Network (HD-CNN).

Yan et al. (2015) find subset of classes based on class confusion of a base network by

decomposing the classification task into two steps. Firstly easy classes are separated from

each other by using coarse category classifier. After that more formidable ones are directed

through sub-level category classifiers for estimation to complete. In this proposed system,

the classification is implemented by starting from general classifiers through ending detailed

classifiers so that error rate could be lowered with the cost of complexity increase.

 The problem covered by this thesis address to the many sectors and/or inter-sectors.

It might be useful for traffic surveillance systems in terms of requirement for recognition of

vehicle types. Or insurance companies might want to enhance their damage detection

solutions by applying vehicle type classification in order to understand which types of

vehicle mostly got damaged. Leading to more evidence-based decision-making across many

walks of life, deep learning methods also help for creating for competitive solutions. They

8

enable us to not only reduce cost but also increase efficiency by enabling fast decision

mechanisms for problems such as damage detection, face recognition, customer

segmentation.

9

CHAPTER 3

RESEARCH BACKGROUND

In this section, ‘Machine Learning’, ‘Types of Machine Learning’, ‘Deep Learning’,

‘Convolutional Neural Network’ and ‘Fastai’ concepts are introduced.

3.1. Machine Learning

Machine learning is a branch of Artificial Intelligence (AI). It focuses on teaching

an algorithm to progressively improve itself upon a given set of tasks. In a nutshell, machine

learning designs a model of how a process works and implements it for practically building

applications that present iterative enhancement. Dynamic mechanism of machine learning

enables itself to change when required without human intervention. When a new instance is

arrived, it processes historical information to determine which path to take, and takes action

for adapting the new instance. Fundamentally, it functions as learning and self-development.

While all machine learning problems can be examined as artificial intelligence

problem, on the other hand all artificial intelligence problems can not be assessed as machine

learning problem. Because artificial intelligence problems cover machine learning

problems. Machine learning is an applied form of artificial intelligence. It is for enabling

machines to learn like humans by collecting, storing, analysing data and developing a

decision making ability on its own. In order to extract predictable pattern or meaningful data

whole data provided is needed to be analyzed. After that using statistical analysis a model

to make predictions against new data is built which has the ability to make inferences

according to the previous data provided to it. The most difficult part of this learning process

is to ask right questions leaning on the collected data. In this case, it is necessary to have

right data. For example, role information, such as an administrator role or a normal user

role, can be important information about a user logged on to the management portal.

3.1.1. Types of Machine Learning

Machine learning algorithms are generally used to predict or classify data. There are three

main categories: supervised learning, unsupervised learning and reinforcement learning.

10

3.1.1.1. Supervised Learning

Supervised learning requires training a model that would be useful for classifying

new data by making predictions on predetermined classes. Therefore, training data which

includes data points and labels are given to the learning algorithm. In other words, data

being used for training and its labels of classes or categories are already known within the

training system so that the learning algorithm is able to estimate based on the learned data.

In general, supervised learning is used to find a solution to classification and

regression problems. For classification problems, data is needed to be divided into groups

in accordance to the categories defined so that, the system is trained using these given

categories and classifies new incoming data similarly to as it learns. For example, suppose

that the task of recognizing a cat present within the given picture is given to the machine.

On this account, the training dataset with containing a group of images with detail of

whether there is a cat in image or not would be needed to be learned by the machine

beforehand. Another example could be training a model by giving the size and the age of a

group of people as input and expecting their weight as an output. And if enough data is given

to the trained model, it would be able to make predictions of the weight of someone whose

weight is unknown given his/her size and age.

The challenge of supervised learning is that the learning algorithm depends on the

accuracy of the class predictions because it estimates generalized rules that supports the

training dataset. Accuracy of trained model gets better by providing enough number of

images. However, focusing too much on the training dataset would result in over-fitting

which means that trained model exhibits poor performance on real-world scenarios. As an

example, if a training dataset mostly includes breed of Van cats, the machine may find it

harder to recognize the presence of cats of other breeds.

 3.1.1.2. Unsupervised Learning

Unlike supervised learning, unsupervised learning does not require a labeled dataset,

and no training dataset is provided to the machine anyway. Instead of a training dataset,

unstructured data is given to the machine so that the machine work on exploring structures

within the data provided. Unsupervised learning is often used to find patterns. It explores

similarities in data in order to cluster related data close to each other. Therefore, this method

is suitably used for clustering problems. To solve clustering problems, data should be

divided into groups taking their similarities into account such that each group represent a

11

cluster. In order to minimize similarities between clusters, data that has different values from

others should not be in a group and it should form another group. In terms of processing

data, a new coming data is examined by the machine and assigned to a cluster which has

similar data. Face recognition over an outsized dataset of photographs is an example of

unsupervised learning. The machines cluster the photographs together finding similarities

of faces. The task of machine is recognizing which images belongs to the same person while

ascertaining how many different people exists in the dataset.

3.1.1.3. Reinforcement Learning

In reinforcement learning, the machine tries to investigate the most appropriate

actions in certain scenarios. The machine is required to explore cause and effect relationship,

whether these actions have short or long term consequences.

The idea behind reinforcement learning comes mainly from psychology of

experiments on animal such as rats, and behaviors of these animals on certain situations like

seeking for food. One example of reinforcement learning is that in order to make the rat to

go and get the food, a stimulating sound is given to the mouse by an agent in the same

environment. As a result the machine learns on its own behaviours that cause a gift or

punishment according to its previous attempts that caused positive or negative effects. The

most famous example for reinforcement learning is that an artificial intelligence product

AlphaGo defeated the world champion Ke Jie in the game of go (Google AI Blog, 2016).

Detailed information about types of machine learning can also be explained in (Baştanlar

and Özuysal, 2014).

3.2. Deep Learning

 Deep learning is machine learning technique which extract feature from data like

images, texts or sounds. Extracted features by this technique are learned and can be used for

next tasks. The main difference between how machine learning and deep learning works is

demonstrated in Figure 3.1. While in machine learning, the way to make correct estimation

should be taught to algorithm by providing more information, on the other hand, the

algorithm in deep learning can learn this by processing data. In simple words, feature

extraction is performed by human in machine learning while deep learning model figure it

out by itself.

12

Figure 3.1. Difference between Machine Learning and Deep Learning (Mathworks, 1994)

Although deep learning is a new field of machine learning, it showed great

development in a short time and became an important topic in artificial intelligence field.

One of the reasons behind of this development is increasing dataset sizes. As technology

evolves, hardware becomes more capable. Thanks to this, researchers can now work on huge

datasets to get better results from their experiments. Another reason of success of deep

learning is increasing memory size. After researchers performed experiment on very large

datasets, another problem arose about how to process and store these huge amount of data.

However, the obstacle has been overcome by the production of computers with superior

features. Thanks to current CPUs and GPUs being faster and having larger memory, there

happen to be enough resources to work on larger datasets. Last but not least, one of the

reason behind success of deep learning is increasing accuracy, complexity and real world

impact. After debut of deep learning, people did not use much is because larger datasets

were needed to get better results. In order to extract every abstract features from hidden

layers of network, large dataset should be given. Following the age of "Big Data",

implementation of deep learning become much easier and effective. With the increasing

digitization of daily life, computers have the power of taking more activities which result in

increasing the number of computers connected together in network.

In simple neural network which has one hidden layer as in left side of the Figure 3.2,

in order to solve reasonable problems, it is necessary for it to have exponentially increasing

number of parameters. On the other hand, if multiple layers can be added as in right side of

Figure 3.2, super linear scaling can be obtained. So as to solve much more complex problem,

a few more hidden layers can be added. The ‘deep’ in deep learning simply refers to having

13

multiple ‘hidden’ layers; that is layers that aren’t the input, or the final output, but

somewhere in between. In brief, deep learning is neural networks with multiple hidden

layers.

Figure 3.2. Difference between Simple Neural Network and Deep Learning Neural

 Network (Vazquez, 2017)

3.2.1 Convolutional Neural Network (ConvNet/CNN)

In neural networks, Convolutional Neural Network (CNN) is one of the main

categories to work on problems such as image classification, image recognition. It is a Deep

Learning algorithm that can take in an input image, process it and classify it under certain

categories (Eg., sedan, hatchback categories for an vehicle image). In order to make good

prediction, ConvNet aims at reducing the images into form that is easily processed without

losing its important features. This is critical if an architecture is to be designed that it is

required not only to be good at learning features but also is scalable to massive datasets. In

deep learning, CNN algorithms train input data such as image by conveying them among

convolutional layers to classify the input with probabilistic values between 0 and 1.

Overview of the structure of CNN is explained below:

● Convolutional Layer is used to extract features by applying filters

● Non-Linearity Layer introduces non-linearity to the system

● Pooling(Downsampling) reduces the number of weights and control overfitting

● Flattening Layer prepares data for the fully connected layer

● Fully-Connected Layer is Standard Neural Network for classification

Using a very deep hierarchy of layers, ConvNet shows superior performance today.

Thanks to the wide use of ConvNet, human-realizable tasks like voice recognition, object

14

detection, face recognition are now accomplished with deep learning algorithms

programmed by researchers or IT companies (Jordan and Mitchell, 2015).

3.2.1.1 CNN Parameters

 Neural network is an infinitely flexible function. In case of where appropriate inputs

are given, even a simple neural network is able to symbolize a wide range of various

functions. As long as enough parameters are added, any problem can be solved using neural

network with a close accuracy. In this section some of the hyperparameters will be

explained.

3.2.1.1.1. Stochastic Gradient Descent

In deep learning, there exists different optimization methods that enables us to find

optimum value for nonlinear problems. Some of the widely used algorithms are Adam,

Adamax, Stochastic Gradient Descent algorithms (Ruder, 2016). In this thesis, we use

Stochastic Gradient Descent algorithm while training neural networks.

Gradient Descent is an algorithm that fits parameters of neural network to measure

the quality a specific group of parameters depending on how well the final scores are in

accordance to the ground truth labels in the training data. Suppose that we have given a set

of parameters for training a network. Then gradient descent use these initial set of

parameters and seeks out for a set of parameters that converges to local minima . It checks

the current parameters and then estimates a slightly better set of parameters to predict how

far it is from surface of the function by using current set of parameters.

As it is demonstrated in Figure 3.3, different initial set of parameters at starting point

may result in different local minima. Thankfully, there is not only one value that good for

neural networks, there might be many that are equally good. In other words, in deep learning

even though solutions are not truly minimal they are generally accepted, as long as they are

in accordance with significantly lower values of the cost function (Goodfellow, Bengio and

Courville, 2016). Detailed information about stochastic gradient descent can be found in

(Loshchilov and Hutter, 2017).

15

Figure 3.3. Initial set of parameters move towards to local minima (Howard and Thomas,

2017)

3.2.1.1.2. Learning Rate

The learning rate is one of the most significant hyper-parameters that adjust the

weights of network while taken loss function gradients into account. It decides how much

to change model in response to the error estimated when weights are updated. Suppose that

there is a quadratic function and we would try to find a minimum of it using stochastic

gradient descent technique that explained in 3.2.1.1.1. It starts by computing the value of

the function and the slope at a point. Then, it goes down bit by bit of hill and make

computation again. When it is seen that the value of is not decreasing anymore, it means

that the value has reached its minimum. The difference between two consequent points

which are pursuing slope through the downhill is called learning rate.

Learning rate decides how fast to reach local minima of a function. The biggest

challenge is choosing a learning rate value to train a model. Because, by choosing a small

value for learning rate, it would take so much time to get to the local minima, and choosing

a large value might result in exceeding the minimum value trying to be reached. These are

demonstrated in Figure 3.4.

