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ABSTRACT

ASYMPTOTIC BEHAVIOUR OF GRAVITY DRIVEN FREE
SURFACE FLOWS RESULTING FROM CAVITY COLLAPSE

In this thesis, the gravity driven potential flows that result from cavity collapse

are studied. Initially, the collapse of a vertical cylindrical cavity of circular cross sections

surrounded by a liquid region is examined for two different situations. In the first one the

cavity has same depth as the fluid and in the second one the cavity starts from the free

surface and has less depth than the fluid. The problem is formulated by using a small

parameter that represents the short duration of the stage. The first problem, as the radius

and the centre of the cavity approach infinity, reduces to the classical two-dimensional

dam break problem solved by Korobkin and Yilmaz (2009). The singularity of the radial

velocity at the bottom circle is shown to be of logarithmic type. In the second problem,

where the cavity is less deep than the fluid, the flow region is separated into two regions:

the interior one, which is underneath the cylindrical cavity and above the rigid bottom,

and the exterior one, which is the rest of the flow. The corresponding new problems are

solved separately and then the coefficients are found by applying the matching conditions

at the interface, where the fluid radial velocities and pressures coincide. On the limiting

case, the problem reduces to the two-dimensional dam break flow of two immiscible fluids

by Yilmaz et al. (2013a). Singularity at the bottom circle of the cavity is observed, which

is of the same type as in the latter paper. Next, a third problem studies the gravity driven

flow caused by the collapse of a rectangular section of a vertical plate. During the early

stage, the flow is described by the velocity potential. Attention is paid to determining the

velocity potential and free surface shapes. The solution follows the Fourier series method

in Renzi and Dias (2013) and the boundary element method in Yilmaz et al. (2013a).

Singularity is observed at the side edges and lower edge of the rectangular section. The

horizontal velocity of the initially vertical free surface along the vertical line of symmetry

of the rectangle is the same to the one in the two-dimensional problem Korobkin and

Yilmaz (2009). The singularities observed in these problems lead to the jet formation for

the initial stage. The methods applied in these computations are expected to be helpful

in the analysis of gravity-driven flow free surface shapes. This thesis is a contribution

towards the 3-D generalizations of dam break problems.
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ÖZET

KAVİTASYON ÇÖKMESİYLE OLUŞAN, YERÇEKİMİ
ETKİSİNDEKİ SERBEST YÜZEYLİ AKIŞLARIN ASİMTOTİK

DAVRANIŞI

Bu tezde, kavitasyon çökmesi sonucu oluşan yer çekimine dayalı potansiyel

akışlar incelenecektir. Başlangıçta, bir sıvı bölge ile çevrili ara kesiti dairesel olan bir

dik silindirin kavitasyon çökmesi iki farklı durum için incelenir. İlk durumda, kavi-

tasyon sıvı ile aynı derinliğe sahiptir ve ikinci durumda, kavitasyon serbest yüzeyden

başlar ve sıvıdan daha az derinliğe sahiptir. Problem, kademenin kısa süresini temsil

eden küçük bir parametre kullanılarak formüle edilir. Birinci problemde, kavitasyonun

merkezi ile yarıçapı sonsuzluğa yaklaştığında, problemin Korobkin and Yilmaz (2009)

tarafından çözülen klasik iki boyutlu baraj kırılma problemine dönüştüğünü göstereceğiz.

Alttaki daire içindeki radyal hızın tekillik analizi logaritmik tipte olması bekleniyor. İki-

nci problemde, kavitasyonun sıvıdan daha az derin olduğu yerde, akış bölgesi silindirik

kavitasyonun altındaki iç bölge ve akışın geri kalanı olan dış bölge olmak üzere iki böl-

geye ayrılır. İlgili yeni problemler ayrı ayrı çözülür ve daha sonra katsayılar, akışkan

radyal hızlarının ve basınçlarının aynı olduğu arayüzde eşleştirilerek bulunur. Yarıçapın

ve kavitasyonun merkezinin sonsuzluğa yaklaştığı sınırlayıcı durumda, problem Yilmaz

et al. (2013a) tarafından iki karışmaz sıvının iki boyutlu baraj kırılma akışına indirgenir.

Kavitasyonun alt dairesinde, ikinci çalışmadaki aynı tip, tekillik gözlenir. Daha sonra,

üçüncü bir problemde, dikey bir plakanın dikdörtgen bir bölümünün çökmesinden kay-

naklanan yer çekimine dayalı akışı incelenir. Erken aşamada, akış hız potansiyeli ile

tanımlanır. Hız potansiyelinin ve serbest yüzey şekillerinin belirlenmesine dikkat edilir.

Çözüm, Renzi and Dias (2013)’deki Fourier serisi yöntemini ve Yilmaz et al. (2013a)’daki

sınır elemanı yöntemini izler. Dikdörtgensel kesitin yan ve alt kenarlarında tekillik göz-

lenir. Başlangıçta dikey serbest yüzeyin yatay hızı, dikdörtgenin dikey simetri çizgisi

boyunca iki boyutlu problem Korobkin and Yilmaz (2009) ile aynıdır. Bu problemlerde

gözlenen tekillikler, ilk aşama için jet oluşumuna yol açar. Bu hesaplamalarda kullanılan

yöntemlerin, yerçekimine dayalı serbest yüzey şekillerinin analizinde yararlı olması bek-

lenmektedir. Bu tez, baraj kırılma problemlerinin 3-D genellemelerine bir katkıdır.
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CHAPTER 1

INTRODUCTION

Some interesting hydrodynamical problems are the gravity-driven flows caused by

cavity collapse. As examples of such motion we can mention the flow towards the cavity

of a liquid surrounding a cylindrical cavity. These types of cavities are the idealized form

of the cavities formed when we have, for example, explosion at the water surface (see

Benusiglio et al. (2014)). Immediately after the explosion, a cavity is created, which,

under the gravitational force, is filled with the surrounding liquid. Other examples we

can mention are cavity formation by the water entry of projectiles (Truscott et al. (2014)),

or air cavity produced by the run on water of some creatures like shore birds and green

basilisk lizards (Glasheen and McMahon (1996a), Glasheen and McMahon (1996b)).

Another important problem is the bursting of a dam wall. The investigation of

dam-break problems is essential in designing dams and their surroundings. When a dam

breaks, the gravitational potential energy of the accumulated water may put in risk every-

thing nearby. Dam-break flow may result in serious consequences for the environment,

human lives and property (Singh (1996)). For this reason, these types of problems need

to be studied by mathematical models and experiments.

In the Ph.D. thesis of Pohle (1950), the solution of the gravity-driven flow caused

by the collapse of a half-cylinder of fluid is solved using Lagrangian representation, where

the displacement of each particle is determined following each individual particle while it

moves through space and time. The displacements and pressure are thought in time power

series. Following same method, Stoker (1957) solved the problem for the dam-breaking

and discovered the vertical free surface to be negative infinite at the meeting point of the

vertical free surface with the bottom (see Fig. 1.1). Furthermore, he discovers that at the

point of contact, the horizontal component of the velocity is logarithmic singular. This

shows that the solution is not valid near this point, therefore this solution is considered as

an outer solution and an inner solution is needed at a vicinity of the contact point. Ko-

robkin and Pukhnachov (1988) state that the water entry of a blunt object with no flatten-

ing at initial stage can be better described by Lagrangian coordinates. So, the Lagrangian

1



representation is suitable to be used in the cases when there are no intersections of free

surfaces with rigid ones. Therefore, concerning the dam-break problems, where these

intersections are present, the Lagrangian representation is not very appropriate, and Eule-

rian representation is used. William George Penney and Thornhill (1952) also worked on

the collapse of column of fluid of hemi-cylindrical and hemispherical shape surrounded

by a less denser liquid. The problem is solved using Eulerian representation. They show

that the initial asymptotics of the solution is not valid at the intersection with the bottom.

The inner solution near the contact points was not treated in these studies.

The interesting part of the dam-break problems is the investigation at the points

where the free surfaces meet the rigid surfaces, where jet formations are observed in

experiments. Among experiments done on dam-break flows, there is the study of Stansby

et al. (1998), who undertake some experiments on dam-break flows where a thin vertical

sheet separates two liquids of different heights or one side of the sheet is dry and a liquid is

resting on the other side. After the release, on the initial stages, they notice a mushroom-

like jet for the wet-bed at the line of intersection between the initially vertical surface and

the free surface of the shallower liquid. It is observed a horizontal jet at the line where

the free surface and the rigid bottom intersect for the dry-bed case. The dam break waves

along a smooth horizontal channel for dry bed analytically and experimentally are studied

by Lauber and Hager (1998). Janosi et al. (2004) during their experiments on the drag

reduction effect notice the formation of a mushroom-like object when the dam between

water at a higher depth and shallower coloured water is released.

The presence of a jet is also observed by C. King and Needham (1994) when a

vertical plate with an angle α = π/2 with the rigid bottom moves uniformly forward into

a fluid. As the plate approaches the fluid, which has a free surface, a rise in the free

surface is noticed at the intersection of the free surface and plate for the initial stages.

To study this jet formation, they perform an asymptotic analysis. At the intersection,

singularity is observed in the leading order outer solution, therefore specific attention

is paid to the inner region at the point where the jet occurs. The generalization of this

problem is the uniformly accelerating inclined plate with the horizontal bottom with α =

(0, π/2) ∪ (π/2, π), studied by Needham et al. (2008). Solution of inner region at the

contact point, indicates a weak jet formation for angles α = (0, π/2) and a stronger jet

when α = (π/2, π).
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Jet formations are also present in the water impact problems at the initial stage. A

body’s impact onto a liquid’s free surface is studied by Korobkin and Pukhnachov (1988),

where the body has a plane front section . In that paper it is claimed that the singularity of

the velocity field is r−1/2 at the vicinity of the contact point, where r is the distance from

the contact point. Iafrati and Korobkin (2004) study the initial stage of the impact of a

flat plate with a liquid’s free surface. At the plate edges, they discover singularity in the

liquid’s velocity for the leading order outer problem. Calculations of the inner solution

reveal jet formation at the edges and square root singularity of the flow velocity.

In this thesis we treat two cavity collapse problems and one dam-break problem.

The liquids taken in consideration are considered incompressible and inviscid. The liq-

uids are initially at rest. Due to gravity, soon after the collapse, the flow starts. It is

three dimensional and irrotational. The problems are studied for the initial stages and are

described by the linear potential theory. We employ the Eulerian representation through-

out this thesis. In the first problem, the collapse of a cylindrical cavity and the resulting

gravity-driven flow are considered. A liquid surrounds the cavity and initially the cylinder

is placed at a rigid bottom and extends from the free surface to the base of the surrounding

liquid, which is at rest. The cylinder’s height is denoted by H and its radius by a.

The first cavity collapse problem treated in this thesis to the best of our knowledge

has not been studied before. It can be considered as a three dimensional dam-break flow.

When the radius is large compared to the liquid depth, this problem reduces to the two

dimensional dry-bed dam-break problem. A closely relevant study to this problem is the

one by Korobkin and Yilmaz (2009), the initial stage of the classical two dimensional

dam-break problem. In that paper the gravity driven flow caused by the collapse of a dam

located in front of a liquid region is studied for short times (see Fig. 1.1). The flow is

two-dimensional and potential. Attention is paid to the liquid flow and the free surface

shapes. Fourier series method and complex analysis is used in solving the leading order

and second order outer problems. Near the corner point, the horizontal velocity of the

vertical free surface, is found to be log-singular. Furthermore, the analysis of the inner

region at the corner point, describes the formation of a jet there.

Similarly, we pose the problem using a parameter as in Korobkin and Yilmaz

(2009) to present the small span of the stage. Fourier series method is used to solve the

linearised BVP. The velocity field is found to be singular at the bottom circle. The analysis

3



Figure 1.1. Flow region at t = 0 for the 2-D problem by Korobkin and Yilmaz (2009)

of the reduction to the 2-D problem provides the type of the singularity and shows that

for big values a/H the problem becomes quite similar to the classical 2-D dam-break

problem. The inner region analysis, that shows the presence of a jet at the bottom circle

is omitted, as it will be the same to the 2-D problem.

In the second problem of this thesis, we treat the gravity-driven flow as a result

of the collapse of a cylindrical cavity. The cavity is surrounded by a liquid which has a

finite depth. The difference with the first problem is that, in this case the cylindrical cavity

starts from the free surface, to a distance H− from the rigid bottom, that is, the cavity is

shorter than the liquid depth. The cylinder is placed at a height H− from the base and the

liquid depth is H+. The radius of the cylinder is a.

The second cavity collapse problem we treat in this thesis to the best of our knowl-

edge has not been studied before. If the radius a is big compared to the liquid depth H+,

this problem can be considered as the two dimensional wet-bed dam-break problem. A

strongly related study to this one, is the flow as a result of collapse of a flat sheet sep-

arating two immiscible fluids by Yilmaz et al. (2013a). In that paper the flow of two

immiscible fluids as a result of gravity is studied. At t = 0, the fluids are at rest. There is

a flat sheet separating them. The fluids have different depths, the one on the right H+ and

the one on the left H−, here H− < H+ (see Fig. 1.2). When the vertical plate suddenly

disappears, the gravity driven flow starts. The problem is studied in its initial stage by the

linear potential theory. The flow region is separated into two regions, the liquid on the

right and the liquid on the left, and then the pressure conditions and radial velocities are

matched at the interface. Boundary element and Fourier series method are used to solve

the problem. It is discovered that at the triple point, which is the intersection between the
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vertical surface and the shallower liquid’s free surface, the velocity field is power singular

r−α. At the corner point, which is the meeting point between the rigid bottom and inter-

face, it is logarithmic singular. Depending on the density, the power of the singularity

varies. The lighter is the deeper liquid, the more singular is the flow. In the case where

the density ratio of two liquids is the same, at the triple point, the singularity is r−1/3, and

the singularity at the bottom corner point disappears. A jet-like flow is observed at the

triple point by Yilmaz et al. (2013b).

Figure 1.2. Gravity-driven flow for two immiscible fluids a) at rest, b) at the instant
when the plate collapses, c) after the collapse by Yilmaz et al. (2013a)

In the second problem of this thesis, similar method will be used, that is we will

separate the flow region in two, the interior one, which is the one below the bottom circle

of the cylindrical cavity extending to the rigid bottom, and the exterior region, which is

rest of the region. Fourier series method will be used to solve the leading order problems

separately in both regions, and then they will be matched at the interface, where the

pressures of the fluids are equal and the radial velocities too. Attention will be paid to the

bottom circle of the cavity, where the jet formation is expected. Analysis at the bottom

circle of the cavity shows the type of singularity.

