

MUTATION ANALYSIS OF SPECIFICATION-

BASED CONTRACTS IN SOFTWARE TESTING

A Thesis Submitted to

the Graduate School of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Abbas KHALILOV

July 2021

İZMİR

ACKNOWLEDGEMENTS

First, I am very grateful to my teacher and main-advisor Assoc. Prof. Dr.

Tugkan Tuglular for his support, advice, and dedicated involvement he put in this work.

Without his assistance in each step of thesis, this work would have never been

accomplished. I also want to sincerely thank my co-advisor Prof. Dr. Fevzi Belli for his

advice and valuable comments on my work. Working on thesis with my advisors

established my view on Academic world and the way people of science think and work.

Therefore, I am grateful to them for broadening my horizons.

Finally, I am grateful to my parents, and grandmother for their moral support. I

progressed on my master studies and academic research due to their “do not stop, keep

going”, whenever I had “there is no way” in my mind.

iii

ABSTRACT

MUTATION ANALYSIS OF SPECIFICATION-BASED CONTRACTS

IN SOFTWARE TESTING

 Software used in fields such as medicine, finance, aviation and aerospace,

nuclear power etc. is required to be reliable. Any software failures in these fields may

have catastrophic consequences such as human and financial losses, which may cause a

great damage to the economy and to social well-being. Hence, before launching,

software should be rigorously tested. Testing can uncover the conditions, which

software cannot handle. Those conditions might be overlooked during development. So,

software testing points to the faults in the software under development to be patched.

The important element of software testing is the use of the adequate test cases. If the

outcome of the test case is positive, that means testing did not reveal any fault, then this

test case might be considered as inefficient and useless for the tested version of

software. Therefore, it is important to check test cases on adequacy, which can be

achieved by mutation analysis. This thesis focuses on checking the adequacy of the test

cases for Decision-Table-augmented Event Sequence Graphs (ESG-DTs) representation

of a system under test by using mutation analysis. Test cases are represented in the

Complete Event Sequence (CES) and Faulty CES (FCES) forms. This thesis presents a

new set of mutation operators for mutation of contracts represented in Multi-Terminal

Binary Decision Diagram (MTBDD). This thesis introduces a new approach for

mutation of the ESG-DT model by using the proposed MTBDD mutation operators. The

proposed approach is evaluated on three cases. The results for all cases show the

drawback of specific FCES test sequences and the relationship between the mutant

detection by CES/FCES sequences and proposed mutation operators.

iv

ÖZET

YAZILIM TESTİNDE SPESİFİKASYON TEMELLİ SÖZLEŞMELERİN

MUTASYON ANALİZİ

 Tıp, finans, havacılık ve uzay, nükleer enerji vb. alanlarda kullanılan yazılımlar

güvenilir olması için gereklidir. Bu alanlardaki herhangi bir yazılım arızası, ekonomiye

ve sosyal refahına büyük zarar verebilecek insan ve finansal kayıplar gibi feci sonuçlar

doğurabilir. Bu nedenle, başlatmadan önce, yazılım titizlikle test edilmelidir. Test,

yazılımın işleyemediği koşulları ortaya çıkarabilir. Bu koşullar gelişim sırasında göz

ardı edilebilir. Bu nedenle, yazılım testi, geliştirilmekte olan yazılımdaki hataları

düzeltmeye işaret eder. Yazılım testinin önemli bir unsuru, yeterli test durumlarının

kullanılmasıdır. Test durumunun sonucu pozitifse, bu, testin herhangi bir arıza

göstermediği anlamına gelir, daha sonra bu test durumu, test edilen yazılım sürümü için

verimsiz ve işe yaramaz olarak kabul edilebilir. Bu nedenle, mutasyon analizi ile elde

edilebilecek yeterlilik test durumlarını kontrol etmek önemlidir. Tez, mutasyon analizi

kullanılarak test edilen bir sistemin Karar Tablosu ile artırılmış Olay Sıra Çizgeleri

(OSÇ-KT'lar) gösterimi için test senaryolarının yeterliliğini kontrol etmeye odaklanır.

Test durumları Tam Olay Sırası (TAS) ve Hatalı TAS (HTAS) formlarında temsil edilir.

Bu tez, Sözleşme-Çok Uçlu İkili Karar Diyagramında (ÇTUIKD) temsil edilen

sözleşmelerin mutasyonu için yeni bir mutasyon operatörleri seti sunar. Tez, önerilen

ÇTUIKD mutasyon operatörlerini kullanarak OSÇ-KT modelinin mutasyon için yeni

bir yaklaşım sunar. Değerlendirme bölümünde, sunulan mutasyon analizi algoritmasının

uygulandığı üç durum sunulmaktadır. Tüm mutantlar için sonuçlar, spesifik HTAS test

sıralarının dezavantajını ve TAS/HTAS sıraları tarafından mutant tespiti ile önerilen

mutasyon operatörleri arasındaki ilişkiyi göstermektedir.

v

TABLE OF CONTENTS

LIST OF FIGURES …………………………………………………...…………….... vii

LIST OF TABLES .. x

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORK .. 3

CHAPTER 3. FUNDAMENTALS ... 9

3.1. Event Sequence Graph (ESG) ... 9

3.2. Decision-Table-Augmented Event Sequence Graph (ESG-DT) 11

3.2.1. Decision Table (DT) .. 11

3.2.2. DT as ESG Extension .. 12

3.3. Multi-Terminal Binary Decision Diagram (MTBDD) 13

3.4. Mutation Analysis ... 18

3.5. Mutation Operators ... 19

3.5.1. ESG Mutation Operators ... 20

3.5.2. DT Mutation Operators ... 21

CHAPTER 4. CONTRACT-BASED MUTATION OPERATORS FOR

D DECISION-TABLE-AUGMENTED EVENT SEQUENCE GRAPH ... 22

4.1. MTBDD-based Mutation Operators for ESG-DT 22

4.2. Mutant Generation .. 34

4.3. Equivalent Mutants ... 39

CHAPTER 5. EVALUATION ... 40

5.1. CD Player .. 40

5.1.1. CD Player ESG-DT Model .. 40

5.1.2. CD Player Mutation Analysis .. 44

5.2. Cruise Control ... 58

5.3. Simple Automated Teller Machine ... 66

vi

5.4. Discussion ... 73

CHAPTER 6. TOOL SUPPORT .. 76

6.1. Java SE .. 76

6.2. IntelliJ Idea .. 76

6.3. Test Suite Designer ... 77

6.4. Mutant Generator Software ... 79

CHAPTER 7. CONCLUSION AND FUTURE WORK .. 87

REFERENCES ... 89

vii

LIST OF FIGURES

Figure Page

Figure 3.1. ESG of CD player. .. 10

Figure 3.2. DT augmented ESG. ... 13

Figure 3.3. Binary Decision Diagram. .. 15

Figure 3.4. Multi-Terminal Binary Decision Diagram ... 16

Figure 3.5. Reduced MTBDD. .. 17

Figure 4.1. MTBDD before the tnI application. ... 24

Figure 4.2. MTBDD* after the application of tnI. .. 24

Figure 4.3. MTBDD before the tnO application. .. 25

Figure 4.4. MTBDD* after the application of tnO. .. 25

Figure 4.5. MTBDD before the tnC application. .. 26

Figure 4.6. MTBDD* after the application of tnC. .. 26

Figure 4.7. MTBDD before the edgeI application. ... 27

Figure 4.8. MTBDD* after the application of edgeI. ... 27

Figure 4.9. MTBDD before the edgeO application. ... 28

Figure 4.10. MTBDD* after the application of edgeO. .. 28

Figure 4.11. Case 1: MTBDD before the edgeC application. ... 29

Figure 4.12. Case 1: MTBDD* after the application of edgeC. 29

Figure 4.13. Case 2: MTBDD before the edgeC application. ... 30

Figure 4.14. Case 2: MTBDD* after the application of edgeC. 30

Figure 4.15. MTBDD before the edgeS application. .. 31

Figure 4.16. MTBDD* after the application of edgeS. ... 31

Figure 4.17. ESG of tnI operator. ... 33

Figure 4.18. ESG of edgeI operator. ... 33

Figure 4.19. ESG of tnO operator. .. 33

Figure 4.20. ESG of edgeO operator. ... 33

Figure 4.21. ESG of tnC operator. .. 33

Figure 4.22. ESG of edgeC operator. .. 33

Figure 4.23. ESG of edgeS operator. .. 34

Figure 4.24. Dummy ESG. ... 36

viii

Figure Page

Figure 4.25. MTBDD contract representation in “a” DE. .. 37

Figure 4.26. Mutated MTBDD of contract in DE “a”. ... 37

Figure 4.27. Final ESG-DT mutant. ... 38

Figure 4.28. Changes of the resulting final ESG-DT mutant. .. 38

Figure 5.1. CD Player ESG-DT. ... 41

Figure 5.2. MTBDD of the original “stop” DT. ... 41

Figure 5.3. MTBDD of the original “load” DT. ... 42

Figure 5.4. MTBDD of the original “play” DT. ... 43

Figure 5.5. The mutant ESG-DT obtained after the application of rO on “stop”

 DT (note that it is equivalent to the original ESG layer). 45

Figure 5.6. The mutant ESG-DT derived after the application of rO on “load” DT. 45

Figure 5.7. The ESG-DT mutant obtained after the application of rO on the

 “play” DT. ... 46

Figure 5.8. “play” MTBDD after the application of the tnO. ... 47

Figure 5.9. “CD Player” ESG-DT after the tnO usage. .. 48

Figure 5.10. “play” MTBDD after the application of the edgeO. 49

Figure 5.11. “CD Player” ESG-DT after the edgeO usage. .. 49

Figure 5.12. “play” MTBDD after the application of the edgeC. 50

Figure 5.13. “CD Player” ESG-DT after the edgeC usage. .. 51

Figure 5.14. “stop” MTBDD after the application of tnC. ... 51

Figure 5.15. “CD Player” ESG-DT after the tnC usage. .. 52

Figure 5.16. “play” MTBDD after the application of edgeS. ... 53

Figure 5.17. “CD Player” after the edgeS usage. .. 54

Figure 5.18. Cruise Control ESG-DT. .. 58

Figure 5.19. MTBDD of the original “off” DT. ... 59

Figure 5.20. MTBDD of the original “inactive” DT. ... 61

Figure 5.21. MTBDD of the original “cruise” DT. ... 62

Figure 5.22. MTBDD of the original “override” DT. ... 63

Figure 5.23. Simple ATM ESG-DT. ... 66

Figure 5.24. MTBDD of the original “insert card” DT. ... 69

Figure 5.25. MTBDD of the original “withdrawal” DT. .. 70

Figure 6.1. TSD initial window. ... 77

ix

Figure Page

Figure 6.2. CruiseControl ESG. .. 78

Figure 6.3. Test generation menu. .. 78

Figure 6.4. Generated CESs and FCESs. .. 79

Figure 6.5. Action.java class diagram ... 80

Figure 6.6. Condition.java class diagram. .. 80

Figure 6.7. Rule.java class diagram. ... 81

Figure 6.8. Pair.java class diagram. .. 81

Figure 6.9. DTFileReader class diagram. ... 82

Figure 6.10. Utility.java class diagram. .. 82

Figure 6.11. DecisionTable.java class diagram. ... 83

Figure 6.12. MTBDD representation class relation diagram. ... 83

Figure 6.13. Converter class diagram. .. 84

Figure 6.14. MTBDD mutation operators class diagram. ... 84

Figure 6.15. ESG_DT class diagram. ... 85

Figure 6.16. Model Mutator class diagram ... 86

x

LIST OF TABLES

Table Page

Table 3.1. “stop” DT. .. 12

Table 3.2. An Example Decision Table. ... 14

Table 4.1. Composition of mutation operators. .. 32

Table 4.2. DT “a” of event a. .. 36

Table 4.3. Mutated “a” DT. .. 38

Table 5.1. The original “stop” DT. ... 41

Table 5.2. The original “load” DT. ... 42

Table 5.3. The original “play” DT. ... 42

Table 5.4. CESs of CD Player ESG-DT. .. 43

Table 5.5. FCESs of CD Player ESG-DT. .. 44

Table 5.6. “stop” DT after the application of rO. ... 44

Table 5.7. “load” DT after the application of rO .. 45

Table 5.8. “play” DT after the application of rO. ... 46

Table 5.9. “play” DT the application of tnO on the “play” MTBDD. 47

Table 5.10. “play” DT the application of edgeO on the “play” MTBDD. 49

Table 5.11. “play” DT the application of edgeC on the “play” MTBDD. 50

Table 5.12. “stop” DT the application of tnC on the “stop” MTBDD. 52

Table 5.13. “play” DT the application .. 53

Table 5.14. The number of mutants per operator for “CDplayer” ESG-DT. 54

Table 5.15. The number of mutants of all original MTBDDs. 55

Table 5.16. Test results ... 56

Table 5.17. CES detected number of mutants per mutation operator. 57

Table 5.18. FCES detected number of mutants per mutation operator. 57

Table 5.19. CD Player ESG-DT test sequences mutation score. 58

Table 5.20. CES of the Cruise Control ESG-DT. ... 59

Table 5.21. FCESs of the Cruise Control ESG-DT. ... 59

Table 5.22. The original “off” DT. ... 59

Table 5.23. The number of Cruise Control mutants of all original MTBDDs. 60

Table 5.24. The original “inactive” DT. ... 60

xi

Table Page

Table 5.25. The original “cruise” DT. .. 61

Table 5.26. The original “override” DT. .. 62

Table 5.27. CES detected number of mutants per mutation operator. 64

Table 5.28. FCES detected number of mutants per mutation operator. 65

Table 5.29. Cruise Control ESG-DT test sequences mutation score. 65

Table 5.30. CESs of the Simple ATM ESG-DT. .. 66

Table 5.31. FCESs of the Simple ATM ESG-DT. .. 66

Table 5.32. The original “insert card” DT. ... 69

Table 5.33. The number of Simple ATM mutants of all original MTBDDs. 70

Table 5.34. The original “withdrawal” DT. .. 70

Table 5.35. CES detected number of mutants per mutation operator. 71

Table 5.36. FCES detected number of mutants per mutation operator. 72

Table 5.37. Simple ATM ESG-DT test sequences mutation score 72

Table 5.38. The hierarchy of the MTBDD mutation operators. 75

1

CHAPTER 1

INTRODUCTION

The software development process includes not only the code writing, but also

its testing. Testing is not only writing proper tests, but also preparing adequate test set to

make sure that the software is ready for the next stage, or deployment. Even a well-

tested software does not guarantee that it will not crash in an unexpected situation.