16

Figure 3.4. Visualization of what happens choosing three different learning rate

 (Jordan, 2018)

 In order to eradicate the need to determine sensible values, one of the most robust

techniques was proposed by (Smith, 2017). According L. N. Smith, if training is done using

cyclical learning rates the accuracy of classification is enhanced and it does not reqire any

tuning.

If we divide the logic behind of Smith’s writing (2017) into steps, the first step is to

start with a small learning rate and calculate the loss. Second is to increase the learning rate

step by step and each time, calculate the loss. When the loss suddenly increase again, the

increasing of learning rate should be stopped. Where the loss is still clearly improving, the

highest learning could be chosen. Lastly, these steps are repeated in a cycle. Different

implementation of cyclical learning rates can also be reviewed in Smith’s writing (2017).

3.2.1.1.3. Number of Epochs

 In deep learning, an epoch is a hyperparameter which refers to one cycle through

full training data and it is determined before training the model. One epoch means passing

through the neural network both forward and backward all at one. But one epoch is too big

to feed to the network at once. Thats why, it is divided into several smaller batches such that

more than one epoch is used to pass through the full dataset in multiple times. After each

pass, it gives a chance to the network to evaluate success value and regulate model

parameters taking previous data into account. Success value is generally lower in first epoch

and as success rate will also increase as the number of epochs get bigger. This does not

mean that the biggest value of number of epoch is best input for a network because after a

certain step the success rate will no longer get better. In other words, increasing the value

17

of number of epochs would not provide better efficiency for each setting. On the other hand,

decreasing the value of number of epoch hyperparameters would be useful in case of a model

that require a long training period.

3.2.1.1.4. Batch size

A ConvNet doesn’t process its inputs all at once, so as to increase performance, it

processes the data in batches. The batch size is the number of training samples will be used

in training in order to make an update to the model parameters. In an ideal way, all the

training samples would be used to calculate the gradients for every single update, however

that is not efficient. In simple terms batch size tries to simplify the process of updating the

parameters.

One of the aspects of getting training right is adjusting the batch size. If chosen batch

size is too small, then there will be a lot of variance within a batch, and the training loss

would increase a lot. On the other hand, if it’s too large, GPU would use so much memory

to maintain it, or training would progress too slowly to catch a glimpse of if it’s the

optimization is diverging early on. Therefore, when choosing this value, neither too small

nor too large should be selected.

3.2.1.1.6. Dataset Augmentation

As the more training is performed for the model, it will be more successful. When

the number of data given for training is high enough it gets better fit for the model while

preventing from overfitting. For the purpose of increasing size of the data, synthetic images

can be produced so that prepared dataset will be augmented. There are several ways to create

synthetic images such as rotating the image, flipping of the picture, random translations,

changing brightness, cropping the picture. After applying these transformations to data, with

respect to deep learning, there will be different versions of the data in a dataset. Besides,

cross validation techniques were implemented by splitting data into five different groups in

order to evaluate models.

Data augmentation technique is preferably used with other regularization method. It

only increase the performance at a certain rate because, although data is synthetically

generated, it does not replace completely different data. Detailed Information can be found

in (Kukacka, Golgov and Cremers, 2017).

18

3.2.2 CNN Architectures

Neural networks may vary in terms of sizes and shapes, as a result they can be

different depending on how they are configured. Thankfully, there is no need to reinvent the

wheel for every situation. In order to create a classifier, one of the architectures that have

proven to be successful can be reused. In this thesis instead of building a model from the

scratch, transfer learning (Section 3.3) approach is applied. Therefore, to solve vehicle type

classification problem, experiments performed on data sets reuses four different architecture

which are listed below (Simonyan and Zisserman, 2015, He et al.,2016):

● resnet34

● resnet50

● resnext50

● vgg16

3.3. Transfer Learning

 Transfer learning is a technique of machine learning in which an output of the

algorithm can be reused as a starting point of another task even if it is designed for a specific

work. In this method, knowledge gained while solving a problem is utilized for applying it

to another but related problem. For example, knowledge gained while learning to drive a

motorcycle can be used to some extent to when learning to drive a car. There is no need to

acquire knowledge of everything from scratch when trying to learn something new.

 In traditional learning, there is no knowledge that can be conveyed from a model to

another and no knowledge is preserved. While traditional learning consist of specific tasks

and training separate isolated models on different datasets, on the other hand, transfer

learning comes from the idea of overcoming the isolated learning paradigm, and in order to

train newer models it leverages knowledge from previously trained model. Thats why, pre-

trained models make great contributions to solving new problems.

 The most important advantage of transfer learning is saving time and resources

needed thanks to leveraging a previously trained model. There is not much power is required

for computing because weights are transferred from previous model. Transfer learning even

get over with problems like having less data for newer tasks because there is no need for an

extremely large training dataset when there is similarity between datasets for the original

and new tasks. So, it reduces the need to re-collecting training data and time consumption

drops to hours or even to minutes. Furthermore, Transfer Learning is easy to use in terms of

19

implementation on layers. Because instead of training all layers, some tasks can be defined

by training only the last layers.

 Using transfer learning approach, an application can be easily created to process a

task that involves adjusting pretrained model. Firstly, it is started with choosing an existing

network like GoogLeNet (Szegedy et al., 2015), and new data is fed in that architecture.

After making some small adjustments to architecture, an application that can perform a new

task can be produced. For example, this application can be used to categorize cats or dogs

in an image set that hosts many unknown objects. Detailed information can be seen in (Pan

and Yang, 2010). Transfer Learning is useful for creating applications that achieve many

tasks including image recognition and classification, robotic process automation.

3.4. Ensemble Learning

Ensemble learning is a machine learning approach that merges several base models

so that it produces a model that advances optimal prediction. In traditional ensembling,

different models are combined and they predict on the same input. After that, averaging

methods is used to firmly decide on the final prediction of the ensemble. It can be simple

voting algorithm, calculating average, or even another model that predicts values and labels

using model parameters. While some ensembling methods use different models to produce

a optimal predictive model, on the other hand, models in the same architecture can also be

combined and advance good results. One of the ensembling methods that makes use of this

approach is Stochastic Weight Averaging.

3.4.1 Stochastic Weight Averaging (SWA)

Stochastic Weight Averaging technique is proposed in (Izmailov et al., 2018) and

uses a novel ensembling in the weights space. In this approach, in order to make predictions

it uses a model that takes advantage of an ensemble which is created by merging weights of

the same network at different stages of training with weights itself.

Working algorithm of swa starts by making a copy of the model that is training such

that it will be used for keeping track of the averaged weights. The weights of the copied

model are updated after the each epoch of training using introduced averaging formula in

(Izmailov et al., 2018). As a result, thanks working on one model at a time, SWA speeds up

predictions.

20

3.5. Fastai

The fast.ai is a small library built on top of Python which is heavily used in research

and it helps to build neural networks. It implements Supervised Learning approach such that

a dataset containing labeled images of vehicle types can be given as an input for training

data (Section 3.1.1).

 As datasets are generally prepared, structures for two datasets in this thesis includes

the valid, train and test folders containing images to train and for validation and to test close

to real world scenarios. While valid and train folders have subfolders for each classes, test

folder is directly contains test images. There is also “model” folder which stores the versions

of models saved.

The training methodology of fastai is summarized into three step. First one is

creating data variable to configure data for training. Creating data object in fastai it is

required to specify two parameters. They are path of stored data, and selected architecture

to apply its data transformations. These transformations may include resizing, normalizing

or standardizing. Thanks to the transformations input data can be resized, rescales to values

between 0 and 1. Second step is creating a learner object so as to train neural network on

prepared dataset using selected pre-trained models. Fastai does not start training from zero

but it uses a network architecture exist before in order to gain knowledge of pretrained model

on a massive dataset like ImageNet so that it can transfer the knowledge to trained model.

It means that fastai library utilize from Transfer Learning (Section 3.5). Third step is fitting

these data and learner objects into together. Once data and learner object are determined

actual training may start with specifying a learning rate and the number of epochs (eg.

learn.fit(0.02, 3)). The fit method takes two parameters. First one is learning_rate which is

controlled for updating the weights of the model all the while training (Section 3.2.1.1.2).

Providing helper classes, the fastai library proposes a level of abstraction for application.

One is used to determine learning_rate for fit method using gradient descent approach

described in Section 3.2.1.1.1. Second parameter to fit the model into data is number of

epoch (Section. 3.2.1.1.3).

In this thesis fast.ai library is used in order to build classifiers that categorizes an

image it has never seen as one of the vehicle types like ‘sedan’, ‘suv’. Trained network will

be able to distinguish among vehicle types based on the labelled images provided. Detailed

information about output of classifying by fastai and evaluating them can be found in later

chapters.

21

3.6. Technical Environment

In order to perform experiments on data sets prepared, Fastai library founded on

Pytorch is configured on a computer which has a GPU powered by 5.0 computing power.

Codes written in Python have been visualized with jupyter notebook. The environment in

which experiments are performed has characteristics described below:

Table 3.1. The differences between BIT Vehicle Dataset and Stanford Car Dataset

Name Value

Processor Intel(R) Core(TM) i7-4510U CPU @ 2.0 GHz 2.60 GHz

Memory 8.00 GB DDR3

System 64-bit Operation System, x64-based processor

GPU NVIDIA GeForce 840M 4GB shared

22

CHAPTER 4

VEHICLE TYPE CLASSIFICATION

In this section, we introduce the problem of vehicle type classification and present

our approach to deal with it. Then we give information about dataset and details of training

and evaluation for vehicle type classification.

4.1. Approach

 We approach the vehicle type classification problem from two different perspective.

One uses a single - level classifier to categorize new instances and the other one uses a multi

- level classifier.

 Hierarchies are frequently used for the management of objects. Given a hierarchy of

classes, these two approaches are also used to classify new instances labelling with a class

name. Single - level classifier represents a traditional flat hierarchy which can be assumed

as a tree with 1 unit - height (level-1). There is a node which acts as a classifier for an image

given and gives probabilistic values for each class. In traditional flat hierarchies, these

classes are independent of each other. In contrast to single - level classifier, there are some

connections established in multi - level classifier in order to create hierarchical dependencies

between nodes. Furthermore, the hierarchy is a cascade tree with height greater than one

and the classification nodes are always the leaves of the hierarchy. It estimates the

probability of each root-to-leaf path through cascade classification trees. It is also assumed

that each image belongs to one class, which means that single - label classification is

applied.

In this thesis, we handle vehicle type classification problem performing experiments

using two different approaches which are single – level classifier training using transfer

learning technique and multi – level classifier training using hierarchical cascade trees.

According to experiment results provided by these two approaches, one can achieve better

results with multi - level classification using three different computational methods

compared to single - level classification.

In the next section, information on data sets that are used to train classifiers are

introduced.

23

4.2 Dataset Preparation and Training

4.2.1. Information on Datasets

Two different data sets were prepared to train deep neural networks for vehicle type

classification. They are BIT Vehicle Dataset (Dong et al., 2015) and a reorganized vehicle

type dataset manually prepared from Stanford Car Dataset (Krause et al., 2013). There are

six types of vehicle in BIT Vehicle image data set and nine types of vehicle in Stanford Car

Dataset. Next, details of each data set are explained.