In the third problem, we study the collapse of a rectangular section (dam) of an

infinite plate. On one side of the plate the liquid is located, and the other side is dry. The

plate is positioned along the y′-axis, and the liquid is placed on the positive x′-axis side

extending to infinity in the radial direction. The solution is represented in (x′, y′, z′), the

Cartesian coordinates, where the prime denotes the dimensional variables. The centre of

the coordinates is placed at the top line of the plate, where the y′ axis lies. The plate’s
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height is H and its length extends to infinity along the y-axis. The rectangular section is

located at x′ = 0, −b ≤ y′ ≤ b, −H < z′ ≤ 0.

Renzi and Dias (2012) and Renzi and Dias (2013) derive a potential flow model

for an oscillating wave energy in a straight channel and in the open ocean respectively.

The problems are solved within the linear potential theory. The BVP is solved using the

Green’s theorem and then integral-equation technique is applied. In the solution Cheby-

shev polynomials are used.

The solution method of the third problem will follow Renzi and Dias (2012) and

Renzi and Dias (2013) to solve a modified Helmholtz equation. Further, we employ the

Green’s function (see Linton (1998)) to solve the BVP. This involves the formulation of

integral equations, whose kernel is a Green’s function, whose solutions are found numer-

ically by using BEM (see Yilmaz et al. (2013a) and Fenner (2014)). The velocities of

the initially vertical free surface are plotted along the horizontal and vertical lines on the

rectangular gate in order to observe the singularities near the side edges and bottom edge

of the rectangular section. To determine the types of singularities, the results from the

2-D dam break problem (Korobkin and Yilmaz (2009) and Yilmaz et al. (2013a)) and the

results from the water impact problems (Korobkin and Pukhnachov (1988) and Iafrati and

Korobkin (2004)) are used.

The structure of the thesis is as follows:

Chapter 2 formulates and solves by Fourier series method the initial stage of cylindrical

cavity collapse flow, where the cylinder and the surrounding liquid have equal depths,

which is a 3-D generalization of the classical 2-D problem.

The formulation and solution by Fourier series method for the initial stage of a flow caused

by cylindrical cavity collapse, where the cavity is surrounded by a deeper liquid, is pro-

vided in Chapter 3. This is a 3-D generalization of the 2-D problem of two immiscible

fluids.

Chapter 4 formulates and uses boundary element method to solve the gravity driven flow

as a result of the collapse of a rectangular section of a vertical plate.

Finally the conclusions are shown in Chapter 5.
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CHAPTER 2

THE COLLAPSE OF A VERTICAL CYLINDRICAL

CAVITY OF CIRCULAR CROSS SECTIONS EXTENDING

FROM THE FREE SURFACE TO THE BOTTOM OF A

SURROUNDING FLUID OF FINITE DEPTH

Three dimensional unsteady problem of gravity-driven flow caused by the collapse

of a cylindrical cavity surrounded by a liquid region of finite depth is studied. The liquid

has the same height as the cylinder and is considered to be inviscid and incompressible.

Initially, when the liquid is at rest, the fluid region lies outside the cylindrical cavity and

extends to infinity in the radial direction: r′ > a, 0 ≤ θ < 2π, −H < z′ ≤ 0. Here r′, θ, z′

represent the circular cylindrical coordinates, a is the radius of the cylinder, H is the liquid

depth, and the prime stands for the dimensional variables (see Fig.2.1).

At time t′ = 0, the liquid region is bounded by: the top free surface r′ > a, 0 ≤ θ < 2π,

z′ = 0, the vertical free surface r′ = a, 0 ≤ θ < 2π, −H < z′ < 0, and the rigid bottom

z′ = −H, which is dry for r′ < a, 0 ≤ θ < 2π.

With the instant removal of the cylinder, the fluid motion starts flowing towards

the cavity. The fluid motion is considered irrotational and the flow is potential. Attention

is paid to determining the resulting flow and the free surface shapes at the early stage of

the process.

A relevant study is the initial stage of the limiting case, studied by Korobkin and

Yilmaz (2009) for the two dimensional gravity driven flow caused by the collapse of a

vertical dam located in front of a liquid region. In that paper Fourier series method and

complex analysis are used in solving the leading order and second order outer problems

and determining the liquid flow and free surface shapes. The analysis at the bottom point,

revealed that the horizontal velocity of the initially vertical free surface is log-singular

there. In this chapter, similarly we use Fourier series method to solve the 3-D problem

and compare the results with the 2-D problem.
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Figure 2.1. Flow region at initial time t′ = 0

2.1. Formulation of the problem

The fluid motion is considered to be irrotational, implying the existence of a veloc-

ity potential ϕ′(r′, θ, z′, t′). Assuming the fluid is incompressible, the dimensional velocity

potential ϕ′ satisfies the Laplace’s equation

∇2ϕ′ = 0 (in Ω′(t′)), (2.1)

where Ω′(t′) is the flow region bounded by the free surface FS ′(t′), which consists of the

horizontal free surface TS ′ and the vertical free surface VS ′, and the rigid bottom BS ′(t′).

At t’=0, the cavity starts collapsing (the liquid starts filling the cylindrical cavity) with

some deformation of the free surface. We denote the top free surface by TS ′(t′): r′ > a,

0 ≤ θ < 2π, z′ = η′(r′, θ, t′) and the vertical free surface by VS ′(t′): r′ = a + h′(z′, θ, t′),

0 ≤ θ < 2π, −H < z′ < η′(a, θ, t′). It is of interest finding the free surfaces z′ = η′(r′, θ, t′)

and r′ = a + h′(z′, θ, t′). For this purpose, the conditions on these free surfaces should be

applied. The kinematic condition on the free surface requires that the fluid particles on
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the free surface remain on the free surface,

ϕ′z′ = ϕ′r′η
′
r′ +

1
r′2
ϕ′θη

′
θ + η′t′ (on TS ′(t′)), (2.2)

ϕ′r′ = ϕ′z′h
′
z′ +

1
r′2
ϕ′θh

′
θ + h′t′ (on VS ′(t′)). (2.3)

Bernoulli’s equation for unsteady irrotational flow is

−
p′

ρ0
= ϕ′t′ +

1
2
| ∇ϕ′ |2 + gz′ (in Ω′(t′)). (2.4)

By virtue of the fluid being inviscid, the dynamic condition at the free surface, is that the

pressure is equal to the atmospheric pressure p0,

ϕ′t′ +
1
2
| ∇ϕ′ |2 + gz′ = 0 (on FS ′(t′)). (2.5)

The bottom is rigid at z′ = −H, meaning that there is no vertical velocity component on

this surface

ϕ′z′ = 0 (on BS ′(t′)). (2.6)

Initially at t′ = 0 there is no flow, and the free surfaces are at their initial positions

ϕ′(r′, θ, z′, 0) = 0, η′(r′, θ, 0) = 0, h′(z′, θ, 0) = 0. (2.7)

The fluid is at rest at the far field

ϕ′ → 0 (r′ → +∞). (2.8)
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We introduce the non-dimensional variables in order to reformulate the problem in di-

mensionless equations

r′ = rH, z′ = zH, t′ = Tt,

ϕ′ = gHTϕ, p′ = ρ0gHp, T = ε1/2
√

H/g,

η′ = S 1η, h′ = S 2h,

S 1/H = O(ε), S 2/H = O(ε).

The non-dimensional form of the bvp (2.1)-(2.8) is expressed by the following equations

∇2ϕ = 0 (in Ω(t)), (2.9)

ϕz = εϕrηr +
ε

r2ϕθηθ + ηt (on TS (t)), (2.10)

ϕr = εϕzhz +
ε

r2ϕθhθ + ht (on VS (t)), (2.11)

−p = ϕt +
1
2
ε| ∇ϕ |2 + z (in Ω(t)), (2.12)

p = p0 = ϕt +
1
2
ε| ∇ϕ |2 + z = 0 (on FS (t)), (2.13)

ϕz = 0 (on BS (t)), (2.14)

ϕ(r, θ, z, 0, ε) = 0, η(r, θ, 0, ε) = 0, h(z, θ, 0, ε) = 0, (t = 0) (2.15)

ϕ→ 0 (r → +∞). (2.16)

Here Ω(t) is the flow region bounded by the free surface and the rigid bottom. FS (t) is the

free surface of the region, composed by the top free surface TS (t): r > a/H, 0 ≤ θ < 2π,

z = εη(r, θ, t, ε), and the vertical free surface VS (t): r = a/H + εh(z, θ, t, ε), 0 ≤ θ < 2π,

−1 < z < εη(a/H, θ, t, ε). BS (t) is the bottom surface z = −1.

In order to linearise the problem, we search for a solution of (2.9)-(2.16), as ε→ 0

in the form

ϕ(r, θ, z, t, ε) = ϕ0(r, θ, z, t) + εϕ1(r, θ, z, t) + O(ε2),

η(r, θ, t, ε) = η0(r, θ, t) + εη1(r, θ, t) + O(ε2), (2.17)

h(z, θ, t, ε) = h0(z, θ, t) + εh1(z, θ, t) + O(ε2).
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2.2. Leading-order outer problem and solution by the Fourier series

method

Substituting the asymptotic expansions (2.17) in (2.9)-(2.16), as ε→ 0 we get the

boundary-value problem for the leading-order velocity potential. The Laplace’s equation

(2.9) becomes

∇2ϕ0 = 0 (r > a/H, 0 ≤ θ < π,−1 < z < 0). (2.18)

The dynamic condition (2.13) and the kinematic condition (2.10) on TS (t) give

ϕ0 = 0,
∂η0

∂t
=
∂ϕ0

∂z
(r > a/H, 0 ≤ θ < 2π, z = 0). (2.19)

The dynamic condition (2.13) and the kinematic condition (2.11) on VS (t) give

ϕ0 = −zt,
∂h0

∂t
=
∂ϕ0

∂r
(r = a/H, 0 ≤ θ < 2π,−1 < z < 0). (2.20)

The condition (2.14) on BS (t) becomes

∂ϕ0

∂z
= 0 (r > a/H, 0 ≤ θ < 2π, z = −1). (2.21)

The initial conditions (2.15) at t = 0 yield

ϕ0(r, θ, z, 0) = 0, η0(r, θ, 0) = 0, h0(z, θ, 0) = 0. (2.22)

The condition at the far field (2.16) becomes

ϕ0 → 0 (r → +∞). (2.23)
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The intersection of the rigid bottom and initially vertical free surface is the bottom circle

of the cylindrical cavity r = a/H, 0 ≤ θ < 2π, z = −1. The vertical velocities on these

surfaces should be equal at the bottom circle. By condition (2.20) we get ϕ0,z = −t along

the free surface of the cavity and by (2.21) we know ϕ0,z = 0 at the rigid bottom, which

implies that the velocities do not match at the bottom circle. This indicates that singularity

of the flow is expected at this circle within the mathematical model (2.18)-(2.23).

Fourier series method is used in solving (2.18)-(2.23). Due to the problem being

axisymmetric, the velocity potential is dependent only on r, z and t

ϕ0(r, z, t) = 2t
∞∑

n=0

(−1)n+1

σn
2

K0(σnr)
K0(σn

a
H )

sin(σnz), (2.24)

where σn = π
2 (2n + 1) and K0(σnr) is the modified Bessel function of order zero of the

second kind.

The vertical velocity on the top free surface, r > a
H , z = 0, is

∂ϕ0

∂z
(r, 0, t) =

4t
π

∞∑
n=0

(−1)n+1

2n + 1
K0(σnr)
K0(σn

a
H )

(2.25)

the radial velocity on the vertical free surface r = a
H , −1 < z < 0, is

∂ϕ0

∂r

( a
H
, z, t

)
=

4t
π

∞∑
n=0

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz), (2.26)

and the radial velocity along the bottom, r > a
H , z = −1, is

∂ϕ0

∂r
(r,−1, t) =

4t
π

∞∑
n=0

1
2n + 1

K0
′(σnr)

K0(σn
a
H )
. (2.27)

By the integration of (2.25) with respect to t and by (2.19), the top free surface shape
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η0(r, t) is expressed by

η0(r, t) =
2t2

π

∞∑
n=0

(−1)n+1

2n + 1
K0(σnr)
K0(σn

a
H )
. (2.28)

Integration of (2.26) with respect to t and by the relation in (2.20), the vertical free surface

shape h0(z, t) is represented by the equation

h0(z, t) =
2t2

π

∞∑
n=0

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz). (2.29)

2.3. Reduction to the 2-D problem

As the radius and the centre of the cavity approach infinity, the problem reduces

to the classical two-dimensional dam break problem by Korobkin and Yilmaz (2009). Let

a/H → ∞, r → ∞ and r − a/H = x. By (A.2), as σnr → ∞,

K0(σnr) ∼
√

π

2σnr
e−σnr, (2.30)

and as σn
a
H → ∞,

K0

(
σn

a
H

)
∼

√
π

2σn
a
H

e−σn
a
H . (2.31)

In the limit, the velocity potential ϕ0(x, z, t) in (2.24) becomes

ϕ0(x, z, t) = 2t
∞∑

n=0

(−1)n+1

σn
2 e−σn x sin(σnz)

and it corresponds to the velocity potential ϕ0(x, y, t) in the 2 dimensional case.
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2.4. Analysis of the singularity of the radial velocity at the bottom

circle

In order to study the singularity of the radial velocity at the bottom circle it is

convenient to separate ϕ0,r(r, z, t) as follows

ϕ0,r(r, z, t) = 2t

 N∑
n=0

(−1)n+1

σn

K′0(σnr)
K0(σn

a
H )

sin(σnz) +

∞∑
n=N+1

(−1)n+1

σn

K′0(σnr)
K0(σn

a
H )

sin(σnz)

 ,
(2.32)

where N is a large number. Substituting the large argument behaviour of the modified

Bessel functions (2.30) and (2.31) in the second summation of (2.32), one gets

ϕ0,r(r, z, t) ∼ 2t

 N∑
n=0

(−1)n+1

σn

K′0(σnr)
K0(σn

a
H )

sin(σnz) +

√
a

Hr

∞∑
n=N+1

(−1)n

σn
e−σn(r− a

H ) sin(σnz)

 .
(2.33)

The radial derivative (2.33) at the initially vertical free surface is

ϕ0,r

( a
H
, z, t

)
∼2t

N∑
n=0

(−1)n+1

σn

K0
′
(
σn

a
H

)
K0(σn

a
H )

sin(σnz)

+ 2t

 ∞∑
n=0

(−1)n

σn
sin(σnz) −

N∑
n=0

(−1)n

σn
sin(σnz)


∼

2t
π

ln
(

tan
π

4
(1 + z)

)
.

(2.34)

Therefore, as z→ −1, the singularity in the radial derivative of the leading order velocity

is logarithmic at the bottom circle (r = a/H, z = −1). Moreover, the singularity in ∂ϕ0/∂r

in (2.34) is exactly the same as the singularity in ∂ϕ0/∂x in Korobkin and Yilmaz (2009).

Therefore, the rest of the calculations for the inner region will be the same as in that paper.

