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ABSTRACT

ANALYSIS AND APPLICATION OF A LINEARIZATION
TECHNIQUE FOR NONLINEAR PROBLEMS

The purpose of this thesis is to investigate the implementation of linearization
technique combining with the multiquadric radial basis function method to nonlinear
problems which appears in engineering and physics. Presented linearization technique is
formed by the Freéchet derivatives and Newton Raphson method. This technique is applied
to Burgers’ equation, Coupled Burgers’ equation and 2-D cubic nonlinear Schrodinger
equation. From the numerical results of the problems, it is expected that this technique
can be used to solve other nonlinear and system of nonlinear partial differential equations

numerically.
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OZET

DOGRUSAL OLMAYAN PROBLEMLER iCiN BiR
DOGRUSALLASTIRMA TEKNIGININ UYGULANMASI VE
ANALIZI

Bu tezin amaci miihendislikte ve fizikte goriilen dogrusal olmayan problemlere
multiquadric radyal baz fonksiyonlari ile birlikte dogrusallastirma teknigini uygulanigim
arastirmaktir. Sununulan dogrusallastirma teknigi Frechet tiirevi ve Newton Raphson
metodu baz almaktadir. Bu teknik Burger denklemine, Coupled Burger denklemine ve 2-
D kiibik dogrusal olmayan Schrodinger denklemine uygunlanmigtir. Problemlerin sayisal
sonu¢larindan, bu teknigin baska dogrusal olmayan denklemleri ve dogrusal olmayan
kismi tiirevli denklem sistemlerini sayisal olarak ¢6zmek icin kullanilabilecegine inanil-

maktadir.
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CHAPTER 1

INTRODUCTION

In nature, many phenomena have nonlinear behavior. Generally, these phenom-
ena are modelled by nonlinear partial differential equations (NPDE). Because of this,
discovering a solution to a NPDE draws attention. Since every model does not have exact
solution, numerical methods have importance to find the solution of a NPDE. The aim of
this thesis is to propose a linearization technique combining with the multiquadric radial

basis functions to find the numerical solutions of nonlinear problems.

1.1. Introduction

Nonlinear partial differential equations are important in several field of science
and technology. In the study of nonlinear wave propagation problems, NPDEs have an
important role. These problems arise in various areas of applied mathematics, fluid me-
chanics, thermodynamics, optics, real-world physical systems. In this thesis, three differ-
ent NPDEs which are Burgers equation, Coupled Burgers equation and nonlinear cubic
Schrodinder equation are considered.

One of the major nonlinear partial differential equation is Burgers equations which
appear in fluid dynamics and in general engineering as a simplified model of turbulence,
boundary layer behavior, mass transport and wave propagation in acoustic and model
traffic flows. The Burgers’ equation was presented in Bateman’s paper (Bateman, 1915)
and the steady-state solution of the problem was given in this work. Later this equa-
tion was introduced as mathematical model of turbulence by Burgers (Burgers, 1948).
Many researchers have used various methods to seek analytical and numerical solutions
to Burgers’-type equations for a wide range of initial and boundary conditions. To solve
the Burgers’ equation, Hopf and Cole developed a transformation (Ames, 1965). This
transformation converts the equation (4.1) into a heat equation and known as a "Hopf-
Cole Transformation”. A several number of distinct solutions for the Burgers’ equation

were published by Benton and Platzman (Benton& Paltzman, 1972). Various numerical



methods have been used for solving Burgers’ equation such as finite-difference meth-
ods (Kaysar, 2010), finite-element methods (Ozis, 2003), (Kutluay, 2004), differential
quadrature methods (Jiwari, 2013) and collocation methods (Mittal & Jain, 2012).

Coupled Burgers’ equation which is derived by Esipov (Esipov,1995) while study-
ing the model of polydispersive sedimentation. Various analytical and numerical tech-
niques have been used to solve the coupled Burgers’ equation. Some of this techniques
are: adomian decomposition method (Kaya, 2001), modified extended tanh-function
method (Soliman, 2006), the MQ quasi-interpolation method (Chen & Wu, 2007),
a chebyshev collocation method (Khater& Temsah& Hassan), a meshfree interpola-
tion method (Islam& Haq& Uddin, 2009) and a collocation of modified cubic B-spline
method (Mittal& Tripathi, 2014).

Cubic nonlinear Schrodinger(CNLSE) equation is an important partial differential
equation both in physics and in engineering. Several phenomena in quantum mechanics,
optics and water waves can be described by the CNLSE. Solving nonlinear Schrodinger
equations analytically is a troublesome. Therefore, several researchers have worked on
numerical solution of Schrédinger equations: Subasi has applied finite difference schemes
for the numerical solution of two-dimensional Schrodinger equation (Subagi 2002). Brat-
sos has used a linearized Crank-Nicolson scheme for numerical solution of nonlinear
cubic Schrodinger equation (Bratsos 2001). Wu has used Dufort-frankel-type meth-
ods for solving linear and nonlinear Schrodinger equations (Wu 1996). Dehghan and
Taleei have applied a compact split-step finite difference method for solving the nonlinear
Schrodinger equations (Dehghan & Taleei, 2010).

The main purpose of this thesis is to solve the above NPDEs by a linearization
technique. The idea of this technique was presented by the Liu (Liu & Wu, 2000) to find
a solution of ordinary differential equation of Duffing type nonlinearity. This technqiue
was also used in application of Blasius and Onsiger equations in (Liu & Wu, 2001). In
the study of (Fazel et al., 2013), the linearization technqgiue also appears. They solve the
nonlinear differential equations of motion by using this technique.

In all works (Liu & Wu, 2000) and (Fazel et al., 2013), differential quadrature
method was used to find a numerical solution of nonlinear problems. In this study, we
focus on combination of linearization technique and multiquadric radial basis function

(MQ RBF). Methodology of radial basis function was introduced in 1971 (Hardy, 1971).



In 1990 MQ RBF was used to solve a PDE (Kansa I, 1990).

1.2. Outline of Thesis

The outline of this thesis is organized as follows;

In chapter 2, MQ RBF method is introduced. The idea of this method is explained
briefly. Existence and uniqueness of the interpolation matrix is proven intuitively. Ap-
proximation of derivatives by using MQ RBF is given.

Linearization technique is proposed in Chapter 3. A conspectus of these con-
cepts is given in Appendix A. The technique is introduced for both NPDEs and system of
NPDEs.

Chapter 4 deals with the Burgers’ equation. The proposed linearization technique
is applied to Burgers’ equation in this chapter. A convergence theorem about linearization
technique is given. Numerical examples for this equation is illustrated to demonstrate ef-
ficiency of the method.

Chapter 5 focus on Coupled Burgers’ equation. Linearization technique combin-
ing with the MQ RBF is utilized to solve Coupled Burgers’ equation numerically. Nu-
merical results are presented to show the accuracy of the method.

Application of the proposed method to 2-dimensional nonlinear cubic Schrodinger
equation is presented in Chapter 6. Numerical results are revealed that the technique con-
serves the qualitative properties of the equations.

Finally, in Chapter 7 we summarize the results and give brief conclusion.



CHAPTER 2

MULTIQUADRIC RADIAL BASIS FUNCTION

The multiquadric radial basis function(MQ RBF) interpolation was introduced in
the early 1970s by the Geodesist Rolland Hardy at Iowa State University (Hardy, 1971).
Hardy developed this method with the motivation of a problem from cartography. In 1979,
mathematician Richard Franke compared the MQ RBF method with different methods
and he deuce that MQ RBF was the best to solve the scattered data interpolation problem
(Franke, 1979).Then, Charles Michelli proved the invertibility of the system matrix for
the MQ, and the development of the theory of the MQ method began in 1986 (Micchelli,
1986). Madych and Nelson in 1992 presented that MQ interpolation has spectral con-
vergence rate (Madych& Nelson, 1992). To solve the differential equations, MQ method
was firstly used by Edward Kansa in 1990 (Kansa I, 1990), (Kansa II, 1990). MQ method

became populer after it was used to solve pdes.

2.1. Definiton of the Multiquadric Radial Basis Function

Hardy used the quadratic surfaces as the basis functions

D(r;c) = Ve +r? 2.1
where r = ||x|l,, x € R? and c is a shape parameter. The function 2.1 is called the

multiquadric radial basis function (MQ RBF). Figure 2.1 shows the shape of the surface

on the unit circle



Figure 2.1. Shape of Multiquadric RBF (2.1) with parameter ¢ = 2

To find the alternate definition of the MQ, let ¢ = 1/& then MQ (2.1) becomes

D(r,e) = e V1 + &2, (2.2)

If the scaling factor ¢ is ignored, MQ can be redefined as

D(r,e) = V1 + &2r2. (2.3)

Figure 2.2 displays the MQ with different values of shape parameter e.
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Figure 2.2. Multiquadric RBF with different parameters &

2.2. RBF Interpolation

The RBF interpolation is given in the following form:

N
y(x)= > O(r,0)k, xeR, 2.4)

k=1

where A;,k=1,2,...,N are the RBF coefficients and

r=llx = xll = V= x0)? + -+ (x — xn)>

RBF coefficients, A;’s, are obtained with the implementation of the interpolation condition

w(x;) = f(x;) (2.5)



where Xx;, i = 1,..., N are the set of centers. Applying the interpolation conditions at N

centers forms the N X N linear system

BA (2.6)

I
™

Entries of the matrix B are

bje = O(llx; — xill, 0), jok=1,...,N. 2.7

2.2.1. Invertibility of Interpolation Matrix

Equation (2.6) reveals that the solution of the MQ interpolation problem exists and
is unique if and only if the matrix B is invertible. Invertibility of the MQ interpolation

matrix is given with the theorem of Micchelli (Micchelli, 1986) as follows:

Theorem 2.1 Let ¢(r) = ®(+/r) € C[0, 00) and ¢(r) > 0 for r > 0. Let ¢'(r) be completely
monotone and nonconstant on (0, 00). Then for any set of distinct centers {X j}?’: » the NXN

matrix B with entries bj, = O(||x; — x¢ll2) is invertible.

To prove the theorem, definition of a completely monotone function is required.

Definition 2.1 A function ¢ is completely monotone on [0, o) if
(i) ¢ € C[0, )

(ii) ¢ € C*(0, o)

(iii) (=1)‘¢‘(r) where r >0and € = 0,1, ...