Therefore, test cases should not only make sure that the program is ready to fulfill its

expectations, but also handle unexpected situations, e.g., handle incorrect input. The

effectiveness of a test set can be checked by the technique called mutation analysis 1.

The steps involved in mutation analysis are: 1) insertion of the different kinds of faults

in the original program by means of mutation operators; 2) generating mutant

programs; 3) finding distinguished mutants against the provided test set; 4) assessing

the adequacy of the provided test set by dividing the number of the distinguished

mutants to the total number of mutants. In its origin the mutation analysis is intended to

be a code-based technique 1. Later, mutation analysis was adopted for specification-

based testing 2. As the specification of the system under test (SUT) can be provided in

various forms, the mutated specifications permit to test different aspects/properties of

the SUT.

Mutating different specification representations demands the construction of

corresponding mutation operators. As stated in the last step of mutation analysis, the

adequacy is measured by the number of distinguished mutants. High adequacy mark

describes the given test set as highly efficient one.

This thesis is the continuation of the 3 and extends the ideas introduced in 4. The

thesis investigates the adequacy of the test set generated from the original specification

model by applying it on the mutants generated from the original specification model.

The specification model is represented as Decision-Table-Augmented Event Sequence

Graph (ESG-DT) 3. To perform mutation, the contract given as a DT is transformed to a

multi-terminal binary decision diagram (MTBDD), then the mutation operators defined

2

on MTBDDs are applied to the MTBDD and finally the mutated MTBDD is

transformed back to a DT, which becomes a mutated DT. This mutant model is tested

by test set. The test set is represented as test sequences in two forms: CES and FCES.

The CESs and FCESs are generated from the original model. The CES represents the

expected behavior, which the specification should correspond, whereas FCES represents

the faulty behavior which the specification should not correspond. The thesis proposes a

new set of mutation operators for MTBDD mutation. The evaluation is performed on

the ESG graph without the contract involvement.

In this study, the quality of the CES and FCES test suites for ESG-DT model

representation is assessed. Proposed mutation analysis approach is applied on the three

cases. Considering the relation between the mutant detection properties of CES and

FCES described in the discussion, one can say that the mutant will be detected if and

only if (iff) there is a difference in the model behavior. According to the results, the

impact of the mutation operators dealing directly with the terminal nodes of MTBDD is

always noticeable by test sequences, because the mutated ESG-DT model will lose an

edge and/or acquire a new one, i.e., difference in the model behavior. In case of

MTBDD edge mutation, the impact is sometimes noticeable or non-noticeable at all.

Another observation obtained from the results is the insensitivity of the certain FCESs

to the mutants, of which reason is discussed in the Evaluation chapter.

The thesis is constructed in the following way. The study starts with the

literature review in CHAPTER 2. The following CHAPTER 3 describes the

fundamental theory about ESG, ESG-DT, MTBDD, mutation analysis and mutation

operators for ESGs and DTs. After the review of the thesis foundation, CHAPTER 4

introduces new mutation operators for DT-augmented ESG mutation, and the algorithm

used for implementation of mutation analysis. CHAPTER 5 evaluates the application of

the proposed algorithm and outcome of the proposed operators on three cases, namely

CD player, Cruise Control, Simple Automated Teller Machine. The instruments used

for the generation of mutants and test generation are described on CHAPTER 6. The

last chapter concludes the thesis and provides further ways of improving and extending

the work in this thesis.

3

CHAPTER 2

RELATED WORK

Testing software is an integral part of the software development cycle. Testing

is used for strengthening software, by considering different faults occurring during

software exploitation. Therefore, testing is a resource and time-consuming procedure.

For this case, mutation testing technique simplifies testing procedure. Mutation testing

is originated as white-box/code-based testing technique. Mutation testing embraces

different fault domains by inserting faults in the software. Fault insertion is done by

mutation operators, which put changes in the source code of the software. After all

mutants are tested with the prepared test set. Here, the aim of the test cases in a set is to

fail the mutant, in other words killing or distinguishing mutants. The downside of

mutation testing is the generation of the equivalent mutants, which any test set is

incapable to distinguish from the original version of software.

Unlike in code-based testing, the advantage of mutation analysis in black-box

testing is that this process is fully automated and allows to reduce testing domain of

system 2 so, that it allows to avoid equivalent mutant problem. The benefit of

specification-based testing is that the system specifications are constructed in different

representation forms.

An integral part of mutation testing is the set of established mutation operators.

Operators in mutation testing inject faults into the testing system. The injected faults

represent the specific fault domain, which the corresponding mutation operator

represents. As mutation analysis’s origin is a code-based testing technique the Yu-

Seung Ma et al. in 5 proposed the comprehensive set of mutation operators for class and

inter-class mutations in Java language. The authors modified and extended already

existed family of mutation operators by considering the faults, which may occur

because of object-oriented principles, such as inheritance, polymorphism, and

overloading.

Offutt et al. in 6 shows two empirical comparisons between data flow and

mutation testing. The aim is to find the powerful sides of both testing techniques or

4

derivation of a more efficient technique that offers the power of both mutation and data

flow testing. Obtained results indicate that, despite of effectiveness of both techniques,

mutation provides more stringent testing than data flow does, like mutation-adequate

test sets detect more faults 6.

Andrews et al. in 7 use mutation analysis to compare and estimate test suits and

criteria in terms of their cost effectiveness. Research involved four common test

coverage criteria as Block, Decision, C-Use and P-Use. Where the Block coverage tests

the whole module from code by ensuring that each branch is executed at least once,

Decision coverage is the validation of every of accessible source code by ensuring that

each branch of all possible execution decision is triggered at least once. The P-Use and

C-Use are categories of Usage criteria which examines all usages of variable, where c in

C-Use stands for computational, inspects all usages of a variable as part of statement, as

a function parameter and as output statement and p in P-Use is stands for predicate,

inspects all usages of variable in decision making statements. Across the explored

criteria the consistent results show that the reliability of mutation operators’ usage:

generated mutants can be used to predict the detection effectiveness of real faults. The

probability of detection faults given a test pool strongly affects the shape of relationship

between fault detection, coverage levels, and test set sizes.

Software testing is called positive when the software is tested on proper

fulfillment of required tasks. The opposite of positive testing is the negative testing. The

importance of negative testing helps to prevent failures by simply handling the

erroneous states. Therefore, the demand in test cases supporting negative testing

increases. Strug et al. targets the problem by providing a mutation testing-based method

for generating negative test cases that can support an assessment of a system ability to

handle a wide range of unexpected situations 8. The method is procedural, systematic,

and human-unbiased way of defining the negative test cases without the necessity of

any formal or informal description of unexpected situation.

Meyer introduced Design by Contract (DbC) approach in 9, where the author

introduces also the contract notion in software development. The contract represents a

mutual responsibility between caller and called units, where both promise to fulfill their

requirements. One of the main benefits of DbC approach is to help in detecting and

locating faults 10. Traon et al. explores the efficiency of contract by adapting the

mutation analysis 11. Mutation analysis is used as a systematic process for fault injection

and the estimation of actual values for the isolated weakness of a component and error

5

detection probability 11. The mutations are done simple by injecting errors in the system.

Afterwards, if contract is violated during the execution of a faulty system, this implies

that the contract has detected an error 11. Efficiency is measured by checking the

contracts’ efficiency on the mutants that are distinguished at least by one test case.

Compared to traditional mutation operators defined by Aichernig in 12 and Jiang

et al. in 13, operators proposed in 14 are high level contract mutation operators for testing

components. Authors also propose a contract-based mutation, which should serve as a

test adequacy criterion for component. The reason of creating high level operators is

reducing the number of mutants. Indeed, the results given by proposed operators greatly

reduce the mutant number in contrast to the traditional operators. Also, application of

contract mutation operators in contract-based mutation provides the same ability as that

of using traditional mutation operators. Another important discovery is that the test set

selected by a contract based mutation can be reused during component regression

testing 14.

Another research of contract mutation presented in 15. Contracts are declared by

Spec#, which is an extension for C# programming language. Unlike conventional

mutation testing which mutates source code, the proposed 15 approach mutates program

contracts and generate test-input data which distinguish the mutated contract from the

original one. The test case generation is focused on reported counterexamples. The idea

of approach is obtaining test cases which in turn prevent implementation of the

“incorrect” contract. An inherent property of the approach is that equivalent mutants are

ignored, meaning that no test cases are generated for them 15.

The goals of mutation analysis as a black-box testing technique presented in 2

are determining the ability of fault detection in programs and describing a class

specifications, which would benefit from this kind of testing, checking on uniqueness of

generated test cases and investigation of generated test sets sizes. Mutation is performed

by substitution of language elements of semi-formal specifications for every other

element.

Fabri et al. perform the evaluation of mutation analysis criterion on Petri Nets-

based specification 16. As mutation analysis requires changes in original model,

operators for Petri Nets mutations are presented. Mutation analysis criterion was

performed manually on a test case. The mutant is considered as dead, if the mutant’s

vector, which is the number of tokens in each place, was different than original model’s

vector. To reduce testing expenses, authors examined the ideas of alternate mutation

6

criterions. In constrained mutation criterion a few types of mutants were examined.

Randomly selected mutation required only 10% of mutants of each type were

investigated. As a result, alternate mutation criteria provide great cost reduction in terms

of test sequences and the mutant numbers.

Ammann et al. uses mutation analysis in combination with model checker and

test generation 17. Test cases are defined as a set of inputs and expected results, and this

is emphasized as complete test case. Authors declared two classes of mutation

operators: those that produce test cases from which a correct implementation must differ

and those that produce test cases with which it must agree. By making syntactic errors

at the level of the model checker specification, mutation operators define a form of

mutation analysis. As a result, the advantages of matching model checker with mutation

analysis were automatic test case generation and as opposed to code-based mutation

analysis, equivalent mutant identification became also automatic.

Do Rocio Senger et al. provides 18 the mutation testing receipt for the validation

of Estelle specifications. A mutation operator set for Estelle are based on the ideas of

Interface Mutation. Hence, mutation testing investigates not only validation of

behavioral aspect of specification, but also the intermodular communication and

specification structure of Estelle. A key point for successful mutation testing of Estelle

specification was also the illustration of mutation strategy, validate activity by giving

priority to specific types of errors. In Estelle domain, the establishment of an

incremental testing strategy becomes feasible.

 Fabbri et al. proposes 19 the fundamental mechanism for validation of Statechart-

based specifications by mutation testing. Considering specific features of Statechart-

based specifications, the corresponding mutation operators set for statechart mutation is

proposed. In that scope, mutation operators are considered as a fault model. Strategies

based on mutation, incremental and hierarchical testing strategies are provided to

explore statechart components separately from different Statechart features, which can

cause inaccuracy in validation and testing stages.

 Black et al. provides 20 a theoretical and empirical comparison of the

effectiveness of mutation operators and the number of mutations the produce by

following the combination of mutation analysis with 17. In proposed method the

specification-based coverage metric is used. According to the methodology, all but one

copy of inconsistent mutants, which are semantic duplicates of other mutants are

excluded. Mutants are distinguished by SMV model checker. The coverage is calculated

7

by k/N (the number of distinguished and inconsistent mutants, respectively). Among the

extensive set of mutation operators only three of them demonstrated high coverage at

the smaller number of generated mutants.

With the goal to reduce the number of faults in the actual programs constructed

from formal specifications, Wong investigates analytically the relationships between

detection conditions for several fault classes and the compares empirically the

effectiveness of the mutation operators 21.

Sugeta et al. provides mutation testing mechanism for Specification and

Description language (SDL) specifications 22. Based on the behavioral features of

processes, inter-process commutation and specification structure a mutant operator set is

defined, which model corresponding errors. For a proper usage of mutant operators on

SDL specifications a testing strategy is proposed. The advantage of the proposed

strategy is that, if during the application of strategy, the error is found, the specification

should be corrected, and the strategy applied again.