4.2.1.1. BIT Vehicle Dataset

As described in (Dong et al., 2015), BIT-Vehicle dataset is consist of 9,850 vehicle

images collected from two different cameras located in two different place at different time

intervals. Image size of photographs captured are 1600x1200 and 1920x1080. They are all

captured from high viewpoint with two different angle that’s why the top or bottom parts of

some vehicles are not seen in the images. Some images are noisy because of motion, delay

and illumination changes. Also there are no images of rear of a vehicle or side of a vehicle

clearly. Total number of images used in this thesis are 9.652. Sample images of BIT Image

Dataset for each classes are demonstrated in Figure 4.1.

Table 4.1. Number of images for folder arrangement per vehicle type in BIT Vehicle

Dataset

Label Training Validation Total

BUS 440 111 551

MICROBUS 670 168 838

MINIVAN 370 92 462

SEDAN 4502 1125 5627

SUV 1085 271 1356

TRUCK 654 164 818

TOTAL 7721 1931 9652

24

All vehicles in the dataset are divided into six categories: Bus, Microbus, Minivan,

Sedan, SUV, and Truck. 80% of each class is allocated for training, the rest is placed in the

validation folder. The number of vehicles per vehicle type are respectively given in Table

4.1.

Figure 4.1. Image examples from BIT Dataset for each classes

4.2.1.2. Stanford Car Dataset

 This dataset is prepared from Stanford Car Dataset (Krause et al., 2013) and consists

of 888 manually chosen vehicle images. It includes pictures with different lighting values

at different points of view from various places. There are images from different viewpoint

of vehicles such as back, front, sides, diagonal. Some images demonstrate interior view like

studio while others demonstrate outdoor view like seaside, bridge. Because of location of

the sun lighting changes occur in some outdoor images. Also a few surprising elements can

25

be found in images such as reflection in water, people or trees. Sample images of Stanford

Dataset for each classes are demonstrated in Figure 4.2.

Figure 4.2. Image examples from Stanford Dataset for each classes

All vehicles in the dataset are divided into nine categories: Hatchback, Mini,

Minivan, Panelvan, Pickup, Sedan, Sport, Station and SUV. These categories are

26

determined in accordance to the e - commerce websites such as sahibinden.com and

arabam.com. 80% of each class is allocated for training, the rest is in the validation folder.

The number of vehicle images per vehicle type class in Stanford Dataset are respectively

given in Table 4.2.

Table 4.2. Number of images for folder arrangement per vehicle type in Stanford Car

 Dataset

Label Training Validation Total

HATCHBACK 80 20 100

MINI 71 17 88

MINIVAN 80 20 100

PANELVAN 80 20 100

PICKUP 80 20 100

SEDAN 80 20 100

SPORT 80 20 100

STATION 80 20 100

SUV 80 20 100

TOTAL 611 177 888

The main differences of BIT and Stanford datasets are summed up in Table 4.3. The

distinguishing features are specified as the number of classes, point of view as perspective,

environmental elemets, and the number of images in total for each datasets.

Table 4.3. The differences between BIT Vehicle Dataset and Stanford Car Dataset

Name BIT Stanford

classes 6 9

Perspective Only front Front, back, sides

Environment Highway Studio, seaside, bridge...

images in total 9652 888

27

4.2.2. Training

In this study, firstly the single - level classifier approach is studied to train classifiers

on introduced data sets in Section 4.2.1. Then, the use of a multi level classifier hierarchy is

explained for predicting labels by applying different computing methods.

4.2.2.1. Single - Level Classifier Training with Transfer Learning

 First, we studied the training of the single - level classifier on the BIT Dataset. We

started to this training process by simply training our first model. So, the first step of training

a model is creating data object. The data object contains the training and validation data.

Training data is on what the model is trained upon while validation data is used to check

how well our model performs on images it has not seen before. The data object carries

information about not only labelled dataset but also image size, which decides the size of

input image for training. In the first experiment we defined the class hierarchy of BIT

Vehicle Dataset as a single - level hierarchy in Figure 4.3.

Next, we created a learner object for hosting model to train and we transferred the

information data object carries to it. We make use of transfer learning methodology for

training, that’s why we introduced ResNet34 network to the single - level classifier learner

object. In order to start training we determined learning rate for our training and number of

epochs such that we will be able to manage how slowly or how quickly update the weights.

For the first experiment of single - level classifier training, parameters are listed in Table

4.4.

Table 4.4. Parameters used for first experiment of single level classifier training

Name Value

Dataset BIT Vehicle Dataset

Image Size 32 x 32

Architecture ResNet34

Learning Rate 1e-2

Epoch 3

28

As a result, using given parameters with the single - level classifier represented in

Figure 4.3, we train a classifier that predicts type of vehicle for labelling new instances as

Bus, Microbus, Minivan, Sedan, Suv and Truck.

Figure 4.3. Tree representation of single-level classifier for BIT Vehicle Dataset

Secondly, we used augmentation methodology to increase the number of data from

different perspectives, that's why restricted scaling and rotation transformations have been

applied to add diversity to images during training. In this way, each time the data is used

during the training, it is provided to perform training with various images. As examples can

be seen in the Figure 4.4, six different synthetic pictures are created from one picture after

transformations applied.

Figure 4.4. Examples of transformations applied to images from BIT Dataset (top) and

 Stanford Dataset (bottom)

Last but not least, we first opened and trained last layer of the network, then we

unfreezed the remaining layers and released the lower convolutional layers so that the whole

network can be trained as a one. Working on all layers, we assume that earlier layers need

less fine-tuning for new datasets because they have more general purpose features. For this

reason we used differential learning rates technique introduced in Fastai. In this technique,

29

learning rate is set as an array such that first learning rate is set for fully connected layers

and as we go deeper in network layers, learning rate get smaller exponentially (Section

3.2.1.1).

In the rest of the thesis, the explanation of training above is referred as single training

process because this process will be continued to be performed with different set of

parameters. Three main categories were taken into consideration while forming set of

parameters for conducting experiments. These categories are; two different data sets,

architectures for training models and size of images. Details of the parameters can be found

in Table 4.5.

Table 4.5. Categories of parameters used in experiments

Name Parameter_

1

Parameter_

2

Parameter

_3

Parameter

_4

Parameter

_5

Data sets BIT Vehicle

Dataset

Stanford Car

Dataset

Architecture ResNet34 ResNet50 ResNext50 Vgg16

Image Size 32 x 32 64 x 64 128 x 128 150 x 150 224 x 224

While working with BIT Vehicle Dataset and Stanford Car Dataset, deep neural

networks trained in various architectures and ImageNet are used. The architectures selected

to work on are Resnet34, Resnet50, Resnext50 and Vgg16. Fastai library (Howard and

Rachel, 2017) is used to train classifiers utilizing these pre-trained models. The latest layers

of these architectures contain a fully-connected neural network structure, while the other

layers are convoluted blocks. Therefore, different image sizes for different application areas

can be fed into these architectures and a fully-connected final layer can be trained for a

different number of classes.

Aiming to interpret in a way that utilize from different viewpoints, in this study, 32,

64, 128, 150 and 224 dimensions have been studied for the selected architectures. In

experiments, both the last layer was trained keeping other convolutional layers fixed and

also all the layers were trained in given two datasets. The graphics card memory used for

all stages is approximately 4 GB. Other technical information about experiment

environment is given in Section 3.6.

 As one can see from parameter categories detailed in Table 4.5, two different data

sets can be given as parameter to training process. So experiments are also performed for

30

Stanford Dataset keeping other parameters fixed. Tree representation of single - level

classifier training of Stanford Car Dataset can be found in Figure 4.5. In addition to these

experiments, Ensemble Learning (Section 3.4) technique is used in order to improve

accuracy of experiments performed on Stanford Dataset by averaging weights at the end of

each epoch. So as to apply ensemble learning additional 14 experiments was conducted. In

order to get best accuracy results of ensembling technique, the model trained with biggest

image size on the same architecture is chosen as a second model for each architecture. For

example, so as to implement ensemble learning on ResNet34 architecture, the model trained

with the same architecture and has 224 image size is used as a second model for every other

trained model with different image size.

4.2.2.2. Multi - Level Classifiers and Their Training

While the single - level classifier applies flat hierarchy that ignores the hierarchy, on

the other hand multi - level classifier hierarchy traverse the hierarchy from the root to the

predicted leaf. In this section, we study the cases where multi - level classifier hierarchy is

constructed to estimate class probabilities.

Figure 4.5: Tree representation of single - level classifier for Stanford Dataset

The aim is to classify new images through the hierarchy built which represents is-a

relations. Two different multi - level classifier hierarchies are manually constructed for this

purpose. The tree represents multi - level classifier hierarchy with tree height is 2 (level-2)

can be found in Figure 4.6 and tree representation of multi - level classifier hierarchy with

tree height is 3 (level-3) can be seen in Figure 4.7 respectively. In hierarchical trees, each

node usually apply one classification to given test images. The problem can be divided into

31

smaller problems using hierarchical cascade classification such that fewer features are

required to train each classifier compared to using overall dataset.

Figure 4.6: Level-2 tree hierarchy example

As already mentioned, for multi - level classifier hierarchy approach one classifier

is trained for each of node of the hierarchy. For example, using the hierarchy of Figure 4.6,

total of four classifiers are trained for each of the nodes vehicle_type, terrain, automobile

and van. The classifier of any node is trained using the samples of that node's leaf

descendants. That is, the vehicle_type node is trained using the train and validation image

samples of the terrain, auto and van nodes.

Figure 4.7: Level-3 tree hierarchy example

Similar situation also occurs in Figure 4.7. For the binary classifier of node

auto_nonauto, all instances belonging to hatchback and sedan would be positive examples

whereas all the instances belonging to Terrain and Van would be negative. Similarly, for the

binary classifier of node auto, all hatchback and mini images belonging to hatchback class

32

would be positive instances while sedan, spor and station images belongs to sedan class

would be negative. Comparing to flat hierarchy, these classifiers require fewer resources to

be trained. Also they give more accurate results thanks to distinguishing between fewer

classes compared to flat ones. For example, terrain node in Figure 4.6 has 2 leaves such that

this classifier distinguishes between two classes, on the other hand the classifier of

vehicle_type node in Figure 4.5 needs to distinguish between nine classes. For the flat

hierarchy, if a node have 100 leaves then the classifier would need to separate one class

from 99 others. So, hierarchical cascading may be a preferable option for large databases,

as images only have to be separated between sibling classes.

The main disadvantage of multi - level classifier hierarchy is that any mistake due

to wrong prediction is carried over from root to leaves. The severity of this mistake may be

greater if it occurs closer to the root, in the same way smaller if it is farther away. Suppose

that there is an instance belonging to sedan class and it is estimated to be non automobile by

the binary classifier of auto_nonauto node in Figure 4.7. It means that this image classified

wrongly at the beginning of hierarchical cascading tree even without taking into

consideration the classifiers of sedan. Therefore, it lost a chance of getting high probability

of its own class. Given this disadvantage, three different computational method are used to

calculate the probability for each class at the end of hierarchical trees. Probabilistic

cascading, traditional arithmetic mean and weighted average computation methods are used

to compute estimated probability of a given instance. These three methods compute the

probability of each root-to-leaf path for a testing image then the most probable path is

determined.

If looking at the computation methods, Probabilistic Cascading (Kosmopoulos,

Paliouras and Androutsopoulos, 2015), referred as PC, is one of the method studied to

compute probabilities for testing images. It implements like standard cascading such that

probabilities through root-to-leaf path are multiplied to find a class for a given image d (4.1).