Proof 2.1 For the MQ we have

$(r) = D(Vr) = VI +&r



and

2

, B &
N
4
P =
4(1 + %r)3/2
3b
3) _
$7(n) = 8(1 + &2r)’/2
—15¢&8
4 — v
0 = e s e
Therefore
(-Df¢Pr) > 0 (2.8)

and ¢’ (r) is completely monotone. Therefore, MQ interpolation matrix B is invertible.

2.2.2. Approximation of Derivatives

By using the following RBF expansion

N
u(x) = > O(Ix - xill; £)4; (2.9)
i=1

approximation of the derivatives of the function u(x) can be expressed as
3 N9 .
i) = ;Aja—)qcb(nx—xjn;g). (2.10)

Higher order derivatives can be evaluated in a similar manner. By evaluating (2.10) at the

centers {x j}N vector-matrix notation is obtained as

J=r

—u(x) = %H/l (2.11)



. 0
where the entries of — H are
6xi

a . .
hij = o= O(%i = x)lb) i, j=1,... N

By substituting A = B~ !u into (2.11), the differentiation matrix can be defined as

0
D=—HB". (2.12)
8)6,-
Since the system matrix B is invertible, the differentiation matrix is well-defined. Applying

the chain rule to MQ RBF, derivatives are obtained as follows:

g—i = Cc%)g—; (2.13)
and
Fo _door, dz—q)(ﬁ)2 (2.14)
ox?  dr oxt  dr* \Ox
where
or x; do &r d*® g 2.15)

oxi 1 dr lze2 dr  (1+erpr



CHAPTER 3

ITERATIVE LINEARIZATION TECHNIQUE

In this chapter iterative linearization technique is presented for the numerical solu-
tion of non-linear and system of nonlinear differential equations. The idea of the method
is formed by the Fréchet derivative and the Newton-Raphson method. In this method,
firstly nonlinear equation is linearized by using the Frechet derivative as in the works of
(Liu & Wu, 2000) and (Fazel et al., 2013). After that, to obtain the numerical solution the
meshless method with radial basis function is applied for spatial discretization and Crank-
Nicolson method is applied for time discretization. Thus, this method is considered as a
linearization technique.

A brief description about the Fréchet derivative and Newton Raphson method is given in

the Appendix A.

3.1. Derivation of the Method

Process starts with the considering the general form of the non-linear differential

equation

L(u)=0 3.1

where L is a differential operator. Iterative solution of (3.1) that is obtained by applying

the Newton-Raphson method is

e N () By ) (3.2)

where u™ is the approximate solution of (), 8™ corresponds the refinement variable and

n is the iteration number. To find the refinement variable 8™ following equation is con-

10



sidered
"L ™) + Lu™) = 0. (3.3)
Applying the Fréchet derivative, the term 6L'(6) in equation (3.3) is
)y r¢,,(n) 0 (n) (1)
0L (u") = —Lw™ +&0")| . (3.4)
oe e=0

Here the refinement variable 6 goes to zero, thus the equation (3.3) turned to the equation

(3.1).

3.2. Linearization Process for Systems

Consider the system containing two nonlinear partial differential equations

LU, V)

I
L

L,(U,V) = 0. (3.5)

Due to the Newton-Raphson method, the solution of equation (3.5) is stated as

Un+l — Un + eln

vyl =yt 49,0, (3.6)

where 6} and ) are refinements.

6,"L,/(U", V") + 6,"L,"(U", V") + Ly(U", V") = 0,

|
e

91”L2’(Un, V”) + 92”L2,(Un, Vn) + Lz(U”, Vn) (37)

11



After applying Fréchet derivatives to get 6,"L;/(U", V"), i, j = 1,2,

0
91"L,-’(U", Vn) = —Ll(Un + 891”, Vn) ,
Oe £=0
0
0,"L/(U", V") = —L(U", V" + 65" (3.8)
Oe £=0
Figure 3.1 describes the iterative procedure.
Set the initial values -[111071120:...7%0}
and initial guess of
(69,62, ...,62)
\ 4
Implement approximated derivatives using MQ
RBF
¥
Set v=40 .
Apply Crank Nicolson algortihm for solving | €
@

Y

Update the values {u1i=ugi=...=umi}

Check the criteria

(U™ 1un)j< tol

END

Figure 3.1. Diagram for the iterative solution procedure.
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CHAPTER 4

BURGERS’ EQUATION

The Burgers’ equation is given as follows

U + UL, = Klyy.

4.1

In this chapter, to solve the Burgers’ equation numerically first linearized technique which

is proposed in Chapter 3 is applied. Then to obtain the linear system of equations, for

space discretization MQ RBF method is used and as a time discretization Crank-Nicolson

rule is applied.

4.1. Linearization of the Burgers’ Equation

Consider the Burgers’ equation in the differential operator form as

L(u) = u, + uu, — K,

Applying the Fréchet derivative to the operator (4.2),

oL
88 =0
= 0, +ub, + 60u, — kb,,,

OL' (u)

is obtained. Here the derivative (4.3) is

OL(u + £6) 0

= —((u +&0); + (u+ €0)(u + £0), — k(u + se)xx).

oe os

(4.2)

4.3)
4.4)

4.5)

13



Combination of the equation (4.4) and equation (3.3) gives the following equation:

OL (u) + L(u) = 6, + ub, + Ou, — kO, + u, + uu, — Kuy, = 0. (4.6)

Here equation (4.6) is linear with respect to 6. This equation is expressed as

0, =x0,, —ub, — 0u, +

where

@ = Uy + Ul — Klhyy. “4.7)

4.1.1. Convergence Theorem

Theorem 4.1 Let X and Y be normed space and L : X — Y be a differential operator
such that L(u) = u, + uu, — ku,,0. Assume that L is Frechet differentiable has bounded

inverse and L is twice Frechet differentiable. Then the iteration

S I )

where 6 = —(L')"'L converges.

Proof 4.1 Consider the differential operator form of Burgers’ equation (4.2), to show

that the operator is Frechet differentiable. We need to apply the definition of the Frechet

14



derivative in the Appendix A.

| L(u + 6) — L(u) — dL@)[6] |l

lim =0
ll6llx—0 CA%
. || 6; + Ou, + 66, + ub, — k6., — dL(u)[6] ||y
lim =0
ll6llx—0 A%

dL(u)[0] = 6, + Ou, + ub, — kb,

Hence operator (4.2) is Frechet differentiable. We need to show that (dL(u)[6]) + L(u) = 0

has a unique solution, for existence and boundedness of L™".

6, +6u, +ub, — k0 +u, + uu, — kuy,, =0

Rewriting 4.9, we obtain

0, + k0,20, + O +vy =0

where @ = u, B = u, and y = u, + uu, — ku,,. Consider the equation

0, — kO, + ab, + BO = —y.

To solve equation (4.10) let y = x — at and set

v(t,y) = P'0(t,y + at).

Then

v, = (6, + ab, + BO) = k0.,

(4.8)

4.9)

(4.10)

15



and

Vy = 0y, Vyy = Orxs

the function v(t,y) satisfies the following differential equation

Vi — KVyy = =Y (4.11)

Therefore solution of equation (4.10) is

0(t, x) = e P(t, x — at)

Integral representation of the solution of the nonhomogoneous heat equation (4.11) in R

Is

fo'e] f 00
v(t,y) = f S,y —2¢(2)dz + f f S(t—s,y—2)(~y)dzds (4.12)
—00 0 —00
where S = #ﬁe‘yz/“’“ for t > 0 and ¢(y) is the initial condition of the equation (4.11).

Hence the solution of equation (4.10) becomes

0(t,x) = e f S(t,x —at —z,)0)(x — at)dz

! 00
+ f f S(t—s,x —at — )P (—y)dzds
0 —0

1
2 \Vnkt

Finally, we need to show that dL(u)[6] is Frechet differentiable.

where S = e 14t for t > 0 and 8y is the initial condition of the equation (4.10).

. | dL(u + 7)[0] — dL(w)[6) — d*L(w)[6, ] lly
1m  SUPp|iqz||y_
IIrllx—0 Il 7 llx

=0

16



) | 67, + 70, — &> L(w)[6,7] |ly
hm Sl/tp”T”X=1 = 0
l[rllx—0 I 7 [lx

d*Lw)[6, 7] = 07, + 16,

This means that operator L is twice Frechet differentiable. Thus, the iteration converges.

4.2. Numerical Results

Linearization of the Burgers equation (4.1) is given in section 4.1. The linearized

equation of the Burgers’ equation is given with the following equation

0, — kAO + u(BO) + u, — kAu + u(Bu) = 0 4.13)

where A and B are the differentiation matrix that is obtained by the MQ RBF method.
To solve the linear equation (4.13), Crank-Nicolson method is used and the following

linear system of equations is obtained

9n+l - 9,1 Upy1 — Uy Upt1 + Uy Upi1 T Uy Up+1 + Uy 9n+19n
+ = KA - ( )+ KA——
At At 2 2 2 2
_ Upi1 + Uy (Ben+1 + 9,,) _ 9n+1 + en(BurHl + un). (414)
2 2 2 2

We have two different test problem about the Burgers’ equation as follows.

Test Problem 4.1 Burgers’ equation (4.1) is given with the following initial and bound-

ary conditions

u(x,0) = sinnmx,x € [0,1]

u(0,1) u(l,r)=0, r>0.

17



Numerical experiments mention that selections of the shape parameter ¢ and the
number of nodes N are very effective to the condition numbers of the derivative matri-
ces. It is observed from the Figures 4.1a - 4.1b , matrix A in equation (4.13) becomes
ill-conditioned according the this selections. Figures 4.1a - 4.1b show the maximum

eigenvalue of matrix A versus the shape parameter and number of nodes.
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Figure 4.2. Stability of differentiation matrix
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Numerical results are obtained by the proposed method with the shape parame-
ter c = 0.5, N = 20 and Ar = 0.0001. To show the effects of the viscosity, different
k = 0.1,0.01 values are taken. Table 4.1 and Table 4.2 are formed for « = 0.1,0.01 re-
spectively. These tables give the numerical solutions of the problem for different time
and space values. In Table 4.1 and Table 4.2 we compare the proposed method with the
least squares quadratic B-spline finite element method (Kutluay, 2004), a finite element
method (Ozis, 2003) and weighted average differential quadrature method (Jiwari, 2013).