The radial derivative (2.33) along the bottom is

ϕ0,r (r,−1, t) ∼2t
N∑

n=0

1
σn

K0
′ (σnr)

K0(σn
a
H )
− 2t

√
a

Hr

 ∞∑
n=0

1
σn

e−σn(r− a
H ) −

N∑
n=0

1
σn

e−σn(r− a
H )


∼

2t
π

√
a

Hr
ln

(
tanh

π

4

(
r −

a
H

))
.

(2.35)
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As r → a/H, the singularity in the radial derivative of the leading order velocity potential

is logarithmic at the bottom circle (r = a/H, z = −1). The horizontal velocity along the

bottom in the 2-D problem is logarithmic singular too as x→ 0.

2.5. Numerical results

The numerical results of the radial velocity of the initially vertical free surface, the

radial velocity along the rigid bottom and the free surface shapes for three different values

a/H are presented in this section. When plotting the figures, the summation is truncated

at n = 999. This value of n gives a relative error 5 × 10−4. By (A.2), we know that Km(w)

decays as the argument w → ∞. Ergo, to avoid the problems caused by the ratio of the

modified Bessel functions for large arguments, which gives the ratio 0/0 in Matlab, we cut

the summations at N = 220 for the computation of the radial velocity along the initially

vertical free surface, N = 442 for the computation of the radial velocity along the rigid

bottom and N = 110 for the free surface shapes, and after that for the rest of terms, we

use the asymptotic expansions for large arguments (A.2).

2.5.1. Velocities of the free surfaces

The analysis of the radial velocity at the bottom circle (Section 2.4) indicates that

the radial velocity of the initially vertical free surface is log-singular there (see (2.34)).

When plotting Figure 2.2, we use the differentiation property (A.8) and the asymptotic

expansion for large arguments (A.2) for n > 220. The equation of the radial velocity

(2.26) becomes

∂ϕ0

∂r

(
a
H
, z, t

)
≈

4t
π

( 220∑
n=0

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz) +

999∑
n=221

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz)
)

≈
−4t
π

( 220∑
n=0

(−1)n+1

2n + 1
K1(σn

a
H )

K0(σn
a
H )

sin(σnz) +

999∑
n=221

(−1)n+1

2n + 1
sin(σnz)

)
.

(2.36)

The values close to z = −1, for a/H = 0.5, 1, 2 are shown in Table 2.1. From the table

15



-7 -6 -5 -4 -3 -2 -1 0

Radial velocity

-1

-0.8

-0.6

-0.4

-0.2

0

z

a/H=0.5
a/H=1
a/H=2

Figure 2.2. Radial velocity ϕ0,r(a/H, z, t) of the initially vertical free surface for a/H =

0.5, 1, 2.

it is seen that the values increase rapidly in the negative direction as z → −1. This result,

which is expected because of the singularity, is also obvious in Fig. 2.2.

Table 2.1. Radial velocity of the initially vertical free surface

z ϕ0,r(0.5, z, t) ϕ0,r(1, z, t) ϕ0,r(2, z, t)
-0.998 -4.9518 -4.5497 -4.3318
-0.999 -5.4550 -5.0525 -4.8344
-1 -6.5045 -6.1020 -5.8838

The analysis of the radial velocity at the bottom circle shows that the radial ve-

locity along the rigid bottom is log-singular too (see (2.35)). We truncate the sum (2.27),

at N = 442 and use the asymptotic expansion for large arguments of the modified Bessel

functions (A.2) for bigger n. Therefore, the equation of the radial velocity plotted in
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Figure 2.3 becomes

∂ϕ0

∂r
(r,−1, t) ≈

4t
π

( 442∑
n=0

1
2n + 1

K0
′(σnr)

K0(σn
a
H )

+

999∑
n=443

1
2n + 1

K0
′(σnr)

K0(σn
a
H )

)

≈
−4t
π

( 442∑
n=0

1
2n + 1

K1(σnr)
K0(σn

a
H )

+

√
a

Hr

999∑
n=443

1
2n + 1

e−σn(r−a/H)
)
.

(2.37)

For a/H = 0.5, 1, 2, approaching closer to r = a/H, causes to the radial velocity values a
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Figure 2.3. Radial velocity ϕ0,r(r,−1, t) along the rigid bottom for a/H = 0.5, 1, 2.

quick increase in the negative direction (see Fig 2.3). This result is also provided in Table

2.2, which demonstrates the presence of singularities along the bottom circle.

2.5.2. Free surface shapes

The non-dimensional shapes of the top free surface (2.28) and the initially vertical

free surface (2.29) for ε = 0.01, t = 1, and different values of a/H, namely 0.5, 1 and 2,

are shown by dashed lines in Figure 2.4 and Figure 2.5 respectively. When plotting the

free surfaces, we truncate the sum at N = 110, because for bigger n we get the value 0/0
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Table 2.2. Radial velocity along the rigid bottom

r ϕ0,z(r,−1, t) ϕ0,z(r,−1, t) ϕ0,z(r,−1, t)
a/H = 0.5 a/H = 1 a/H = 2

a/H -6.1162 -5.6229 -5.1841
a/H + 0.001 -5.3399 -4.8777 -4.5282
a/H + 0.002 -4.9386 -4.5178 -4.2224

in Matlab, and use A.2 for bigger n. Thus, for the numerical computations, the equations

of the free surfaces (2.28) and (2.29) become

η0(r, t) ≈
2t2

π

( 110∑
n=0

(−1)n+1

2n + 1
K0(σnr)
K0(σn

a
H )

+

999∑
n=111

(−1)n+1

2n + 1
K0(σnr)
K0(σn

a
H )

)

≈
2t2

π

( 110∑
n=0

(−1)n+1

2n + 1
K0(σnr)
K0(σn

a
H )

+

√
a

Hr

999∑
n=111

(−1)n+1

2n + 1
e−σn(r−a/H)

)
,

and

h0(z, t) ≈
2t2

π

( 110∑
n=0

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz) +

999∑
n=111

(−1)n+1

2n + 1
K0
′(σn

a
H )

K0(σn
a
H )

sin(σnz)
)

≈
−2t2

π

( 110∑
n=0

(−1)n+1

2n + 1
K1(σn

a
H )

K0(σn
a
H )

sin(σnz) +

999∑
n=111

(−1)n+1

2n + 1
sin(σnz)

)
.

respectively. It is seen that the top free surface deflects downwards near r = a/H, and the

initially vertical free surface deflects to the left near z = −1.

For comparison, in these figures we also plot by solid line the shapes of the ver-

tical free surface and horizontal free surface for the 2-dimensional case. Note that by

increasing the ratio between a and H, the shapes get closer to the 2-dimensional case.

Furthermore, from Section 2.3 we deduce that, as the ratio a/H and r go to infinity, with

r − a/H = x, the shapes actually coincide.

To conclude, we proved analytically and numerically that the cylindrical cavity

collapse treated in this chapter, is actually the 3-D generalization of the 2-D problem in

Korobkin and Yilmaz (2009).
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Figure 2.4. Top free surface at time t = 1, ε = 0.01, a/H = 0.5, a/H = 1, a/H = 2
and 2D
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Figure 2.5. Vertical free surface at time t = 1, ε = 0.01, a/H = 0.5, a/H = 1, a/H = 2
and 2D
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CHAPTER 3

THE COLLAPSE OF A VERTICAL CYLINDRICAL

CAVITY OF CIRCULAR CROSS SECTIONS EXTENDING

FROM THE FREE SURFACE AND HAVING LESS DEPTH

THAN A SURROUNDING FLUID OF FINITE DEPTH

We study the three dimensional unsteady problem of gravity-driven flow caused

by instantly removing a cylinder from a deeper liquid region. Initially the fluid region

Ω′(0) lies outside the cylindrical cavity, extends to infinity in the radial direction and is

bounded by the rigid bottom in the vertical direction. The problem is treated in cylindrical

coordinates (r′, θ, z′). At time t′ = 0, when the cylindrical cavity starts collapsing due to

gravity, the liquid region is bounded by the following surfaces: the top free surface r′ > a,

0 ≤ θ < 2π, z′ = H+, the vertical free surface r′ = a, 0 ≤ θ < 2π, H− < z′ < H+, the

lower free surface r′ < a, 0 ≤ θ < 2π, z′ = H−, and by the rigid bottom z′ = 0, where a,

H+ and H− represent the radius of the cylinder, the liquid depth, and the distance between

the lower disc of the cylinder and the rigid bottom respectively and the prime stands for

the dimensional variables (see Fig. 3.1).

By the sudden collapse of the cylinder, due to the presence of gravity, the liquid

starts flowing to the cavity. The liquid is incompressible and inviscid and the flow is

potential. We are interested in the flow field and the free surface shapes at the initial stage

of the process.

This problem is the generalized form of the two dimensional gravity-driven flow,

which is caused by a sudden break of a thin vertical plate separating two immiscible fluids

of different densities and depths studied by Yilmaz et al. (2013a). In the paper, the linear

problem is solved by the Fourier series method and the aim is to determine the motion

of the interface and the singular behaviour at the triple point and the corner point. The

analysis of the local flow at the triple point, where the vertical free surface, the lower free

surface and the interface meet, shows that the singularity depends on the density ratio and

the shape of the flow region. The flow velocity at the corner point, where the interface
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Figure 3.1. Flow region at initial time t′ = 0

and the rigid bottom meet, is log-singular for two liquids of different densities and non-

singular otherwise. In this chapter, we apply similar techniques to the 3-D problem and

analyse how the results match the linear problem in the 2-D case.

3.1. Formulation of the problem

The fluid motion is assumed to be irrotational. This implies the existence of a ve-

locity potential ϕ′(r′, θ, z′, t′), which by the incompressibility condition, satisfies Laplace’s

equation

∇2ϕ′ = 0 (in Ω′(t′)), (3.1)

where Ω′(t′) is the flow region.

The kinematic condition on the free surface is that the fluid particles on the free surface

remain on the free surface

ϕ′z′ = ϕ′r′η
′
r′ +

1
r′2
ϕ′θη

′
θ + η′t′ (on TS ′(t′)), (3.2)
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ϕ′r′ = ϕ′z′ζ
′
z′ +

1
r′2
ϕ′θζ

′
θ + ζ′t′ (on VS ′(t′)), (3.3)

ϕ′z′ = ϕ′r′ν
′
r′ +

1
r′2
ϕ′θν

′
θ + ν′t′ (on LS ′(t′)). (3.4)

Here TS ′(t′) represents the top free surface r′ > a + ζ′(z′, θ, t′), 0 ≤ θ < 2π, z′ =

H+ + η′(r′, θ, t′), VS ′(t′) the vertical free surface r′ = a + ζ′(z′, θ, t′), 0 ≤ θ < 2π,

H−+ν′(a, θ, t′) < z′ < H++η′(a, θ, t′) and LS ′(t′) the lower free surface r′ < a+ζ′(z′, θ, t′),

0 ≤ θ < 2π, z′ = H− + ν′(r′, θ, t′), which have to be determined for small times.

The Bernoulli equation for unsteady irrotational flow is

−
p′

ρ0
= ϕ′t′ +

1
2
| ∇ϕ′ |2 + g(z′ − H+) (r′ ≥ a), (3.5)

−
p′

ρ0
= ϕ′t′ +

1
2
| ∇ϕ′ |2 + g(z′ − H−) (r′ < a). (3.6)

The fluid is considered to be inviscid, implying that the pressure p at the free surface is

the same as the atmospheric pressure p0

p′ = 0 (on FS ′(t′)), (3.7)

where the notation FS ′(t′) stands for all free surfaces. Explicitly, the pressure on each

free surface is

ϕ′t′ +
1
2
| ∇ϕ′ |2 + gη′(r′, θ, t′) = 0 (on TS ′(t′)), (3.8)

ϕ′t′ +
1
2
| ∇ϕ′ |2 + g(z′ − H+) = 0 (on VS ′(t′)), (3.9)

ϕ′t′ +
1
2
| ∇ϕ′ |2 + gν′(r′, θ, t′) = 0 (on LS ′(t′)). (3.10)

The bottom surface BS ′(t′) is rigid. The boundary condition is that there is no velocity in

z′ direction at the bottom surface BS ′(t′)

ϕ′z′ = 0 (on BS ′(t′)). (3.11)
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Initially, before the cylinder collapses, the fluid is at rest and there is no deformation of

the free surfaces

ϕ′(r′, θ, z′, 0) = 0, η′(r′, θ, 0) = 0, ζ′(z′, θ, 0) = 0, ν′(r′, θ, 0) = 0 (t′ = 0). (3.12)

At r′ = 0, 0 < z′ < H− the flow is bounded,

ϕ′ is bounded. (3.13)

At infinity there is no fluid motion, so

ϕ′ → 0 (r′ → +∞). (3.14)

In order to express the problem in dimensionless form, we introduce the non-

dimensional variables

r′ = rH+, z′ = zH+, t′ = Tt,

ϕ′ = gH+Tϕ, p′ = ρ0gH+ p, T = ε1/2
√

H+/g

η′ = S 1η, ζ′ = S 2ζ, ν′ = S 3ν,

S 1/H+ = O(ε), S 2/H+ = O(ε), S 3/H+ = O(ε).

(3.15)

Replacing (3.15) in the boundary value problem (3.1)-(3.14), the nondimensional

potential ϕ(r, θ, z, t) satisfies the following equations:

∇2ϕ = 0 (in Ω(t)) (3.16)

ϕz = εϕrηr +
ε

r2ϕθηθ + ηt (on TS (t)), (3.17)

ϕr = εϕzζz +
ε

r2ϕθζθ + ζt (on VS (t)), (3.18)

ϕz = εϕrνr +
ε

r2ϕθνθ + νt (on LS (t)), (3.19)
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p = ϕt +
1
2
ε| ∇ϕ |2 + z − 1 (r ≥ a/H+), (3.20)

p = ϕt +
1
2
ε| ∇ϕ |2 + z − δ (r < a/H+), (3.21)

p = 0 (on FS (t)) (3.22)

ϕt +
1
2
ε| ∇ϕ |2 + εη(r, θ, t, ε) = 0 (on TS (t)) (3.23)

ϕt +
1
2
ε| ∇ϕ |2 + z − 1 = 0 (on VS (t)) (3.24)

ϕt +
1
2
ε| ∇ϕ |2 + εν(r, θ, t, ε) = 0 (on LS (t)) (3.25)

ϕz = 0 (on BS (t)), (3.26)

ϕ(r, θ, z, 0, ε) = 0, η(r, θ, 0, ε) = 0, ζ(z, θ, 0, ε) = 0, ν(r, θ, 0, ε) = 0 (t = 0)

(3.27)

ϕ − bounded (r = 0, 0 < z < δ) (3.28)

ϕ→ 0 (r → +∞) (3.29)

Here Ω(t) is the flow region, which is bounded by the free surface FS (t) and the bot-

tom surface BS (t) z = 0. FS (t) is composed by the union of the top free surface TS (t):

r > a/H+ + εζ(z, θ, t, ε), 0 ≤ θ < 2π, z = 1 + εη(r, θ, t, ε), the vertical free surface VS (t):

r = a/H+ + εζ(z, θ, t, ε), 0 ≤ θ < 2π, δ + εν(a/H+, θ, t, ε) < z < 1 + εη(a/H+, θ, t, ε) and

the lower free surface LS (t): r < a/H+ + εζ(z, θ, t, ε), 0 ≤ θ < 2π, z = δ + εν(r, θ, t, ε),

which have to be determined for small times. The new parameter δ represents the depth

ratio H−/H+.