In order to find probabilities of each class for image d, a leaf C, a set S of all the ancestors

of C, are needed to taken into computation. So its general formula is:

 (4.1)

33

 As an example, determining the probable path of an image d belonging to Hatchback

class for level-3 hierarchical tree in Figure 4.7 would be explained below for each

computational methods. Assume that probabilities are determined from classifiers of each

ancestor node of Hatchback class is given below:

P(Auto|Root, x) = 0.9 *Root refers to vehicle_type node

P(Hatchback|Auto, x) = 0.8

P(Hatchback, x) = 0.7

With calculated probabilities of classifiers of each ancestor nodes taking formula

(4.1) into calculations, probability of an image d being Hatchback class is computed as

0.504.

Second computation method to calculate probabilities of test images is Traditional

Arithmetic Mean, referred as TAM. In this method, probabilities calculated from classified

from root to leaf nodes are added together and a total value is obtained. To compute the final

probability, this total value is divided by the number of probabilities which are added to sum

(4.2). It was assumed that initial probabilities given in above 0.9, 0.8 and 0.7. Using (4.2),

the final probability of Hatchback class in level-3 hierarchical tree would be 0.8.

(4.2)

 Last but not least, the third computation method to calculate probabilities of testing

images is Weighted Average Computation, referred as WAC. In this method, probabilities

produced from classifiers are multiplied by certain numbers that are weights of probabilities

and added to sum. To compute the final probability, this total value is divided by the sum

of weights (4.3). To compute the final probability, this total value is divided by the sum of

weights (4.3). We assigned the weights according to the level that classifier resides. The

lowest weight was assigned to classifier which is on lowest level, and weights were

increased as the level gets bigger. In this case, when weights are set as 0.1 for vehicle_type

classifier, 0.3 for auto classifier and 0.6 for hatchback classifier regards to initial

probabilities given as 0.9, 0.8 and 0.7, the final probability would be 0.75.

34

(4.3)

When computing final probabilities, for each image and an image’s each class

different probability is calculated. After calculation is done according to computing

methods, results are saved in a file and presented in Chapter 5.

 To conclude, in this chapter, we have introduced the datasets and classification

techniques used in the thesis. In addition, we have explained the approaches we applied to

vehicle classification problem along with the solutions we proposed. In the next chapter,

results of the all experiments performed in this chapter are presented.

35

CHAPTER 5

EXPERIMENTAL RESULTS

 In this section, we present experiment results of both single level classifier and multi

level classifier approaches. We compare the results of experiments performed on BIT

Dataset and Stanford Dataset when single level classifier applied. Also, multi level classifier

and single level classifier approaches are compared by presenting their experiment results

performed on Stanford Dataset.

5.1. Single Level Classifier Experiment Results

During the single level classifier training, the last layers were firstly trained. Then

the lower convolution layers were also released and the whole neural network was trained.

However, since the number of data was low, the lower layers were trained with a lower

learning speed.

5.1.1. BIT Vehicle Dataset

 In first experiments, models are trained on BIT Vehicle Type Dataset giving

different architectures to the environment. Single level classifier training approaches is used

to train on the dataset using ResNet34 architecture with different image sizes.The results for

both last layer training and training all layers are recorded in Table 5.1 including loss of

training, loss of validation, accuracy values and time spent on training.

Looking at the results of the last layer training for each image size, it is observed

that accuracy gradually increase as image size get bigger. While training last layer with

image size 32x32 gives 0.44786 accuracy value, on the other hand training with images

which have 224x224 image size result in 0.65424 accuracy. It means that increasing image

size from 32 to 224 can give better accuracy values by 46%. Besides, it can be observed that

training loss and validation loss are inversely proportional to image size. To sum up,

increasing image size decreases the loss of training and validation and enables models make

more accurate predictions but it also requires more time to spent for training.

36

Table 5.1: Detailed result of training models on BIT Vehicle Dataset with different image

 sizes using ResNet34

Architec

ture

Image

size

Trained

layers

Training

loss

Validation

loss

Accuracy

(%)

Time

ResNet34 32 Last Layer

All Layers

0.63913

0.3936

1.88168

1.92105

0.44786

0.48298

11 min 05s

26 min 59s

 64 Last Layer

All Layers

0.49206

0.23368

1.72825

1.61256

0.52788

0.57277

11 min 17s

27 min 44s

 128 Last Layer

All Layers

0.28462

0.02740

1.62993

1.21851

0.61694

0.74366

12 min 17s

36 min 10s

 224 Last Layer

All Layers

0.29082

0.08114

1.36875

1.01714

0.65424

0.77009

15 min 33s

1h 20min 36s

When comparing last layer experiment results to all layers’, time spent on training

last layer with 32 image size is ~11 minutes and gives 0.44786 accuracy, and time spent on

training all layers with the same image size takes ~27 minutes and gives 0.48298 accuracy.

The time increase is by 146% while the accuracy increase is by 8%. But when we increase

image size from 32 to 224 we observed that accuracy is increased from 0.48298 to 0.77009

by 60% on the other hand time spent is increased from 27 minutes to 81 minutes by 200%.

This feature can be useful for a task requires high accuracy while time can be ignored.

 Figure 5.1: Graph of single level training accuracy values with respect to different image

 size of BIT Dataset images

37

Subsequent experiments were carried out by training different architectures. In

addition to ResNet34 architecture, ResNet50, ResNext50 and Vgg16 architectures were

used to perform experiments of vehicle type classification. Single level hierarchy training

results of both last layer and all layers with 128 image size on BIT Vehicle Dataset using

different architectures are represented in Table 5.2. Because of memory issues, with 224

image size experiments could not be performed on ResNet50 and other architectures. Again

memory was insufficient for experimenting on ResNext50 with 150 image size. That’s why

the biggest image size which is 128 was able to be experimented in all of four architectures.

Looking at accuracy values of last layer training results for each architecture, the best

scenario occurs when using ResNet34 architecture. Compared to other architectures, it has

high accuracy value and it spent least time for training. Furthermore, taking all layers

experiments' results into consideration, ResNet34 has highest accuracy and best time usage

again. The best values in terms of accuracy with respect to time usage are taken in ResNet34

architecture with the lowest loss of a training value and highest accuracy. Compared to

training last layer, after opening all layers and training the network as a whole by ResNet34,

it is observed that accuracy is increased by 21%, while training loss decrease by 90%. One

can interpret from looking at Figure 5.2 that training loss gradually increases on

architectures in order ResNet 34, ResNet50, ResNet50 and Vgg16. With the least time spent

in training, the worst accuracy value was taken in ResNext50 architecture. Most time has

been spent in Vgg16 architecture and has received relatively good accuracy.

Table 5.2: Training result of all layers with 128 image size of BIT Dataset images on

 different architecture models

Architectu

re

Image

size

Trained

layers

Training

loss

Validation

loss

Accuracy

(%)

Time

ResNet34 128 Last Layer

All Layers

0.28462

0.02740

1.62993

1.21851

0.61694

0.74366

12 min 17s

36 min 10s

ResNet50 128 Last Layer

All Layers

0.33033

0.08073

1.50944

1.09149

0.61007

0.73316

12 min 20s

48 min

ResNext50 128 Last Layer

All Layers

0.32642

0.18623

1.41776

1.49338

0.61405

0.64446

13 min 24s

30 min 05s

Vgg16 128 Last Layer

All Layers

0.3853

0.96889

1.46764

1.22042

0.59232

0.71325

18 min 36s

1h 31min 20s

38

Figure 5.2: Graph of training all layers with 128 image size of BIT Dataset images on

 different architecture models

On BIT Vehicle Dataset, experiments are performed with ResNet34, ResNet50,

ResNext50 and Vgg16. For each of these architectures, trainings are studied by different

image sizes. 32x32, 64x64, 128x128 images size are used for each architecture.

Additionally, 150x150 is used for ResNet50 and 224x224 is used for ResNet34. Giving

these parameters as input to experiment environment, we got fourteen variation of single

level classifier training. For each of fourteen variation, we trained fourteen models for 3

epoch with cyclical learning rate. Including training loss, validation loss and accuracy values

the detailed results of all experiments performed on BIT Dataset are further detailed in Table

A.1 in Appendix.

5.1.2. Stanford Dataset

 In this section, single level hierarchy training approach is used to train models in

order for classification of vehicles into nine vehicle type categories of the dataset. Models

are trained on Stanford Car Dataset by differentiating parameters given to experiment

environment such as image size and architectures. For first experiments ResNet34

architecture is used with different image sizes. Experiment results for both last layer training

39

and training all layers are recorded in Table 5.3 including loss of training, loss of validation,

accuracy values and time spent on training.

Table 5.3: Detailed results of training models on BIT Vehicle Dataset with different

 image sizes using ResNet34

Architect

ure

Image

Size

Trained

layers

Training

loss

Validation

loss

Accuracy

(%)

Time

ResNet34 32 Last Layer

All Layers

2.20407

2.08773

2.08856

2.04804

0.28488

0.29349

18s

1 min 40

 64 Last Layer

All Layers

2.067591

1.88601

1.90531

2.01203

0.30233

0.32651

26s

2 min 05s

 128 Last Layer

All Layers

1.55797

1.27692

1.33347

1.33658

0.51744

0.54753

37s

3 min 19s

 224 Last Layer

All Layers

1.32541

0.83031

1.09792

1.05054

0.55814

0.65116

1 min 25s

8 min 20s

If we look at accuracy column of Table 5.3 for 32x32 image size, it can be seen that

the accuracy increases when all layers are opened as it is in BIT Vehicle Dataset

experiments. But this increase is relatively small comparing to increase between trained

layers in BIT Vehicle Dataset. On the other hand, comparing accuracy values of different

image sizes, it become clear that accuracy increases as image size get bigger. While training

last layer with image size 32x32 gives 0.28488 accuracy value, on the other hand training

with images which have 224x224 image size result in 0.55814 accuracy. So, accuracy is

increased by 96%. Looking at all layers training accuracy values, it can be interpreted that

the percentage through accuracy values of bigger image sizes is even more increased. While

training all layers with image size 32x32 gives 0.29349 accuracy value, on the other hand

training with images which have 224x224 image size result in 0.65116 accuracy. The result

is accuracy can be increased by 122% through increasing image size from 32 to 224.

According to line graph representation of accuracy values versus image size in

Figure 5.3, it become clear that accuracy gradually increase as image size increases. This

inference also can be supported with experiment results further detailed in Table A.2 in

Appendix. As in BIT Vehicle Dataset, for Stanford Car Dataset experiments are also

performed with ResNet34, ResNet50, ResNext50 and Vgg16 architectures. For each of

these architectures, trainings are studied by different image sizes. 32x32, 64x64, 128x128

images size are used for each architecture. In addition to these sizes, 150x150 is used for

ResNet50 and 224x224 is used for ResNet34. Giving these parameters as input to

40

experiment environment, fourteen variation of single level classifier training is conducted

using Stanford Car Dataset. Including training loss, validation loss and accuracy values the

detailed results of all experiments performed on Stanford Car Dataset are further detailed in

Table A.2 in Appendix.

Figure 5.3: Graph of single level training accuracy values with respect to different image

 size of Stanford Car Dataset images

 Comparing experiments results of single level classifier on BIT Vehicle Dataset with

results on Stanford Car Dataset, we see that Stanford Car Dataset experiments are performed

in less time than BIT Vehicle Dataset experiments. Main reason behind is that, while BIT

Dataset has minimum 462 images per class of vehicle type, Stanford Dataset has 100 images

per vehicle type label. Because the greater number of the images becomes, it takes more

time to process those images. Another important difference between experiment results of

two datasets is that the accuracy of the same architecture and same image size is smaller on

Stanford Dataset than on BIT Dataset. For example while the accuracy value of last layer

training experiment performed with 32x32 image size and ResNet34 architecture on BIT

Dataset is 0.44786, on the other hand the accuracy value with the same parameters on the

Stanford Dataset is 0.28488. The first reason comes to mind is that, number of the class of

the Stanford Dataset is 9 while it is 6 for BIT Dataset. Another reason could be the lack of

feature for a single label classifier can learn because Stanford Dataset has low number of

images for each vehicle type class. For these reasons we focus on the accuracy of the models

41

trained on Stanford in the rest of the thesis. Firstly, we would like to improve accuracy by

applying ensemble learning and perform fourteen experiments. Results of ensembling

learning experiments are further detailed in Table A.3 in Appendix. Although we

experienced that ensemble learning technique can give relatively better results on accuracy,

we would like to examine the effects of multi - level classifier training for vehicle type

classification problem. Next, we discuss the experiment results of multi - level classifier

trainings.