Comparison reveals that the present method gives the better results than other methods.

X k=0.1
t (Kutluay, 2004)  (Ozis, 2003)  (Jiwari, 2013)  Present scheme Exact Solution
A, = 0.0001 A, = 0.0001 A, = 0.0001 A, = 0.0001
A, =0.0125 A, =0.0125 A, =0.04 A, =0.05
0.25 04 0.31429 0.31420 0.30880 0.30889 0.30889
0.8 0.19758 0.19756 0.19565 0.19567 0.19568
1.0 0.16391 0.16391 0.16251 0.16256 0.16256
3.0 0.02743 0.02742 0.02720 0.02720 0.02720
0.50 04 0.57636 0.57629 0.56953 0.56963 0.56963
0.8 0.36245 0.36243 0.35922 0.35924 0.35924
1.0 0.29437 0.29437 0.29190 0.29192 0.29192
3.0 0.04057 0.04051 0.04020 0.04021 0.04021
0.75 04 0.62592 0.62603 0.62554 0.62545 0.62544
0.8 0.37713 0.37716 0.37409 0.37394 0.37392
1.0 0.29016 0.29019 0.28746 0.28749 0.28747
3.0 0.01334 0.03000 0.02977 0.02977 0.02977

Table 4.1. Numerical and exact solution of test problem 4.1 when A, = 0.05,A, =
0.0001 and x = 0.1.
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X x =0.01

t (Kutluay, 2004)  (Jiwari, 2013)  Present scheme Exact Solution
A, = 0.0001 A, =0.0001 A, =0.0001
A, =0.0125 A, =0.0125 A, =0.05
0.25 0.4 0.34819 0.34191 0.34196 0.34191
0.8 0.22752 0.22151 0.22204 0.22148
1.0 0.19375 0.18814 0.18996 0.18819
3.0 0.07754 0.07537 0.07724 0.07511
0.50 0.4 0.66543 0.66070 0.66073 0.66071
0.8 0.44526 0.43913 0.43914 0.43914
1.0 0.38047 0.37434 0.37445 0.37442
3.0 0.15362 0.15008 0.15202 0.15018
0.75 04 0.91201 0.91027 0.91038 0.91026
0.8 0.65254 0.64739 0.64752 0.64740
1.0 0.56157 0.55599 0.55613 0.55605
3.0 0.22874 0.22481 0.22576 0.22481

Table 4.2. Numerical and exact solution of test problem 4.1 when A, = 0.05,A, =
0.0001 and x = 0.01.



Behaviour of the solution for different values of viscosity « = 1,0.1, 0.01, 0.005

at the fixed times ¢t = 0.4, 0.8, 1 is given in Figure 4.4.
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Figure 4.5 shows layer behaviour of the computed solutions. It is observed from

this figure, proposed method gives good results for small value of viscosity.
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Test Problem 4.2 Consider the Burgers’ equation (4.1) with periodic conditions and k =

0.03 on domain [—n, ] (Kassam & Trefethen, 2005). Initial condition of the problem is

u(x, 0) = e—10sin2(x/2)

Figure 4.6 shows the numerical solution of the test problem 4.2.

time 0 X

Figure 4.6. Numerical solution of test problem 4.2
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Plot of the numerical solutions of the test problem 4.2 is presented at different
times in Figure 4.7. From the Figure 4.7,it is observed that numerical solutions conserves

the shape of the initial condition.
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Figure 4.7. Numerical solution of test problem 4.2 at different times
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CHAPTER 5

COUPLED BURGERS’ EQUATION

Coupled Burgers’ equation which is the system of nonlinear partial differential

equations are described as the following form

Uy = Uy —nuu, — puv)y, a<x<b, 0<t<T

Vi = Ve —évw,y—quv)y, a<x<b, 0Zt<T (5.1

with the initial conditions

u(x,0) = fi(x), v(x,0)= fo(x), a<x<b 5.2)

and the boundary conditions

u(a,r) go(), ub,t)=g1(1),0<t<T (5.3)

v(a,t) ho(t), v(b,t) =hi(t),<t<T (5.4)

where 77 and ¢ are real constants, p and g are arbitrary constant depending on the system

parameters.

5.1. Linerization of the Coupled Burgers’ Equation

To see the efficiency of the technique on system of nonlinear partial differential

equations we consider the coupled Burgers’ equation (5.1. Writing the equations (5.1)
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following operator form is obtained

Li(u,v) =

Ly(u,v)

Uy — Uy + nuuy + p(uv),

Ve — Vix + EVVy + g(uv),

By applying the procedure given in section (3.2), we get

01, — 0, + (qu+ av)f;, + (qu, + av,)0; + au,0, + aub, + Li(u,v) =0

6,

t

Matrix notation of the system (5.6) is

®, - A0 + C(u,v)BO

where © = [6,,6,]" and ¢ = [u,v]"

C(u,v)

E(u,v)

F(u,v)

+

=0y, + (Ev+Bu)by, + ({vy + Puy)dr + Pvi0) + vl + Lr(u,v) = 0.

D(u,v) + ®FE(u,v)BO =

¢+ Ad + F(u,v)Bo

(5.5)

(5.6)
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In order to solve the system given in Equation (5.6), we apply Crank-Nicolson method as

follows:

®n+l — o ®n+l + " ®n+l + "

- A n+l _ n+l B 7
A7 — W VB (5.7
®n+1 o ~®n+1 ®"
+ D(un+l,vn+l)T+ + E(MYH—],V’H—])BT-'- — (58)
¢n+l _ ¢n ¢n+l + ¢n i " ¢n+l + ¢n
A FW"™" V") B———. 5.
VR 7+ F@T V) 5 (5.9)

5.2. Numerical Results

In this section, we applied the proposed method to different coupled Burgers’
equations. L, and L. norms are used to calculate the difference between the exact and

numerical solutions.

Test Problem 5.1 Numerical solution of coupled Burgers’ equation (5.1) is obtained for

a=1,B8=1andn =& = -2 which corresponds to following equations

U, Uy + 2uu, — 1(uy),

Vi = Ve + 20y, — 1(uv),

with the given initial conditions

u(x,0) = v(x,0)=sin(x), -1 <x<n.

Boundary conditions are taken from the exact solution (Kaya, 2001) which is

u(x, ) = v(x,t) = e’ sin(x) (5.10)

27



Numerical results are obtained by taking the domain x € [—m, 7] with A, = 0.001.
To find the numerical results Crank-Nicolson schemen is used as in equation (5.9). Al-
though Crank-Nicolson is unconditionally stable for equation (5.9), MQ RBF also effects
the stability. Figures 5.1a-5.1b show that maximum eigenvalue of differentiation matrix
A in equation (5.9) versus shape parameter ¢ and number of nodes N respectively. Matrix

A gets ill-conditioned by changing the shape parameter and number of nodes.
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Figure 5.2. Stability of differentiation matrix
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L, and L, error norms are computed at different time levels. Numerical errors

for u and v are presented in Table 5.1. In Table 5.2, order of convergence of MQ RBF is

calculated.
t N=25 N=50
L, L L, Lo,
0.1 0.0025 0.0005 2.5383e-04 5.6247e-04
0.5 0.0046 0.0048 3.6715e-04 3.7689¢-04
1 0.0066 0.0032 4.8722e-04 2.2854e-04
Table 5.1. L, and L;,, errors for u(x,t) with Az = 0.001
e=0.5 t=1 Ar = 0.001
N Lo, Order of conv. L, Order of conv.
5 0.21774 - 0.59188 -
10 0.04490 2.27776 0.13024 2.18410
20 0.00603 2.89773 0.01265 3.36365
40 0.00063 3.24190 0.00134 3.23428
80 0.00006 3.39779 0.00004 5.17879

Table 5.2. L, and L, errors and order of convergence of MQ RBF.
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In Figure (5.3), u(x, t) is considered for the comparison of numerical and analytical
solutions, because the results are the same for u(x,?) and v(x, ). From this figure it is

observed that numerical solutions are in a perfect agreement with the analytical solutions.
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Figure 5.3. A comparison between numerical and analytical results for coupled Burg-
ers’ equation
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Test Problem 5.2 [In this test problem, coupled Burgers equation is considered with n =

& = 2 for different values of p and q as follows;

Uxy — ZMMX - P(”V)x

=
Il

Vir — 200, — q(uv),. (5.11D)

Vi

Exact solution of the problem is given in (Soliman, 2006) as

u(x,t) = ao(l —tanh(A(x — 2Ar)))
2g -1
W) = a7~ tanh(A(x - 2A1))
2p—1
where A = 0.5a04pq — 1.
2p—1

The initial and boundary conditions are taken form the exact solution. The numerical re-

sults are obtained for the domain x € [—10, 10] with Ar = 0.001.

For the numerical stability, eigenvalues of differentiation matrix A are considered.
Figure (5.4a) shows the maximum eigenvalue of matrix A for changing shape parameter c.

Effect of the number of nodes N on maximum eigenvalue of A is shown in Figure (5.4b).
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The parameters in equation (5.11) are ¢y = 0.05,p = 0.1 and ¢ = 0.3. MQ
shape parameter is ¢ = 0.5 for this problem. L, and L., error norms are computed for the
solutions of # and v in Table 5.3 and 5.4. From these tables it is observed that numerical

solutions has good agreement with the exact solutions.

N L, L

10 4.4483e-04 3.6254e-04
20 5.2476e-04 3.8948e-04
40 4.4128e-04 1.7262e-04
80 5.8670e-04 8.2323e-04

Table 5.3. L, and L;,, errors for u(x,t) with Az = 0.001 at 7 = 1

N L, Lo

10 2.5483e-045 2.3966e-04
20 2.9526e-04 2.5624e-04
40 2.0773e-04 1.1871e-04
80 2.2936e-04 4.1527e-05

Table 5.4. Errors at t = 1 for v(x,t) with Ar = 0.001

In Figures 5.6 and 5.7 show the numerical and exact solutions of u and v at time

t = 1 for the parameters ay = 0.1, p = 1 and g = 2.
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CHAPTER 6

NONLINEAR SCHRODINGER EQUATION

We will consider following the general form of the cubic nonlinear Schrodinger

equation(CNLSE)

iaw(z, X)

Fran [—aA + Bl (t, X)I* + wX)]y(t,x), (1,X) € (0,T] X Q 6.1)

with an initial condition

¥(0,X) = Yo(x), x € Q

where A = V? is Laplace operator, t is time variable, « is a positive constant Q € R? is a
bounded domain. In this chapter we consider two dimensional (d=2) CNLSE, and we set
the x = (x, ).