We shall now suppose that the velocity potential and the free surface displace-

ments are small, by searching for a solution of (3.16)-(3.29), as ε→ 0 in the form

ϕ(r, θ, z, t, ε) = ϕ0(r, θ, z, t) + εϕ1(r, θ, z, t) + O(ε2),

η(r, θ, t, ε) = η0(r, θ, t) + εη1(r, θ, t) + O(ε2),

ζ(z, θ, t, ε) = ζ0(z, θ, t) + εζ1(z, θ, t) + O(ε2), (3.30)

ν(r, θ, t, ε) = ν0(r, θ, t) + εν1(r, θ, t) + O(ε2).
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3.1.1. Leading-order outer problem

The flow region Ω(t) is split into two regions, Ω+(t) representing the exterior re-

gion: r > a/H+, 0 ≤ θ < 2π, 0 < z < 1 + εη(r, θ, t, ε) and Ω−(t) the interior region

r < a/H+, 0 ≤ θ < 2π, 0 < z < δ + εν(r, θ, t, ε). So the exterior region is outside the

cylinder, extending to the infinity in the radial direction and the interior region is un-

derneath the cylinder and bounded. Substituting the asymptotic expansions (3.30) in the

boundary value problem (3.16)-(3.29), as ε → 0 we get the exterior and the interior re-

gion boundary-value problem for the leading-order velocity potentials ϕ+
0 and ϕ−0 . The

Laplace’s equation (3.16) in the exterior region becomes

∇2ϕ+
0 = 0 (r > a/H+, 0 ≤ θ < 2π, 0 < z < 1). (3.31)

The dynamic boundary condition (3.23) and the kinematic condition (3.17) on the top free

surface yield

ϕ+
0 = 0,

∂η0

∂t
=
∂ϕ+

0

∂z
(r > a/H+, 0 ≤ θ < 2π, z = 1). (3.32)

Equation (3.24) and (3.18) on the vertical free surface become

ϕ+
0 = (1 − z)t,

∂ζ0

∂t
=
∂ϕ+

0

∂r
(r = a/H+, 0 ≤ θ < 2π, δ < z < 1). (3.33)

The condition at the rigid bottom (3.26) for the exterior region is

∂ϕ+
0

∂z
= 0 (r ≥ a/H+, 0 ≤ θ < 2π, z = 0). (3.34)

The initial conditions (3.27) become

ϕ+
0 (r, θ, z, 0) = 0, η0(r, θ, 0) = 0, ζ0(z, θ, 0) = 0 (t = 0). (3.35)
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The condition at the far field (3.29) is

ϕ+
0 → 0 (r → +∞). (3.36)

Similarly, we obtain the interior region boundary-value problem for the leading-order

velocity potential ϕ−0 . The Laplace’s equation (3.16) in the interior region becomes

∇2ϕ−0 = 0 (r < a/H+, 0 ≤ θ < 2π, 0 < z < δ). (3.37)

The dynamic boundary condition (3.25) and the kinematic condition (3.19) on the lower

free surface yield

ϕ−0 = 0,
∂ν0

∂t
=
∂ϕ−0
∂z

(r < a/H+, 0 ≤ θ < 2π, z = δ). (3.38)

The condition at the rigid bottom (3.16) for the interior region becomes

∂ϕ−0
∂z

= 0 (r < a/H+, 0 ≤ θ < 2π, z = 0). (3.39)

By (3.27) the initial conditions are

ϕ−0 (r, θ, z, 0) = 0, ν0(r, θ, 0) = 0 (t = 0). (3.40)

The velocity potential is bounded at the vertical axes (3.28), therefore

ϕ−0 (0, θ, z, t) bounded (r = 0). (3.41)
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The conditions at the interface of the two regions are that the pressures of the fluid are

equal
∂ϕ+

0

∂t
− 1 =

∂ϕ−0
∂t
− δ (r = a/H+, 0 ≤ θ < 2π, 0 < z < δ), (3.42)

and the radial velocities too

∂ϕ+
0

∂r
=
∂ϕ−0
∂r

(r = a/H+, 0 ≤ θ < 2π, 0 < z < δ). (3.43)

The intersection of the initially vertical free surface and lower horizontal free surface is

the circle (a/H+, θ, δ), where 0 ≤ θ < 2π. However, the conditions (3.33) and (3.38)

along these surfaces do not match at this circle, thereupon singularity of the flow within

the mathematical model (3.31)-(3.43) is expected there.

3.2. Solution by the Fourier series method

The boundary value problems in the exterior region (3.31)-(3.36) and in the inte-

rior region (3.37)-(3.41) are considered. We would like to find solutions in the form of an

infinite linear combination of separated solutions, i.e., ϕ±0 = R±(r)Θ±(θ)Z±(z). By virtue

of the problems being axisymmetric, there is no θ dependence. The velocity potentials for

the exterior and interior regions are given below:

ϕ+
0 = t

∞∑
n=0

c′nK0(σnr) cos(σnz) (3.44)

ϕ−0 = t
∞∑

n=0

d′nI0

(σnr
δ

)
cos

(σnz
δ

)
, (3.45)

where σn = (2n + 1)(π/2). I0 and K0 are the modified Bessel functions of the first and

the second kind of order zero respectively. Note that the dynamic condition (3.33) is

not yet applied. It will be used afterwards, together with the interface conditions (3.42)

and (3.43), in order to determine the coefficients c′n and d′n. For calculation purposes,

we introduce two new variables cn = c′nK0(σna/H+) and dn = d′nI0(σn(a/H+)/δ), so that
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(3.44) and (3.45) become:

ϕ+
0 = t

∞∑
n=0

cn
K0(σnr)

K0(σna/H+)
cos(σnz) (3.46)

ϕ−0 = t
∞∑

n=0

dn

I0

(
σnr
δ

)
I0

(
σna/H+

δ

) cos
(σnz
δ

)
. (3.47)

Replacing the velocity potentials (3.46) and (3.47) at the interface conditions (3.42) and

(3.43), for r = a/H+ and 0 < z < δ, yields:

∞∑
n=0

cn cos(σnz) − 1 =

∞∑
n=0

dn cos
(σnz
δ

)
− δ, (3.48)

−

∞∑
n=0

cnσn
K1(σna/H+)
K0(σna/H+)

cos(σnz) =

∞∑
n=0

dn
σn

δ

I1

(
σna/H+

δ

)
I0

(
σna/H+

δ

) cos
(σnz
δ

)
. (3.49)

Multiplying (3.46) by cos(σmz) and integrating with respect to z from 0 to 1, using (3.48)

and (3.33), we get the first relation between cn and dn:

cn

2
−

∞∑
m=0

αnmdm = fn,
σm

δ
, σn, n = 0, 1, · · · (3.50)

cn

2
−
δ

2
dn = fn,

σm

δ
= σn, n = 0, 1, · · · (3.51)

where

fn =
cos(σnδ)
σn

2 , (3.52)

αnm = −(−1)mσm cos(σnδ)/δ
σ2

n − σ
2
m/δ

2 . (3.53)

Multiplying (3.49) by cos(σmz/δ) and integrating with respect to z from 0 to δ, we get the

second relation between cn and dn:

−

∞∑
n=0

cnσn
K1(σna/H+)
K0(σna/H+)

αnm = dm
σm

2

I1

(
σma/H+

δ

)
I0

(
σma/H+

δ

) , σm

δ
, σn, m = 0, 1, · · · (3.54)

−cm
K1(σma/H+)
K0(σma/H+)

=
dm

δ

I1

(
σma/H+

δ

)
I0

(
σma/H+

δ

) , σm

δ
= σn, m = 0, 1, · · · . (3.55)
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Truncating the series in (3.50) up to M and the series in (3.54) up to N and replacing cn

in (3.54) by (3.50), we get the following system:

M∑
l=0

[σl

2
δlm

I1

(
σla/H+

δ

)
I0

(
σla/H+

δ

) + 2
N∑

n=0

σnαnmαnl
K1(σna/H+)
K0(σna/H+)

]
dl = −2gm,

σm

δ
, σn, (3.56)

where

gm =

N∑
n=0

αnm

σn
cos(σnδ)

K1(σna/H+)
K0(σna/H+)

, (3.57)

m = 0, 1, · · · ,M, and δlm = 1 for l = m and δlm = 0 otherwise. By combining (3.51) and

(3.55), we get

(
δ

2
+

1
2δ

I1

(
σma/H+

δ

)
I0

(
σma/H+

δ

))dm = − fm
K1(σma/H+)
K0(σma/H+)

,
σm

δ
= σn, , m = 0, 1, · · · ,M. (3.58)

Solution to the systems (3.56) and (3.58) provides us with the coefficients dl, which

subsequently are used in obtaining the coefficients cn in (3.50) and (3.51) for the cases

σn , σm/δ and σn = σm/δ respectively. Note that the equations (3.48) and (3.50) cor-

respond to (14) and (16) in Yilmaz et al. (2013a) for the case γ = 1 and σn , σm/δ.

Furthermore, the equations (3.49), (3.54) and (3.56) reduce to (15), (19) and (20) in Yil-

maz et al. (2013a) in a sense that is explained specifically in Sec. 3.3.

3.3. Reduction to the 2-D problem

As the radius and the center of cavity approach infinity, the problem reduces to

the two dimensional dam-break flow of two immiscible fluids studied by Yilmaz et al.

(2013a), for the particular case of density ratio γ = 1. For a/H+ → ∞, the asymptotic

expansion for large arguments of the modified Bessel function of the first and second kind

of first order (A.1) and (A.2) are

Im

(σna/H+

δ

)
∼

√
1

2πσn(a/H+)/δ
eσn(a/H+)/δ (3.59)
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and

Km(σna/H+) ∼
√
π

2
e−σna/H+

(σna/H+)1/2 . (3.60)

Replacing (3.59) and (3.60) in (3.49), the second condition at the interface becomes

−

∞∑
n=0

cnσn cos(σnz) =

∞∑
n=0

dn
σn

δ
cos

(σnz
δ

)
, (3.61)

which is exactly the same as the second condition at the interface, see equation (15) in the

2-D problem in Yilmaz et al. (2013a). Note that the first condition at the interface (3.48)

is same as the first condition at the interface, see equation (14) in Yilmaz et al. (2013a).

To conclude, as a/H+ → ∞, the conditions at the interface of the 3-D problem match the

conditions at the interface of the 2-D problem, implying that the solution of the systems

will be same too.

3.4. Singularity analysis near the bottom circle

Due to the axisymmetric nature of the problem, it is sufficient to analyse the prob-

lem in the x̃ỹz̃ coordinate system, which is obtained first by shifting the xyz coordinates

in the xy plane by a/H+ cos θ and a/H+ sin θ in x and y directions respectively, and then

by rotating the coordinates in the z direction by θ, where θ is arbitrary (see Fig. 3.2).

The relation between the new coordinates x̃ỹz̃ and xyz is given as

x̃ = cos θ(x −
a

H+
cos θ) + sin θ(y −

a
H+

sin θ) (3.62)

ỹ = − sin θ(x −
a

H+
cos θ) + cos θ(y −

a
H+

sin θ) (3.63)

z̃ = z. (3.64)

The problem is independent of θ, because of its axisymmetrical geometry. For simplicity,

let θ = 0. Notice that, for such value, the shift is only a/H+ in the x direction and there is
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Figure 3.2. Shift from xyz to x̃ỹz̃ coordinate system

no rotation, therefore

x̃ = x −
a

H+
(3.65)

ỹ = y (3.66)

z̃ = z. (3.67)

In order to study the problem in the x̃z̃ plane, ỹ is taken to be 0 (see Fig. 3.3). Near the

triple point x̃ = 0, z̃ = δ, we place a local polar coordinate system, so that the problem

becomes identical to the boundary value problem describing the local flow at the triple

point in Yilmaz et al. (2013a). Therefore,

x̃ = r̃ cos θ̃ (3.68)

z̃ = r̃ sin θ̃ + δ, (3.69)

where r̃, θ̃ are local polar coordinates. The velocity potential satisfies the Laplace equation
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in the local region and the following boundary conditions

ϕ0

(
r̃,
π

2

)
= 1 − r̃ sin θ̃ − δ (r̃ > 0, θ̃ = π/2), (3.70)

ϕ0(r̃,−π) = 0 (r̃ > 0, θ̃ = −π). (3.71)

The general solution can be written as

Figure 3.3. Boundary value problem describing the local flow near the bottom circle.

ϕ0(r̃, θ̃) = C sin(
2
3

(π + θ̃))r̃2/3 +
2
3

(1 − δ)(1 +
θ̃

π
) − r̃ sin θ̃. (3.72)

The horizontal and vertical velocities are

u =
2
3

C sin(
1
3

(2π − θ̃))r̃−1/3 −
2(1 − δ)

3π
sin θ̃r̃−1 (3.73)

and

v =
2
3

C cos(
1
3

(2π − θ̃))r̃−1/3 +
2(1 − δ)

3π
cos θ̃r̃−1 − 1. (3.74)

Thus, the flow velocity is r̃−1/3 singular at the triple point x̃ = 0, z̃ = δ. Note that (3.73)

and (3.74) correspond to the velocities u and v near the corner point, see equation (25) in

Yilmaz et al. (2013a).
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3.5. Nonlinear analysis at the bottom circle

The analysis of the flow near the bottom circle, shows that the outer solution is

singular at x = a/H+, z = δ. An inner solution is needed in order to describe the flow

at this circle. The non-linear analysis of the initial stage of dam-break flow of two im-

miscible fluids is studied by Yilmaz et al. (2013b). Here the inner solution describes a jet

flow formation at the corner point x = 0, y = δ. Similarly, due to the axisymmetric nature

of the problem, and using the explanations from Section 3.4, it can be concluded that the

nonlinear analysis of the 3-D problem will be same to the one in Yilmaz et al. (2013b).