5.2. Multi Level Classifier Experiment Results

In this section, we give information about experiments performed on Stanford

Dataset using multi level hierarchy approaches. So as to implement multi level hierarchical

classifier training, we visualize the vehicle type classification problem with trees and create

dependency connections in order to build hierarchy as described in Section 4.2.2.2.

Exploiting the dependencies between nodes, we performed experiments on three different

hierarchy level proposed which estimates the probability of each root-to-leaf path through

cascade classification trees. We provide experimental results which indicate that, one can

achieve better results with cascade classifications compared to traditional flat classification.

In order to proceed with multi level classifier experiments Stanford Dataset is re-organized

and test folder was added as in the distribution of folders shown in Table 5.4.

In tree representation the flow starts from root and goes through the leaf nodes such

that each node represents a classifier. Through the achieving at building multi level

hierarchies, following the path from root to the leaves of each hierarchical cascade tree, ten

classifiers are trained in total. Details of each classifier are given below with relation of

nodes in Figures.

1. vehicle_type: Determines probabilities of an image for hatchback, mini, minivan,

panelvan, pickup, sedan, sport, station, suv labels (see Figure 4.5)

2. vehicle_type: Determines probabilities of an image for terrain, automobile and van

categories (see Figure 4.6)

3. auto_nonauto: Determines probabilities of an image for automobile and non-

automobile categories (see Figure 4.7)

4. auto: Determines probabilities of an image for hatchback and sedan categories (see

Figure 4.7)

5. auto: Determines probabilities of an image for hatchback, mini, sedan, sport and

station labels (see Figure 4.6)

42

6. nonauto: Determines probabilities of an image for terrain and van categories (see

Figure 4.7)

7. terrain: Determines probabilities of an image for pick-up and suv labels (see Figure

4.6 and Figure 4.7)

8. hatchback: Determines probabilities of an image for hatchback and mini labels (see

Figure 4.7)

9. sedan: Determines probabilities of an image for sedan, sport and station labels (see

Figure 4.7)

10. van: Determines probabilities of an image for minivan and panelvan labels (see

Figure 4.7 and 4.7)

Table 5.4: Distribution of images per class for 100~ Stanford Car dataset

Class Train Valid Test TOTAL

Hatchback 70 15 15 100

Mini 70 9 9 88

Minivan 70 15 15 100

Panelvan 70 15 15 100

Pick-up 70 15 15 100

Sedan 70 15 15 100

Sport 70 15 15 100

Station 70 15 15 100

Suv 70 15 15 100

TOTAL 630 129 129 888

Next, experiments are performed by implementing three probabilistic computation

method explained in Section 4.2.2.2. With given dataset information, multi level classifiers

are trained on ResNet34 architecture with image size 224. Classification is only performed

on the leaves of hierarchical cascade tree and each image belongs to only one class. The

number of images in the test folder are 129 and the results are mainly evaluated on

measuring accuracy. Experiments to compute different methods following different tree

hierarchies are done in five times and recorded in detailed Table A.5 in Appendix.

Calculated mean values are demonstrated in Table 5.5. The time required to train all

43

classifiers of level-2 and level-3 hierarchies including computing final estimation for test

images took about 3 to 4 minutes for each cycle. For whole 5 five times experimenting it

took 17 minutes and 50 seconds.

Table 5.5: Mean and standard deviation values for computation methods on hierarchical

 trees

Method Level-1 Level-2 Level-3

PC 0.675723 0.686169 0.679479

std 0.055763 0.051349 0.063217

WAC 0.675723 0.644069 0.655853

std 0.055763 0.057612 0.054077

TAM 0.675723 0.69018 0.681934

std 0.055763 0.044716 0.057676

According to computed mean values for each computation method-hierarchical tree

level tuples in Table 5.5, the best accuracy result is appear to be for Traditional Arithmetic

Mean (referred as TAM in Section 4.2.2.2) computation method applied on the hierarchical

tree with level-2. On the one hand, the Weighted Average Computation (referred as WAC

in Section 4.2.2.2) method for all tree levels get the worst results, while on the other hand,

the Probabilistic Cascading (referred as PC in Section 4.2.2.2) computation method applied

on the hierarchical tree with level-2 is second, and the TAM computation method applied

on the hierarchical tree with level-3 gets the third in the ranking. Looking at Table A.5 in

Appendix, because of the accuracy values being close to each other, standard deviation is

calculated for each computation method-hierarchical tree level tuples. Standard deviation

gives information about distribution of measurements for a specific group, that is how far

they are distanced from its average value. It assesses the amount of dispersion or

unsteadiness around the mean. Dispersion is the difference between the actual value and the

mean value. The larger the dispersion between these two values is, the higher the standard

deviation gets. Therefore, a low standard deviation indicates that distribution is stable thanks

to most values are at near of average, while a high standard deviation states that the values

are distanced from aveage, which results in distribution becoming unstable. Standard

deviation is computed using its general formula as in (5.1) and computed values are

demonstrated as std in Table 5.5.

44

 (5.1)

The recorded standard deviation values in Table 5.5 also supports the first inference.

The smallest standard deviation value is calculated for TAM computation method applied

on level-2 hierarchical tree which means that accuracy values of each experiments of five is

close to each other and dispersion is stable. For the purpose of supporting this conclusion,

the same experiments were repeated by increasing the number of images in the data set.

Number of images per class for new experiment are detailed below in Table 5.6.

Table 5.6: Distribution of images per class for 200~ Stanford Car dataset

Class Name Train Valid Test TOTAL

Hatchback 163 33 33 229

Mini 141 30 30 201

Minivan 160 34 34 228

Panelvan 138 29 29 196

Pick-up 140 30 30 200

Sedan 165 32 32 229

Sport 147 32 32 211

Station 151 31 32 214

Suv 157 33 33 223

TOTAL 1362 284 285 1931

With newly added images, total number of instances of the data set is doubled from

888 to 1931. Experiments performed for each computation method-hierarchical tree level

tuple are performed five times using the new data set that is doubled in number of images,

and keeping other values such as picture size and architecture fixed. So as to make

comparisons, the mean of five experimental results was calculated for each tuple and

recorded in the Table 5.7. The time required to train all classifiers of level-2 and level-3

45

hierarchies including computing final estimation for test images took about 7 to 8 minutes

for each cycle. For whole 5 five times experimenting it took 41 minutes and 42 seconds.

Table 5.7: Mean values for computation methods applied on hierarchical trees for the

 number of images increased dataset

Method Level-1 Level-2 Level-3

PC 0.695387 0.755859 0.721313

std 0.024096 0.047230 0.041244

WAC 0.695387 0.695875 0.712125

std 0.024096 0.047037 0.040596

TAM 0.695387 0.762812 0.731125

std 0.024096 0.027773 0.042588

As a result in these calculations, the best accuracy value is appear to be for TAM

computation method applied on the hierarchical tree with level-2. The same order also

occurs in last experiment results is that the PC computation method applied on the

hierarchical tree with level-2 is second, and the TAM computation method applied on the

hierarchical tree with level-3 gets the third in the ranking. In Figure 5.4, final accuracy

values for each probability computation method are represented for both initial dataset and

number of images increased.

46

Figure 5.4: Mean values for computation methods applied on hierarchical trees for two

 datasets with 100~ per images (top) and with 200~ per images (bottom)

47

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

 In this study, utilizing from transfer learning methodology, models are trained in

order to construct multi - level classifier hierarchies, each of which determine types of

vehicles. Two datasets were selected for classification and the results were shared. In the

first, single - level classifier training experiments are performed for BIT Dataset and

Stanford Dataset, while in the second multi - level classifier training experiments are carried

out for three different classifier hierarchy. The results were evaluated using the same

Stanford Dataset class arrangement for both single - level classifier training and multi - level

classifier training experiments.

 Experimental studies were started by preparing data sets in first. BIT Dataset is

acquired by contacting Beijing Institute of Technology and Stanford Dataset is obtained

from Stanford University’s CarComp Dataset. BIT Dataset has six vehicle type classes

which are Bus, Microbus, Minivan, Sedan, Truck, Suv, on the other hand, Stanford Dataset

is manually arranged to have nine vehicle type classes which are Hatchback, Mini, Minivan,

Panelvan, Pick-up, Sedan, Sport, Station, Suv. The number of images per class, the number

of classes and their effects to results are represented in this thesis using two different datasets

of which has different number of classes. The number of images per class in BIT Dataset

and Stanford Dataset is different to the point that for same classes there is a difference of

forty five times. For example, BIT Dataset has 5627 images for Sedan class while Stanford

Dataset has 100 images. Due to the high number of images per class in BIT Dataset, trained

model learn more about each class which allows the trained model to yield to better results.

Furthermore thinking in terms of number of classes, it is expected for the dataset which have

the lower number of classes to give more accurate predictions. Because as the number of

classes increase it becomes more ambiguous for the classifier to make predictions.

Naturally, the Stanford Dataset with the less number of classes gave relatively less accurate

results but we enhanced the model by providing synthetic data and applying ensembling

methodology. Furthermore, ensembling experiments prove that applying ensembling using

two different models with different image sizes for the same architecture enables the merged

48

model to make more accurate predictions even better than the dataset that has more number

of classes than itself.

In single - level classifier training, last layer or all layers training of pre-trained deep

neural networks for vehicle type classification has been studied for two different datasets.

For each dataset, experiments are carried out with different image size and different pre-

trained deep neural networks are used. Image sizes differs from 32x32 to 224x224, including

64x64, 128x128, 150x150 image sizes. Pre-trained deep neural networks used in this thesis

are ResNet34, ResNet50, ResNext50 and Vgg16. In experiments performed on both data

sets, best results were obtained when image size is bigger for each network choice in terms

of accuracy comparison. However, some situations may require involving low resolution

images such as zooming when taking a photo. This the main reason why we include 32x32

images in experiments. It is to give insight about how model behave in certain conditions.

When the same biggest image size in all networks are taken into consideration for each

architecture, the results are very close to each other that it only differs in terms of decimals

among architectures. In addition, although Stanford Dataset has more classes than BIT

Dataset, training of Stanford Dataset requires much less time than training of BIT Dataset.

That’s why we researched on how to increase accuracy of training of Stanford Dataset by

performing multi - level hierarchy training.

 In multi - level training experiments, Stanford Dataset was used to perform

experiments by building different training hierarchies on account of studying effects of

cascade probability computation. The results of three different computational methods

applied on three hierarchies were compared. In order to compare multi - level classifier

training experiments results to, a base case scenario with flat hierarchy is created by

separating test images from Stanford Dataset and training on ResNet34 with 224x224 image

size. Next, the hierarchies with 2 unit height and 3 unit height are built by training 10 models

for each of node of hierarchical trees with the same configuration to the base scenario.