The CNLSE (6.1) conserves many quantitites.In this work, conservation of mass
and energy is considered. For CNLSE (6.1), mass functional N((¢,x)) and energy fuc-

tional E(y(t,x)) are given as follows;

NW(t,x)) = Lls//(l,X)lde (6.2)
1
EQW(t,x) = 5f(alvlﬁ(t,X)lz+w(X)Ilﬂ(I,X)|2+'§|¢(I,X)I4)dx (6.3)
Q
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6.1. Linerization of the Nonlinear Schrodinger Equation

The nonlinear cubic Schrodinger equation can be expressed as a system of two

partial differential equations by separating the real and imaginary parts

Y(t,x) = U(t,x) +iV(t,X) (6.4)

LU, V)=U, +aAV - BU* + V)V -V =0

Ly(U,V) =V, —aAU + BU* + VHU + wU =0 (6.5)

Applying the linearization technique to the system (6.5) the following

61, + a8, — 2BUVE, — B(U* + 3V, — wb, + Li(U, V) = 0 (6.6)

0, — aAb; + BBU* + V36, + 28UV, + wb; + Ly(U, V) =0 (6.7)

is obtained. Matrix notation of the equations (6.6) and (6.7) can be written as follows:

®, + 2A® + BO + BC(U,V)® = -V, — eAY — BY — BD(|¥))¥ (6.8)

where ® = [6,,6,]" and ¥ = [U, V]. In addition,
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22UV —(U?+3V?)
BU? +V?) 20V

—(U*+V?)
(U? + V?) 0

cU,v) = . D(y)) =

d
i . . .
Here, the operator Z py) corresponds to a matrix that is obtained by the MQ RBF

i=1 7%
method and 0 denotes the zero matrix. In order to solve the system given in equation

(6.8), Crank-Nicolson method is applied as follows:

®n+1 — e ®n+1 + @ ®n+1 + @ ®n+1 + O \Im+l —\pn
—a teAT gt B OV =
A\Im+1 + P B\Ijn+l + D(|\Pn+l + pn |)\Pn+l + pn
T 2 p 2 2

6.2. Numerical Results

In discrete space, mass and energy conservations are given with the following

summations

Nx

DN = Ax ) IN! =N, (6.9)
i=1
NX

DE = Ax ) (E-E). (6.10)
i=1

where N is initial mass, E° is initial energy and

3
Il

! Wt x)PIUTY + (VI

%I(Ot?)2 + (B)] + %w(xiN(U;l)z + (Vi) + £

4

3
|

(U + (Vi)

a=U,, b=V, forW=U+iV.
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6.2.1. Two-Dimensional Nonlinear Cubic Schrodinger Equation

In equation (6.1), with the @ = 1, w = 0, T = 3 and Q = [0, n]?, following

equation is considered

Oy Py Py 2
lE-Fﬁ'i‘a—yz"'ﬁW’“// =0 (6.11)

with the exact solution of the given model (Abbasbandy et al., 2013)

Y(x,y,t) = Aexp(ilkix + kyy — pt)), (6.12)
where

ki + ko — BIAL, (6.13)

ie)
Il

subject to initial and boundary conditions

',[/()(X, )’), (X, }’) € Q7 (614)
g(x,y,1), (x,y)€dQ,t>0, (6.15)

Y(x,y,0)
Y(x,y, 1)

where Q = [a, b] X [a, b] is a rectangular region and 02 denotes the boundary of Q.
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Figures (6.1a)-(6.1b) show that maximum eigenvalue of differentiation matrix A
in equation (6.8) versus shape parameter ¢ and number of nodes N respectively. Varying
the shape parameter and number of nodes effect the condition number of the differentia-
tion matrix and matrix becomes ill-conditioned rapidly. Optimal shape parameter ¢ and

number of nodes N can be chosen with these graphs.

9000 [

8000 [

7000 [

6000 [

max

5000 [

4000

3000

2000

1000

n I I I I I I I
01 02 03 04 05 06 07 08 09 1 11
Cc

(a) Ajpax Versus c

2200 [
2000
1800
1600
1400
@ 1200
£
~<
1000
800
600
400 -

200 -

10 20 30 40 50 60
N

(b) Ajpax versus N

Figure 6.2. Stability of differentiation matrix
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The proposed method is applied to this example and the numerical results are

shown in Table 6.1. The error norms L; and L, for the real and imaginary parts are

presented with fixed number of collocation points N = 10 X 10 at different times up to t =

1 with fixed Ar = 0.001.

t Real Part Imaginary part
L] L2 L] L2

0.1 1.2916e-02 6.1962¢e-03 4.1602e-03  2.1514e-03
0.2 1.8770e-02 9.6928e-03 4.7991e-03  2.4357e-03
0.3 2.2654e-02 1.2328e-02 4.2126e-03  2.3923e-03
0.4 1.9275e-02 1.1574e-02 4.8929e-03  3.3571e-03
0.5 2.0306e-02 1.4381e-02 7.4393e-03  4.8017e-03
0.6 2.4049e-02 1.5879e-02 7.4599e-03  5.6786e-03
0.7 2.8174e-02 1.8491e-02 8.6283e-03  5.4560e-03
0.8 3.0907e-02 2.3580e-02 6.7824e-03  4.6352e-03
0.9 3.4673e-02 2.7562e-02 4.8147e-03  3.4125e-03

1 3.8240e-02 2.8358e-02 4.2647e-03  2.9836e-03

Table 6.1. Numerical errors for N = 10 x 10 with A7 = 0.001 for equation (6.11)

Numerical results are shown in Figure 6.4 (a)-(b) and from this figure it is observed

that the numerical solution is in a great numbness with the exact solution. Here, MQ RBF

method is used for discretizing the space derivatives where N, = 10 = N, and the shape

of the radial basis is 0.5. Moreover, initial and boundary conditions are chosen from the

exact solution.
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Figure 6.4. Surface plot of numerical solution and analytic solution at time 7 = 1.



In Table 6.2 error norms for different number of collocation points with Az = 0.001
are shown. It can be observed that the accuracy of the method improves by increasing the

number of collocation points. Table 6.3 gives the error at ¢ = 3. This emphasize that the

t N=38 N=16
L1 L2 Ll L2

0.1 8.2572e-03 5.0463e-03 1.6233e-03 8.4697e-04
0.2 1.4362e-02 8.0032e-03 1.4246¢e-03 8.9173e-04
0.3 1.9362e-02 1.0506e-02 2.1029e-03  1.3948e-03
0.4 1.9564e-02 1.3560e-02 2.4511e-03 1.4347e-03
0.5 2.3993e-02 1.7731e-02 1.9402e-03 1.2821e-03
0.6 3.0219e-02 2.2057e-02 1.8258e-03 1.1608e-03
0.7 3.5083e-02 2.4959¢-02 1.8729¢-03  1.0928e-03
0.8 3.7903e-02 2.6853e-02 1.6465e-03 1.0567e-03
0.9 4.1190e-02 2.8474e-02 1.9067e-03 1.1634e-03

1 4.0474e-02 2.9549e-02 2.4241e-03 1.5675e-03

Table 6.2. Numerical errors for Az = 0.001 for equation 6.11

proposed method is numerically stable.

N At L L,
16 x16 0.1 0.2305 0.1505
16 x16 0.01 0.0175 0.0122
16 x 16 0.001 0.0027 0.0016

Table 6.3. Numerical errors for different Az where x,y € [0,7]> and t = 3



In order to check the behaviour of the proposed method for long time, the numer-

ical results at time ¢t = 3 are shown in Figure 6.6. From this figure, it is clear that the

proposed method preserves the behaviour of the analytic solution for a long time. Figure

6.8 show that the discrete energy and the discrete mass are well preserved.

exact exact
+  numerical +  numerical

V(XY )
YY)

(a)Real part (b)Imaginary part

Figure 6.6. Surface plot of numerical solution and analytic solution at time 7 = 3.
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Figure 6.8. Conservation of mass and energy

43



6.2.2. Two-Dimensional Nonlinear Cubic Schrodinger Equation with

External Potential

In second test problem, CNLSE (6.1) is considered with the external potential as

follows @ = 1,8=1,T = 1 and Q = [0, 27]?

oy 1(0% Oy
’E+2(

=+ a—yz) — WY + w(x ) = 0, (6.16)

with potential
w(x,y) = —(1 — sin® xsin® y). (6.17)
(Xu & Zhang, 2012) The exact solution is given as
Y(x,y) = sin xsin ye >, (6.18)

The boundary and initial values are easily obtained from the equation (6.18). The numer-
ical results about L; and L, error norms are given in Table 6.4 these results also shows

that the presented method remains stable.

Nx = NV At L1 L2
16 At =0.01 0.0477 0.0377
16 At =0.001 0.0047 0.0038
16 At = 0.0001 | 4.7352e-04 | 3.7539¢-04

Table 6.4. Numerical errors for different At where x, y € [0, 27]?
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In Figure 6.9, the plot of the obtained approximate solutions and analytical solu-
tion at ¢ = 1 is given. Error of mass is given in Figure 6.10. From this figure it is observed

that the proposed method conserves the mass.

[ Texact

*  numerical

Figure 6.9. Exact and numerical solutions of Equation (6.16) at ¢ = 1.
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CHAPTER 7

CONCLUSION

Nonlinear problems have an important role in science and engineering. Thus the
solutions of nonlinear partial differential equations are so important. The aim of this the-
sis is to propose a numerical method to solve the NPDEs.

The procedure of the proposed method consist of a linearization technique and
multiquadric radial basis function method. This linearization technique is formed by
Newton-Raphson method and the Frechet derivatives. MQ RBF method is chosen for
the space disceritization. The reason is that the MQ RBF method is easy to implement
the multi dimensional problems and MQ RBF method is efficient solver for the linear
problems. In addition to solve the problems, Crank Nicolson method is used.