3.6. Numerical results

Based on the local analysis at the bottom circle of the cavity (Section 3.4), it is

of interest investigating numerically the radial and vertical velocities along the interface,

particularly near the bottom circle. It is also significant to check numerically the radial

velocity of the initially vertical free surface, the vertical velocity of the lower free surface

and their behaviour near the bottom circle. On the other side, considering the conclu-

sions of the limiting case (Section 3.3), it is of importance checking numerically how an

increase in the ratio a/H+ affects the free surface shapes. In order to get these numer-

ical results, first we should decide about the truncations of the series (3.50) and (3.54),

namely we should find a suitable M and N, which guarantees the convergence of the so-

lution. Hudde and Letens (1985)’s study on a sound propagating through a circular duct

with a change in radius, suggests that NA/NB = RA/RB, were NA is the number of the

modes in the smaller duct, NB is the number of modes in the larger duct, RA and RB are

the radii of the smaller and larger duct respectively. Therefore, in our problem the number

of modes N and M must be chosen such that N/M = δ. During these analyses M = 999

and N = 1999. While computing the radial velocity of the initially vertical free surface,

we cut the series at n = 140 and for bigger n, we use the asymptotic expansion for large

arguments of the modified Bessel function of first kind (A.1), in order to avoid getting the

result 0/0 from the Matlab code. Similarly, to avoid getting ∞/∞ while calculating the

vertical velocity of the lower free surface, we truncate the series at m = 70 and use the

asymptotic expansion for large arguments for the modified Bessel function of the second
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kind (A.2).

3.6.1. Convergence of the coefficients

Before introducing the numerical results about the velocities near the bottom circle

of the cavity and the free surface shapes, it is crucial to check the convergence of the

coefficients dm and cn on which these numerical results depend. Here H+ = 2, H− = 1

and a = 1. For different m and n, some values dm and cn are presented in Table 3.1 and

Table 3.2 respectively.

Table 3.1. Convergence of dm

dm m = 10, n = 20 m = 60, n = 120 m = 100, n = 200 m = 999, n = 1999
d0 -0.2591 -0.2590 -0.2590 -0.2590
d1 0.0424 0.0423 0.0423 0.0423
d2 -0.0185 -0.0183 -0.0183 -0.0183
· · · · · · · · · · · · · · ·

d9 0.0029 0.0020 0.0020 0.0020
· · · · · · · · · · · · · · ·

d19 0.0006 0.0006 0.0006

Table 3.2. Convergence of cn

cn m = 10, n = 20 m = 60, n = 120 m = 100, n = 200 m = 999, n = 1999
c0 0.4077 0.4077 0.4077 0.4077
c1 -0.1450 -0.1448 -0.1448 -0.1448
c2 -0.0203 -0.0202 -0.0202 -0.0202
· · · · · · · · · · · · · · ·

c9 -0.0067 -0.0064 -0.0064 -0.0064
· · · · · · · · · · · · · · ·

c19 0.0031 0.0019 0.0019 0.0019

Note that the convergence is achieved for m = 60 and n = 120 with

εd =
∣∣∣dm999 − dm60

∣∣∣ ≤ 10−5 and εc =
∣∣∣cn1999 − cn120

∣∣∣ ≤ 10−5.
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3.6.2. Radial and vertical velocities along the interface

We present the graphs of the radial and vertical velocities along the interface. The

radial velocities match along the interface (see Fig. 3.4), as given in condition (3.43).

Near z = 0, the radial velocities match well. Near z = 0.5, we don’t have a good match,
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r
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0.5

z

z = 
r
-(a/H+,z)

z = 
r
+(a/H+,z)

Figure 3.4. Radial velocities φ±r (a/H+, z) of the interface for δ = 0.5.

which is expected because of the singularity (see Table 3.3). We notice that the radial

velocity of the interface in Fig. 3.4 is same to the horizontal velocity of the interface for

two liquids of same density presented in Fig. 6b in Yilmaz et al. (2013a).

Table 3.3. Radial velocities along the interface

z ϕ+
0,r(0.5, z, t) ϕ−0,r(0.5, z, t)

0.001 -0.299007952532956 -0.297335981885625
0.002 -0.294524410147874 -0.291907829689814
0.003 -0.302225612780784 -0.294141517569342
· · · · · · · · ·

0.497 2.407075121010925 -2.925394395518511
0.498 -2.521740351904609 -3.601924711771231
0.499 -4.603360133751212 -3.016350936808655

The vertical velocities match at the interface (see Fig. 3.5), satisfying so the con-

dition (3.42). Near z = 0, we have a good match for φ±z . Near z = 0.5, we do not have a

good match, implying the existence of a singularity at (a/H+, δ) (see Table 3.4). As stated

in Yilmaz et al. (2013a), we also notice that the vertical velocities match better than the
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Figure 3.5. Vertical velocities φ±z of the interface for δ = 0.5.

radial ones. The graph in Fig. 3.5 is same to the one in Fig. 7b from the latter paper,

which presents the vertical velocities along the interface for δ = 0.5 and the liquids have

same density.

Table 3.4. Vertical velocities along the interface

z ϕ+
0,z(0.5, z, t) ϕ−0,z(0.5, z, t)

0.001 0.005737873916772 0.005710282392787
0.002 0.003394409241131 0.003406804668442
0.003 -0.001520014346943 -0.001602789056567
· · · · · · · · ·

0.497 3.865883515111893 3.509921204998019
0.498 4.417637283631854 4.986310683399990
0.499 8.257112982399617 7.252958347160366

3.6.3. Velocities of the free surfaces

Next, we calculate the radial velocity of the initially vertical free surface. The

equation of the radial velocity can be written as

ϕ+
0,r(a/H

+, z, t) ≈ t
( 140∑

n=0

cnσn
K0
′(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz) +

1999∑
n=141

cnσn
K0
′(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz)

)

≈ − t
( 140∑

n=0

cnσn
K1(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz) +

1999∑
n=141

cnσn cos(σnz)
)
.
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by using (A.2). In Fig. (3.6), the velocity is plotted for three different values a/H+ =

0.5, 1, 1.5. Table 3.5 provides the numerical values of the radial velocities of the initially
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Figure 3.6. Radial velocity of the initially vertical free surface ϕ+
0,r(a/H

+, z, t) for
a/H+ = 0.5, 1, 1.5. and 2-D

vertical free surface for a/H+ = 0.5, 1, 1.5 near z = δ. Close to the bottom circle, the

values increase rapidly towards the negative direction, demonstrating the singularity there.

The radial velocities of the initially vertial free surface presented in Fig. 3.6 are same to

the horizontal velocities of the initially vertical free surface of the liquid on the right, for

δ = 0.5 and liquids having same density presented in Fig. 9 in Yilmaz et al. (2013a).

Table 3.5. Radial velocities of the initially vertical free surface near the bottom circle

z ϕ+
0,r(0.5, z, t) ϕ+

0,r(1, z, t) ϕ+
0,r(1.5, z, t)

0.501 -8.236928559655034 -8.025861916453382 -7.951427421424839
0.502 -6.111019944460889 -5.900915084114108 -5.826441139355690
0.503 -5.591022229303540 -5.382585253260065 -5.308441310650255

The vertical velocity of the lower free surface can be expressed by the equation

ϕ−0,z(r, δ, t) ≈t
( 70∑

m=0

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

+

999∑
m=71

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

)

≈t
( 70∑

m=0

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

+

√
a

H+r

999∑
m=71

(−1)m+1dm
σm

δ
eσm(r−a/H+)/δ

)
.

(3.75)
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For a/H+ = 0.5, 1, 1.5 the vertical velocity is plotted in Figure 3.7. The velocities are

shifted by a/H+ to the left in order to compare. Table 3.6 provides the numerical data
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Figure 3.7. Vertical velocity of the lower free surface ϕ−0,z(r, δ, t) for a/H+ = 0.5, 1, 1.5.
and 2-D

of the vertical velocities near r = a/H+. Close to the bottom circle the values increase

rapidly upwards, showing the presence of a singularity. We notice that the vertical velocity

of the lower free surface presented in Fig. 3.7 is same to the vertical velocity of the free

surface of the shallower liquid Fig. 8 in Yilmaz et al. (2013a), for the case δ = 0.5 and

liquids having the same density.
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Table 3.6. Vertical velocities of the lower free surface near the bottom circle

r ϕ−0,z(r, δ, t) ϕ−0,z(r, δ, t) ϕ−0,z(r, δ, t)
a/H+ = 0.5 a/H+ = 1 a/H+ = 1.5

-0.003 5.115672631118379 5.108215900319818 5.105781594358199
-0.002 5.864411101265139 5.858691521687085 5.856818619791557
-0.001 7.209457356212002 7.205925364175235 7.204764499068431

3.6.4. Free surface shapes

We continue this section by providing the results of the numerical computations

for the free surface shapes for δ = 0.5, and a/H+ = 0.5, 1, 1.5. First, we present the top

free surface shape η0(r, t) (see Fig. 3.8) for three different ratios a/H+. In the graph, the

top free surface shape from the 2-D problem is plotted too for comparison. Here the 3-D

graphs are shifted by a/H+ to the left, due to the 2-D problem in Yilmaz et al. (2013a)

having the flat sheet separation in x = 0, and the 3-D problem having the cylindrical

cavity in r = a/H+. By increasing the ratio a/H+ the top free surface shape approaches

to the 2-D problem top free surface shape. For n > 145, in the summation, we use (A.2),

the asymptotic expansion for large arguments of the modified Bessel function,

η0(r, t) ≈
t2

2

( 145∑
n=0

(−1)ncnσn
K0(σnr)

K0(σn
a

H+ )
+

1999∑
n=146

(−1)ncnσn
K0(σnr)

K0(σn
a

H+ )

)

≈
t2

2

( 145∑
n=0

(−1)ncnσn
K0(σnr)

K0(σn
a

H+ )
+

√
a

H+r

1999∑
n=146

(−1)ncnσne−σn(r−a/H+)
)
.

The vertical free surface ζ0(z, t) is plotted in Fig. 3.9 for three different values

a/H+. For comparison, the 2D initially vertical free surface of the liquid on the right

for δ = 0.5 and γ = 1 is plotted too. An increase in a/H+, shows that the vertical free

surface of the 3-D problem approaches the vertical free surface of the 2-D problem. In

the summation, for n > 140, the ratio of the modified Bessel functions of second kind is
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Figure 3.8. Top free surface shape of the 2-D and 3-D case for different ratios a/H+ =

0.5, 1, 1.5 and for δ = 0.5, ε = 0.01

replaced by (A.2), the asymptotic expansions for large arguments

ζ0(z, t) ≈
t2

2

( 140∑
n=0

cnσn
K0
′(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz) +

1999∑
n=141

cnσn
K0
′(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz)

)

≈
−t2

2

( 140∑
n=0

cnσn
K1(σn

a
H+ )

K0(σn
a

H+ )
cos(σnz) +

1999∑
n=141

cnσn cos(σnz)
)
.

The lower free surface ν0(r, t) for three different values a/H+ is provided in Fig.

3.10. For comparison, the 2-D free surface of the liquid on the left for δ = 0.5 and γ = 1,

is provided too. Here the 3-D graphs are shifted by a/H+ to the left, in order to compare

with the 2-D graph. An increase in a/H+ shows that the lower free surface of the 3-D

problem approaches the lower free surface of the 2-D problem. In the computations, for

m > 70, we replace the modified Bessel functions using (A.1), and the equation of the
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Figure 3.9. Vertical free surface shape for δ = 0.5 and ε = 0.01 computed for the 2-D
case and for the 3-D case for different ratios a/H+ = 0.5, 1, 1.5

lower free surface becomes

ν0(r, t) ≈
t2

2

( 70∑
m=0

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

+

999∑
m=71

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

)

≈
t2

2

( 70∑
m=0

(−1)m+1dm
σm

δ

I0(σm
r
δ
)

I0(σm
a/H+

δ
)

+

√
a

H+r

999∑
m=71

(−1)m+1dm
σm

δ
eσm(r−a/H+)/δ

)
.

(3.76)

To conclude, the radial and vertical velocities at the interface match well at r =

a/H, z = 0, but we do not have a good match at r = a/H, z = δ, where the singularities

are observed. The radial velocity of the initial vertical free surface deflects to the negative

direction as we approach z = δ, and on the other side, the vertical velocity of the lower free

surface deflects to the negative direction too as we approach the lower circle of the cavity.

The initial vertical free surface shape deflects to the left near r = a/H, z = −1, because

of the presence of the singularities there. The lower free surface shape deflects upwards

near the lower circle, indicating a jet formation at this circle. These results coincide with

the ones found by Yilmaz et al. (2013a) for the 2-D case. Furthermore, in the analysis at
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Figure 3.10. Lower free surface shape ν0 for δ = 0.5 and ε = 0.01 computed for the 2-D
case and for the 3-D case for different ratios a/H+ = 0.5, 1, 1.5

the bottom circle in Sec. 3.4, we find out that not only the singularities are conserved, but

also the type of singularities at the lower circle is power singularity r−1/3, same to the one

at the triple point in the 2-D case. Finally, the free surface shapes, by sending the centre

of cavity and the radius to infinity and keeping their distance constant, converge to the

free surface shapes of the 2-D dam break problem of two immiscible fluids.
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CHAPTER 4

THE GRAVITY DRIVEN FREE SURFACE FLOW CAUSED

BY THE COLLAPSE OF A RECTANGULAR SECTION OF

A VERTICAL PLATE

Three-dimensional problem of gravity-driven flow caused by the collapse of a

rectangular section of a vertical plate located in front of a liquid region is investigated.

Before the collapse, the fluid region Ω′(0) is x′ > 0, −∞ < y′ < ∞, −H < z′ ≤ 0, and the

vertical plate is positioned at x′ = 0, −∞ < y′ < ∞, −H < z′ ≤ 0. Here the prime stands

for the dimensional variables and H represents the liquid depth (see Fig.4.1). Initially, the

region x′ > 0, −∞ < y′ < ∞, z′ = 0 represents the top free surface.

Figure 4.1. Flow region at initial time t′ = 0

At time t′ = 0, a rectangular section x′ = 0, −b ≤ y′ ≤ b, −H < z′ ≤ 0 of the

vertical plate collapses, causing the start of a gravity-driven flow. For small times, the flow

is assumed to be potential and three-dimensional. Immediately after the collapse of the
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rectangular section, a vertical free surface shape is formed at x′ = 0, −b ≤ y′ ≤ b, −H <

z′ < 0, which under the gravity force starts deforming. Attention is paid in determining

the shape of the vertical free surface. Besides, it is of interest checking the behaviour of

the velocity field at three of the edges of the rectangular section, the right edge x′ = 0,

y′ = −b, −H < z′ ≤ 0, the left edge x′ = 0, y′ = b, −H < z′ ≤ 0, and the bottom edge

x′ = 0, −b ≤ y′ ≤ b, z′ = −H.

Fourier series method and BEM is used in the solution of the problem. The ve-

locity field is expected to be singular at the bottom edge, because of a mismatch of the

boundary conditions along this line. The horizontal velocity of the initially vertical free

surface at x′ = 0, y′ = 0 and −H < z′ ≤ 0, is expected to be similar to the horizontal

velocity of the initially vertical free surface in the 2-D dam break problem by Korobkin

and Yilmaz (2009).