Therefore, probabilities for each class of each image in test folder are calculated by

following the hierarchies. Three different computational techniques are compared in terms

of number of correctly classified images and their percentage. As a result, it was observed

how accurate the overall hierarchies make predictions by following three different training

paths with different hierarchical structure and computing probabilities with three

computational methods. After repeating experiments 5 times and calculating the mean of 5

results of applying each computational methods on multi - level training hierarchies, it was

observed that level - 2 hierarchical tree makes better prediction than other hierarchies when

Traditional Arithmetic Mean (TAM) computation is applied. Repeating the same

49

experiment by increasing the number of images from ~100 to ~200 per class in Stanford

Dataset we repeated the same experiments. Again the more accurate prediction is performed

by following level - 2 hierarchy applying TAM technique.

6.2. Future Work

 In this thesis, it was observed how a data set was achieved by following three

different training mechanisms/paths with different hierarchical structure. Studies have been

done with a limited size image with Stanford Dataset. The main limitation here are the

shortcomings in the existing graphics card infrastructure. It is foreseen that better results can

be obtained if the data set is enlarged and the studies are repeated especially with larger

images. It is considered to include more images into the dataset which are taken from

different angles or vehicles that are more covered by surrounding objects. The results

obtained at this stage are promising for successful classification for more difficult data.

 One of the aspect that this study can be improved is applying pre-processing before

training a model. The effects of removing background from the images or cropping the parts

other than a vehicle can be studied. By separating the external factors from the pictures, the

success rate can also be increased. Besides, techniques for creating synthetic data can also

be applied for pre-processing such as virtually creating by predicting how an image can be

of a larger image size.

 Another future aspect could be observing the effects of different hierarchies. For

example, firstly a model can be trained to recognize from which angle an image taken. Then,

according to the prediction of firstly trained classifier, secondly trained classifiers are able

to predict the vehicle type in an image among the dataset that has only one point of view of

vehicle types. Furthermore, the effects of different cascade probabilistic computation

methods can be studied.

 The results in the study show that multi - level classifier training also increases the

success when there is sufficient data. This increase in success is relatively long during multi

- level training, but it is a fact that it should not be ignored that more accurate results can be

produced in cases where there is no time problem.

50

REFERENCES

Abadi, Martin, Ashish Agarwal, Paul Barham, and et al. (2016) “Tensorflow: Large-scale

machine learning on heterogeneous distributed systems”. arXiv:1603.04467.

Baştanlar, Yalın and Mustafa Özuysal. (2014) “Introduction to machine learning”,

miRNomics: MicroRNA Biology and Computational Analysis. Humana Press, Totowa,

NJ, pp. 105-128.

Chollet, François. (2015) Keras. Accessed Apr 4, 2020.

https://keras.io/.

Dong, Zhen, Yuwei Wu, Mingtao Pei, and Yunde Jia. (2015) “Vehicle type classification

using a semisupervised convolutional neural network”, IEEE Transactions on

Intelligent Transportation Systems, Vol.16, Issue.4, pp. 2247–2256.

Fazli, Saeid, Shahram Mohammadi, and Morteza Rahmani. (2012) “Neural Network

based Vehicle Classification for Intelligent Traffic Control”, International Journal of

Soft. Eng. & Applications Vol.3, No.3, pp. 17-22. DOI: 10.5121/ijsea.2012.3302

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. (2016) “Deep learning”, MIT

press, pp. 290-292.

https://www.deeplearningbook.org/

Google AI Blog. (2016) AlphaGo: Mastering the ancient game of Go with Machine

learning.

https://ai.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html

Haskell, Richard, and Ali Noui-Mehidi. (1989) “Design of hierarchical classifiers”, Comp.

in the 90′s: The First Great Lakes Comp. Science Con. Proc., Michigan, USA. pp.

118-124.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. (2016)“Deep residual learning

for image recognition”, IEEE CVPR, Las Vegas, NV, USA.

DOI:10.1109/CVPR.2016.90.

Howard, Jeremy, and Rachel Thomas. (2017) fast.ai: making neural nets uncool again,

Accessed Feb 15, 2017.

http://fast.ai.

https://keras.io/
https://www.deeplearningbook.org/
https://ai.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html

51

Izmailov, Pavel, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew G.

Wilson.(2018)“Averaging weights leads to wider optima and better generalization”,

Proc. Of Inter. Conf. On Uncertainty in A.I. (UAI 2018), arXiv: 1803.05407.

Jayawardena, Srimal. (2013) “Image based automatic vehicle damage detection”, Ph.D.

dissertation, Australian National University.

Jordan, Jeremy. (2018) Setting the learning rate of your neural network. 2018, accessed:

Mar 1, 2020.

https://www.jeremyjordan.me/nn-learning-rate/

Jordan, Michael, and Tom M. Mitchell. (2015) “Machine learning: Trends, perspectives,

and prospects”, Science Vol.349, Issue.6245, pp. 255-260.

Kosmopoulos, Aris, Georgios Paliouras, Ion Androutsopoulos. (2015) “Probabilistic

cascading for large-scale hierarchical classification”. arXiv: 1505.02251.

Krause, Jonathan, Michael Stark, Jia Deng, and Li Fei-Fei. (2013) “3D Object

Representations for Fine-Grained Categorization”, 4th IEEE Workshop on 3D

Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia.

Kukacka, Jan, Vladimir Golkov, and Daniel Cremers. (2017) “Regularization for deep

learning: A taxonomy”, CoRR. arXiv:1710.10686, 2017.

LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick Haffner. (1998) “Gradient-based

learning applied to document recognition”, Proceedings of the IEEE. Vol.86, Issue.11,

pp. 2278-2324. DOI:10.1109/5.726791

Loshchilov, Ilya, and Frank Hutter. (2017) “SGDR: stochastic gradient descent with

restarts”, International Conference on Learning Representations. arXiv:1608.03983.

Mathworks Inc. (1994) What Makes CNNs So Useful. Accessed: Feb, 2, 2020.

www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

Pan, Sinno Jialin, and Qiang Yang. (2010) “A survey on transfer learning”, IEEE Trans.

Knowl. and Data Eng., Vol.22, Issue.10, pp. 1345–59. DOI: 10.1109/TKDE.2009.191.

Patil, Kalpesh, Mandar Kulkarni, Anand Sriraman, and Shirish Karande. (2017) “Deep

learning based damage classification”. 16th IEEE International Conference on

Machine Learning and Applications (ICMLA), pp. 50-54.

https://www.jeremyjordan.me/nn-learning-rate/
http://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

52

Paszke, Adam, Sam Gross, Soumith Chintala, and Gregory Chanan. (2017) “PyTorch:

tensors and dynamic neural networks in python with strong gpu acceleration”,

Accessed Feb 15, 2020.

https://pytorch.org/

Ras, Zbigniew W., Agnieszka Dardzinska and Wenxin Jiang. (2010) “Cascade Classifiers

for Hierarchical Decision Systems”, in Advances in Machine Learning I. Studies in

Computational Intelligence, Vol 262. Springer, Berlin, Heidelberg.

Roecker Max N., Yandre M.G. Costa, Joao L.R. Almeida, and Gustavo H.G Matsushite.

(2018) “Automatic vehicle type classification with convolutional neural networks”,

25th Inter. Conf. on Systems Signals and Image Proc. (IWSSIP), pp. 1-5.

Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms.

arXiv: 1609.04747.

Simonyan, Karen, and Andrew Zisserman. (2015) “Very deep convolutional networks for

large-scale image recognition”, International Conference on Learning

Representations, pp. 1–14. arXiv:1409.1556.

Smith, Leslie N.(2017)“Cyclical learning rates for training neural networks” IEEE Winter

Conference on Applications of Computer Vision., Santa Rosa, CA, USA pp. 464–472.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, and Dumitru Erhan. (2015) “Going deeper with convolutions”, Proc. IEEE

Conf. Comp. Vis. Pattern Recog., Boston, MA, USA, pp 1-9.

Vazquez, Favio. (2017) Deep Learning Made Easy with Deep Cognition. Accessed Feb 2,

2020.

becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Won, Myounggyu. (2020) “Intelligent Traffic Monitoring Systems for Vehicle

Classification: A Survey”, IEEE Access, Vol 8, pp. 73340 - 73358 arXiv:1910.04656.

Yan Zhicheng, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste,

Wei Di, and Yizhou Yu. (2015) “HD-CNN: Hierarchical Deep Convolutional Neural

Network for Large Scale Visual Recognition”, Proceedings of the International

Conference on Computer Vision (ICCV), pp. 2740–2748. arXiv:1410.0736.

Yu, Lequan, Hao Chen, Qi Dou, Jin Qin, and Pheng-Ann Heng. (2017) “Automated

melanoma recognition in dermoscopy images via very deep residual networks”, IEEE

Transactions on Medical Imaging, Vol. 36, No. 4, pp. 994 - 1004.

https://pytorch.org/
https://ieeexplore.ieee.org/author/37085692953
https://ieeexplore.ieee.org/author/37085689358
https://ieeexplore.ieee.org/author/37680831200
https://ieeexplore.ieee.org/author/37536106400
https://ieeexplore.ieee.org/author/37278026400
https://ieeexplore.ieee.org/author/37278026400
https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351
https://arxiv.org/abs/1910.04656
https://ieeexplore.ieee.org/author/37085440300
https://ieeexplore.ieee.org/author/37073917900
https://ieeexplore.ieee.org/author/37589713400
https://ieeexplore.ieee.org/author/37085680929
https://ieeexplore.ieee.org/author/37085680929
https://ieeexplore.ieee.org/author/37085699425
https://ieeexplore.ieee.org/author/37085681287

53

APPENDICES

54

APPENDIX A

DETAILED EXPERIMENT RESULTS

1. BIT Vehicle Type Dataset Experiment Results Comparison

Table A.1: Experiment result of training last layer and all layers of each architecture using

 BIT Dataset images with six classes.

Architectu

re

Image

size

Trained

layers

Training

loss

Validation

loss

Accuracy

(%)

Time

ResNet34 32 Last Layer

All Layers

0.63913

0.3936

1.88168

1.92105

0.44786

0.48298

11 min 05s

26 min 59s

 64 Last Layer

All Layers

0.49206

0.23368

1.72825

1.61256

0.52788

0.57277

11 min 17s

27 min 44s

 128 Last Layer

All Layers

0.28462

0.02740

1.62993

1.21851

0.61694

0.74366

12 min 17s

36 min 10s

 224 Last Layer

All Layers

0.29082

0.08114

1.36875

1.01714

0.65424

0.77009

15 min 33s

1h 20min 36s

ResNet50 32 Last Layer

All Layers

0.57006

0.33643

1.87802

1.82212

0.46742

0.49457

10 min 52s

26 min 19s

 64 Last Layer

All Layers

0.47035

0.18029

1.8501

1.40715

0.52824

0.62925

11 min 19s

27 min 49s

 128 Last Layer

All Layers

0.33033

0.08073

1.50944

1.09149

0.61007

0.73316

12 min 20s

48 min

 150 Last Layer

All Layers

0.29839

0.06378

1.52645

1.1183

0.63903

0.75634

14 min 14s

1h 8 min 21s

ResNext50 32 Last Layer

All Layers

0.54844

0.34427

1.81678

1.84558

0.49131

0.49819

10 min 50s

25 min 53s

 64 Last Layer

All Layers

0.45647

0.15135

1.71525

1.40161

0.5344

0.64337

12 min 02s

27 min 32s

 128 Last Layer

All Layers

0.32642

0.18623

1.41776

1.49338

0.61405

0.64446

13 min 24s

30 min 05s

Vgg16 32 Last Layer

All Layers

0.59981

0.29486

1.87465

0.66550

0.48226

0.53005

11 min 12 s

26 min 26s

 64 Last Layer

All Layers

0.51266

0.17884

1.71787

1.52944

0.53983

0.61115

12 min

35 min 43s

 128 Last Layer

All Layers

0.3853

0.96889

1.46764

1.22042

0.59232

0.71325

18 min 36s

1h 31min 20s

55

2. Stanford Vehicle Type Dataset Experiment Results Comparison

Table A.2: Experiment results of training last layer and all layers of each architecture

 using Stanford Dataset images with nine classes

Architecture

Image

Size

Trained

layers

Training

loss

Validation

loss

Accuracy

(%)