In this thesis three main nonlinear problems are taken into consideration. These
are Burgers’ equation, Coupled Burgers’ equation and cubic nonlinear Schrédinger equa-
tion. With these problems, the efficiency and the numerical stability of the proposed
method for both nonlinear and the system of nonlinear PDEs are shown. In chapter 4,
proposed method is implemented to Burgers’ equation. The results are demonstrated that
the linearization technique combined with the MQ RBF gives the better solutions then
the known techniques in the literature. Figure 4.5 reveals that the method is convenient
for small viscosity values. Exact solutions are known for the test problems of coupled
Burgers’ equation. Thus errors are presented in L, and L., norms. Order of convergence
of MQ RBF is obtained for the coupled Burgers’ equation and one can see the spectral
convergence of MQ RBF with this example. Moreover, 2-D cubic nonlinear Schrodinger
eqaution is considered for two cases: without and with external potential. For the first
case, numerical solution has the similar behaviour with the exact solution. Addition-
ally, proposed method conserves the some densities which are energy and mass. For the
CNLSE with external potential, probability density is illustrated in Figure 6.9. Proposed

method also conserves the mass for this example but energy is not conserved.
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As aresult, presented method is applicable for several nonlinear partial differential
equations. Numerical results and simulations reveal that proposed method is an efficient

solver and one can easily adapt the method for the similar problems.
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APPENDIX A

ANALYTICAL FRAMEWORK

A.1. Derivative in Banach Space

Aim of this appendix is to present the definitions that are used throughout this

thesis.

A.1.1. Gateaux Derivative

Definition A.1 If f : U — V differentiable at x, then for all h € U we have

f(x +eh) - f(x)

Df(x)h = lim
-0 E

where € is chosen in R.

A.1.2. Fréchet Derivative

The usual definition on general vector spaces, is called Fréchet derivative.

Definition A.2 Let X and Y be normed vector spaces, and U C X open, f : U — Y.
We say f is differentiable at x € U if there exists a bounded linear map Df(x) € L(X,Y)!
and a continuous function  : V. — Y, where V is an open neighbourhood of 0 € X , with

W(0) = 0, such that

Jx+h) = f(x) + (Df(x)h + [hlly(h)

Lthe space of linear continuous maps from X to' Y
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forallheV.

A.1.3. Higher Derivative

Let f € C(U,Y) be differentiable in the open set U C X and consider /" : U —
L(X,Y)

Definition A.3 Letu € U: f is twice (Fréchet) differentiable at u. The second (Fréchet)
differential of f at u is defined as

d*f(u) = df’(u). (A.1)

If f is twice differentiable at all points of U we say that f is twice differentiable in U

According to the above definition d” f(u) is a linear continuous map from X to L(x, Y):

d*f(u) € L(X, L(X, Y)). (A.2)

It is convenient to see d”f(u) as a bilinear map on X. For this, let L,(X,Y) denote the
space of continuous bilinear maps from X X X — Y. To any A € L(X, L(X,Y)) we can
combine ®, € Ly(X, Y) given by @4 (uy, up) = [A(u1)](uy). Conversely, given ®© € L,(X,Y)
and h € X,®(h,.) : k = D(h,k) is a continuous linear map from X to Y; hence to any

® € L,(X,7Y) is associated the linear application X — L(X,Y),

D:h— Dh,.) e LXY) (A.3)

It is easy to see that in this way we define an isomorphism between L(X, L(X, Y)) and

L,(X,Y). Actually, such an isomorphism is an isometry because there results

”q)”L(X,L(X,Y)) = Ssup ”(D(h)”L(X,Y) (A.4)
lAll<1
= sup sup [|Oh, k)I| = |Dh, Ollz,x.v) (A.5)
lAll<1 |Ikl|<1
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In the following we will use the same symbol d” f(u) to denote the continuous bilinear
map obtained by the preceding isometry. The value of d?f(u) at a pair (h,k) will be
denoted by

d’ fw)lh, k. (A.6)

If f is twice differentiable in U, the second (Fréchet) derivative of f is the map f” : U —
L)X, Y),

7 u— dfu). (A.7)

If £ is continuous from U to L,(X,Y) we say that f € C*(U,Y). To define (n + 1)—th
derivatives (n > 2) we can proceed by induction. Given f : U — Y, let f be n times dif-
ferentiable in U. The nth differential at a point x € U will be identified with a continuous
n-linear map from X X X X X X ... X X (ntimes) to Y (recall that, as before, there is an

isometry between L(X, ..., L(X, Y) and L,(X,Y) ). Let f™ : U — L,(X,Y)

7 u— d fu).

The (n + 1)—th differential at u will be defined as the differential of f®, namely

d™! f(u) = df"(u) € L(X, L,(X,Y)) = L,(X, Y).

We will say that f € C"(U,Y) if f is n times (Fréchet) differentiable in U and the nth
derivative f” is continuous from U to L,(X, Y). The value of d" f(u) at (hy, ..., h,) will be

denoted by

d" )y, ooy ],
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h = hy = ... = h, is written in short form as d”" f(u)[h]".

A.2. Newton-Raphson Method

Newton-Raphson method is the one of the well-known algorithm which developed

for finding root of real-valued functions in the 17th century.

Theorem A.1 Assume that f € C*[a,b] and there exists a number p € [a,b], where
f(p) =0.1If f'(p) # 0, the there exists a 6 > 0 such that the sequence p,, defined by the

iteration

Pn-1
f,(pn—l)’

pn=pn—1- for; n=1,2, ..

will converge to p for any initial approximation py € [p — 6, p + 9].

For more details, see (Matthews& Fink, 2004)
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APPENDIX B

MATLAB CODES FOR NUMERICAL
EXPERIMENTS

B.1. Codes for Burgers’ Equation

%%BURGERS EQUATION%%
%%Ut+UUx=kappaUxx%%
%%U(x,0)=sin(pi*x) , O<x<1l %%
%%U(0,t)=UC1,t)=0 , O<t<1%%
clear all;close all;clc
tic
for k=1:3

%% Space discretization
x0=0;

xn=1;

nx=33;
dx=(xn-x0)/(nx-1);
x=x0:dx:xn;

x=x";

%%

gama=[0.1 0.01 0.005]
%% time

t0=0;

tn=3;

nt=3*1044+1;
dt=(tn-t0)/(nt-1);

t=t0:dt:tn;



%%
cr=dt/dx
pe=dx/gama (k)
9%%6
itermax=1000;
%%
temp=zeros(nx,1);
teta=zeros(nx,1);
cy=zeros(nx,1);
%%
ce=sin(pi*x);
u(:,l)=ce;
%%
temp(1)=0; temp(nx)=0;
teta(1)=0;teta(nx)=0;
cy(2:nx-1,1)=0;
%%
c=0.;
for j=1:nx
for i=1:nx
A(J,D=sqrt((x(j)-x(1))"2+c*2);
end
end
for j=1:nx
for i=1:nx
B(j,1)=(x(3)-x(1))/A(],1);
C(j,1)=cr2/A(j,i)*3;
end
end
I=eye(nx);
invA=A\I;

a=B*invA;
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b=C*invA;
z=eig(b);
%% Loop
for i=1:nt-1
ce(1)=0;ce(nx)=0;
cy(1)=0;cy(nx)=0;
cy(2:nx-1)=cy(2:nx-1,1);
for j=l:itermax
amat=(1l/dt) *eye(nx)+(0.5)*diag((cy+ce)/2)*a
+(0.5)*diag(a*((cy+ce)/2))-(0.5*gama(k))*b;
bmat=-(1/dt)*(cy-ce)-(0.25)*(cy+ce).*(a*(cy+ce))
+(0.5*gama(k)) *b* (cy+ce);

teta=amat(2:nx-1,2:nx-1)\bmat(2:nx-1);
temp(2:nx-1,1)=cy(2:nx-1,1)+teta;
err=norm(temp-cy,2);
cy=temp;
if err<le-10
break
end
end

k1(i)=j3;
u(:,i+l)=cy;
ce=cy;

end

plot(x,u(:,end))
hold all

end

figure(2)
plot(x,u(:,4001))
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hold all
plot(x,u(:,6001))
plot(x,u(:,8001))
hold all
plot(x,u(:,10001))
legend(’t=0.4",’t=0.6",’t=0.8",’t=1")
xlabel(’x’);
ylabel(’u’);
figure(3)
[X ,T]=ndgrid(x,t);
surf(X, T,u,
’FaceColor’, ’interp’, ...
’EdgeColor’, ’none’, ...
’FaceLighting’, 'phong’)
axis tight
view(-50,30)
camlight left
alpha(0.6);
xlabel(’x’);
ylabel(’time’);
zlabel(C’U(x,t)’);
title(’Burgers Equation’);

toc

B.2. Codes for Coupled Burgers’ Equation

t0=0;
tn=3;
dt=0.001
N=(tn-t0)/dt;

t=t0:dt:tn;
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itermax=1000;

eta=-2;
ksi=-2;
p=1;
q=1;
% eta=2;
% ksi=2;
% p=0.1;
% q=0.3;
% a0=0.5;

% K=0.5%a0*(4*p*q-1)/(2*p-1)
for m=1:1
N1=50%m;
M=N1-1;
step(m)=N1;
% X = linspace(-10,10,N1);
X = linspace(-pi,pi,N1);
nx=N1;
u=zeros(N1,1);
v=zeros(N1,1);
uex=zeros(N1,1);
vex=zeros(N1,1);
Z=zeros(2*N1,1);
for i=1:M+1
for j=1:N
uex (i, j)=exp(-t(j))*sin(X(i));
vex (i, j)=exp(-t(j))*sin(X(1));
% uex(i,j)=a®*(1-tanh(R*(X(i)-2*K*t(j))));
% vex(i,j)=a0*((2*q-1)/(2*p-1)-tanh(K*(X(1)-2*K*t(j))));
end
end