4.1. Formulation of the problem

The fluid is considered to be irrotational, implying the existence of a velocity

potential ϕ′(x′, y′, z′, t′). It is assumed too that the fluid is incompressible, therefore the

velocity potential satisfies the Laplace’s equation:

∇2ϕ′ = 0 (in Ω′(t′)). (4.1)

Here Ω′(t′), denotes the flow region. At the initial time, t′ = 0, when the rectangular

section collapses, a vertical free surface forms at its place. Both free surfaces, the top free

surface and the rectangular one, under the gravitational force, will change their shape.

The conditions on these free surfaces are described below. The first condition, is that the

particles on the free surface remain on the free surface. So, the kinematic conditions are:

ϕ′z′ = ϕ′x′η
′
x′ + ϕ′y′η

′
y′ + η′t′ (on TS ′(t′)), (4.2)

ϕ′x′ = ϕ′y′h
′
y′ + ϕ′z′h

′
z′ + h′t′ (on RS ′(t′)), (4.3)
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where TS (t′) is the top free surface of the region: x′ > 0, −∞ < y′ < ∞, z′ = η′(x′, y′, t′)

and RS (t′) is the rectangular free surface: x′ = h′(y′, z′, t′), −b ≤ y′ ≤ b, −H < z′ <

η′(0, y′, t′). Here η′(x′, y′, t′) and h′(y′, z′, t′) stand for the shapes of the top free surface

and rectangular free surface respectively, and have to be determined.

The next condition on the free surface is that, for inviscid fluids, the pressure is equal to

the atmospheric pressure, therefore the Bernoulli’s equation for unsteady irrotational flow

ϕ′t′ +
1
2
| ∇ϕ′ |2 + gz′ = −

p
ρ0

(on Ω′(t′)), (4.4)

is

ϕ′t′ +
1
2
| ∇ϕ′ |2 + gz′ = 0 (on FS ′(t′)), (4.5)

where FS ′(t′) = TS ′(t′) ∪ RS ′(t′).

The other BC’s are imposed on the rigid bottom and the rigid vertical plate, which is the

part of the vertical plate that does not collapse. There is no horizontal velocity component

on the rigid vertical plate

ϕ′x′ = 0 (on VS ′(t′)), (4.6)

and no vertical velocity component on the rigid bottom

ϕ′z′ = 0 (on BS ′(t′)), (4.7)

where VS (t′) and BS (t′) represent the rigid vertical plate surface x′ = 0, −∞ < y′ < −b ∪

b < y′ < ∞, −H < z′ ≤ 0 and the rigid bottom surface z′ = −H respectively.

Initially there is no velocity potential, and the free surfaces are at their starting positions

ϕ′(x′, y′, z′, 0) = 0, η′(x′, y′, 0) = 0, h′(y′, z′, 0) = 0, (4.8)

and there is no flow far from the centre

ϕ′ → 0 (
√

x′2 + y′2 → +∞). (4.9)
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We present the following non-dimensional variables

x′ = xH, y′ = yH, z′ = zH, t′ = Tt,

ϕ′ = gHTϕ, p′ = ρ0gHp, T = ε1/2
√

H/g

η′ = S 1η, h′ = S 2h,

S 1/H = O(ε), S 2/H = O(ε).

(4.10)

and write the new dimensionless equations by replacing (4.10) in the boundary value prob-

lem (4.1)-(4.9). The nondimensional potential ϕ(x, y, z, t) satisfies the following equa-

tions:

∇2ϕ = 0 (in Ω(t)), (4.11)

ϕz = εϕxηx + εϕyηy + ηt (on TS (t)), (4.12)

ϕx = εϕyhy + εϕzhz + ht (on RS (t)), (4.13)

−p = ϕt +
1
2
ε| ∇ϕ |2 + z (in Ω(t)), (4.14)

p = p0 = ϕt +
1
2
ε| ∇ϕ |2 + z = 0 (on FS (t)), (4.15)

ϕx = 0 (on VS (t)), (4.16)

ϕz = 0 (on BS (t)), (4.17)

ϕ(x, y, z, 0) = 0, η(x, y, 0) = 0, h(y, z, 0) = 0, (t = 0) (4.18)

ϕ→ 0 (
√

x2 + y2 → +∞). (4.19)

Here Ω(t) is the flow region, FS (t) = TS (t)∪RS (t) is the free surface of the region, where

TS (t) is the top free surface of the region: x > 0, −∞ < y < ∞, z = εη(x, y, t, ε) and RS (t)

is the rectangular free surface: x = εh(y, z, t, ε), −b/H ≤ y ≤ b/H, −1 < z < εη(0, y, t, ε).

VS (t) and BS (t) represent the rigid vertical surface: x = 0, −∞ < y < −b/H ∪ b/H < y <

∞, −1 < z < 0 and the rigid bottom surface z = −1 respectively.
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We search for a solution of the BVP (4.11)-(4.19), as ε→ 0 in the form

ϕ(x, y, z, t, ε) = ϕ0(x, y, z, t) + εϕ1(x, y, z, t) + O(ε2),

η(x, y, t, ε) = η0(x, y, t) + εη1(x, y, t) + O(ε2), (4.20)

h(y, z, t, ε) = h0(y, z, t) + εh1(y, z, t) + O(ε2).

4.2. Leading-order outer problem and solution by boundary element

method

Substituting the asymptotic expansions (4.20) in the BVP (4.11)-(4.19), as ε→ 0

we get the boundary-value problem for the leading-order velocity potential. The Laplace’s

equation (4.11) becomes

∇2ϕ0 = 0 (x > 0,−∞ < y < ∞,−1 < z < 0). (4.21)

The dynamic boundary condition (4.15) and the kinematic condition (4.12) on the top free

surface become

ϕ0 = 0,
∂η0

∂t
=
∂ϕ0

∂z
(x > 0,−∞ < y < ∞, z = 0). (4.22)

The dynamic boundary condition (4.15) and the kinematic condition (4.13) on the rectan-

gular free surface give

ϕ0 = −zt,
∂h0

∂t
=
∂ϕ0

∂x
(x = 0, | y |≤ b/H,−1 < z < 0). (4.23)

The boundary condition on the rigid vertical surface (4.16) gives

∂ϕ0

∂x
= 0 (x = 0, | y |> b/H,−1 < z < 0), (4.24)
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and the boundary condition on the rigid bottom (4.17) gives

∂ϕ0

∂z
= 0 (x > 0,−∞ < y < ∞, z = −1). (4.25)

The initial conditions (4.18) yield

ϕ0(x, y, z, 0) = 0, η0(x, y, 0) = 0, h0(y, z, t) = 0, (t = 0). (4.26)

The condition at the far field (4.19) becomes

ϕ0 → 0 (
√

x2 + y2 → ∞). (4.27)

The intersection of the rectangular section and the rigid bottom is the line x = 0, −b/H ≤

y ≤ b/H, z = −1. The vertical velocities along this line should be the same. From (4.23)

we get ϕ0,z = −t, from (4.25) we have ϕ0,z = 0, which do not coincide. Singularity within

the mathematical model (4.21)-(4.27) is expected at the line x = 0, −b/H ≤ y ≤ b/H,

z = −1.

The solution method will follow partly the one in Renzi and Dias (2013). Separating the

z dependence, the solution to (4.21)-(4.27) can be written as

ϕ0(x, y, z, t) = t
∞∑

n=0

ϕ0n(x, y) sin(σnz), (4.28)

where σn =
π/2

2n + 1
. Equation (4.28) satisfies the Laplace’s equation (4.21), the dynamic

boundary condition on the upper free surface (4.22), the kinematic condition on the hori-

zontal bottom (4.25) and the initial condition (4.26). Replacing (4.28) in (4.21) and using

the orthogonality relation of the sine function

∫ 0

−1
sin(σnz) sin(σmz)dz =

1
2
δnm, n,m = 0, 1, · · · ,
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where δnm is the Kronecker symbol, we derive the modified Helmholtz equation

∇2ϕ0n − σ
2
nϕ0n = 0 (x > 0,−∞ < y < ∞,−1 < z < 0), (4.29)

with the boundary conditions (4.23), (4.24) and (4.27) being transformed to

ϕ0n(0, y) =
2(−1)n+1

σ2
n

(x = 0, | y |≤ b/H,−1 < z < 0), (4.30)

∂

∂x
ϕ0n(0, y) = 0 (x = 0, | y |> b/H,−1 < z < 0), (4.31)

ϕ0n(x, y)→ 0 (
√

x2 + y2 → ∞), (4.32)

respectively (See Fig. 4.2). So we have a boundary value problem on the right half plane

of xy-plane.

Figure 4.2. BVP for ϕ0n

The Green’s function G(x, x0) is used in order to solve the boundary value problem

(4.29)-(4.32), i.e,

∇2G − σ2
nG = −δ(x − x0), (4.33)
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with homogeneous boundary conditions

G(0, y; x0, y0) = 0 (x = 0, | y |≤ b/H,−1 < z < 0), (4.34)

∂

∂x
G(0, y; x0, y0) = 0 (x = 0, | y |> b/H,−1 < z < 0), (4.35)

G(x, y; x0, y0)→ 0 (
√

x2 + y2 → ∞), (4.36)

where the notation G(x, x0) = G(x, y; x0, y0) represents the response at x due to a source

at x0 and δ(x − x0) represents the two-dimensional Dirac delta function (Appendix B).

The solutions of the modified Helmholtz equation symmetric around R = 0 are the solu-

tions of
1
R

d
dR

(
R

dG
dR

)
− σ2

nG = 0, (4.37)

which can be transformed to the modified Bessel equation

R̄2 d2G
dR̄2

+ R̄
dG
dR̄
− R̄2G = 0, (4.38)

where R =| x − x0 | and R̄ = σnR. The solutions to (4.38) are the linear combinations of

the modified Bessel functions of the first and second kind of order zero

G(R̄) = c1I0(R̄) + c2K0(R̄),

which should tend to zero for large arguments, therefore c1 = 0 and

G(σnR) = c2K0(σnR).

In order to calculate the coefficient c2, we replace the k in C.1 by ±iσn and devide C.2 by

4π (see Appendix C) and get

c2K0(σnR) =
i
4

H(1)
0 (±iσnR), (4.39)
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where H(1)
n is the Hankel function of the first kind of order n and i is the imaginary unit.

Replacing the relation

Kn(x) =
1
2
πin+1H(1)

n (ix)

on left side of (4.39), yields the coefficient c2 = 1
2π . Therefore, the solution to (4.37),

which is the infinite domain Green’s function, is

G(σnR) =
1

2π
K0(σnR), (4.40)

which satisfies the radiation condition (4.36). However it is difficult to satisfy the bound-

ary conditions (4.34) and (4.35) simultaneously. Instead we shall use two different integral

equations. In one of them G1(x, x0) = 0 on y-axis, in the other ∂
∂xG2(x, x0) = 0 on y-axis.

Using the method of images we achieve below the required Green’s functions at x = 0.

1. First problem: G1(0, y; x0, y0) = 0

To obtain a solution that is zero at x = 0, it is required to place a negative image

source −δ(x − x∗0) at x = x∗0 to the source δ(x − x0) at x = x0, where

x0 = x0 î + y0 ĵ

x∗0 = −x0 î + y0 ĵ.

Therefore the Green’s function is

G1 =
1

2π
K0(σn | x − x0 |) −

1
2π

K0(σn | x − x∗0 |). (4.41)

2. Second problem: ∂
∂xG2(0, y; x0, y0) = 0

Here, as we are dealing with the derivative, plotting a positive image source δ(x−x∗0)

at x = x∗0 will give zero at x = 0, thus the Green’s function is

G2 =
1

2π
K0(σn | x − x0 |) +

1
2π

K0(σn | x − x∗0 |). (4.42)
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To obtain the solution of (4.29)-(4.32) using the Green’s function, we can utilize the

Green’s formula

"
D

( f∇2g − g∇2 f )dA =

∮
C

( f∇g − g∇ f ) · n̂dS (4.43)

for f = ϕ0n(x) and g = G(x, x0). Using equations (4.29) and (4.33) on the left of (4.43)

and considering a large semicircle (see Fig. 4.2), whose radius tends to infinity for the

right hand side of (4.43), we obtain,

−

"
D
ϕ0n(x)δ(x − x0)dA =

∫ −∞

∞

(
ϕ0n(x)

∂

∂x
G(x, x0) −G(x, x0)

∂

∂x
ϕ0n(x)

)∣∣∣∣∣
x=0

dy. (4.44)

By the fundamental operator property of the two-dimensional Dirac delta function (B.1),

(4.44) becomes

1
2
ϕ0n(x0) =

∫ ∞

−∞

(
ϕ0n(x)

∂

∂x
G(x, x0) −G(x, x0)

∂

∂x
ϕ0n(x)

)∣∣∣∣∣
x=0

dy. (4.45)

In order to solve (4.45), we have two options, either G = 0 or ∂G/∂x = 0. Next, we treat

these cases separately.