Liu et al. presents another specification fault investigation for Object-Z

specifications 23. Authors present five classes of mutation operators, which provide not

only an assessing of specification-based test cases, but also introduce an approach of

validating the correctness of specifications.

 Belli et al. in 24 introduces Decision-Table-augmented Event Sequence Graphs

(ESG-DT). Although the work does not contain a mutation testing notion, it introduces

first simple insertion and omission mutation operators for mutating ESGs and DTs.

Operators generate simple mutants which represent simple faults. Hence, for complex

mutants it is enough to use a combination of them. Authors introduce a test set

generation algorithm from obtained mutants.

Belli et al. first presents in 25 multiple simple mutation operators for mutation of

model-based specifications. Models are represented as Directed Graphs (DG), ESG,

Finite-State Machines (FSM), Statecharts (SC). All mutation operators are divided in

insertion and omission categories for above listed graph-based models. The advantage

these operators bring is in generation of first-order mutants which simulate simple

faults. Another advantage of these operators is that they can be combined for simulation

of complex faults. The main objective is to assess the fault detection ability of test cases

generated from models mutated from proposed operators. Based on empirically

obtained results, test sets generated by insertion operators are more effective in

revealing faults than those generated by omission operators.

8

Khalilov et al. extends 4 a mutation operator set for specification-based

contracts. Apart from existing DT mutation operators 24, authors introduce a brand new

simple mutation operators for Ordered Binary Decision Diagram (OBDD). As OBDDs

are limited in the number of terminal nodes this thesis extends OBDD by using Multi-

Terminal Binary Decision Diagram (MTBDD).

In this thesis, a set of mutation operators for the contract mutation is proposed.

The mutation operators are divided into two categories: insertion and omission. By

using these operators, mutated models are generated by mutating contracts in the

original model. Test cases are generated from the original model are of two types. Test

cases of the first type called CES should not agree with the generated faulty model to

detect it. Second type, called FCES should agree with the faulty model, in order to

detect it, since both FCES and mutant are the faulty models. The mutants are tested at

the level of ESG of the ESG-DT model. Therefore, considering the level of the model

being tested and detection properties of the test cases, we can predict which mutants are

detectable and which are living and equivalent ones.

9

CHAPTER 3

FUNDAMENTALS

3.1. Event Sequence Graph (ESG)

Event sequence graph (ESG) is a representation of a model of the system which

is used in modeling of system behavior 26. Modeling is performed simply by retrieving

all possible legal and illegal actions, occurring during execution, of the system under

consideration from its specifications and establishing all possible sequences between

actions. Actions in ESGs are represented by events which occur in system and

connections between events are called sequences. An event in ESG is considered as

input or stimulus which’s execution causes firing of another event. This phenomena

helps to predict the next event and control the flow of model execution 26.

Definition 3.1: An event sequence graph ESG = (V, E, Ξ, Γ) is a directed graph

where V ≠ Ø is a finite set of vertices (nodes), E ⊆ V x V is a finite set of arcs

(edges), Ξ, Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ, and γ ∈ Γ, called

entry nodes and exit nodes, respectively, wherein ∀v ∈ V there is at least one sequence

of vertices 〈ξ,v0, . . . ,vk〉 from each ξ ∈ Ξ to vk = v and one sequence of vertices 〈v0, . . .

,vk, γ〉 from v0 = v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0, . . . , k-1 and v ≠ ξ,γ 3.

Ξ (ESG), Γ (ESG) represent the entry nodes and exit nodes of a given ESG,

respectively 3. To mark the entry and exit of an ESG, all ξ ∈ Ξ are preceded by a pseudo

vertex “[“ ∈ V and all γ ∈ Γ are followed by another pseudo vertex “]” ∉ V 3. The

semantics of an ESG is as follows 3. Any v ∈ V represents an event. For two events, v,

v’ ∈ V, the event v’ must be enabled after the execution of v iff (v, v’) ∈ E 3.

Example 3.1: The ESG depicted in Fig. 3.1, V = {stop, play, pause, load, off},

Ξ = {stop, play, load}, Γ = {off} and E = {(stop, stop), (stop, play), (stop, load), (play,

play), (play, stop), (play, load), (play, pause), (pause, play), (stop, off), (play, off), (load,

10

off), (load, stop), (load, play), (load, load)}. As it can be seen none of sets listed above,

contain pseudo vertices “[“ and “]”.

Figure 3.1. ESG of CD player.

Definition 3.2: Let V, E be defined as in Definition 3.1. Then any sequence of

vertices 〈v0, . . . ,vk〉 is called an event sequence (ES) iff (vi, vi+1) ∈ E, for i=0, . . ., k-1 3.

Definition 3.3: In order to detect entry event and exit event of an ES α (initial)

and ω (end) are used, i.e., α(ES) = v0, ω(ES) = vk. The successors set of ∀v ∈ V is

denoted by N+(v) and the predecessor set of ∀v ∈ V is denoted by N-(v). The number of

vertices of an ES is determined by the function l(length). If l(ES) = 1 then ES = < vi > is

an ES of length (1). Each edge of ESG or an ES = <vi, vk> of length two (2) represent

an event pair (EP).

Example 3.2: The length of stop – play – pause ES shown in Fig. 3.1. is 3.

Definition 3.4: An ES is called a complete ES (CES), if α(ES) = ξ ∈ Ξ is the

entry and ω(ES) = γ ∈ Γ is the exit 3.

Example 3.3: The CES of ESG shown in Fig. 3.1. is stop – load – off. This is

one of the ways of walking from the start of ESG to its finish.

ESG test cases are represented as CES, the latter is presented in the following

form: “(initial) user input(s) → (interim) system responses → … → (final) system

response” 3.

11

3.2. Decision-Table-Augmented Event Sequence Graph (ESG-DT)

3.2.1. Decision Table (DT)

Decision Table (DT) is a popular tool in information processing and widely used

in software testing. DT is a combination of possible inputs and corresponding system

responses. DT logically connects conditions (“if”) with actions (“then”). In scope of this

thesis, we consider DT simple, i.e., conditions can accept only T (true) and F (false).

Definition 3.4: DT is a tabular representation of DT = (C, A, R) triple 3. Where

C ≠ Ø and C = {c1, . . ., cn} is a finite set of conditions, A ≠ Ø and A = {a1, . . ., am} is a

finite set of actions and R ≠ Ø and R = {r1, . . ., rk} is a finite set of rules, each of

which invoke certain actions depending on a predefined combination of conditions

3.

Definition 3.5: Let R be as declared in Definition 3.4. Then, based on the

number of conditions defined for current DT, the maximum number of rules in DT

will be 2|C| = 2n 3. DT with |R| = 2n are called complete DT.

If |R| > 2n, then the DT is inconsistent and should be reconstructed 3.

Definition 3.6: Let R be defined as in Definition 3.4. Then, ∀r ∈ R can be

defined as r = (Ctrue, Cfalse, Am), where Ctrue ⊆ C is the set of conditions that should be

true. Cfalse ⊆ C is the set of conditions that should be false 3. Am ⊆ A is the set of actions

that should be performed if all t ∈ Ctrue are resolved to true and all f ∈ Cfalse are resolved

to false 3. Under regular circumstances: Ctrue ∪ Cfalse = C and Ctrue ∩ Cfalse = Ø 3. In case

if condition is not considered in certain situations it simply denoted as ‘-’ (don’t care) in

rule 3. Based on the number of ‘-’ in rule it can simply be calculated the real number of

rules of DT by the following way: Let u < |C| be the number of ‘-’ in r ∈ R, then the

number of rules substituted by ‘-’ is 2u 3.

12

Example 3.4: DT depicted on Table 3.1 is the simple complete DT. C =

{offButtonPressed, isClosed, CDpresent, lastTrackPlayed} is condition set, A = {play,

stop, load, off} is action set and R = {R1, R2, R3, R4, R5} is a rule set.

For R5 = ({offButtonPressed|F}, {isClosed|T, CDPresent|T, lastTrackPlayed|T},

{stop}) according to R = (Cfalse, Ctrue, Ax) and r ∈ R.

For ClastTrackPlayed = ‘-’ in R3 the real number of rules is 21 = 2. Therefore, R3 can

be substituted DT = (C, A, (R\R3) ∪ {R3.1, R3.2}), where R3.1 = ({offButtonPressed|F,

CDpresent|F}, {isClosed|T, lastTrackPlayed|T}, {stop}) and R3.2 =

({offButtonPressed|F, CDpresent|F}, {isClosed|T, lastTrackPlayed|T}, {stop}). Now,

the real number of rules in DT “stop” will be 23 for R1, 2
2 for R2, 2

1 for R3 => 23 + 22 +

21 + 1 + 1 = 16. And the maximum possible number of rules according to the |R| = 2|C| =

24 = 16. Hence, DT “stop” is a complete DT.

Table 3.1. “stop” DT.

stop
Rules

R1 R2 R3 R4 R5

C
o

n
d

it
io

n
s offButtonPressed T F F F F

isClosed - F T T T

CDpresent - - F T T

lastTrackPlayed - - - F T

A
ct

io
n

s

play X

stop X X

load X

off X

3.2.2. DT as ESG Extension

According to Definition 3.5 the combination of conditions results in 2|C|, where

|C| represents the number of conditions. Each combination of conditions would have to

be modeled as vertex and is to be connected with appropriate successor 3. Thus a DT

with n binary conditions subsumes 2n nodes to realize a thorough evaluation considering

all combinations 3. To avoid this inflation, DT are introduced to refine a node of the

ESG, whereas the successors of refined node represent the actions of the DT and vice

versa 3.

13

Definition 3.7: An event v ∈ V of an ESG is called a data event (DE) if v is

represented by a DT. A DE is represented as a DT, which is a contract. In turn, contracts

are combined with events of ESG.

Example 3.5: Fig. 3.2 clearly demonstrates how the “stop” DT (Table 3.1) is

represented by double circling the event “stop” of ESG depicted in Fig. 3.1. Actions

“play”, “stop”, “load” and “off” indicate the corresponding play, stop, load and off

events. For instance, rule R4 says that if both offButtonPressed and lastTrackPlayed are

resolved to false and both isClosed and CDpresent are resolved to true, then “play”

action will be triggered and apparently the play will be executed, because it is one of the

successors of the current event stop.

Figure 3.2. DT augmented ESG.

3.3. Multi-Terminal Binary Decision Diagram (MTBDD)

DT represent a set of Conditions which take unique combination of boolean

values True and False. The unique condition combination triggers a set of certain

Actions. Therefore, DT has a Rule set, where each rule represents an execution of the

certain action set called under satisfaction of the given condition set.

14

Table 3.2. An Example Decision Table.

Example DT
Rules

R1 R2 R3 R4

C
o

n
d

it
io

n
s

C1 F F T T

C2 F T F T

A
ct

io
n

s A1 F T T F

A2 T F T T

The R1 in DT on Table 3.2, in propositional logic is represented in the following

form:

R1: = (¬C1 ∧ ¬C2) ∧ (¬A1 ∧ A2) (3.1)

where R1 is read in the following way: R1 holds iff when the conjunction of conditions

(¬C1 ∧ ¬C2) and actions (¬A1 ∧ A2) is satisfiable only if both C1 and C2 values are

resolved to False and action A1 is resolved to False and action A2 is resolved to True.

As the rest of the rules is readable in the following way as R1, the propositional

logic of DT is represented as the disjunction of Rules:

DT: = R1 ∨ R2 ∨ R3 ∨ R4 (3.2)

which is read: The DT is valid iff one of the given rules is satisfiable.

DT represented on Table II, can be expanded followingly:

DT: = (¬C1 ∧ ¬C2 ∧ ¬A1 ∧ A2) ∨ (¬C1 ∧ C2 ∧ A1 ∧ ¬A2)

 ∨ (C1 ∧ ¬C2 ∧ A1 ∧ A2) ∨ (C1 ∧ C2 ∧ ¬A1 ∧ A2) (3.3)

The disadvantage of the DT is that it has fixed size and depending on its size

(the number of conditions and actions) the disjunctive normal form (DNF) of DT

becomes hardly readable and is takes a lot of time to process. Instead of comprehending

whole DNF of DT, it is reasonable to read DT in Shannon Normal Form (SNF), which

is represented using IF-THEN-ELSE operator:

15

x => y | g (3.4)

is read: IF x THEN y ELSE g.

SNF is successfully implemented by Binary Decision Diagrams (BDD),

introduced by Bryant in 27. BDD is a directed acyclic graph data structure representing a

boolean function. Also, BDD requires a strict variable ordering, and its leaf nodes are

False and True. Figure 3.3 shows a BDD graph, where child nodes do not point on their

parent nodes, thus the BDD is acyclic, i.e., no cycles in a graph. Due to acyclicity,

BDDs are depicted without arrows on the end of the edges.

Figure 3.3. Binary Decision Diagram.

Definition 3.7: Let D be a finite set and Var be a finite set of Boolean variables

equipped with a total ordering < ⸦ Var x Var 28. A multi terminal binary decision

diagram (MTBDD) over (Var, <) is a rooted acyclic directed graph with vertex set V

and the following labelling: Each terminal vertex v is labeled by an element of D,

denoted by value(v) 28. Each non-terminal vertex v is labelled by a variable var(v) ∈ Var

and has two children then(v), else(v) ∈ V 28. In addition the labelling of the non-terminal

vertices by variables respect the given ordering <, i.e. var(then(v)) > var(v) <

var(else(v)) for all non-terminal vertices v 28.