Time

ResNet34 32 Last Layer

All Layers

2.20407

2.08773

2.08856

2.04804

0.28488

0.29349

18s

1 min 40

 64 Last Layer

All Layers

2.067591

1.88601

1.90531

2.01203

0.30233

0.32651

26s

2 min 05s

 128 Last Layer

All Layers

1.55797

1.27692

1.33347

1.33658

0.51744

0.54753

37s

3 min 19s

 224 Last Layer

All Layers

1.32541

0.83031

1.09792

1.05054

0.55814

0.65116

1 min 25s

8 min 20s

ResNet50 32 Last Layer

All Layers

2.14952

2.07112

1.98640

1.99301

0.27326

0.28535

24s

1 min 32s

 64 Last Layer

All Layers

1.75417

1,63388

1.81545

1.76889

0.36628

0.38884

24s

1 min 55s

 128 Last Layer

All Layers

1.24560

0.33438

1.20947

1.24685

0.61628

0.63372

48s

4 min 38s

 150 Last Layer

All Layers

1.09324

0,6944

1.16414

1.03003

0.59883

0.68023

1 min 07s

6 min 54s

ResNext50 32 Last Layer

All Layers

2.00160

1,96781

1.94285

1.9163

0.23256

0.24186

20s

1 min 15s

 64 Last Layer

All Layers

1.80058

1.60042

1.79406

1.76686

0.37209

0.39651

26s

2 min 20s

 128 Last Layer

All Layers

1.2377

-

1.0685

-

0.60465

-

59s

-

Vgg16 32 Last Layer

All Layers

2.25661

2.02498

2.09126

2.05267

0.26163

0.27419

19s

1 min 24s

 64 Last Layer

All Layers

2.06965

1.74158

1.75912

1.67859

0.37791

0.45349

42s

3 min 20s

 128 Last Layer

All Layers

1.65253

1.15283

1.41063

1.11932

0.49419

0.61047

1 min 47s

9 min 12s

56

3. Ensembling Results

In order to improve accuracy of experiments performed on Stanford Dataset,

ensemble learning technique is applied. So as to apply ensemble learning additional 14

experiments was conducted. In order to get best accuracy results of ensembling technique,

the model trained with biggest image size on the same architecture is chosen as a second

model for each architecture. For example, implementing ensemble learning on ResNet34

architecture, the model trained with the same architecture and 224 image size is used as a

second model for every other trained model with different image size. The result accuracy

values for ResNet34 architecture can be seen in Table A.3.

Table A.3: Experiment results of ensembling on ResNet34 architecture

Architecture

Image

Size

Accuracy

(%)

Accuracy

(by ensembling)

Second Model

Image Size

ResNet34 32 0.28488 0.488372 224

 64 0.30233 0.552326 224

 128 0.51744 0.593721 224

 224 0.55814 0.602791 224

Figure A.1: Graph of comparing accuracy values of ensembling on ResNet34 architecture

57

When the experimental results of the last layer trainings on the ResNet34

architecture using different image sizes were compared, it was found that the accuracy

values obtained when the ensembling technique was applied were better. As the image size

gets smaller, the accuracy improvement rate increases. Experiment on size 224 shows that

accuracy is improved from 0.55814 to 0.602791 with increase of 0.044651 by 8% while

experiment on size 32 shows that accuracy is improved from 0.28488 to 0.488372 with the

increase of 0.203492 by 71%. As for the experiment results on other selected architectures

can be found in Table A.4. For ResNet50, ResNext50 and Vgg16 architectures, ensembling

learning is applied with trained models by sizes 150, 128 and 128 in respectively.

Table A.4: Experiment results of applying ensembling learning for models trained on

 ResNet34, ResNet50, ResNext50 and Vgg16 architectures

Architecture

Image

Size

Accuracy

(%)

Accuracy

(by ensembling)

Second

Model

Image Size

ResNet34 32 0.28488 0.488372 224

 64 0.30233 0.552326

 128 0.51744 0.593721

 224 0.55814 0.602791

ResNet50 32 0.27326 0.50814 150

 64 0.36628 0.551395

 128 0.61628 0.633721

 150 0.59883 0.636977

ResNext50 32 0.23256 0.494186 128

 64 0.37209 0.552326

 128 0.60465 0.616279

Vgg16 32 0.26163 0.446512 128

 64 0.37791 0.493023

 128 0.49419 0.510465

Comparing the accuracy values of each single level classifier of Ensemble learning

experiments to BIT Dataset experiments, we can say that accuracy values obtained by

58

applying ensemble learning only better from Stanford Dataset experiment results but not

better from the accuracy values obtained by experimenting on BIT Dataset.

59

4. Multi-Level Experiment Results with 100~ Images per Class

Table A.5: Mean values for computation methods applied on hierarchical trees for initial

 dataset

Method Level-1 Level-2 Level-3

PC 0.604419 0.648438 0.671875

 0.680687 0.625 0.612812

 0.622308 0.664062 0.612812

 0.75 0.736472 0.773438

 0.7212 0.756875 0.726457

mean 0.675723 0.686169 0.679479

std 0.055763 0.051349 0.063217

WAC 0.604419 0.64979 0.689688

 0.680687 0.558925 0.568125

 0.622308 0.601362 0.617188

 0.75 0.709125 0.703125

 0.7212 0.701141 0.701141

mean 0.675723 0.644069 0.655853

std 0.055763 0.057612 0.054077

TAM 0.604419 0.664062 0.671875

 0.680687 0.63465 0.61467

 0.622308 0.65625 0.632812

 0.75 0.769062 0.773438

 0.7212 0.726875 0.716875

mean 0.675723 0.69018 0.681934

std 0.055763 0.044716 0.057676

60

5. Multi - Level Experiment Results with 200~ Images per Class

Table A.6: Mean values for computation methods applied on hierarchical trees for the

 number of images increased dataset

Method Level-1 Level-2 Level-3

PC 0.701754 0.78125 0.734375

 0.69338 0.78523 0.726562

 0.723183 0.710938 0.710938

 0.707317 0.8125 0.78125

 0.651303 0.689375 0.653438

mean 0.695387 0.755859 0.721313

std 0.024096 0.047230 0.041244

WAC 0.701754 0.758438 0.752188

 0.69338 0.745312 0.757812

 0.723183 0.65375 0.691875

 0.707317 0.645312 0.647812

 0.651303 0.676562 0.710938

mean 0.695387 0.695875 0.712125

std 0.024096 0.047037 0.040596

TAM 0.701754 0.789062 0.734375

 0.69338 0.765625 0.757812

 0.723183 0.733125 0.710938

 0.707317 0.796875 0.789062

 0.651303 0.729375 0.663438

mean 0.695387 0.762812 0.731125

std 0.024096 0.027773 0.042588

61

APPENDIX B

DEEP LEARNING SCRIPT DEVELOPED IN THIS THESIS

Put these at the top of every notebook, to get automatic reloading and inline plotting

%reload_ext autoreload

%autoreload 2

%matplotlib inline

This file contains all the main external libs we'll use

from fastai.imports import *

from fastai.transforms import *

from fastai.conv_learner import *

from fastai.model import *

from fastai.dataset import *

from fastai.sgdr import *

from fastai.plots import *

PATH_test = "test/"

sz=224# size that images will be resized to

arch=resnet34

result_ct_mult = []

result_ct_cond = []

result_ct_avg = []

def trainModel(path, v_test_with_labels):

 if v_test_with_labels == True:

 data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz),

test_name=PATH_test, test_with_labels=v_test_with_labels)

 learn = ConvLearner.pretrained(arch, data, precompute=True)

 learn.fit(0.01, 3)

 else:

 data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz),

test_name=PATH_test)

 learn = ConvLearner.pretrained(arch, data, precompute=True)

 learn.fit(0.01, 3)

 return data, learn

def trainAndSave(path, nameToSave, v_test_with_labels, isReset=False):

 if(isReset):

 shutil.rmtree(f'{path}tmp', ignore_errors=True)

 data, learner = trainModel(path, v_test_with_labels);

 learner.save(nameToSave)

 return data, learner

def loadModel(path, saved_model_name, v_test_with_labels):

 if v_test_with_labels == True:

62

 data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz),

test_name=PATH_test, test_with_labels=v_test_with_labels)

 learn = ConvLearner.pretrained(arch, data, precompute=True)

 learn.load(saved_model_name)

 else:

 data = ImageClassifierData.from_paths(path, tfms=tfms_from_model(arch, sz),

test_name=PATH_test)

 learn = ConvLearner.pretrained(arch, data, precompute=True)

 learn.load(saved_model_name)

 return data, learn

def createImgProbPairForGroundTruth(fpaths, preds):#an array of an img name relative to

its probability [img name]

 img_names = [os.path.basename(d) for d in fpaths]

 return np.asarray(img_names)

def getPreds(learn):#an array of an img name relative to its probability [img name]

 log_preds = learn.predict(is_test=True)#log_preds.shape

 preds = np.argmax(log_preds, axis=1) # from log probabilities to 0, 1, 2,3,4,5,6,7,8

 probs = np.exp(log_preds[:]) # pr(hatchback)

 return preds, probs

def arrangeProbs(img_names_truth, img_names_new, preds_new, probs_new,

class_count):

 probs_result = np.zeros(len(img_names_truth)*class_count)

 probs_result = probs_result.reshape(len(img_names_truth), class_count)

 preds_result = np.zeros(len(preds_new))

 #img_names_result = []

 for i in range(len(img_names_truth)):

 img_idx = np.where(img_names_new == img_names_truth[i])

 preds_result[i] = preds_new[img_idx[0][0]];

 probs_result[i] = probs_new[img_idx[0][0]];

 return preds_result, probs_result

def calculateAccuracy(v_preds, v_labels):

 sum = 0

 for i in range(len(v_preds)):

 x = v_preds[i]

 y = v_labels[i]

 if x == y:

 sum = sum +1

 print(sum/len(v_preds))

 return sum/len(v_preds)

def getProbs(img_names, learn, data, classCount=2):#an array of an img name relative to

its probability [img name]

 preds, probs = getPreds(learn);

 img_names_created =

createImgProbPairForGroundTruth(np.asarray(data.test_ds.fnames),preds)

 res_preds, res_probs = arrangeProbs(img_names, img_names_created, preds, probs,

classCount)

 return res_probs

63

#hierachical classifiers computation methods

def computeWeightedAverage(v_prob_list):#1=WAC

 x = 0

 v_arr = v_prob_list

 if len(v_prob_list) == 2:

 return 0.3*v_arr[0]+0.7*v_arr[1]

 else:

 return 0.1*v_arr[0]+0.3*v_arr[1]+0.6*v_arr[2]

def computeMeanProbability(v_prob_list):#2=TAM

 x = 0

 calculated_prob = 0

 v_arr = v_prob_list

 if len(v_prob_list) == 2:

 return (v_arr[0]+v_arr[1])/2

 else:

 return (v_arr[0]+v_arr[1]+v_arr[2])/3

def computeProbabilisticCascading(v_prob_list):#3=PC

 x = 0

 calculated_prob = 0

 v_arr = v_prob_list

 if len(v_prob_list) == 2:

 return v_arr[0]*v_arr[1]

 else:

 return v_arr[0]*v_arr[1]*v_arr[2]

def computeProbs(v_prob_list, methodType):

 if methodType == 1:

 return computeWeightedAverage(v_prob_list)

 elif methodType == 2:

 return computeMeanProbability(v_prob_list)

 else:

 return computeProbabilisticCascading(v_prob_list)

def computeTreeHeightProbs(treeHeight, methodType, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class):

 if treeHeight == 2:

 return calculateProbsH2(methodType, probs_vehicle_type_3class,

probs_auto_5class, probs_van, probs_arazi)

 else:

 return calculateProbsH3(methodType, probs_auto_nonauto, probs_auto_2class,

probs_nonauto, probs_hatchback, probs_van, probs_arazi, probs_sedan)

def calculateProbsH2(methodType, probs_vehicle_type_3class, probs_auto_5class,

probs_van, probs_arazi):

 probs_hier = np.ones((128, 9))

 for i in range(len(probs_hier)):