Zex=[uex;vex];



ce=[uex(:,1);vex(:,D];
Z(:,D=ce;
temp=zeros(2*N1,1);
teta=zeros(2*N1,1);
cy=zeros(2*N1,1);
%%
temp(1)=uex(1,1);temp(M+1)=uex(end, 1);
temp(M+2)=vex(1,1) ;temp(end)=vex(end, 1);
% temp(1)=0;temp(M+1)=0;temp(M+2)=0;temp(end)=0;
% teta(1l)=0;teta(M+1)=0;teta(M+2)=0;teta(end)=0;
cy(2:2*M+1,1)=0;
% cy(:,1)=Zex(:,2);
c=0.5;
% ¢c=0.1:.1:0.9;
for 1=1:1ength(c)
ce=[uex(:,1);vex(:,1)];
Z(:,1)=ce;
temp=zeros(2*M+1,1);
teta=zeros(2*M+2,1);
cy=zeros(2*M+2,1);
9%6%6
temp(1)=uex(1,1);temp(M+1)=uex(end, 1);
temp (M+2)=vex(1,1) ;temp(end)=vex(end, 1);
% temp(1)=0;temp(M+1)=0;temp(M+2)=0;temp(end)=0;
% teta(1)=0;teta(M+1)=0;teta(M+2)=0;teta(end)=0;
cy(2:2*M+1,1)=0;
% cy(:,1)=Zex(:,2);
for j=1:nx
for i=1:nx
A(j,1D)=sqrt((X(j3)-X(i))*2+c(1)*2);
end

end
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for j=1:nx
for i=1:nx
B(j,1)=(X(3)-X(1))/A(,1);
C(j,1)=c(1)*2/A(j,1)*3;

end

end

I=eye(nx);

invA=A\I;

cond(A)

a=B¥*invA;

b=C*invA;

AA=[b zeros(nx,nx); zeros(nx,nx) b];

BB=[a a; a a];

for i=1:N-1

ce(D)=uex(1l,i+1);ce(M+1)=uex(end,i+1);
ce(M+2)=vex(1l,i+1); ce(2*M+2)=vex(end,i+1);
cy(D=uex(1l,i+1);cy(M+1)=uex(end,i+1);

cy(M+2)=vex(1l,i+1); cy(2*M+2)=vex(end,i+1);

% ce(1)=0;ce(M+1)=0; ce(M+2)=0; ce(2*M+2)=0;

% cy(D)=0;cy(M+1)=0; cy(M+2)=0; cy(2*M+2)=0;

for j=l:itermaxlog(dt(e)/dt(e-1))));
vecll=eta*(ce(1:M+1)+cy(1:M+1))/2

+p*(ce(M+2:end)+cy(M+2:end)) /2;
vecl2=p*(ce(1:M+1)+cy(1:M+1))/2;
vec2l=g*(ce(M+2:end)+cy(M+2:end))/2;
vec22=ksi*(ce(M+2:end)+cy(M+2:end))/2+q*(ce(1l:M+1)+cy(1:M+1))/2;
ADM=[diag(vecll), diag(vecl2); diag(vec2l), diag(vecll)];
cvecll=eta*a*((ce(1:M+1)+cy(1:M+1))/2)
+p*a*((ce(M+2:end)+cy(M+2:end))/2);

cvecl2=p*a*((ce(l:M+1)+cy(1:M+1))/2);
cvec2l=g*a*((ce(M+2:end)+cy(M+2:end))/2);
cvec22=ksi*a*((ce(M+2:end)+cy(M+2:end))/2)
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+g*a*((ce(M+2:end)+cy(M+2:end))/2);

AUM=[diag(cvecll), diag(cvecl2); diag(cvec21), diag(cvec22)];
DMAT=(((1/dt)*eye(size(AA)))-(AA*0.5)+(ADM*BB*0.5))+(AUM*0.5);

rvecl=eta*((ce(1l:M+1)+cy(1:M+1))/2).*a*((ce(1:M+1)+cy(1:M+1))/2)

+p*a*((ce(l:M+1)+cy(1:M+1))/2).*((ce(M+2:end) +cy (M+2:
+p*((ce(1:M+1)+cy(1:M+1))/2) . *a*((ce(M+2:end)+cy (M+2:
rvec2=ksi*((ce(M+2:end)+cy(M+2:end))/2).*
a*((ce(M+2:end)+cy(M+2:end)) /2)
+g*a*((ce(1l:M+1D)+cy(1:M+1))/2).*((ce(M+2:end)+cy(M+2:
+q*((ce(1:M+1D)+cy(1:M+1))/2) . *a*((ce(M+2:end) +cy (M+2:
DVEC=vertcat(rvecl,rvec2);
rmatl=((-(1/dt) *eye(size(AA)))+(AA*0.5)) *cy;
rmat2=(((1/dt)*eye(size(AA)))+(AA*0.5)) *ce;
RS=rmatl+rmat2-DVEC;
teta=DMAT\RS;
temp=cy+teta;
err=norm((temp-cy),2);
cy=temp;
if err<le-10
break
end
end
Z(:,i+1)=cy;
ce=cy;
end
el(1)=max(abs(Z(1:N1,end)-Zex(1:N1,end)));
e2(1)=norm(abs(Z(1:N1,end)-Zex(1:N1,end)),2);
ei(1)=norm(abs(Z(1:N1,end)-Zex(1:N1,end)),inf);
ell(m,1)=el1(1);
e2l(m,1)=e2(1);
e3(1)=max(abs(Z(N1+l:end,end)-Zex(N1+1l:end,end)));
e4(1)=norm(abs(Z(N1+1l:end,end)-Zex(N1+1l:end,end)),2);

end))/2)
end))/2);

end))/2)
end))/2);
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el2(m,1)=e3(1);

e22(m,1)=e4(1);

end

dx(m)=2*pi/N1;

if m>1
orderl(m)=abs((log(ell(m)/ell(m-1)))/(1log(dx(m)/dx(m-1))));
order2(m)=abs((log(e21(m)/e21(m-1)))/(log(dx(m)/dx(m-1))));
else

orderl(m)=0;

order2(m)=0;

end

end

% figure(l)

% plot(X,Z(1:N1,101),’.b’,X,Zex(1:N1,101),’-b’)

% hold on

% plot(X,Z(1:N1,501),’.r’ ,X,Zex(1:N1,501),’-r’)

% plot(X,Z(1:N1,end),’.k’,X,Zex(1:N1,end),’-k’)

% axis tight

% titleC’u(x,t)’)

% figure(2)

% plot(X,Z(N1+1l:end,101),’.b’ ,X,Zex(N1+1l:end,101),’-b’)

% hold on

% plot(X,Z(N1+1l:end,501),’.r’ ,X,Zex(N1+1l:end,501), ' -r’)

% plot(X,Z(Nl1+1l:end,end),’ .k’ ,X,Zex(N1+1l:end,end),’-k’)

% axis tight

% titleC’'v(x,t)’)

el

e2

el

figure(3)

semilogy(c,ell(1,:))

xlabel c



ylabel error
title(’MQ-RBF’)
figure(4)
semilogy(c,ell1(2,:))
xlabel c

ylabel error

\title(’MQ-RBF’)

B.3. Codes for Cubic Nonlinear Schrodinger Equation

clear all;close all
tic
M =15; %30; % Number of intervals in x-direction
N = M; % Number of intervals in z-direction
N1 = N+1 ;
Np = (N+1)42;
shape = .7;
X

linspace(0,pi,M+1);
Y

linspace(0,pi,N+1);
[x1,y1] = meshgrid(X,Y);

X = reshape(x1’,N142,1);

y reshape(yl’,N142,1);
dx=pi/N1;

dy=dx;

%% Initial

C0=zeros(2*Np, 1);
CO(1:Np)=0.5*cos(x+y);
CO(Np+1:end)=0.5*sin(x+y);
ce=C0;

cy=zeros(2*Np,1); %Psi_(n+1)

temp=zeros(2*Np,1);



teta=zeros(2*Np,1);
%% Time
t0=0; tend=3;
dt=0.001; Nt=(tend-t0)/dt;
t=t0:dt:tend;
for i=1:Nt+1

ex1(:,1)=0.5*Ccos(x+y-7*t(i)/4));

ex2(:,1)=0.5*(sin(x+y-7*t(i)/4));
end
exal=permute(reshape(ex1,N1,N1,Nt+1),[1 2 3]1);
exa2=permute(reshape(ex2,N1,N1,Nt+1),[1 2 31);
solutl=zeros(N1,N1,Nt+1);
solut2=zeros(N1,N1,Nt+1);
H = zeros(Np,Np); rx = zeros(Np,Np); ry = zeros(Np,Np);
r = zeros(Np,Np);

o = ones(l,length(x));

%% Boundaries

dirichletBCLR1 = find( x==0 );
dirichletBCLR2 = find( x==pi );
dirichletBCL = find( (y == 0) & ~(x==0 | x== pi));
dirichletBCU = find( (y == pi) & ~(x==0 | x== pi));

interior = find( x~=0 & x~=pi & y~= 0 & y~=pi );
cl=ce(l:Np);

c2=ce(Np+1l:end);

cyl=cy(1:Np);

cy2=cy(Np+1l:end);
cl(dirichletBCLR1)=.5*cos(y(dirichletBCLR1)-7*t0/4);
cl(dirichletBCLR2)=.5*cos(pi+y(dirichletBCLR2)-7%t0/4);
cl(dirichletBCL)=.5*cos(x(dirichletBCL)-7%*t0/4);
cl(dirichletBCU)=.5*cos(pi+x(dirichletBCU)-7*t0/4);
c2(dirichletBCLR1)=.5*sin(y(dirichletBCLR1)-7*t0/4);
c2(dirichletBCLR2)=.5*sin(pi+y(dirichletBCLR2)-7%t0/4);
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c2(dirichletBCL)=.5*sin(x(dirichletBCL)-7*t0/4);
c2(dirichletBCU)=.5*sin(pi+x(dirichletBCU)-7*t0/4);
ce=vertcat(cl,c2);
solutl(:,:,1)=permute(reshape(cl,N1,N1),[1,2]);
solut2(:,:,1)=permute(reshape(c2,N1,N1),[1 2]1);
%% RBF matrix
rx = (x*o - (x*0)’);

ry = (y*o - (y*0)’);

r = sqrt( rx.22 + ry.*2 );

mr=mq (r, shape,2);

Hxx

mgDerivatives(r,rx, shape,?2);
Hyy = mqDerivatives(r,ry,shape,2);
H=Hxx+Hyy;