The edge from v to then(v) represents the case where var(v) is true; conversely

the edge from v to else(v) the case where var(v) is false 28.

Multi-Terminal Binary Decision Diagram (MTBDD), so called algebraic

decision diagrams, extend Binary Decision Diagram (BDD) such that they can represent

functions of an arbitrary range, while their domain is still a multidimensional Boolean

space 29.

16

Definition 3.7: Let D be a finite set and Var be a finite set of Boolean variables

equipped with a total ordering < ⸦ Var x Var 28. A multi terminal binary decision

diagram (MTBDD) over (Var, <) is a rooted acyclic directed graph with vertex set V

and the following labelling: Each terminal vertex v is labeled by an element of D,

denoted by value(v) 28. Each non-terminal vertex v is labelled by a variable var(v) ∈ Var

and has two children then(v), else(v) ∈ V 28. In addition the labelling of the non-terminal

vertices by variables respect the given ordering <, i.e. var(then(v)) > var(v) <

var(else(v)) for all non-terminal vertices v 28.

The edge from v to then(v) represents the case where var(v) is true; conversely

the edge from v to else(v) the case where var(v) is false 28.

Example 3.6: Fig. 3.3. shows an ordinary multi-terminal binary decision

diagram, where a root vertex is represented by ‘A’ node, its low and high children

represented by ‘B’ labeled nodes and a set of terminal nodes D = {‘T0’, ‘T1’, ‘T2’}.

According to Definition 3.7, this MTBDD is read by following the expression

var(then(v)) > var(v) < else(var(v)):

1) for ‘A’: var(A) = A; then(A) = B (high);

else(A) = B (low) => B(high) > A < B(low).

2) for ‘B(low)’: var(B(low)) = B(low); then(B(low)) = T0(high);

else(B(low)) = T0(low) => T0(high) > B(low) < T0(low).

3) for ‘B (high)’: var(B(high)) = B(high);

then(B(high)) = T2; else(B(high)) = T1 => T2 > B(high) < T1.

Generally, the ordering of the structure is: var(A) < var(B) < var(D), where D is the set

of the terminal nodes (see Definition 3.7).

Figure 3.4. Multi-Terminal Binary Decision Diagram

17

The MTBDD on Figure 3.4 in SNF: MTBDD: = (A => (B => T2 | T1) | (B => T0 | T0)).

Definition 3.8: A MTBDD M is called reduced iff

1) for each non-terminal vertex v the two children are distinct, i.e.

then(v) ≠ else(v) 28. Each terminal vertex v has a distinct value(v) 28.

2) for all vertices v, v’ with the same labeling, if the subgraphs with root

v and v’ respectively are isomorphic (i.e. coincide up to the names of

the services) then v = v’ 28. Formally, if var(v) = var(v’) and else(v) =

else(v’) and then(v) = then(v’), then v = v’ 28.

Reduced MTBDDs effectively represent DTs as a graph, which is used to

generate test cases in the presented approach 28.

Example 3.7: According to the Definition 3.8, MTBDD depicted on Fig. 3.4 is a

reduced representation of the Fig. 3.3 MTBDD. None of the non-terminal nodes have

the same descendants. Terminal node T0 appears only once, unlike the T0 which occurs

twice in Fig. 3.3 MTBDD. Another moment is the absence of the B (low) non-terminal

node. This is explained by its uselessness, because both of its test cases are pointing to

the same expected value T0. As the result, reduced MTBDD (rMTBDD) preserves the

logic and properties embedded in Fig. 3.3 MTBDD, at the same time Fig. 3.4 rMTBDD

requires the smaller number of test cases for its full coverage.

Figure 3.5. Reduced MTBDD.

The MTBDD on Figure 3.5 in SNF: MTBDD: = (A => (B => T2 | T1) | T0).

18

According to the definition 9 given by Meyer claims that the mutual obligation

between caller and callee modules of software is called the contract. As DT represents a

contract in ESG event, thereby making that event data event, the MTBDD representing

a contract DT should also bear responsibility of contract. It means, that the event

containing incoming edge from the current DE can be triggered iff the path starting

from the non-terminal root node of MTBDD leading till the terminal node representing

the next event is satisfied.

 In the scope of this thesis, MTBDD is the graph representation of the contract

DT in a data event of ESG. Reducing MTBDD causes the loss of conditions after

conversion it back into DT. This thesis considers that the final DT can differ from the

initial DT, only after the usage of mutation operators proposed in the Chapter 4.4.

Another reason is that mutation operators of insertion type are unable to insert an edge

or terminal node in a reduced MTBDD, therefore reducing operation cannot be applied

before mutation. Hereby, we introduce the following assumption:

Assumption of MTBDD reduction: It is assumed that MTBDDs are not

necessarily reduced.

3.4. Mutation Analysis

The purpose of the software testing is to find faults, for further elimination. For

this purpose, a tester needs efficient test cases. The test case which is unable to detect

fault is useless for testing. DT augmented ESG test cases are generated from the model

itself. It means that the constructed ESG-DT is not necessarily correct. To test ESG-DT,

it is important to have test cases which can bring out the model vulnerabilities.

Therefore, we need to assess the efficiency of the generated test set. For this purpose,

the Mutation Analysis is the key technique.

DeMillo et. al. in 30 first proposed the idea of mutation analysis and Budd et. al.

gave an extensible explanation for it 1. Originally it was intended as a white-box

technique. The aim of mutation analysis is a generation of program’s slight variations

and killing them with test sets. It is said that if one test case kills all mutants then the

19

rest of test cases in a set are considered as effective as a killer test case. By means of

mutation analysis the effectiveness of a test set is assessed.

Consider P as an original program, L ≠ Ø as a set of mutation operators, U ≠ Ø

as a set of mutants, T ≠ Ø as a set of test sets, a mutant generator function Ф(P, L), a

testing function Q(U, t ∈ T). Then, the application of the mutation analysis requires the

execution of the following steps:

1) U = Ф (P, L). Generate mutant, by inserting slight deviations in P by means

of mutation operator L.

2) Q (U, t ∈ T). Fail all u ∈ U.

If none of the t ∈T can distinguish a behavior of a u ∈ U from P, then that m is

considered as a living mutant or in worst case as equivalent mutant. The equivalency

phenomena of u ∈ U to the P, arouses when there is no such T the t ∈ T can detect

faulty version of P. Such mutants are detected manually.

In black box-based testing mutation analysis is applied on the program’s

specifications. In the scope of this thesis, the specification of program P is

represented as a model M using ESG.

3.5. Mutation Operators

The purpose of the test set is being able to recognize faults in the given model.

For this purpose, mutation analysis intentionally inserts different known faults in the

model, thereby generates faulty models. After that faulty models are tested with the test

cases in the test set. If the result of the original model tested with defined test cases is

the same as the result of the faulty model, then the test set is not able to detect the fault

in the faulty model. Otherwise, test set is useful because it can detect the specific

inserted fault and can be used for the further testing of software. The model is the initial

representation of the system under test. For test case qualification, the faulty models are

generated from the original model. The faulty model in mutation analysis is called a

mutant. The faulty model is generated by insertion of the specific fault in the original

model, which is done by means of mutation operators. Mutation operators are

20

instruments representing the specific fault domain. The concise version of the given

terms:

To generate mutants from model M, the set of mutation operators L is required.

Mutation operator l (l ∈ L) changes the structure of M by generating a mutant u (u ∈ U).

Mutation operators imitate the faults which may occur in P. Therefore, they are

categorized by fault classes. The following group of mutation operators are used in this

work.

3.5.1. ESG Mutation Operators

ESG is a graph representation of the system model and the test cases for testing

ESG are generated from the model itself. Therefore, we must assess the quality of the

generated test set. This sub-chapter revises the existing mutation operators for ESG

mutation.

As ESG consists of events and sequences, there is a necessity to imitate the possible

faults in ESG. Belli et. al. in 25 proposed the set of mutation operators for ESG

mutation, where any changes in ESG results in change of whole model ESG = (V, E, Ξ ,

Γ) -> ESG* = (V*, E*, Ξ*, Γ*).

1) eI -> event insertion operator, v ∉ V. This results in Ф(ESG, eI), where V* =

V ∪ {v} 25.

2) e0 -> event omission operator, v ∈ V. This results in Ф(ESG, eO), where V*

= V\{v} 25.

3) sI -> sequence insertion, inserts sequence which is not presented in ESG 25.

4) sO -> sequence omission, omits sequence which is presented in ESG 25.

5) eC -> event corruption operator, substitutes an existing event with a new

one. Performed by combination of {eO, eI} 25.

6) sC -> sequence corruption operator, substitutes an existing sequence with a

new one. Performed by combination of {sO, sI} 25.

21

3.5.2. DT Mutation Operators

As DT consist of sets (C, A, R), the following are the mutation operators

proposed in 24:

1) aI -> action insertion, inserts a new action a ∉ A => DT = (C, A ∪ {a}, R)

24.

2) a0 -> action omission, omits an existing action a ∈ A => DT = (C, A\{a}, R)

24.

3) aC -> action corruption, substitutes an existing action with a new one. DT =

(C, A\{a} ∪ a’, R) 24.

4) cI -> condition insertion, inserts a new condition c ∉ C => DT = (C ∪ {c},

A, R) 24.

5) c0 -> condition omission, omits an existing condition c ∈ C => DT = (C\{c},

A, R) 24.

6) cC -> condition corruption, substitutes an existing condition with a new one.

DT = (C\{c} ∪ c’, A, R) 24.

7) rI -> rule insertion, inserts a new rule r ∉ R => DT = (C, A, R ∪ {r}) 24.

8) r0 -> rule omission, omits an existing rule r ∈ R => DT = (C, A, R\{r}) 24.

9) rC -> rule corruption, substitutes an existing rule with a new one. DT = (C,

A, R\{r} ∪ r’) 24.

22

CHAPTER 4

CONTRACT-BASED MUTATION OPERATORS FOR

DECISION-TABLE-AUGMENTED EVENT SEQUENCE

GRAPH

4.1. MTBDD-based Mutation Operators for ESG-DT

Apart from ESG and DT mutation operators described in the sections 3.5.1 and

3.5.2 respectively, this thesis proposes new mutation operators for MTBDDs. In

Chapter 3.3, the term MTBDD, which is a contract representation of MTBDD, is

defined. Khalilov et. al. introduced the mutation operators for Ordered Binary Decision

Diagrams (OBDD) in 4. The OBDD is the a BDD with a strict variable ordering 27.

Therefore, it also implements the SNF. This thesis uses the mutation operators 4 for

MTBDD mutation and proposes a set of new operators. The idea of MTBDD mutation

remains the same, i.e., executional part consists of two and more terminal nodes and

they are attached to the non-terminal nodes same as in OBDD by incoming edges.

According to the 4, node omissions of OBDD can be applied at the terminal and

non-terminal levels and they will produce different results. Since the thesis concentrates

on the mutation of ESG-DT, the main interest in MTBDD are terminal nodes, because

they represent the corresponding events in the model. The present thesis concentrates on

omission of the terminal node in MTBDD by tnO operator, which in turn produces new

DT without corresponding action. This operation produces a new ESG-DT without edge

from the current DE to the event represented by the omitted action. Meanwhile, 4 claims

that the insertion of the terminal node is possible only if the corresponding non-terminal

node at the level adjacent to the terminal has zero or one child. Otherwise, it becomes

impossible to insert a terminal node, because the maximum number of outgoing edges

of non-terminal nodes in OBDD is two, therefore, due to the limitation of the number of

23

children a third child addition is an invalid operation. Since the MTBDD is an extension

of the OBDD, terminal node insertion takes place due to tnI mutation operator.

Since MTBDD is a graph, manipulations can be performed not only on its nodes

(vertices), but also on its edges (arcs). This is inspired by 25, where graph-based

structures such as DG, FSM, SC and ESG have been changed by removing or adding

not only theirs vertices (nodes), but also arcs (edges). Hence, thesis introduces edgeI

and edgeO operators for MTBDD edge related mutations, which are semantically equal

to arc, sequence and transition mutation operators in 25.

Both can be applied on any MTBDD edge, but we focus on terminal nodes’

incoming edges, because edits on edges at the higher levels will drastically change the

resulting contract. edgeO operator removes one edge between non-terminal and terminal

nodes. This change will reduce the rule number of the final DT by one rule. In case if a

terminal node is attached to non-terminal only by one edge (has one incoming edge),

edgeO will totally disconnect it from MTBDD structure. Consequently, the finite DT

will lack not only one rule, but also one action. The opposite to edgeO, edgeI creates

one new connection between existing terminal and non-terminal nodes. The DT

obtained afterwards, acquires one new rule, with a corresponding enabled action. The

restriction imposed on usage of edgeI is the same as for the tnI. Again, in MTBDD non-

terminal nodes have limitations on the number of children nodes, which cannot exceed

two. Consequently, those non-terminal nodes which have one child or have not got any,

can end the path passing through it by the edgeI application.