64

 probs_hier[i][0] =

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][0]],methodType)#h

atchback

 probs_hier[i][1] =

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][1]],methodType)#m

ini

 probs_hier[i][2] =

computeProbs([probs_vehicle_type_3class[i][2],probs_van[i][0]],methodType)#minivan

 probs_hier[i][3] =

computeProbs([probs_vehicle_type_3class[i][2],probs_van[i][1]],methodType)#panelvan

 probs_hier[i][4] =

computeProbs([probs_vehicle_type_3class[i][0],probs_arazi[i][0]],methodType)#pickup

 probs_hier[i][5] =

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][2]],methodType)#se

dan

 probs_hier[i][6] =

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][3]],methodType)#sp

or

 probs_hier[i][7] =

computeProbs([probs_vehicle_type_3class[i][1],probs_auto_5class[i][4]],methodType)#st

ation

 probs_hier[i][8] =

computeProbs([probs_vehicle_type_3class[i][0],probs_arazi[i][1]],methodType)#suv

 return probs_hier

def calculateProbsH3(methodType, probs_auto_nonauto, probs_auto_2class,

probs_nonauto, probs_hatchback, probs_van, probs_arazi, probs_sedan):

 probs_hier = np.ones((128, 9))

 for i in range(len(probs_hier)):

 probs_hier[i][0] =

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][0],probs_hatchback[i][0]],

methodType)#hatchback

 probs_hier[i][1] =

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][0],probs_hatchback[i][1]],

methodType)#mini

 probs_hier[i][2] =

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][1],probs_van[i][0]],methodTy

pe)#minivan

 probs_hier[i][3] =

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][1],probs_van[i][1]],methodTy

pe)#panelvan

 probs_hier[i][4] =

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][0],probs_arazi[i][0]],methodT

ype)#pickup

 probs_hier[i][5] =

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][0]],meth

odType)#sedan

 probs_hier[i][6] =

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][1]],meth

odType)#spor

65

 probs_hier[i][7] =

computeProbs([probs_auto_nonauto[i][0],probs_auto_2class[i][1],probs_sedan[i][2]],meth

odType)#station

 probs_hier[i][8] =

computeProbs([probs_auto_nonauto[i][1],probs_nonauto[i][0],probs_arazi[i][1]],methodT

ype)#suv

 return probs_hier

def computeTreeHeightPreds(probs_hier):

 tmp_arr_probs_hier = []

 tmp_arr_probs_class_idx_hier = []

 for i in range(len(probs_hier)):

 tmp_arr_probs_hier = probs_hier[i,:]

 max_prob_hier = np.max(tmp_arr_probs_hier)#max class prob for each image

 max_prob_idx_hier = np.where(tmp_arr_probs_hier == max_prob_hier)

 tmp_arr_probs_class_idx_hier.append(max_prob_idx_hier[0][0])

 return tmp_arr_probs_class_idx_hier

def doExperiment(PATH, i, isReset):

 #train and save classifiers

 data_9class, learner_9class = trainAndSave(PATH + "vehicle_type_9class/",

"vehicle_type_9class", True, isReset);#hatchback, mini, minivan, panelvan, pickup, sedan,

spor, station suv

 data_auto_nonauto, learner_auto_nonauto = trainAndSave(PATH + "auto_nonauto/",

"auto_nonauto", False, isReset);#auto, nonauto

 data_auto_2class, learner_auto_2class = trainAndSave(PATH + "auto_2class/",

"auto_2class", False, isReset);#hatchback, sedan

 data_nonauto, learner_nonauto = trainAndSave(PATH + "nonauto/", "nonauto", False,

isReset);#arazi, van

 data_hatchback, learner_hatchback = trainAndSave(PATH + "hatchback/", "hatchback",

False, isReset);#hatchback, mini

 data_sedan, learner_sedan = trainAndSave(PATH + "sedan/", "sedan", False,

isReset);#sedan, spor, station

 data_arazi, learner_arazi = trainAndSave(PATH + "arazi/", "arazi", False,

isReset);#pickup, suv

 data_van, learner_van = trainAndSave(PATH + "van/", "van", False, isReset);#minivan,

panelvan

 data_vehicle_type_3class, learner_vehicle_type_3class = trainAndSave(PATH +

"vehicle_type_3class/", "vehicle_type_3class", False, isReset);#arazi, automobile, van

 data_auto_5class, learner_auto_5class = trainAndSave(PATH + "auto_5class/",

"auto_5class", False, isReset);#hatchback, mini, sedan, spor, station

 #calculate accuracy for height=1 tree

 preds_9class, probs_9class = getPreds(learner_9class);

 #ground truth labels

 labels = [d[1] for d in data_9class.test_ds]

 img_names =

createImgProbPairForGroundTruth(np.asarray(data_9class.test_ds.fnames),preds_9class)

 #compute probs

 probs_auto_nonauto = getProbs(img_names, learner_auto_nonauto,

data_auto_nonauto);#probs_auto_nonauto

66

 probs_auto_2class = getProbs(img_names, learner_auto_2class,

data_auto_2class);#probs_auto_2class

 probs_nonauto = getProbs(img_names, learner_nonauto, data_nonauto);#probs_nonauto

 probs_hatchback = getProbs(img_names, learner_hatchback,

data_hatchback);#probs_hatchback

 probs_sedan = getProbs(img_names, learner_sedan, data_sedan,3);#probs_sedan

 probs_arazi = getProbs(img_names, learner_arazi, data_arazi);#probs_arazi

 probs_van = getProbs(img_names, learner_van, data_van);#probs_van

 probs_vehicle_type_3class = getProbs(img_names, learner_vehicle_type_3class,

data_vehicle_type_3class,3);#probs_vehicle_type_3class

 probs_auto_5class = getProbs(img_names, learner_auto_5class,

data_auto_5class,5);#probs_auto_5class

 #compute accuracy for each tree and computational method

 probs_h3_conditional = computeTreeHeightProbs(3,1, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 probs_h3_mean = computeTreeHeightProbs(3,2, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 probs_h3_multiplication = computeTreeHeightProbs(3,3, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 probs_h2_conditional = computeTreeHeightProbs(2,1, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 probs_h2_mean = computeTreeHeightProbs(2,2, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 probs_h2_multiplication = computeTreeHeightProbs(2,3, probs_auto_nonauto,

probs_auto_2class, probs_nonauto, probs_hatchback, probs_van, probs_arazi,

probs_sedan, probs_vehicle_type_3class, probs_auto_5class);

 preds_h3_conditional = computeTreeHeightPreds(probs_h3_conditional);

 preds_h3_mean = computeTreeHeightPreds(probs_h3_mean);

 preds_h3_multiplication = computeTreeHeightPreds(probs_h3_multiplication);

 preds_h2_conditional = computeTreeHeightPreds(probs_h2_conditional);

 preds_h2_mean = computeTreeHeightPreds(probs_h2_mean);

 preds_h2_multiplication = computeTreeHeightPreds(probs_h2_multiplication);

 #height=1

 h1a = calculateAccuracy(preds_9class,labels)

 h1b = calculateAccuracy(preds_9class,labels)

 h1c = calculateAccuracy(preds_9class,labels)

 #height=2

 h2a = calculateAccuracy(preds_h2_conditional,labels)

 h2b = calculateAccuracy(preds_h2_mean,labels)

 h2c = calculateAccuracy(preds_h2_multiplication,labels)

 #height=3

 h3a = calculateAccuracy(preds_h3_conditional,labels)

 h3b = calculateAccuracy(preds_h3_mean,labels)

 h3c = calculateAccuracy(preds_h3_multiplication,labels)

67

 #h1_tree = [h1a,h1b,h1c]

 #h2_tree = [h2a,h2b,h2c]

 #h3_tree = [h3a,h3b,h3c]

 ct_mult = [h1c, h2c, h3c]

 ct_cond = [h1a, h2a, h3a]

 ct_avg = [h1b, h2b, h3b]

 result_ct_mult.append(ct_mult)

 result_ct_cond.append(ct_cond)

 result_ct_avg.append(ct_avg)

 return

def calculateStandartDeviation(n_times, result_file, result_ct, ct_name):

 arr0 = []

 arr1 = []

 arr2 = []

 for i in range(n_times):

 arr_ct = result_ct[i]

 result_file.write(str(ct_name)+" \t " + str(round(arr_ct[0], 6))+" \t " +

str(round(arr_ct[1], 6))+" \t " + str(round(arr_ct[2], 6))+" \r\n")

 arr0.append(arr_ct[0])

 arr1.append(arr_ct[1])

 arr2.append(arr_ct[2])

 result_file.write("mean \t " + str(round(np.mean(arr0), 6))+" \t " +

str(round(np.mean(arr1), 6))+" \t " + str(round(np.mean(arr2), 6))+" \r\n")

 result_file.write("stnd \t " + str(round(np.std(arr0), 6))+" \t " + str(round(np.std(arr1),

6))+" \t " + str(round(np.std(arr2), 6))+" \r\n")

 result_file.write("\r\n")

 return

def printResults(result_file, n_times):

 result_file.write("x \t height=1 \t height=2 \t height=3 \r\n")

 calculateStandartDeviation(n_times, result_file, result_ct_mult, "mult")

 calculateStandartDeviation(n_times, result_file, result_ct_cond, "cond")

 calculateStandartDeviation(n_times, result_file, result_ct_avg, "mean")

 result_file.close()

 return

def computeNtimes(n_times, isReset):

 result_file= open("experiment_results_200_cv_22.txt","w+")

 result_file.write("START: \t " + str(np.datetime64('now'))+" \r\n")

 doExperiment("../../data_200/", 1, isReset)

 result_file.write("1. Exp: \t " + str(np.datetime64('now'))+" \r\n")

 doExperiment("../../data_200_f2/", 2, isReset)

 result_file.write("2. Exp: \t " + str(np.datetime64('now'))+" \r\n")

68

 doExperiment("../../data_200_f3/", 3, isReset)

 result_file.write("3. Exp: \t " + str(np.datetime64('now'))+" \r\n")

 doExperiment("../../data_200_f4/", 4, isReset)

 result_file.write("4. Exp: \t " + str(np.datetime64('now'))+" \r\n")

 doExperiment("../../data_200_f5/", 5, isReset)

 result_file.write("5. Exp: \t " + str(np.datetime64('now'))+" \r\n END.\r\n\r\n")

 printResults(result_file, n_times)

 return