H(dirichletBCLR1, :) mg(r(dirichletBCLR1, :),shape);

H(dirichletBCLR2, :)

mg(r(dirichletBCLR2, :),shape);
H(dirichletBCL,:) = mq(r(dirichletBCL, :),shape);
H(dirichletBCU,:) = mq(r(dirichletBCU, :),shape);
I=eye(Np);

invA=mr\I;

cninv=cond(invA)

b=(H) *invA;

BA=[zeros(Np,Np), b; -b, zeros(Np,Np)];

cnba=cond (BA)

%% Time Loop
itermax=100;
tol=1e-10;
templ=temp(1l:Np);
temp2=temp (Np+1:end) ;
for j=2:Nt+1
cl=ce(1:Np);
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c2=ce(Np+1l:end);

cyl=cy(1:Np);

cy2=cy(Np+1l:end);
cl(dirichletBCLR1)=.5*cos(y(dirichletBCLR1)-7*t(j)/4) ;
cl(dirichletBCLR2)=.5*cos(pi+y(dirichletBCLR2)-7*t(j)/4);
cl(dirichletBCL)=.5*cos(x(dirichletBCL)-7*t(j)/4);
cl(dirichletBCU)=.5%cos(pi+x(dirichletBCU)-7*t(j)/4);
c2(dirichletBCLR1)=.5*sin(y(dirichletBCLR1)-7*t(j)/4);
c2(dirichletBCLR2)=.5*sin(pi+y(dirichletBCLR2)-7*t(j)/4);
c2(dirichletBCL)=.5*sin(x(dirichletBCL)-7*t(j)/4);
c2(dirichletBCU)=.5*sin(pi+x(dirichletBCU)-7*t(j)/4);
ce=vertcat(cl,c2);
cyl(dirichletBCLR1)=.5*cos(y(dirichletBCLR1)-7*t(j)/4);
cyl(dirichletBCLR2)=.5%*cos(pi+y(dirichletBCLR2)-7*t(j)/4);
cyl(dirichletBCL)=.5*cos(x(dirichletBCL)-7*t(j)/4);
cyl(dirichletBCU)=.5*cos(pi+x(dirichletBCU)-7*t(j)/4);
cy2(dirichletBCLR1)=.5*sin(y(dirichletBCLR1)-7*t(j)/4) ;
cy2(dirichletBCLR2)=.5*sin(pi+y(dirichletBCLR2)-7*t(j)/4);
cy2(dirichletBCL)=.5*sin(x(dirichletBCL)-7*t(j)/4);
cy2(dirichletBCU)=.5*sin(pi+x(dirichletBCU)-7*t(j)/4);
cy=vertcat(cyl,cy2);
templ(dirichletBCLR1)=.5*cos(y(dirichletBCLR1)-7*t(j)/4);
templ(dirichletBCLR2)=.5*cos(pi+y(dirichletBCLR2)-7*t(j)/4);
templ(dirichletBCL)=.5*cos(x(dirichletBCL)-7*t(j)/4);
templ(dirichletBCU)=.5*cos(pi+x(dirichletBCU)-7*t(j)/4);
temp2 (dirichletBCLR1)=.5*sin(y(dirichletBCLR1)-7*t(j)/4);
temp2 (dirichletBCLR2)=.5*sin(pi+y(dirichletBCLR2)-7*t(j)/4);
temp2 (dirichletBCL)=.5*sin(x(dirichletBCL)-7*t(j)/4);
temp2 (dirichletBCU)=.5*sin(pi+x(dirichletBCU)-7*t(j)/4);
temp=vertcat(templ, temp2) ;

for k=1:itermax

% left side



cvecll=2*(((ce(1:Np)+cy(1:Np))/2).*((ce(Np+1l:end)+cy(Np+1l:end))/2))
cvecl2=((((ce(1:Np)+cy(1:Np))/2).42)
+(3*(((ce(Np+l:end)+cy(Np+l:end))/2).42)));
cvec21=((3*(((ce(l:Np)+cy(1:Np))/2).A2))
+((((ce(Np+l:end)+cy(Np+l:end))/2).42)));
ADM=[diag(cvecll), diag(cvecl2); -diag(cvec2l), -diag(cvecll)];
DMAT=(((1/dt)*eye(size(BA)))+(BA*0.5)+(ADM*0.5));
% rigth side
rvecl=((((0.5)*(ce(1l:Np)+cy(1:Np))).*2)
+(((0.5)*(ce(Np+1:end)+cy(Np+1l:end))).A2))
L*((00.5)*(ce(Np+1:end)+cy(Np+1l:end)));
rvec2=-((((0.5)*(ce(1l:Np)+cy(1:Np))).*2)
+(((0.5)*(ce(Np+1:end)+cy(Np+1l:end))).A2)).*((0.5)*(ce(1l:Np)+cy(1:Np)));
DVEC=vertcat(rvecl,rvec2);
rmatl=((-(1/dt)*eye(size(BA)))-(BA*0.5)) *cy;
rmat2=(((1l/dt) *eye(size(BA)))-(BA*0.5)) *ce;
RS=rmatl+rmat2-DVEC;
teta=DMAT\RS;
temp=cy+teta;
err=norm( (temp-cy),2);
cy=temp;
if err<=tol
% point(i)=k;
break
end
end
ce=cy; %%%sol(x,t)
sol=ce;
so0l1=s0l1(1:Np); sol2=sol(Np+1l:end);
solutl(:,:,j)=permute(reshape(soll,N1,N1),[1 2 ]);
solut2(:,:,j)=permute(reshape(sol2,N1,N1),[1 2 1);

end
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exact=zeros(2*N1,1);
exactl=0.5*cos(x1+yl1-((7/4)*tend));
exact2=0.5*sin(x1+y1-((7/4)*tend));
XNew=x;

ynew=y;

[temp,li]=sort(xnew);
xnew=xnew(1i);

ynew=ynew(li);

appnewl=sol1(1li);

appnew2=s012(1i);

for i=1:N1

[temp,li]=sort(ynew((i-1)*N1+1:i*N1));

1i=(i-1)*N1+11i;

xnew(((i-1)*N1+1:i*N1))=xnew(li);
ynew(((i-1)*N1+1:i*N1))=ynew(1i);
appnewl (((i-1)*N1+1:i*N1))=appnewl(li);
appnew2 (((i-1)*N1+1:i*N1))=appnew2(li);

end

xnew=reshape(xnew,N1,N1);
ynew=reshape(ynew,N1,N1);
appnewl=reshape (appnewl,N1,N1);
appnew2=reshape (appnew2,N1,N1);

errl=max(max(abs(appnewl-exactl))) %real part
err2=max (max (abs(appnew2-exact2)))%imaginary part
ENEEXA= sqgrt(((exactl.*2 +exact2.%2)));

PROB=sqrt (((appnewl.A2)+(appnew2.42)));

errprob=max (max (abs (ENEEXA-PROB)))
err=max (abs (ENEEXA-PROB))
errorll=norm(ENEEXA-PROB, 1)
errorl2=norm(ENEEXA-PROB, 2)
errorli=norm(ENEEXA-PROB, inf)
N®=exal(:,:,1).*2+exa2(:,:,1).2;
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for j=1:Nt+1 %%t counter
top=0;
e0=0;
for i=1:N %%x counter
for k=1:N
der=((((solutl(i+1,k,j)-solutl(i,k,j))/(dx)
+(solutl(i,k+1,j)-solutl(i,k,j))/(dy)).r2)
+(((solut2(i+1,k,j)-solut2(i,k,j))/(dx)
+(solut2(i,k+1,j)-solut2(i,k,j))/dy)).*2));
energy®(i,k)=31/64;
ham=((-(1/4)*(((((solutl(i,k,j).*2))+((solut2(i,k,j)).A2))).42))
+(0.5%*der));
energson(i,k)=(-(1/4)*((((solutl(i,k,j).*2))+((solut2(i,k,j)).*2))).*2)
+(0.5*%der);
top=top-+ham;
e0=e0+energy0(i,k);
end
end
E(j)=dx*dy*top;
EE(j)=dx*dy*e0;
GE(j)=abs(E(j)-(31/64)*pitr2);
end
enerbas=dy*dx*norm(energy0, 1) ;
enerson=dy*x*norm(energson, 1) ;
for k=1:Nt+1
N=solutl(:,:,k).A2+solut2(:,:,k).A2;
mass0=0;
mass=0;
for i=2:N1
for j=2:N1
mass®=massO+NO (i, j) *dy*dx;

mass=mass+N(i, j)*dy*dx;
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end
end
mO (k)=mass0;
m(k)=mass;
end
%R=GE/enerrbas;
%DE=abs (en-eee);
DN=abs (m-m0) ;
figure(l)
plot(t,DN)
axis tight
xlabel(’time’)
ylabel (’mass error’)
figure(2)
plot(t,GE)
axis tight
xlabel(’time’)
ylabel (’energy error’)
figure(3)
mesh(x1l,yl,exal(:,:,end))
hold on
plot3(xnew,ynew,solutl(:,:,end),’*’)

axis tight

B.4. Codes for Schrodinger Equation with External Potential

clear all;
close all
tic
M =15; %30; % Number of intervals in x-direction

N = M; % Number of intervals in z-direction
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N1 = N+1 ;

Np = (N+1)42;

shape =0.5;

%coefficients

alfa=0.5;

beta=-1;

%%points

X = linspace(®,2%pi,M+1); %
Y = linspace(0®,2*pi,N+1); %
[x1,y1] = meshgrid(X,Y);

X

reshape(x1’,N142,1);

y reshape(yl’,N142,1);

dx=2%pi/N1;

dy=dx;

%% Initial

CO=zeros(2*Np, 1);

CO(1:Np)=sin(x).*sin(y);

ce=C0;

cy=zeros(2*Np,1); %Psi_(n+1)

temp=zeros(2*Np, 1);

teta=zeros(2*Np, 1);

%% Time

t0=0; tend=1;

dt=0.001; Nt=(tend-t0)/dt;

t=t0:dt:tend;