The representation of MTBDD diminishes the size of MTBDD structure and

decreases the required test set size for it. The drawback of reducing MTBDD is the

impossibility of tnI and edgeI usage. The terminal node corruption (tnC) and edge

corruption (edgeC) mutation operators fix this disadvantage. The essence of corruption

mutation operators is in replacement of the existing parts of MTBDD structure. The

edgeC allows to replace existing edge with a new one, simply by removing it with

edgeO and using edgeI operator. The edgeC can redirect existing edge to the different

terminal node. Mutation operator tnC replaces the existing terminal node with a new

terminal node, by preserving all incoming edges of the previous terminal node for a new

node. The edge switcher (edgeS) mutation operator switches the outgoing edges of the

non-terminal node by involving the application of edgeC operator twice for each edge.

First, it removes both outgoing edges, then descendant nodes get the opposite valued

24

edges. This is explained by the inability of the edgeC’s single usage for inverting the

edge value, because non-terminal nodes cannot have equal values outgoing edges.

Reducing of MTBDDs leads to the omission of the redundant nodes. The

subsequent DT after this operation may have decreased number of conditions, although

the mutations are performed on terminal nodes, not on non-terminal ones.

A summary on the MTBDD mutation operators is given below:

1) tnI (nodeI) -> terminal node insertion operator. Inserts a new terminal node in

MTBDD by connecting it with a new edge 4. Consider newTNode as a new

terminal node and NTNode as an existing non-terminal node, then tnI(MTBDD,

newTNode, NTNode) => MTBDD* = (C ∪ (A ∪ {newTNode}), E ∪ {NTNode,

newTNode}). Fig. 4.1 represents MTBDD and Fig. 4.2 *MTBDD after being

mutated by tnI.

Figure 4.1. MTBDD before the tnI application.

Figure 4.2. MTBDD* after the application of tnI.

25

2) tnO (nodeO) -> terminal node omission operator. Omits an existing terminal node

from MTBDD and subsequently all of its incoming edges 4. Consider TNode as a

terminal node being removed and its incoming edge set Er, which is Er ∈ E, then

tnO(MTBDD, TNode) => MTBDD* = (C ∪ (A \ {TNode}), E \ Er). Fig.4.3

represents the original MTBDD before being mutated by tnO and the mutated

*MTBDD is depicted on Fig.4.4.

Figure 4.3. MTBDD before the tnO application.

Figure 4.4. MTBDD* after the application of tnO.

26

3) tnC -> terminal node corruption. Replaces the existing terminal node with a new

one, by preserving all incoming edges of the old node for the new node. Consider

TNodeOld and TNodeNew as old and new terminal nodes, respectively. Then

tnC(MTBDD, TNodeOld, TNodeNew) => MTBDD* = (C ∪ A\{TNodeOld} ∪

{TNodeNew}, E). *MTBDD shown on Fig.4.6 is a mutant derived after mutation

of Fig.4.5. MTBDD by tnC.

Figure 4.5. MTBDD before the tnC application.

Figure 4.6. MTBDD* after the application of tnC.

4) edgeI -> edge insertion. Inserts a new edge, by connecting an existing terminal

node to the non-terminal node. Consider NTNode as an existing non-terminal

27

node which has only one descendant and TNode as an existing terminal node.

edgeI(MTBDD, NTNode, TNode) => MTBDD* = (C ∪ A, E ∪ {NTNode,

TNode}). The edgeI operator explicitly demonstrates the result of edge insertion

to the original MTBDD on Fig.4.7. and as a result, obtaining mutant depicted on

Fig.4.8.

Figure 4.7. MTBDD before the edgeI application.

Figure 4.8. MTBDD* after the application of edgeI.

5) edgeO -> edge omission. Omits an existing incoming edge of a certain terminal

node, may cause in total disconnection of a terminal node from MTBDD.

28

Consider NTNode as an existing non-terminal node and TNode as an existing

terminal node. edgeO(MTBDD, NTNode, TNode) => MTBDD* = (C ∪ A, E \

{NTNode, TNode}). The result of the edge removal by edgeO is shown clearly on

Fig.4.10.

Figure 4.9. MTBDD before the edgeO application.

Figure 4.10. MTBDD* after the application of edgeO.

6) edgeC -> edge corruption. Redirects an existing outgoing edge of a certain non-

terminal node from one terminal node to another one. The edge corruption

operator involves the execution of edgeO and edgeI. Consider TNode1 and

TNode2 as terminal nodes and NTNode as nonterminal node, where TNode1 has

2 incoming edges. If apply edgeC on the {NTNode, TNode1} edge and redirect it

29

to the TNode2, the resulting MTBDD: edgeC(MTBDD, NTNode, TNode1,

TNode2) => MTBDD* = (C ∪ A, E \ {NTNode, TNode1} ∪ {NTNode,

TNode2}), for redirecting. The Fig. 4.11 shows the outcome (Fig.4.12) of the

edgeC operator application on the structure on Fig.4.11.

Figure 4.11. Case 1: MTBDD before the edgeC application.

Figure 4.12. Case 1: MTBDD* after the application of edgeC.

In case if TNode1 has only one incoming edge then edgeC in redirecting

operation will totally disconnect TNode1 from reduced MTBDD structure.

edgeC(MTBDD, NTNode, TNode1, TNode2) => MTBDD* = (C ∪

30

A\{TNode1}, E \ {NTNode, TNode1} ∪ {NTNode, TNode2}). This case is

explicitly shown on Fig.4.13 and the result on Fig.14.

Figure 4.13. Case 2: MTBDD before the edgeC application.

Figure 4.14. Case 2: MTBDD* after the application of edgeC.

7) edgeS -> edge switcher. Switches the outgoing edges of the existing non-terminal

node, so that its descendants get the inverted valued edges. This operation

involves the application of two edgeC operators. edgeS(MTBDD, NTNode,

TNode1, TNode2) => MTBDD* = (C ∪ A, E \ {{NTNode, TNode1}, {NTNode,

31

TNode2}} ∪ {!{NTNode, TNode1}, !{NTNode, TNode2}}). The result of edgeS

mutation operator usage is represented on Fig.4.16.

Figure 4.15. MTBDD before the edgeS application.

Figure 4.16. MTBDD* after the application of edgeS.

From the above-mentioned formulations of proposed MTBDD mutation

operators, the need in operators’ categorization arises. As mutation operators intend to

change the original specifications either slightly or considerably, we place operators

into two groups: Simple Mutation and Composed Mutation:

32

Definition 4.1: Simple Mutation group operators aim to modify MTBDD by

either removing or adding one component (edge or terminal node) once per mutation.

Definition 4.2: Composed Mutation group operators will rearrange MTBDD

component or components. This action involves the application of two mutation

operators at least one time from Simple Mutation group.

Table 4.1. Composition of mutation operators.

Mutation

Operators

Simple

Mutation

Composed

Mutation

tnI +

tnO +

tnC +

edgeI +

edgeO +

edgeC +

edgeS +

Based on the Definitions 4.1 and 4.2, the Table 4.1 clearly separates these two

categories. The simple mutation operator set is {tnI, tnO, edgeO, edgeI} and {tnC,

edgeC, edgeS} are elements of the composed mutation operators set. As tnI (Fig. 4.17),

edgeI (Fig. 4.18) just insert corresponding components per mutation and tnO (Fig.

4.19), edgeO (Fig. 4.20) omit corresponding components without involvement of any

other operation, hence they belong to Simple Mutation group. On the other hand, tnC

and edgeC involve corresponding insertion and omission operators by replacing

corresponding components. The tnC operator first removes the corrupted terminal node

by means of tnO, then engages tnI to insert a “fresh” terminal node, which is a new

expected result. Fig. 4.21 and Fig. 4.22 clearly explicitly shows steps of tnC and edgeC

execution corresponding ESGs. Finally, the edgeS operator targets on switching

outgoing edges of nonterminal node, where at least one edge attaches the terminal node.

This operation involves performing of two edgeI and two edgeO operators. Initially,

edges are removed by two edgeO operators, then inserted into opposite positions by the

execution of edgeI operators. This process is shown on Fig. 4.23 by ESG of edgeS.

33

Figure 4.17. ESG of tnI operator.

Figure 4.18. ESG of edgeI operator.

Figure 4.19. ESG of tnO operator.

Figure 4.20. ESG of edgeO operator.

Figure 4.21. ESG of tnC operator.

Figure 4.22. ESG of edgeC operator.

34

Figure 4.23. ESG of edgeS operator.

4.2. Mutant Generation

As the research field of this thesis is DT-augmented ESGs, all mutations are

performed on the level of data events (DEs), i.e., Event with DT (EwDT). Considering

that DT in ESG represents a refined event, based on input values passed to it, triggers

next predefined successor, DT and MTBDD mutation operators provided in 3.5.2 and

4.1.1, respectively, provide a more accurate way of managing the sequence flow.

To get a mutated ESG, by mutating event with DT it is necessary to aim on

1) complete removal of any notion of the action in all rules which leads to the

omission of the corresponding sequence in ESG.

2) complementing DT action set with a new action which should be activated in

at least one, possibly new, rule, which leads to the new sequence in ESG.

3) application in strict sequence of the ways 1, 2 to change the direction of

sequence, also leads to the creation of the new ESG.

Meanwhile, obtaining a new ESG, by mutating event with MTBDD it is enough

to perform:

1) completely detach a terminal node from MTBDD, which is responsible for

certain sequence. Hence, this operation effects on existence of certain

sequence in ESG. This can be achieved by either removal of the terminal

node’s only incoming edge or complete omission of the terminal node.

35

2) insert, if possible, a new terminal node into MTBDD, which creates a new

sequence in ESG.

Here it can be concluded that, the sequences of ESG depends on connectivity of the

terminal nodes to the MTBDD.

As thesis relies on simple mutations, i.e., one mutation applied by one mutation

operator at a time, the DT based event mutation may not always produce a new ESG,

different from an original one. This can be explained by cases such that application of

rO operator not necessarily completely disables an action in DT or aI always requires rI

operator. MTBDD mutation, on the other hand, can provide simple mutation by

insertion of action element without requiring another MTBDD mutation operator.

Therefore, MTBDD is considered as an extension for DT mutations.

To start mutating MTBDD based event is it important to convert MTBDD into

DT and after mutation convert it back into DT. By using a DT mutation operator and

newly proposed MTBDD mutation operators research offers an algorithm for generation

of faulty models.

The aim of mutation analysis is measuring the ability of fault detection of the

test cases. Test cases in DT augmented ESG are represented as CES. To generate new

CESs from mutants of DT augmented ESG, the generation of a faulty models are

required. Considering ∆ as a DT and MTBDD mutation operators set, where ∆ = {rI,

rO, tnI, tnO, edgeI, edgeO}, DT augmented ESG as an original model M, MM as a

mutated model set, which is MM = {MM1, MM2, …, MMk}, test cases generated from

M as T = {CES1, CES2, …, CESn} and MM based test set as MT = {CES*1, …,

CES*m}, the algorithm 1 describes thoroughly a method of mutant generation and

subsequently the test case generation.

Algorithm 1.

Input: M: = DT augmented ESG.

Output: The quality of the generated CES and FCES.

1.BEGIN

 2. Generate CESs and FCESs from M.

 3. FOREACH DE in M.

 4. Convert DE into MTBDD

 5. FOREACH MTBDD mutation operator from ∆ set

 6. BEGIN

36

(cont. on next page)

 7. MM = ∆MTBDD(M);

 8. END

 9. END

 10. FOREACH MM* in MM

 11. FOREACH CES* in CES test set

 12. BEGIN

 13. If MM* fails CES*

14. Test passed.

 15. END

 16. FOREACH FCES* in FCES test set

 17. BEGIN

 18. If MM* passes FCES*

 19. Test passed

 20. END

21. END

 Example for mutant generation: ESG-DT on Fig. 4.24, consists of events a, b,

c, and d, where only event a is a data event, i.e., has a DT.

Figure 4.24. Dummy ESG.

A DT in the event a is shown on Table 4.2, consists of two rules, two conditions

and two actions representing corresponding events in ESG-DT on Fig. 4.24. The

corresponding MTBDD of Table 4.2 DT is depicted on Fig. 4.25.

Table 4.2. DT “a” of event a.

DT a
Rules

R1 R2

37

Table 4.2 (cont.)

C
o
n
d
it

io
n
 C1 F T

C2 T F

A
ct

io
n

b X

d X

Figure 4.25. MTBDD contract representation in “a” DE.

 According to Algorithm 1, the event which has a contract is picked for the

further mutation. Therefore, the DT on Table III, which is contract in the event a is used

for the further mutation process. Before mutation starts, it should be transformed into

MTBDD (Fig. 4.25), on which the proposed in Chapter 4.1 mutation operators are

applied only once. For example, here tnI operator is applied on Fig. 4.25. MTBDD adds

c node, which represents event c. The result of application is on Fig. 4.26. Table 4.3 DT

is obtained from transformation of MTBDD into DT form.

Figure 4.26. Mutated MTBDD of contract in DE “a”.

38

Table 4.3. Mutated “a” DT.

DT a
Rules

R1 R2 R3

C
o
n
d
it

io
n

C1 F T F

C2 T F F

A
ct

io
n

 b X

d X

c X

The final ESG-DT will look as it is depicted on Fig. 4.27:

Figure 4.27. Final ESG-DT mutant.