4.2.1. First problem: The Green’s function is zero at x = 0

Since G1 = 0 at x = 0, (4.45) reduces to

1
2
ϕ0n(x0) =

∫ ∞

−∞

ϕ0n(x)
∂

∂x
G1(x, x0)

∣∣∣∣∣
x=0

dy,

52



which by (4.30) gives

1
2
ϕ0n(x0) =

∫ −b/H

−∞

ϕ0n(x)
∂

∂x
G1(x, x0)

∣∣∣∣∣
x=0

dy +
2(−1)n+1

σ2
n

∫ b/H

−b/H

∂

∂x
G1(x, x0)

∣∣∣∣∣
x=0

dy

+

∫ ∞

b/H
ϕ0n(x)

∂

∂x
G1(x, x0)

∣∣∣∣∣
x=0

dy. (4.46)

The problem is symmetric with respect to the line y = 0, therefore

ϕ0n(x, y) = ϕ0n(x,−y),

and (4.46) can be arranged as

−
1
2
ϕ0n(x0) +

∫ ∞

b/H
ϕ0n(x)

(
∂

∂x
G1(x, y; x0, y0) +

∂

∂x
G1(x,−y; x0, y0)

)∣∣∣∣∣
x=0

dy

=
2(−1)n

σ2
n

∫ b/H

−b/H

∂

∂x
G1(x, x0)

∣∣∣∣∣
x=0

dy. (4.47)

By reversing the roles of x0 and x and the Green’s function’s symmetry property

G(x, x0) = G(x0, x), (4.48)

(4.47) becomes

−
1
2
ϕ0n(x) +

∫ ∞

b/H
ϕ0n(x0)

(
∂

∂x0
G1(x, y; x0, y0) +

∂

∂x0
G1(x, y; x0,−y0)

)∣∣∣∣∣
x0=0

dy0

=
2(−1)n

σ2
n

∫ b/H

−b/H

∂

∂x0
G1(x, x0)

∣∣∣∣∣
x0=0

dy0. (4.49)

By (4.41)
∂

∂x0
G1(x, y, x0, y0)

∣∣∣∣∣
x0=0

=
1

2π
xσn

K1(σn

√
x2 + (y − y0)2)√

x2 + (y − y0)2
, (4.50)

and
∂

∂x0
G1(x, y, x0,−y0)

∣∣∣∣∣
x0=0

=
1

2π
xσn

K1(σn

√
x2 + (y + y0)2)√

x2 + (y + y0)2
, (4.51)
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which by being replaced in (4.49) give the first integral equation,

−
1
2
ϕ0n(x) +

1
π

xσn

∫ ∞

b/H
ϕ0n(x0)

(
K1(σn

√
x2 + (y − y0)2)√

x2 + (y − y0)2
+

K1(σn

√
x2 + (y + y0)2)√

x2 + (y + y0)2

)
dy0

=
2(−1)n

σn

1
2π

x
∫ b/H

−b/H

K1(σn

√
x2 + (y − y0)2)√

x2 + (y − y0)2
dy0. (4.52)

The solution method follows the same technique used by Yilmaz et al. (2013a). The

solution is achieved numerically by discretizing the boundary into small panels. It is

assumed that the panels are straight line segments and the velocity potentials on these

segments are constant. Therefore, (4.49) is discretised as

−
1
2
ϕ0n,i +

∑
j∈P

ϕ0n, j

(
dg(1)

i j + dg(2)
i j

)∣∣∣∣∣
x0=0

=
2(−1)n

σ2
n

∑
j∈Q

dg(3)
i j

∣∣∣∣∣
x0=0

,∀i ∈ P ∪ Q (4.53)

where ϕ0n,i denotes the velocity potential on the i-th panel, P is the set of panels from

[b/H,∞), Q is the set of panels from [−b/H, b/H] and

dg(1)
i j =

∫ a j+l

a j−l

∂

∂x0
G1(xi, yi; x0 j, y0 j)dy0 j,

dg(2)
i j =

∫ a j+l

a j−l

∂

∂x0
G1(xi, yi; x0 j,−y0 j)dy0 j,

dg(3)
i j =

∫ a j+l

a j−l

∂

∂x0
G1(xi, yi; x0 j, y0 j)dy0 j,

where a j denotes the middle point of the j-th panel with distance l from its endpoints.

Hence, for x0 j = 0,

dg(1)
i j (xi, yi, a j) =

1
2π

xiσn

∫ a j+l

a j−l

(K1(σn

√
x2

i + (yi − y0 j)2)√
x2

i + (yi − y0 j)2

)
dy0 j, (4.54)

dg(2)
i j (xi, yi, a j) =

1
2π

xiσn

∫ a j+l

a j−l

(K1(σn

√
x2

i + (yi + y0 j)2)√
x2

i + (yi + y0 j)2

)
dy0 j, (4.55)
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and

dg(3)
i j (xi, yi, a j) =

1
2π

xiσn

∫ a j+l

a j−l

(K1(σn

√
x2

i + (yi − y0 j)2)√
x2

i + (yi − y0 j)2

)
dy0 j. (4.56)

When i , j the integral in (4.54) presents no problem and is evaluated numerically (see

Fig. 4.3). The expression inside the integral in (4.54) has a finite value multiplied by

xi = 0, therefore dg(1)
i j = 0.

When i = j the integral in (4.54) should be treated carefully (see Fig. 4.4). The small

Figure 4.3. The element j does not coincide with element i.

Figure 4.4. The element j coincides with element i, a j = (0, y j).

argument behaviour of the modified Bessel function of the second kind of order 1 (see

A.6) is

K1(z) ∼
1
z
. (4.57)
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Therefore dg(1)
i j can be written as

dg(1)
i j =

σn

2π

∫ a j+l

a j−l

( xiK1(σn

√
x2

i + (yi − y0 j)2)√
x2

i + (yi − y0 j)2
−

xi

σn(x2
i + (yi − y0 j)2)

)
dy0 j

+
σn

2π

∫ a j+l

a j−l

xi

σn(x2
i + (yi − y0 j)2)

dy0 j,

=
σn

2π

∫ a j+l

a j−l

( xiK1(σn

√
x2

i + (yi − y0 j)2)√
x2

i + (yi − y0 j)2
−

xi

σn(x2
i + (yi − y0 j)2)

)
dy0 j

−
1

2π
arctan

(yi − y0 j

xi

)∣∣∣∣∣a j+l

a j−l
,

or

dg(1)
i j =

σn

2π

∫ a j+l

a j−l
xi f1(xi, yi, y0 j)dy0 j −

1
2π

arctan
(yi − y0 j

xi

)∣∣∣∣∣a j+l

a j−l
, (4.58)

where

f1(xi, yi, y0 j) =


0 yi = y0 j

K1(σn

√
x2

i +(yi−y0 j)2)
√

x2
i +(yi−y0 j)2

− 1
σn(x2

i +(yi−y0 j)2) otherwise.

For yi = y0 j and xi = 0 we have f1(xi, yi, y0 j) = 0, because of (4.57). For yi , y0 j, and

xi = 0, f1(xi, yi, y0 j) is finite. Therefore, for xi = 0 and any case of yi and y0 j, the integral

in (4.58) will be zero and consequently

dg(1)
i j = −

1
2π

(
arctan

(yi − a j − l
xi

)
− arctan

(yi − a j + l
xi

))
= −

1
2π

(
−
π

2
−
π

2

)
=

1
2
.

for i = j, and 0 otherwise.
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Concerning dg(2)
i j , using the same line of reasoning as in dg(1)

i j , we have

dg(2)
i j =

σn

2π

∫ a j+l

a j−l

( xiK1(σn

√
x2

i + (yi + y0 j)2)√
x2

i + (yi + y0 j)2
−

xi

σn(x2
i + (yi + y0 j)2)

)
dy0 j

+
σn

2π

∫ a j+l

a j−l

xi

σn(x2
i + (yi + y0 j)2)

dy0 j,

=
σn

2π

∫ a j+l

a j−l

( xiK1(σn

√
x2

i + (yi + y0 j)2)√
x2

i + (yi + y0 j)2
−

xi

σn(x2
i + (yi + y0 j)2)

)
dy0 j

+
1

2π
arctan

(yi + y0 j

xi

)∣∣∣∣∣a j+l

a j−l
,

or

dg(2)
i j =

σn

2π

∫ a j+l

a j−l
xi f2(xi, yi, y0 j)dy0 j +

1
2π

arctan
(yi + y0 j

xi

)∣∣∣∣∣a j+l

a j−l
, (4.59)

where

f2(xi, yi, y0 j) =


0 yi = y0 j

K1(σn

√
x2

i +(yi+y0 j)2)
√

x2
i +(yi+y0 j)2

− 1
σn(x2

i +(yi+y0 j)2) otherwise.

Similar to the explanations used in calculating the integral in (4.58), the integral in (4.59)

is zero too, therefore

dg(2)
i j =

1
2π

(
arctan

(yi + a j + l
xi

)
− arctan

(yi + a j − l
xi

))
=

1
2π

(
π

2
−
π

2

)
= 0, (4.60)

for i = j, and 0 otherwise too, because the expression inside the integral in (4.55) has a

finite value multiplied by xi = 0.

dg(3)
i j is treated alike dg(1)

i j , with the difference that the interval
[
a j − l, a j + l

]
is taken from

[−b/H, b/H], hence

dg(3)
i j = −

1
2π

(
arctan

(yi − a j − l
xi

)
− arctan

(yi − a j + l
xi

))
= −

1
2π

(
−
π

2
−
π

2

)
=

1
2
,

for i = j, and 0 otherwise, because of the multiplication of a finite value inside the integral

57



in (4.56) with xi = 0.

Now that we have dg(1)
i j , dg(2)

i j , and dg(3)
i j values, replacing them in (4.53) yields a

system of P + Q unknowns for each n = 0 : N,

AXn = Bn, (4.61)

where the left part of (4.53) gives

A(i, j) =


−1/2 i = j ≤ Q

0 otherwise,

the unknowns are represented by

Xn(i, 1) = ϕ0n,i,

and the right side of (4.53) gives

Bn(i, 1) =


(−1)n

σ2
n

i ≤ Q

0 otherwise,

where i = 1 : (P + Q), j = 1 : (P + Q). By solving (4.61), we find that

ϕ0n,i =
2(−1)n+1

σ2
n

, i ≤ Q, (4.62)

coinciding with (4.30). Furthermore, replacing (4.62) in the derivative of (4.28) with

respect to z and truncating the sum at n = 10000,

ϕ0z,i(x, y, z, t) = t
10000∑
n=0

ϕ0n,i(x, y)σn cos(σnz),
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yields

ϕ0z,i = −1 i ≤ Q,

with an error 10−4, coinciding with the derivative with respect to z of the boundary condi-

tion (4.23)

ϕ0z,i = −t (x = 0, | y |≤ b/H,−1 < z < 0),

for t = 1.

To conclude, by solving the first problem where the Green’s function is 0 at x = 0, we

show the validity of the boundary value problems (4.29)-(4.32) and (4.33)-(4.36).

4.2.2. Second problem: The derivative of the Green’s function is zero

at x = 0

Since ∂
∂xG2 = 0 at x = 0, (4.45) reduces to

−
1
2
ϕ0n(x0) =

∫ ∞

−∞

G2(x, x0)
∂

∂x
ϕ0n(x)

∣∣∣∣∣
x=0

dy,

which by (4.31) gives

−
1
2
ϕ0n(x0) =

∫ b/H

−b/H
G2(x, x0)

∂

∂x
ϕ0n(x)

∣∣∣∣∣
x=0

dy. (4.63)

Again by reversing x0 and x and using the symmetry property of the Green’s function

(4.48), equation (4.63) becomes

−
1
2
ϕ0n(x) =

∫ b/H

−b/H
G2(x, x0)

∂

∂x0
ϕ0n(x0)

∣∣∣∣∣
x0=0

dy0. (4.64)

By (4.42)

G2(x, x0)
∣∣∣∣∣
x0=0

=
1
π

K0(σn

√
x2 + (y − y0)2), (4.65)
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and by replacing (4.65) in (4.64) gives the second integral equation

−
1
2
ϕ0n(x) =

1
π

∫ b/H

−b/H
K0(σn

√
x2 + (y − y0)2)

∂

∂x0
ϕ0n(x0)

∣∣∣∣∣
x0=0

dy0. (4.66)

Notice that if y is restricted between −b/H and b/H, the right hand side of (4.66) is known

from (4.30) and equation (4.66) becomes a Fredholm integral equation of the first kind in

the unknown function ∂
∂x0
ϕ0n. For the numerical solution, the integral equation (4.64) can

be written in discrete form as follows

−
1
2
ϕ0n,i =

∑
j∈Q

(gi jϕ0nx0, j) ∀i ∈ Q, (4.67)

where Q is the set of panels belonging to the segment [−b/H, b/H], and ϕ0n,i and ϕ0nx0,i

denote the velocity potential and its derivative on panel i, and

gi j =

∫ a j+l j

a j−l j

G(xi, x0 j)dy0 j,

where a j is the middle point of the j-th panel and l j is the distance between the j-th panel’s

middle point and its endpoints. Therefore,

gi j =
1
π

∫ a j+l j

a j−l j

K0(σn

√
xi

2 + (yi − y0 j)2)dy0 j. (4.68)

The velocity potential values along [−b/H, b/H] are known to be a constant by (4.30). If

we compute gi j in each panel, and replace them together with the velocity potentials in

(4.67), will give us the horizontal velocities in each panel of [−b/H, b/H].

For i , j and xi = 0, equation (4.68) represents no problem and can be calculated by

numerical methods, here we use the Trapezoidal rule

gi j =
l j

π

(
K0(σn|yi − a j + l j|) + K0(σn|yi − a j − l j|)

)
.
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For i = j and xi = 0, there is an integrable singularity at the mid point of the panel. We

use the method "subtraction of singularity" to evaluate the integral and we use the limiting

form of K0(z) for small arguments (A.5)

K0(z) ∼ − ln(z), (4.69)

therefore gi j can be written as

gi j =
1
π

∫ a j+l j

a j−l j

K0

(
(σn|yi − y0 j|) + ln(σn|yi − y0 j|)

)
dy0 j −

1
π

∫ a j+l j

a j−l j

ln(σn|yi − y0 j|)dy0 j,

or

gi j =
1
π

∫ a j+l j

a j−l j

f3(xi, yi, y0 j)dy0 j −
1
π

∫ a j+l j

a j−l j

ln(σn|yi − y0 j|)dy0 j, (4.70)

where

f3(yi, y0 j) =


0 yi = y0 j

K0(σn|yi − y0 j|) + ln(σn|yi − y0 j|) otherwise.

When yi = y0 j, because of (4.69), f3(yi, y0 j) = 0, otherwise, when yi , y0 j, f3(yi, y0 j) has

to be calculated by numerical methods. Therefore, we split the first integral in (4.70) as

following

1
π

∫ a j+l j

a j−l j

f3(yi, y0 j)dy0 j =
1
π

∫ a j−ε

a j−l j

K0

(
(σn|yi − y0 j|) + ln(σn|yi − y0 j|)

)
dy0 j

+
1
π

∫ a j+ε

a j−ε

K0

(
(σn|yi − y0 j|) + ln(σn|yi − y0 j|)

)
dy0 j

+
1
π

∫ a j+l j

a j+ε

K0

(
(σn|yi − y0 j|) + ln(σn|yi − y0 j|)

)
dy0 j.

(4.71)

As ε → 0, the second integral on the right of (4.71) is zero. This implies that (4.71) is

regular. By applying the Trapezoidal rule

1
π

∫ a j+l j

a j−l j

f3(yi, y0 j)dy0 j =
l j − ε

π

(
K0(σnl j) + ln(σnl j) + K0(σnε) + ln(σnε)

)
,
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which for ε → 0 gives

1
π

∫ a j+l j

a j−l j

f3(yi, y0 j)dy0 j =
l j

π

(
K0(σnl j) + ln(σnl j)

)
.

Using integration by parts, we can calculate analytically the second integral in (4.70)

−
1
π

∫ a j+l j

a j−l j

ln(σn|yi − y0 j|)dy0 j =
−2l j

π

(
ln(σnl j) − 1

)
.

To conclude

gi j =


l j

π

(
K0(σnl j) + ln(σnl j) − 2(ln(σnl j) − 1)

)
i = j

l j

π

(
K0(σn|yi − a j + l j|) + K0(σn|yi − a j − l j|)

)
otherwise.

Now that we have the gi j values, and ϕ0n values from (4.30), replacing them in

(4.67) yields
(−1)n

σ2
n

=
∑
j∈Q

(gi jϕ0nx0, j) ∀i ∈ Q, (4.72)

where n = 0, · · · ,N. The solution of (4.72) gives the discrete values of ϕ0nx0, j in each j

panel of [−b/H, b/H].