%% EXACT

for i=1:Nt+1
ex1(:,i)=sin(x).*sin(y)*cos(2*t(i));
ex2(:,i)=-sin(x).*sin(y)*sin(2*t(i));

end

exal=permute(reshape(ex1,N1,N1,Nt+1),[1 2 3]1);

exa2=permute(reshape(ex2,N1,N1,Nt+1),[1 2 31);



solutl=zeros(N1,N1,Nt+1);

solut2=zeros(N1,N1,Nt+1);

H = zeros(Np,Np); rx = zeros(Np,Np); ry = zeros(Np,Np);
r = zeros(Np,Np);
o = ones(1l,length(x));

%% Boundaries

dirichletBCLR1 = find( x==0 );

dirichletBCLR2 = find( x==2%pi );

dirichletBCL = find( (y == 0) & ~(x==0 | x== 2%*pi));
dirichletBCU = find( (y ==2* pi) & ~(x==0 | x== 2%pi));

interior = find( x~=0 & x~=2%pi & y~= 0 & y~=2%pi );
cl=ce(l:Np);

c2=ce(Np+1:end);

cyl=cy(1:Np);

cy2=cy(Np+1:end);
cl(dirichletBCLR1)=0;c1(dirichletBCLR2)=0;
cl(dirichletBCL)=0; cl(dirichletBCU)=0;
c2(dirichletBCLR1)=0;c2(dirichletBCLR2)=0;
c2(dirichletBCL)=0; c2(dirichletBCU)=0;

ce=vertcat(cl,c2);

solutl(:,:,1)=permute(reshape(cl,N1,N1),[1,2]);
solut2(:,:,1)=permute(reshape(c2,N1,N1),[1 2]1);
%% RBF matrix
rx = (x*o - (x*0)’);
ry = (y¥o - (y*0)’);
r = sqrt( rx.A2 + ry.»2 );
mr=mq (r, shape,2);

Hxx

mgDerivatives(r,rx,shape,?2);

Hyy = mqgDerivatives(r,ry,shape,2);
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H=Hxx+Hyy;
H(dirichletBCLR1, :)

mg(r(dirichletBCLR1, :),shape);
H(dirichletBCLR2,:

“
1l

mg(r(dirichletBCLR2, :),shape);

H(dirichletBCL,:) mg(r(dirichletBCL, :),shape);

H(dirichletBCU,:) mg(r(dirichletBCU, :), shape);

I=eye(Np);

invA=mr\I;

cninv=cond (invA)

b=(H) *invA;

BA=[zeros(Np,Np), b; -b, zeros(Np,Np)];

cnba=cond(BA)

%% Potential

v=-(1-(sin(x).22).*(sin(y).*2));

VV=[zeros(Np,Np), diag(v); -diag(v),zeros(Np,Np)];

%% Time Loop

itermax=100;

tol=1e-10;

templ=temp(1:Np);

temp2=temp (Np+1:end) ;
for j=2:Nt+1
cl=ce(1:Np);
c2=ce(Np+1l:end);
cyl=cy(1:Np);
cy2=cy(Np+1:end);
cl(dirichletBCLR1)=0;cl(dirichletBCLR2)=0;
cl(dirichletBCL)=0; cl(dirichletBCU)=0;
c2(dirichletBCLR1)=0;c2(dirichletBCLR2)=0;
c2(dirichletBCL)=0; c2(dirichletBCU)=0;
ce=vertcat(cl,c2);
cyl(dirichletBCLR1)=0;cyl(dirichletBCLR2)=0;
cyl(dirichletBCL)=0; cyl(dirichletBCU)=0;
cy2(dirichletBCLR1)=0;cy2(dirichletBCLR2)=0;
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cy2(dirichletBCL)=0; cy2(dirichletBCU)=0;
cy=vertcat(cyl,cy2);
templ(dirichletBCLR1)=0;templ(dirichletBCLR2)=0;
templ(dirichletBCL)=0; templ(dirichletBCU)=0;
temp2 (dirichletBCLR1)=0;temp2(dirichletBCLR2)=0;
temp2(dirichletBCL)=0; temp2(dirichletBCU)=0;
temp=vertcat (templ, temp2);
for k=1:itermax

% left side
cvecll=2*(((ce(1:Np)+cy(1:Np))/2).*((ce(Np+1l:end)+cy(Np+1l:end))/2
cvecl2=((((ce(l:Np)+cy(1:Np))/2).42)
+(3*(((ce(Np+1l:end)+cy(Np+1l:e))
cvec21=((3*(((ce(l:Np)+cy(1:Np))/2).42))
+((((ce(Np+l:end)+cy(Np+l:end))/2).42)));
ADM=beta*[diag(cvecll), diag(cvecl2); -diag(cvec21), -diag(cvecll)];
DMAT=(((1/dt)*eye(size(BA)))+alfa*(BA*0.5)+(ADM*0.5))+VV*.5;

% rigth side
rvecl=((((0.5)*(ce(1l:Np)+cy(1:Np))) .*2)
+(((0.5)*(ce(Np+1:end)+cy(Np+1l:end))).A2))
L*((00.5)*(ce(Np+1:end)+cy(Np+1:end)));
rvec2=-((((0.5)*(ce(l:Np)+cy(1:Np))).*2)
+(((0.5)*(ce(Np+1:end)+cy(Np+1l:end))).*2))
L¥((0.5)*(ce(1l:Np)+cy(1:Np)));
DVEC=vertcat(rvecl,rvec2);
rmatl=-(((1/dt)*eye(size(BA)))-alfa*(BA*0.5))*cy;
rmat2=(((1/dt) *eye(size(BA)))-alfa*(BA*0.5))*ce;
RS=rmatl+rmat2-beta*DVEC-VV*.5*(cy+ce);
teta=DMAT\RS;

temp=cy+teta;
err=norm( (temp-cy),2);

cy=temp;
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if err<=tol
% point(i)=k;
break
end
end
ce=cy; %%%sol(x,t)
sol=ce;
s0l1=s0l(1:Np); sol2=sol(Np+1l:end);
solutl(:,:,j)=permute(reshape(soll,N1,N1),[1 2 ]);
solut2(:,:,j)=permute(reshape(sol2,N1,N1),[1 2 1);
end
toc
exact=zeros(2*N1,1);
exactl=sin(x1l).*sin(yl)*cos(2*tend);
exact2=sin(x1l).*sin(yl)*sin(-2*tend);
Xnew=x;
ynew=y;
[temp,li]=sort(xnew);
xnew=xnew(1li);
ynew=ynew(1li);
appnewl=sol1(li);
appnew2=s0l2(1i);
for i=1:N1
[temp,li]l=sort(ynew((i-1)*N1+1:i*N1));
1i=(i-1)*N1+11i;
xnew(((i-1)*N1+1:i*N1))=xnew(li);
ynew(((i-1)*N1+1:i*N1))=ynew(1li);
appnewl (((i-1)*N1+1:i*N1))=appnewl(li);
appnew2 (((i-1)*N1+1:i*N1))=appnew2(li);
end
xnew=reshape(xnew,N1,N1);

ynew=reshape(ynew,N1,N1);
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appnewl=reshape (appnewl,N1,N1);

appnew2=reshape (appnew2,N1,N1);
errl=max(max(abs(appnewl-exactl))) %real part
err2=max (max (abs(appnew2-exact2)))%imaginary part
ENEEXA= sqrt(((exactl.A2 +exact2.42)));
PROB=sqrt (((appnewl.A2)+(appnew2.42)));
errprob=max (max (abs (ENEEXA-PROB)))
errorll=norm(ENEEXA-PROB, 1)
errorl2=norm(ENEEXA-PROB, 2)
errorli=norm(ENEEXA-PROB, inf)
NO®l=exal(:,:,1).22+exa2(:,:,1).42;
COl=permute(reshape(CO(1l:Np),N1,N1),[1 2]);
C02=permute(reshape(CO(Np+1l:end),N1,N1),[1,2]);
N®=solutl(:,:,1).42+solut2(:,:,1).42;

for j=1:Nt+1 %%t counter
top=0;
e0=0;
for i=1:N1-1 %%x counter

en®=0;

for k=1:N1-1
der=((((solutl1(i+1,k,j)-solutl(i,k,j))/(dx)
+(solutl(i,k+1,j)-solutl(i,k,j))/(dy)).2)
+(((solut2(i+1,k, j)-solut2(i,k,j))/(dx)
+(solut2(i,k+1,j)-solut2(i,k,j))/(dy)).*2));
energy®(i,k)=0.5%alfa*((cos(x1(i,k)).*sin(yl1(i,k))).A2
+(sin(x1(i,k).*cos(yl1(i,k)))).*2)
+0.5*((1-((sin(x1(i,k)).*sin(y1(i,k))).*2)))
*((sin(x1(i,k)).*sin(y1(i,k))).*2)
-0.25*beta*(sin(x1(i,k)).*sin(y1(i,k))).*4;

energson(i)=((0.5*alfa)*((((solutl(i,k,j).*2))+((solut2(i,k,j))

-(0.25*beta*der)

.A2))).A2)
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(0.5*(C((solutl(i,k,j).*2))+((solut2(i,k,j)).*2))

*((1-(sin(x(1)) .12) . *(sin(y(k)) .*2))));
top=top-+ham;
e®=e0+energy0®(i,k);
end
end
topl(j)=dx*dy*top;
EE(j)=dx*dy*e0;
GE(j)=abs(dx*dy*top-8.48169);
end
% EE=dx*dy*sum(sum(energy0®));
% GE=abs(topl-EE);
enerbas=dy*dx*norm(energy0, 1) ;
%enerson=dy*x*norm(energson, 1) ;
for k=1:Nt+1
N=solutl(:,:,k).A2+solut2(:,:,k).A2;
mass0=0;
mass=0;
for i=2:N1
for j=2:N1
mass®=massO+NO (i, j) *dy*dx;
mass=mass+N(i, j)*dy*dx;
end
end
mO (k)=mass0;
m(k)=mass;
end
DN=abs (m-m0®) ;
figure(l)
plot(t,DN,’.-")
axis tight

xlabel(’time’)
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ylabel(’mass’)
figure(2)
plot(t,GE,’.-")
axis tight
xlabel(’time’)

ylabel(’energy’)

figure(5)

mesh(x1,y1,ENEEXA)

hold on

plot3(xnew,ynew,PROB, " *’)
axis tight

xlabel(’x’)

ylabel(C'y’)

zlabel (’\Psi’)
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