Figure 4.28 shows same mutant as in Fig. 4.27 but shows the changes which

took place after mutation of MTBDD. The change is represented by the dashed edge,

outgoing from event a to event c. Further changes in ESG-DT models are represented

by dashed and dotted lines, which represent inserted and omitted edges, respectively.

Figure 4.28. Changes of the resulting final ESG-DT mutant.

Algorithm 1 is the extended and modified version of the “Algorithm 2. K-

Robustness testing process” from 24. Like its predecessor, Algorithm 1 also involves

mutation operators for model mutation and generates test cases represented in CES and

39

FCES forms from the obtained mutants. The modification includes the enlarged list of

mutation operators for seeding faults into MTBDD and additional mutation of the ESG-

DT by converting DT in DE into MTBDD.

4.3. Equivalent Mutants

As the side effect of mutation testing is equivalent mutants, which cannot be

distinguished by any test set, we have chosen certain mutation operators based on

assumption given in Chapter 4.2. As the manipulations with sequences are performed

on DE level, we claim that the mutations performed in following cases will always

produce non-equivalent mutants:

1) If action in DT is active only in one rule, then omission of that rule

completely removes the corresponding sequence in DT augmented ESG.

2) If terminal node in MTBDD has only one incoming edge, then omission of

that edge will completely remove action and corresponding rule from DT

and as consequence whole sequence from DT augmented ESG.

3) The omission of terminal node in MTBDD will also remove all its incoming

edges and in resulting DT corresponding action with all corresponding rules

will disappear. As a result, it leads to the omission of respective sequence.

4) The insertion of a new terminal node in MTBDD will add a new edge and a

final DT will have a new action and a new corresponding rule. Finally, DT

augmented ESG will have one new sequence.

40

CHAPTER 5

EVALUATION

This chapter provides an evaluation of ESG-DT mutation analysis for the newly

developed mutation operators in this thesis on three cases, namely CD player, Cruise

Control, and Simple Automated Teller Machine (ATM). Initially, each of these cases

has its original model, which is consistent with the corresponding original system. The

models of these systems are represented as DT augmented ESGs. As mutant generation

being the main part of mutation analysis, this thesis involves the application of the

proposed MTBDD operators along with the proposed DT mutation operators. The

instruction for obtaining mutants and generating test sequences from them are described

in Algorithm 1.

It is necessary to note the following representations on ESG-DT mutants:

• The omitted edges in ESG-DT mutants are represented as dotted arrows

 .

• The inserted edges in ESG-DT mutants are represented as dashed arrows

.

5.1. CD Player

5.1.1. CD Player ESG-DT Model

The ESG-DT model of CD player 31 is presented as the first case. Fig. 5.1 model

contains five nodes, where stop, play, load are events with DT and nodes pause and off

are simple nodes without contracts inside.

41

Figure 5.1. CD Player ESG-DT.

 Table 5.1 shows the “stop” event DT, which corresponds to the stop node of

ESG-DT in Fig. 5.1. For instance, it indicates that, if the first condition

“offButtonPressed” is resolved to be true, then, no matter of what the value of the other

conditions will be, the off action will be triggered. Therefore, in ESG-DT model, the

next possible event is certainly the off event. The “load” event DT in Table 5.2

represents the load event of ESG-DT in Fig. 5.1.

Table 5.1. The original “stop” DT.

stop
Rules

R0 R1 R2 R3 R4

C
o

n
d

it
io

n
s offButtonPressed T F F F F

isClosed - F T T T

Cdpresent - - F T T

lastTrackPlayed - - - F T

A
ct

io
n

s

play X

stop X X

load X

off X

Figure 5.2. MTBDD of the original “stop” DT.

42

Table 5.2. The original “load” DT.

load
Rules

R0 R1 R2 R3 R4

C
o

n
d

it
io

n
s offButtonPressed T F F F F

isClosed - F T T T

CDpresent - - F T T

lastTrackPlayed - - - F T

A
ct

io
n

s

play X

stop X X

load X

off X

Figure 5.3. MTBDD of the original “load” DT.

Table 5.3. The original “play” DT.

play
Rules

R0 R1 R2 R3 R4 R5

C
o

n
d

it
io

n
s

offButtonPressed T F F F F F

isClosed - F T T T T

CDpresent - - F T T T

lastTrackPlayed - - - F F T

pauseButtonPressed - - - F T -

A
ct

io
n

s

play X

pause X

stop X X

load X

off X

43

Figure 5.4. MTBDD of the original “play” DT.

The test sequences are generated from the original ESG of the CD player. As the

model is in the ESG form, the corresponding test sequences will be in the form CES and

FCES. The tool Test Suite Designer (TSD) 3, 32 generates test sequences from the ESG

in Fig. 5.1 without taking DTs into consideration. This may be considered as generating

test sequences with respect to branch coverage from source code, although condition

coverage is possible but costly. TSD provides four CESs consisting of 20 events (given

in Table 5.4) and twelve FCESs consisting of 30 events (given in Table 5.5).

Table 5.4. CESs of CD Player ESG-DT.

5 nodes CES: [, play, play, pause, play, off,]

5 nodes CES: [, stop, load, stop, stop, off,]

3 nodes CES: [, load, load, off,]

7 nodes CES: [, play, stop, play, load, play, pause, off,]

44

Table 5.5. FCESs of CD Player ESG-DT.

2 nodes FCES: [, stop, pause,

3 nodes FCES: [, play, pause, stop,

3 nodes FCES: [, play, pause, pause,

3 nodes FCES: [, play, pause, load,

2 nodes FCES: [, load, pause,

3 nodes FCES: [, play, off, stop,

3 nodes FCES: [, play, off, play,

3 nodes FCES: [, play, off, pause,

3 nodes FCES: [, play, off, load,

3 nodes FCES: [, play, off, off,

1 nodes FCES: [, pause,

1 nodes FCES: [, off,

5.1.2. CD Player Mutation Analysis

According to the Algorithm 1, the mutation process starts by traversing all

events containing DTs. In case of CD player, they are stop, play, and load, which means

that operations will be performed on these nodes. To show how changes in DT

influence on the resulting ESG-DT we apply decision table mutation operators. In

thesis, only rI and rO operators are involved for DT mutation.

Table 5.6. “stop” DT after the application of rO.

Stop
Rules

R0 R1 R2 R3

C
o

n
d

it
io

n
s offButtonPressed T F F F

isClosed - F T T

Cdpresent - - F T

lastTrackPlayed - - - F

A
ct

io
n

s

play X

stop X

load X

off X

45

Table 5.7. “load” DT after the application of rO

load
Rules

R0 R1 R2 R4

C
o

n
d

it
io

n
s

offButtonPressed T F F F

isClosed - F T T

CDpresent - - F T

lastTrackPlayed - - - T

A
ct

io
n

s

play

stop X X

load X

off X

Although the fourth rule has been omitted in Table 5.6 DT, all actions are

working in the remained rule, therefore, the resulting graph (Fig. 5.5) is not changed. In

case of Table 5.7. DT, the rule R3 is omitted, where the action play was working, action

play became inactive. Therefore, the resulting Fig. 5.6 ESG-DT does not have the edge

from “load” to “play” event.

Figure 5.5. The mutant ESG-DT obtained after the application of rO on “stop” DT (note

that it is equivalent to the original ESG layer).

Figure 5.6. The mutant ESG-DT derived after the application of rO on “load” DT.

46

The application of the rO on the R4 rule of Table 5.3 DT leads to the DT in

Table 5.8, which generated the mutated ESG in Fig. 5.7, with the omitted edge from

play to pause.

Table 5.8. “play” DT after the application of rO.

play
Rules

R0 R1 R2 R3 R5
C

o
n

d
it

io
n

s
offButtonPressed T F F F F

isClosed - F T T T

CDpresent - - F T T

lastTrackPlayed - - - F T

pauseButtonPressed - - - F -

A
ct

io
n

s

play X

pause

stop X X

load X

off X

Figure 5.7. The ESG-DT mutant obtained after the application of rO on the “play” DT.

Mutant ESGs generated by DT mutation are shown above. Now, we convert the

original DTs into MTBDD form and generate mutant ESGs using MTBDD mutation

operators proposed in this thesis. The Fig. 5.4 represents MTBDD of the DT in Table

5.3. Here, the transformed contracts (from DT to MTBDD) are mutated by newly

proposed mutation operators. This step embraces the application of all MTBDD

mutation operators. The obtained mutated MTBDDs are converted back into DT

representation form so that the effect of mutation can be reflected on the ESG.

47

Figure 5.8. “play” MTBDD after the application of the tnO.

Table 5.9. “play” DT the application of tnO on the “play” MTBDD.

play
Rules

R0 R1 R2 R3

C
o

n
d

it
io

n
s

offButtonPressed F F F T

isClosed T T F -

Cdpresent T T - -

lastTrackPlayed F F - -

pauseButtonPressed F T - -

A
ct

io
n

s

play X

pause
 X

load
 X

off
 X

48

As there is no rule with active “stop” action in the Table 5.9 DT, the edge going

from event play to event stop must be omitted and the model on Fig. 5.1 becomes ESG-

DT on Fig. 5.9.

Figure 5.9. “CD Player” ESG-DT after the tnO usage.

As the FCESs of the original model are considered to be faulty models 26, FCES

is said to be efficient if it is able to distinguish the mutant by matching to it. Matching

means that FCES exists as a part of an existing path in an ESG.

According to the ESG mutation testing, the generated mutant is tested with

CESs. A CES distinguishes a mutant only if the CES does not match to the mutant,

which means that there is at least one difference between the CES and the event

sequence of the mutant. If a given ESG does not contain same event sequences as a

given CES, then the CES is not sensitive enough to recognize ESG as mutant. If none of

the CESs in the test set can distinguish the mutant, then this test set is said to be not

sensitive enough or ineffective. For instance, the mutant shown in Fig. 5.9 fails the [,

play, stop, play, load, play, pause, off,] CES. At the same time, FCES test set cannot

distinguish this mutant from the original, because the mutant shows the same behavior

during testing as the original graph.

 The edgeO mutation operator transforms the original MTBDD in Fig. 5.4 into

the one in Fig. 5.10.

49

Table 5.10. “play” DT the application of edgeO on the “play” MTBDD.

play
Rules

R0 R2 R3 R4 R5

C
o

n
d

it
io

n
s

offButtonPressed T F F F F

isClosed - T T T T

CDpresent - F T T T

lastTrackPlayed - - F F T

pauseButtonPressed - - F T -
A

ct
io

n
s

play X

pause X

stop X X

off X

Figure 5.10. “play” MTBDD after the application of the edgeO.

The DT presented in Table 5.10 have not got the load action, therefore, it

considers the original model on Fig.1 without the edge between play and load events, as

shown on Fig.5.11:

Figure 5.11. “CD Player” ESG-DT after the edgeO usage.

50

 The mutant on Fig. 5.11 has omitted edge from event play to load. This

happened due to application of edgeO mutation operator on MTBDD on Fig. 5.4, which

results in Fig. 5.10. The corresponding ESG-DT mutant is distinguished only by [, play,

stop, play, load, play, pause, off,] CES of original model. This is the same test

sequence from the same test set applied on the mutated model in Fig. 5.9. FCESs also

cannot distinguish the graph of the mutant ESG-DT from the original.

 As the eC operator redirects the edge from one terminal node to another, the

resulting mutated “play” DT and MTBDD are

Table 5.11. “play” DT the application of edgeC on the “play” MTBDD.

play
Rules

R0 R1 R2 R3 R4 R5

C
o

n
d

it
io

n
s offButtonPressed T F F F F F

isClosed - F T T T T

CDpresent - - F T T T

lastTrackPlayed - - - F F T

pauseButtonPressed - - - F T -

A
ct

io
n

s play X

stop X X

load X

off X X

Figure 5.12. “play” MTBDD after the application of the edgeC.

51

The edgeC redirects the edge from pause to off and the resulting DT loses the

pause action and the edge from event play to pause also is removed. The mutant on Fig.

5.13 is distinguished from the original model by CESs [, play, play, pause, play, off,]

and [, play, stop, play, load, play, pause, off,]. FCES could not eliminate the mutated

model on the Fig. 5.13, because the event sequences do not match.

Figure 5.13. “CD Player” ESG-DT after the edgeC usage.

The MTBDD on Fig. 5.14 is the result of tnC application on Fig 5.2:

Figure 5.14. “stop” MTBDD after the application of tnC.

52

Table 5.12. “stop” DT the application of tnC on the “stop” MTBDD.

stop
Rules

R0 R1 R2 R3 R4

C
o

n
d

it
io

n
s

offButtonPressed T F F F F

isClosed - F T T T

CDpresent - - F T T

lastTrackPlayed - - - F T

A
ct

io
n

s

pause X

stop X X

load X

off X

The resulting ESG-DT on Fig.5.15, made from usage of tnC operator on Fig. 5.2

MTBDD, acquired a new edge stop -> pause (dashed arrow) and lost stop -> play. For

Fig. 5.15, only the CES [, play, stop, play, load, play, pause, off,] kills mutated ESG-

DT. In case of FCES set, only [, stop, pause, FCES test sequence is covered.

Figure 5.15. “CD Player” ESG-DT after the tnC usage.