The derivative of (4.28) with respect to x and truncation of the sum at n = N, for each j

panel gives

ϕ0x, j(0, y, z, t) = t
N∑

n=0

ϕ0nx, j(0, y) sin(σnz). (4.73)

Replacing ϕ0nx, j values in (4.73), provides the discrete velocities ϕ0x, j(0, y, z, t) at each j

panel for a fixed z from −1 < z ≤ 0.

Before going to the numerical results, it is important to explain how the discretiza-

tions of y and z are done. The procedure follows the idea in Yilmaz et al. (2013a),

that is, using a geometrical series to discretize the length of each panel. Two param-

eters are involved: am-the size of the smallest panel, and r-the growth factor. There

are three critical regions: the first one x = 0, y = −b/H,−1 < z ≤ 0, the second one

x = 0, y = b/H,−1 < z ≤ 0 and the third one x = 0,−b/H ≤ y ≤ b/H, z = −1, therefore

a denser discretization is required near them. The line −b/H ≤ y ≤ b/H is divided into
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two equal segments, [−b/H, 0] and [0, b/H], which are discretized separately. The small-

est panel am is located near −b/H and b/H and the panels increase in size each time by

multiplying with r as the panels approach y = 0. Similarly, −1 < z ≤ 0 is discretized by

placing the smallest panel am near −1 and increase the size of the panels by multiplication

with r as they go near z = 0, see Fig. 4.5. Here the smallest panel size and the growth

factor are chosen to be same to the ones in Yilmaz et al. (2013a), i.e., am = 0.00001 and

r = 1.03.

Figure 4.5. Discretization of the rectangular section

4.3. Numerical results

The numerical results of the boundary element method are provided in this section.

We are interested in the horizontal velocities and the shape of the rectangular free surface.

On this surface, along y = b/H, y = −b/H and z = −1, the velocities perpendicular to

the gate, ϕ0x, are expected to be singular, therefore a more careful discretization is needed

near these lines. When discretizing [−b/H, b/H], we start from the endpoints y = −b/H

and y = b/H, by placing the smallest panel am close to them, and by increasing the

length of each consecutive panel by a factor r as we approach y = 0. The length b/H is
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discretized as

am + amr + · · · + amrq−1 +
(
b/H − am

1 − rq

1 − r

)
.

Therefore, the total number of panels in [−b/H, 0] is q + 1, where the length of the last

panel placed near y = 0 is b/H−am
1−rq

1−r . Similarly, the total number of panels in [0, b/H] is

q+1. If we combine the last two panels near y = 0 into one segment [−b/H+am
1−rq

1−r , b/H−

am
1−rq

1−r ], the total number of panels in Q becomes 2q + 1, where

q = b
log(1 + b/H(r − 1)/am)

log r
c,

and b·c is the floor function. Assuming b/H = 1/2, the growth factor r = 1.03 and

the smallest panel size am = 10−5, we find q = 247 and the total number of panels in

[−1/2, 1/2] to be 495.

When discretizing [−1, 0], the smallest panel am is placed near z = −1 and the following

panels grow with a factor r, as below

am + amr + · · · + amrs−1 +
(
1 − am

1 − rs

1 − r

)
,

where 1− am
1−rs

1−r is the last panels length. Therefore, the total number of panels in [−1, 0]

is s + 1, where

s = b
log(1 + (r − 1)/am)

log r
c = 270.

We study the horizontal velocities ϕ0x, j(0, y, z, t) of the rectangular free surface in

two ways, first one, along constant z and second one along constant y.

Figure 4.6 shows the horizontal velocities ϕ0x, j(0, y, z, t) for j ∈ Q, and fixed z = −1,−0.9,

− 0.5,−0.1, 0. The horizontal velocities tend to minus infinity as y approaches b/H and

−b/H. These figures show the presence of singularities along y = −b/H and y = b/H.

From the calculations, we notice that, the horizontal velocities are symmetric with respect

to y = 0.

The horizontal velocities ϕ0x, j(0, y, z, t) for the vertical lines at the rectangular section,

where j ∈ S , for y = ±0.499,±0.498,±0.4,±0.3, 0, where S is the set of panels of [−1, 0],

are represented in Fig. 4.7. Note that as z → −1, the horizontal velocities of the rectan-

gular free surface increase, indicating the singularities there.
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Figure 4.6. Horizontal velocities for z = −1,−0.9,−0.5,−0.1, 0

The rectangular free surface shape is derived from (4.23). Due to the collapse, this rect-

angular flat surface, will become a 3-D shape. A grid is formed in the rectangular section

by taking the horizontal and vertical lines. The curves along z for some fixed y ∈ Q and

the curves along y for some fixed z in S are shown in Fig. 4.8 in order to give an idea

about the 3-D form.

The shape of the special case when y = 0 and z ∈ S is similar to the 2-D dam break

problem by Korobkin and Yilmaz (2009), see Fig. 4.9.

From the shape of the rectangular free surface (Fig. 4.8) we can conclude that the

singularity at y = ±b/H is stronger than the one at z = −1. Using our experience from the

corresponding two dimensional analysis (Korobkin and Yilmaz (2009) and Yilmaz et al.

(2013a)) and Fig. 4.9, the singularity at the bottom, z = −1, is expected to be logarithmic.

From the literature on water impact problems (Korobkin and Pukhnachov (1988) and

Iafrati and Korobkin (2004)), the singularity at the sides of the gate, y = ±b/H, is expected

to be a power singularity. In that respect, as far as the singularity analysis is concerned,

the problem is closer to water impact problems than to dam break problems. Korobkin

and Pukhnachov (1988) and Iafrati and Korobkin (2004) claim square root singularity of

the flow velocity at the intersection of the body with the liquid free surface.
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Figure 4.7. Horizontal velocities for y = ±0.499,±0.498,±0.4,±0.3, 0

Figure 4.8. 3-D view of the vertical free surface at time t = 1, ε = 0.01, where on
the vertical lines y = ±0.499,±0.498,±0.4,±0.3,±0.2,±0.1, 0, z ∈ S ,
and on the horizontal lines y ∈ Q, z = −1,−0.9,−0.8,−0.7,−0.6,−0.5,
−0.4,−0.3,−0.2,−0.1, 0
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Figure 4.9. Vertical free surface at time t = 1, ε = 0.01 for 3-D at y=0 compared to 2-D
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CHAPTER 5

CONCLUSIONS

In this thesis three 3-D problems on gravity-driven flow caused by the collapse

of some cavity which is surrounded by an incompressible and inviscid fluid have been

investigated for small times. On the early stage the flow is considered to be potential. The

velocity potential and the free surfaces are expanded in a power series in terms of a small

parameter representing small times. The linear leading order problems of the initial stage

were solved using the Fourier series method for the first two problems and the boundary

element method for the third problem. Our attention is focused on the singularities of the

velocities and the shapes of the free surfaces within the mathematical model derived for

the leading order problems for the velocity potential.

Chapter 2 provides the formulation and solution of the first problem on the gravity-

driven flow caused by the collapse of a vertical cylinder of circular cross sections extend-

ing from a rigid bottom up to the free surface of a surrounding liquid that is resting on

the rigid bottom and extending to infinity radially. This is the case of a dry-bed problem,

which is important to be studied, because of the mismatch of the conditions on the circle

where the initially vertical free surface and the rigid bottom meet. We observed that the

velocity field close to this circle is singular within the mathematical model considered.

An analysis of the singularity of the radial velocity at the bottom circle shows that the

singularity is logarithmic, corresponding to the result of the 2-D dam-break problem by

Korobkin and Yilmaz (2009), who actually from their study on the inner solution find a

jet formation propagating along the dry bed. We concluded analytically and at the same

time numerically that, as the radius and the centre of cavity approach infinity actually this

problem reduces to the 2-D problem in Korobkin and Yilmaz (2009). This result is im-

portant, because it implies that at the bottom circle a jet formation will happen just like in

the 2-D problem, without the need of resolving the inner problem close to this circle. We

show that the larger the radius, the smaller the 3-D effects. The 3-D effects are important

when the radius of the cavity is small compared to the height of the cavity.

In Chapter 3, we presented the second problem, which is another version of the
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first problem, with the difference that the top of the cylinder starts from the top free

surface, but is shallower than the height of the surrounding fluid. The difference in the

cylinder’s height, although at first glance may seem like a small modification, actually

makes it as a different type of dam-break problem, the wet-bed one. We see that the

mismatch of the conditions happen at the intersection of the initially vertical free surface

with the lower free surface, which is the bottom circle of the cavity. Singularity analysis

near this circle shows that the flow velocity is power singular r−1/3, coinciding with the

results of Yilmaz et al. (2013a) for two liquids of same density. Another result shows

that as the radius and the centre of cavity approach infinity, this 3-D problem reduces

to the 2-D dam-break problem of two immiscible fluids with different heights in Yilmaz

et al. (2013a). The non-linear analysis described in Yilmaz et al. (2013b), indicates the

formation of a jet at the corner point of the 2-D problem, therefore it is concluded that

similarly here there is a jet formation expected near the bottom circle. The 3-D effects

are unimportant when the radius of the cavity increases. When the radius of the cavity is

small compared to the height, the 3-D effects become important.

Finally, in Chapter 4, we formulated and solved the third problem on the gravity-

driven flow resulting from the collapse of a rectangular section of a vertical plate with

height H placed in front of a fluid. The plate extends to infinity along the y-axis and

is located in front of a fluid with height H that rests on a rigid bottom and extends to

infinity along y-axis and positive x-axis. Mismatch of the conditions are noticed along

the line where the initially vertical free surface and the rigid bottom intersect. Solution

by boundary element method reveals that close to this line and close to the lines where

the initially vertical free surface with the rigid plate intersect, the horizontal velocities of

the initially vertical free surface increase in the negative direction, indicating the presence

of singularities there. The vertical free surface shape also deflects when approaching

these lines. Based on the shape of the free surface and on the results of Korobkin and

Yilmaz (2009), Yilmaz et al. (2013a) and Korobkin and Pukhnachov (1988), logarithmic

singularity is predicted along the intersection of the vertical free surface with the rigid

bottom and power singularity r−1/2 is expected at the lines where the initially vertical free

surface meets the rigid plate. It is observed that the shape of the initially vertical free

surface along the vertical axis is similar to the shape on the initially vertical free surface

in Korobkin and Yilmaz (2009). The 3-D effects are important when the length of the
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rectangle is small compared to its width, otherwise when the length is big, they become

unimportant.
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APPENDIX A

MODIFIED BESSEL FUNCTIONS I AND K

A.1. Definition and properties

The solutions to the modified Bessel differential equation

w2 d2 f
dw2 + w

d f
dw
− (w2 + m2) f = 0

are denoted by Im(w) and Km(w) and are known as the modified Bessel functions.

Im(w) is called the modified Bessel function of order m of the first kind. It is defined to be

well behaved at w = 0

Im(w) ∼
1

m!

(1
2

w
)m
,

and exponentially growing as w→ ∞

Im(w) ∼

√
1

2πw
ew (A.1)

from (7.9.43) and (7.9.44) in Haberman (2013). Km(w) is called the modified Bessel

function of order m of the second kind. It is defined to be singular at w = 0

Km(w) =

 ln w m = 1
1
2 (m − 1)!

(
1
2w

)−m
m , 1,

and decaying as w→ ∞

Km(w) ∼
√

π

2w
e−w (A.2)

from (7.9.42) and (7.9.41) in Haberman (2013).
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A.2. Asymptotic expansions for large arguments

When m is fixed, w is large and µ = 4m2,

Im(w) ∼
ew

√
2πw

[
1 −

µ − 1
8w

+
(µ − 1)(µ − 9)

2!(8w)2 −
(µ − 1)(µ − 9)(µ − 25)

3!(8w)3 + · · ·
]
, (A.3)

Km(w) ∼
√

π

2w
e−w

[
1 +

µ − 1
8w

+
(µ − 1)(µ − 9)

2!(8w)2 +
(µ − 1)(µ − 9)(µ − 25)

3!(8w)3 + · · ·
]
, (A.4)

from (9.7.1) and (9.7.2) in Abramowitz and Stegun (1972).

A.3. Limiting forms for small arguments

For m fixed and z→ 0,

K0(z) ∼ − ln(z), (A.5)

Km(z) ∼
1
2

Γ(m)
(1
2

z
)−m

(A.6)

from (9.6.8) and (9.6.9) in Abramowitz and Stegun (1972).

A.4. Differentiation with respect to w

∂Im(w)
∂w

=
m
w

Im(w) + Im+1(w) (A.7)

∂Km(w)
∂w

=
m
w

Km(w) − Km+1(w) (A.8)
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APPENDIX B

DIRAC DELTA FUNCTION

The Dirac delta function δ(x − xi) is a concentrated source at x = xi defined as

follows

δ(x, xi) =


0 x , xi

∞ x = xi.

The fundamental operator property of the one-dimensional Dirac delta function for any

continuous function f (x) is

f (x) =

∫ ∞

−∞

f (xi)δ(x − xi)dxi.

In the case of two-dimensional Dirac delta function δ(x − x0)

f (x0) =

∫ ∞

−∞

∫ ∞

−∞

f (x)δ(x − x0)dA, (B.1)

where f (x) = f (x, y).

Dirac delta function has unit area

∫ ∞

−∞

δ(x − xi) = 1

and is even

δ(x − xi) = δ(xi − x).

From (9.3.26), (9.3.27), (9.3.28), (9.3.29), (9.3.30) and (9.5.4) in Haberman (2013).
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APPENDIX C

GREEN’S FUNCTION FOR THE HELMHOLTZ

EQUATION

The Green’s function for the Helmholtz equation

∇2ϕ0n + k2ϕ0n = 0,

for some boundary conditions on a closed surface, is the solution of the inhomogeneous

Helmholtz equation

∇2G(x, x0) + k2G(x, x0) = −4πδ(x − x0),

with homogeneous bc. The solutions of the Helmholtz equation symmetric about R = 0

are the solutions of the equation

1
R

d
dR

(
R

dG
dR

)
+ k2G = 0. (C.1)

Under the transformation kR = R̄, C.1 becomes the Bessel’s differential equation of order

zero

R̄2∂
2G
∂R̄2

+ R̄
∂G
∂R̄

+ R̄2G = 0,

whose general solution is

G = c1J0(R̄) + c2Y0(R̄),

where J0(R̄) is the Bessel’s function of the first kind of order 0, and Y0(R̄) is the Bessel’s

function of the second kind of order 0. We are looking for solutions that are singular at

R̄ = 0, therefore c1 = 0 and

G = c2Y0(R̄).
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From equation (9.1.9) in Abramowitz and Stegun (1972), the limiting form for small

arguments of the Bessel’s function of the second kind of order zero is

Y0(R̄) ∼ −iH(1)
0 (R̄),

where H(1)
0 (R̄) is the Hankel’s function of the first kind and i the imaginary unit. Equation

(7.2.18) in Morse and Feshbach (1953) shows that the required Green’s function is

G = iπH(1)
0 (kR). (C.2)
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