The edgeS operator influence on Fig. 5.4 MTBDD is depicted on Fig. 5.17,

which shows inversed outgoing edges going from lastTrackPlayed non-terminal node to

stop and pauseButtonPressed nodes:

53

Figure 5.16. “play” MTBDD after the application of edgeS.

Table 5.13. “play” DT the application

of edgeS on the “play” MTBDD.

play
Rules

R0 R1 R2 R3 R4 R5

C
o

n
d

it
io

n
s

offButton

Pressed
T F F F F F

isClosed - F T T T T

CDpresent - - F T T T

lastTrack

Played
- - - T T F

pauseButton

Pressed
- - - F T -

A
ct

io
n

s

play X

pause X

stop X X

load X

off X

54

The resulting ESG in Fig. 5.17, generated by using edgeS mutation operator, has

not changed at all. This mutant’s graph is equivalent to the original graph.

Figure 5.17. “CD Player” after the edgeS usage.

By applying tnO, tnC, edgeO, edgeC and edgeS MTBDD mutation operators on

MTBDDs obtained from DT in Fig.5.1. ESG, we generated 46 mutated ESG-DTs. The

Table 5.14 provides the number of ESG-DT mutants per mutation operator.

Table 5.14. The number of mutants per operator for “CDplayer” ESG-DT.

edgeC edgeI edgeO edgeS tnC tnI tnO

6 NA 16 3 8 NA 13

According to the Algorithm 1, we must test these mutants via test sequences

generated from the original model, represented in Tables 5.4 and 5.5. A mutant is

distinguished when at least one CES can distinguish a mutant iff there is no sequence in

mutant that can match a sequence of CES. In case of FCES, a mutant is distinguished

when at least one FCES matches the mutant, because FCES is a faulty model of the

original ESG-DT.

The Table 5.15 shows the number of mutants per operator, for each original

MTBDD:

55

Table 5.15. The number of mutants of all original MTBDDs.

ESG-

DT

mutants

edgeC edgeI edgeO edgeS tnC tnI tnO Total

play 2 NA 6 1 NA NA 5 14

stop 2 NA 5 1 4 NA 4 16

load 2 NA 5 1 4 NA 4 16

In total, 16 ESG-DT mutants were obtained after mutating the play MTBDD by

the listed operators. For the mutation of the play MTBDD on Fig. 5.4 only edgeC,

edgeO, edgeS and tnO operators are used. The application of the edgeI and tnI operators

is impossible because all non-terminal nodes already have both descendant nodes. The

application of tnC is not reasonable in the event play, since it already has outgoing

edges with all existing nodes. Four out of six ESG-DT mutants derived from edgeO are

detected by the CESs in the first and fourth rows in Table 5.4. However, the FCESs are

not able to distinguish any mutants. CES in the first row of Table 5.4 distinguishes only

one edgeC derived mutant, when the other mutants pass all CESs. But both mutants fail

all FCESs, therefore are not distinguished. Same first and fourth CESs detects tnO

derived mutants and none of the FCESs can distinguish them. In case of edgeS obtained

ESG-DT mutant test sequences in neither CES and nor FCES test sets can see mutant in

it.

In total, 16 ESG-DT mutants were obtained after mutating the stop MTBDD by

the listed operators. The stop MTBDD in Fig. 5.2 is mutated by edgeC, edgeO, edgeS,

tnC and tnO. The edgeI and tnI operator usage is unreasonable, as all non-terminal

nodes already have both descendant nodes. The mutants generated by tnC were detected

by test sequences from both CESs and FCESs, where the test sequences of the second

and fourth rows in Table 5.4. and the first FCES in Table 5.5 were able to kill them.

However, edgeS generated an undetectable mutant. The fourth CES could detect half of

the mutants generated by edgeC, another half was not distinguished and none of the

FCESs could say that they are mutants. Three out five of edgeO and all tnO generated

mutants were detected by the second and the fourth CES test sequences, but FCES test

set was not able to distinguish mutants in them.

Totally 16 ESG-DT mutated models are generated by mutating “load” MTBDD.

ESG-DT mutants are obtained from mutation of the “load” MTBDD (Fig. 5.3) by

involving edgeC, edgeO, edgeS, tnC and tnO operators. Simple insertions operators are

56

not used, because all non-terminal nodes already have both descendants, therefore

insertion of the new edge or terminal node becomes impossible. Mutated ESG-DT

obtained with tnC operator are detected by both CESs in the second, third and fourth

rows of Table 5.4 and the fifth FCES. The mutants obtained by the rest of the operators

are not distinguished with FCES test set. Test cases two, three and four in Table 5.4 can

distinguish faulty models constructed with tnO operator. CESs three and four could

detect three out of five edgeO made mutants, whereas only the fourth CES could find

half of mutants created with edgeC operator. The edgeS made faulty ESG-DT went

unnoticed.

The results are presented in Table 5.16:

Table 5.16. Test results

Operator CES FCES

tnO 13 mutants are distinguished No mutant is distinguished

tnC 8 mutants are distinguished 8 mutants are distinguished

edgeO 10 mutants are distinguished No mutant is distinguished

edgeC 3 mutants are distinguished No mutant is distinguished

edgeS No mutant is distinguished No mutant is distinguished

According to the results provided in Table 5.16, the mutants obtained after tnC

usage are distinguished by both CESs and FCESs from the original model. On the

contrary, the graphs of the edgeS derived mutants are completely identical to the graphs

of the original model, as the result are not distinguished from behavior of the original

ESG. Mutants derived from tnO, edgeO and edgeC are detected only by CESs.

Every mutant is distinguished only once by a certain CES. It means that mutants

are not distinguished by two and more different FCESs Table 5.18 shows the number of

detected mutants per mutation operator. It also shows the number of undetected mutants

by certain FCES and the number of undetected mutants per mutation operator.

57

Table 5.17. CES detected number of mutants per mutation operator.

CES

ID
CES tnO tnC edgeO edgeC edgeS

Number of

undetected

mutants

1
[, play, play,

pause, play, off,]
2 0 2 1 0 41

2
[, stop, load, stop,

stop, off,]
4 4 2 0 0 36

3 [, load, load, off,] 2 2 2 0 0 40

4

[, play, stop, play,

load, play, pause,

off,]

5 2 4 2 0 33

-

Undetected

mutant number

per operator

0 0 6 3 3 -

 Every mutant is distinguished only once by certain FCES. It means that mutants

are not distinguished by two and more different FCESs. Table 5.18 shows the number

of detected mutants per mutation operator. It also shows the number of undetected

mutants by certain FCES and the number of undetected mutants per mutation operator.

Table 5.18. FCES detected number of mutants per mutation operator.

FCES

ID
FCES tnO tnC edgeO edgeC edgeS

Number of

undetected

mutants

1 [, stop, pause, 0 4 0 0 0 42

5 [, load, pause, 0 4 0 0 0 42

-

Undetected

mutant number

per operator

13 0 16 6 3 -

The mutation score is calculated by the following formula:

 (5.1)

58

Mutation score of all CESs and FCESs, that distinguished at least one mutant is

presented on Table 5.19.

Table 5.19. CD Player ESG-DT test sequences mutation score.

CES ID Score FCES ID Score

1 ≈10,87 % 1 ≈ 9.52 %

2 ≈21,74 % 5 ≈ 9.52 %

3 ≈13,04 % - -

4 ≈28,26 % - -

5.2. Cruise Control

 Cruise Control’s specification is taken from 17. Originally it is represented as

transition table, which in turn is transformed into DT augmented ESG. Each mode is

represented by events in ESG-DT and all inputs are used in corresponding DE in DTs.

In total Cruise Control ESG-DT consists of four off, inactive, cruise, override.

Figure 5.18. Cruise Control ESG-DT.

For Cruise Control ESG-DT, one CES (Table 5.20) and nine FCESs (Table

5.21) are generated, consisting of 18 and 22 events, respectively.

59

Table 5.20. CES of the Cruise Control ESG-DT.

CES
[, off, off, inactive, off, inactive, cruise, inactive, cruise, off, inactive,

cruise, override, cruise, override, inactive, cruise, override, off,]

Table 5.21. FCESs of the Cruise Control ESG-DT.

2 [, off, cruise,

2 [, off, override,

3 [, off, inactive, inactive,

3 [, off, inactive, override,

4 [, off, inactive, cruise, cruise,

5 [, off, inactive, cruise, override, override,

1 [, inactive,

1 [, cruise,

1 [, override,

Table 5.22. The original “off” DT.

off
Rules

R0 R1

C
o

n
d

it
io

n
s

Ignited T F

A
ct

io
n

s inactive X

off X

Figure 5.19. MTBDD of the original “off” DT.

60

For “off” MTBDD on Fig.5.19 edgeO, edgeS, tnC and tnO mutation operators

are used. As it has only one non-terminal node with two outgoing edges the usage of

edgeI and tnI operators is impossible and using edgeC also becomes pointless, because

same child node for one non-terminal operator is considered as a redundant test. In total,

seven ESG-DT mutants are derived by mutating “off” MTBDD. The Table 5.23 shows

the number of mutants per operator:

Table 5.23. The number of Cruise Control mutants of all original MTBDDs.

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO

off NA NA 2 1 2 NA 2

inactive 1 1 2 1 4 2 2

cruise 3 3 3 NA 3 1 3

override 3 1 3 1 3 1 3

The ESG-DT mutants derived from edgeO, are distinguished by CES, but

FCESs are not able to distinguishe them. edgeS derived mutant is not distinguished by

neither CES nor FCESs. The ESG-DTs derived by tnC are distinguished by failing CES

and passing FCESs in the first and second rows in Table 5.21. Finally, testing of tnO

derived mutant shows same result as for edgeO.

Table 5.24. The original “inactive” DT.

inactive

Rules

R0 R1

C
o

n
d

it
in

s Ignited F T

EngRun - F

A
ct

io
n

s off X

cruise X

61

Figure 5.20. MTBDD of the original “inactive” DT.

The “inactive” MTBDD on Fig.5.20 is mutated by means of all presented

operators. In total, 13 ESG-DT mutants are derived by mutating “inactive” MTBDD.

The ESG-DT mutants derived by using edgeC, edgeO, and tnO are distinguished by

CES by not passing test, meanwhile none of the FCESs are able to match them. On the

contrary, mutants made by tnI are not distinguished by CES, but they are distinguished

by the FCESs in the third and fourth rows of Table 5.21. The mutants generated by

edgeI and edgeS operators are not distinguishable by both CES and FCES test set.

Finally, tnC operator generates mutants which are distinguished by both CES and

FCESs in the third and fourth rows of Table 5.21.

Table 5.25. The original “cruise” DT.

cruise
Rules

R0 R1 R2

C
o

n
d

it
io

n
s

Ignited F T T

EngRun - F T

TooFast - T F

Brake - - T

Deactivate - - T

A
ct

io
n

s off X

inactive X

override X

62

(cont. on next page)

Figure 5.21. MTBDD of the original “cruise” DT.

Mutation of “cruise” MTBDD is done by all introduced MTBDD operators,

except edgeS. The reason is the single outgoing edges connecting terminal nodes with

corresponding non-terminal nodes. In total, 16 ESG-DT mutants are derived by

mutating “cruise” MTBDD. Mutants obtained by means of edgeC, edgeO and tnO are

detected similarly, with sole CES, by not passing it and are not distinguished at all by

any test in a FCES set. The behavior of tnI derived mutant shows opposite result:

despite of model being changed, the CES cannot distinguish the mutant, but FCES in

the fifth row of the Table 5.21 is able to distinguish it. The tnC-based mutant is

distinguished by both CES and FCES in fifth row of the Table 5.21. In the end, edgeI

created mutant is not distinguished by any test sequence.

Table 5.26. The original “override” DT.

override
Rules

R0 R1 R2

C
o

n
d

it
io

n
s Ignited F T T

EngRun - F T

TooFast - - F

Brake - - F

63

Table 5.26. (cont.)

 Activate - - T

Resume - - T

A
ct

io
n

s off X

inactive X

cruise X

Figure 5.22. MTBDD of the original “override” DT.

For “override” MTBDD mutation all mutation operators are involved. In total,

15 ESG-DT mutants are derived by mutating “override” MTBDD. The testing of the

edgeC, edgeO and tnO derived ESG-DT mutants, show same outcome, because they fail

CES and therefore are distinguished, but FCES test set is unable to detect them. The tnI

derived mutant is distinguished by the sixth FCES, but not distinguished by CES.

However, tnC-based mutant is distinguished by both CES and FCES located in the sixth

row of the Table 5.21. The mutants generated after edgeI and edgeS application on

“override” are not distinguished by CES and FCES test sequences, therefore these

mutants are living ones.

Each mutant is distinguished only once by the certain CES. It means that

mutants are not distinguished by two and more different CESs Table 5.27 shows the

number of distinguished mutants per mutation operator. It also shows the number of

64

undetected mutants by the CES and the number of undetected mutants per mutation

operator.

Table 5.27. CES detected number of mutants per mutation operator.

CES

ID
CES tnO tnI tnC edgeI edgeO edgeC edgeS

Number

of

undetected

mutants

1

[, off, off,

inactive,

off,

inactive,

cruise,

inactive,

cruise, off,

inactive,

cruise,

override,

cruise,

override,

inactive,

cruise,

override,

off,]

10 0 12 0 10 7 0 12

-

Undetected

mutant

number

per

operator

0 4 0 7 0 0 3 -

Each FCES sequence can detect only one mutant. It means that mutants are not

distinguished by two and more different FCESs Table 5.28 shows the number of

detected mutants per mutation operator. It also shows the number of undetected mutants

by certain FCES and the number of undetected mutants per mutation operator.

65

Table 5.28. FCES detected number of mutants per mutation operator.

FCES

ID
FCES tnO tnI tnC edgeI edgeO edgeC edgeS

Number

of

undetected

mutants

1
[, off,

cruise,
0 0 1 0 0 0 0 50

2
[, off,

override,
0 0 1 0 0 0 0 50

3

[, off,

inactive,

inactive,

0 1 2 0 0 0 0 48

4

[, off,

inactive,

override,

0 1 2 0 0 0 0 48

5

[, off,

inactive,

cruise,

cruise,

0 1 3 0 0 0 0 47

6

[, off,

inactive,

cruise,

override,

override,

0 1 3 0 0 0 0 47

-

Undetected

mutant

number

per

operator

10 0 0 5 10 7 3 -

The mutation score is calculated by the following formula:

 (5.2)

Table 5.29. Cruise Control ESG-DT test sequences mutation score.

CES ID Score FCES ID Score

1 ≈ 76,47 % 1 ≈ 1.96 %

- - 2 ≈ 1.96 %

- - 3 ≈ 5.88 %

- - 4 ≈ 5.88 %

- - 5 ≈ 7.84 %

- - 6 ≈ 7.84 %

66

(cont. on next page)

Table 5.29 presents a mutation score of each test sequence used for this case.

5.3. Simple Automated Teller Machine

The Simple Automated Teller Machine (SATM) is a simplified model of the real

ATMs. The model used in thesis consists of eight events Insert Card, Account, Deposit,

Withdrawal, Insert Envelope, Cancel, Proceed, Withdraw Card, where only two events

Insert Card, Withdrawal hold DTs.

Figure 5.23. Simple ATM ESG-DT.

Table 5.30. CESs of the Simple ATM ESG-DT.

5 nodes

CES

[, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card,],

9 nodes

CES

[, Insert Card, Insert Card, Account, Withdrawal, Cancel, Account,

Withdrawal, Proceed, Withdraw Card,]

Table 5.31. FCESs of the Simple ATM ESG-DT.

2 [, Insert Card, Withdrawal,

2 [, Insert Card, Insert Envelope,

2 [, Insert Card, Cancel,

2 [, Insert Card, Proceed,

2 [, Insert Card, Withdraw Card,

2 [, Insert Card, Deposit,

3 [, Insert Card, Account, Insert Card,

67

(cont. on next page)

Table 5.31. (cont.)

3 [, Insert Card, Account, Account,

3 [, Insert Card, Account, Insert Envelope,

3 [, Insert Card, Account, Cancel,

3 [, Insert Card, Account, Proceed,

3 [, Insert Card, Account, Withdraw Card,

4 [, Insert Card, Account, Withdrawal, Insert Card,

4 [, Insert Card, Account, Withdrawal, Account,

4 [, Insert Card, Account, Withdrawal, Withdrawal,

4 [, Insert Card, Account, Withdrawal, Insert Envelope,

4 [, Insert Card, Account, Withdrawal, Withdraw Card,

4 [, Insert Card, Account, Withdrawal, Deposit,

5 [, Insert Card, Account, Deposit, Insert Envelope, Insert

Card,

5 [, Insert Card, Account, Deposit, Insert Envelope,

Account,

5 [, Insert Card, Account, Deposit, Insert Envelope,

Withdrawal,

5 [, Insert Card, Account, Deposit, Insert Envelope, Insert

Envelope,

5 [, Insert Card, Account, Deposit, Insert Envelope, Cancel,

5 [, Insert Card, Account, Deposit, Insert Envelope,

Proceed,

5 [, Insert Card, Account, Deposit, Insert Envelope,

Deposit,

5 [, Insert Card, Account, Withdrawal, Cancel, Insert Card,

5 [, Insert Card, Account, Withdrawal, Cancel, Withdrawal,

5 [, Insert Card, Account, Withdrawal, Cancel, Insert

Envelope,

5 [, Insert Card, Account, Withdrawal, Cancel, Cancel,

5 [, Insert Card, Account, Withdrawal, Cancel, Proceed,

5 [, Insert Card, Account, Withdrawal, Cancel, Withdraw

Card,

5 [, Insert Card, Account, Withdrawal, Cancel, Deposit,

5 [, Insert Card, Account, Withdrawal, Proceed, Insert

Card,

5 [, Insert Card, Account, Withdrawal, Proceed, Account,

5 [, Insert Card, Account, Withdrawal, Proceed,

Withdrawal,

5 [, Insert Card, Account, Withdrawal, Proceed, Insert

Envelope,

5 [, Insert Card, Account, Withdrawal, Proceed, Cancel,

5 [, Insert Card, Account, Withdrawal, Proceed, Proceed,

5 [, Insert Card, Account, Withdrawal, Proceed, Deposit,

6 [, Insert Card, Account, Deposit, Insert Envelope,

Withdraw Card, Insert Card,

68

Table 5.31. (cont.)

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Account,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card,

Withdrawal,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Insert

Envelope,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Cancel,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Proceed,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Withdraw

Card,

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Deposit,

4 [, Insert Card, Account, Deposit, Insert Card,

4 [, Insert Card, Account, Deposit, Account,

4 [, Insert Card, Account, Deposit, Withdrawal,

4 [, Insert Card, Account, Deposit, Cancel,

4 [, Insert Card, Account, Deposit, Proceed,

4 [, Insert Card, Account, Deposit, Withdraw Card,

4 [, Insert Card, Account, Deposit, Deposit,

1 [, Account,

1 [, Withdrawal,

1 [, Insert Envelope,

1 [, Cancel,

1 [, Proceed,

1 [, Withdraw Card,

1 [, Deposit,

69

Figure 5.24. MTBDD of the original “insert card” DT.

Table 5.32. The original “insert card” DT.

insert card
Rules

R0 R1 R2

C
o
n
d
it

io
n
s

isCardValid? F T T

PIN ok? - F T

A
ct

io
n
s

insert card X X

account X

The mutation operators edgeO, edgeS, tnC and tnO are involved in “insert card”

MTBDD, depicted in Fig. 5.24, mutation. edgeI and tnI are used because non-terminal

nodes have both low and high child nodes.

According to the Table 5.33, 16 ESG-DT mutants are derived by mutating

“insert card” MTBDD. All mutants obtained after the application of tnC operator are

detected by both CES and FCESs test sets. Half of the mutants are detected by all CESs

and another half by only the second CES in Table 5.30. FCESs which are successfully

passed by 12 mutants are in the first, second, third, fourth, fifth and sixth rows of the

Table 5.31. On the other hand, neither of CESs and FCESs can find edgeS derived

mutant, because it passes all CESs and fails all FCESs as the original model. The whole

CES test set can detect the edgeO derived mutant, but not FCES. Finally, the first

70

mutant obtained by tnO operator successfully fails all CESs, whereas the second mutant

is detected only by the CES in the second row of Table 5.30. Both mutants are not

distinguished by FCES test set.

Table 5.33. The number of Simple ATM mutants of all original MTBDDs.

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO

insert card NA NA 1 1 12 NA 2

withdrawal 2 2 2 NA 12 6 2

For “withdrawal” MTBDD mutation (Fig. 5.25) are involved all introduced

operators except edgeS. In accordance with Table 5.32, 26 faulty ESG-DTs are

generated by mutating “withdrawal” contract.

Table 5.34. The original “withdrawal” DT.

withdrawal
Rules

R0 R1 R2

C
o
n
d
it

io
n
s amount <= balance F T T

buttonProceedPressed - T F

buttonCancelPressed - F T

A
ct

io
n
s

cancel X X

proceed X

Figure 5.25. MTBDD of the original “withdrawal” DT.

71

Unlike the results provided for testing of tnC derived mutants for “insert card”

MTBDD, mutants generated with the same operator for “withdrawal” are distinhuised

only by the second CES in Table 5.30. For FCESs, among of 61 test sequences, the

13th, 14th, 15th, 16th, 17th, and 18th test sequences are passed successfully, therefore

these faulty models are distinguished from the original model. The tnI derived ESG-

DTs, are detected by the same FCESs used in tnC. However, the CESs are not able to

distinguish it from the original model. edgeC and edgeO show same results, where their

mutants fail all FCESs, like the original model. In case, of testing with CES half of their

mutants are distinguished by all tests in a set and another half by only with the second

test sequence. Whereas tnO operator mutants are distinguished by only with the second

CES (Table 5.30). The notorious testing results are obtained after testing of edgeI-based

mutants, where all CESs are passed and FCESs are failed.

Every mutant is distinguished by a unique CES. It means that mutants are not

distinguished by two and more different CESs Table 5.35 shows the number of detected

mutants per mutation operator. It also shows the number of undetected mutants by

certain CES and the number of undetected mutants per mutation operator.

Table 5.35. CES detected number of mutants per mutation operator.

CES

ID
tnO tnI tnC edgeI edgeO edgeC edgeS

Number of

undetected

mutants

1 0 0 0 0 0 0 0 42

2 3 0 18 0 1 1 0 19

- 1 6 6 2 2 1 1 -

Each mutant is distinguished by one unique FCES. It means that any mutant is

not distinguished by two and more different FCESs. Table 5.36 shows the number of

detected mutants per mutation operator. It also shows the number of undetected mutants

by certain FCES and the number of undetected mutants per mutation operator.

72

(cont. on next page)

Table 5.36. FCES detected number of mutants per mutation operator.

FCES

ID
tnO tnI tnC edgeI edgeO edgeC edgeS

Number of

undetected

mutants

1 0 0 2 0 0 0 0 40

2 0 0 2 0 0 0 0 40

3 0 0 2 0 0 0 0 40

4 0 0 2 0 0 0 0 40

5 0 0 2 0 0 0 0 40

6 0 0 2 0 0 0 0 40

13 0 1 2 0 0 0 0 39

14 0 1 2 0 0 0 0 39

15 0 1 2 0 0 0 0 39

16 0 1 2 0 0 0 0 39

17 0 1 2 0 0 0 0 39

18 0 1 2 0 0 0 0 39

- 4 0 0 2 3 2 1 -

The mutation score of each CES and FCES is presented on Table 5.37 and

calculated by the following formula:

 (5.3)

Table 5.37. Simple ATM ESG-DT test sequences mutation score

CES ID Score FCES ID Score

1 ≈ 0 % 1 ≈ 4.76 %

2 ≈ 54,76 % 2 ≈4.76 %

- - 3 ≈4.76 %

- - 4 ≈4.76 %

- - 5 ≈4.76 %

- - 6 ≈4.76 %

- - 13 ≈ 7,14 %

- - 14 ≈ 7,14 %

73

Table 5.37. (cont.)

CES ID Score FCES ID Score

- - 15 ≈ 7,14 %

- - 16 ≈ 7,14 %

- - 17 ≈ 7,14 %

- - 18 ≈ 7,14 %

5.4. Discussion

The mutation analysis of three cases indicated that some operators produce

undetectable mutants, so that neither CES nor FCES test sets can distinguish them.

Some operators produce a set of mutants of which detection depends on certain

conditions. The reason of this phenomenon lies in the number of connections between

terminal and non-terminal nodes of MTBDD.

The existence of an edge in ESG-DT from node A to node B depends on the

existence of at least one rule containing the corresponding action B in the event A’s DT.

The DT rules are represented as paths to the terminal node in MTBDD. The terminal

node can have at least one incoming edge to be considered a part of MTBDD. If there is

only one incoming edge, then omission of that edge leads to the detaching of the

corresponding terminal node and the DT after conversion will have one less rule and

absent action. The final ESG-DT will not have the corresponding edge. Otherwise,

when the number of incoming edges is minimum two, then the omission of one of the

selected edges will reduce the number of rules by one and remain the corresponding

action in DT. The final ESG-DT graph will preserve all its edges. So, whenever the

edgeC redirects an edge or edgeO omits the edge in MTBDD, preservation of the

terminal node will depend only on the number of its incoming edges.

The insertion and swapping of the edges in MTBDD results in the increase of

the number of rules in DT and the exchange of the triggered actions of two rules in DT,

respectively. The application of edgeI and edgeS operators changes the contracts in data

events, i.e., events with DT, but does not change the edge number or direction of ESG-

DT graph.

The operations on terminal nodes have inevitable impact on the resulting ESG-

DT graph. The omission of the terminal node in MTBDD results in the omission of the

74

corresponding action from DT and all related rules. Therefore, the edge going from the

respective data event to the event representing the omitted action will be removed. The

tnO operator is responsible for this change. Insertion of the terminal node attaches a

new terminal node to MTBDD and adds a new action with corresponding rule in DT.

The final ESG-DT will acquire a new edge going from the current event to another

event, represented as a new terminal node. This change is performed by tnI operator.

Finally, the substitution of the corrupted terminal node replaces the chosen terminal

node with a new one, by preserving all incoming edges. The event DT will have an

updated action. The ESG-DT will redirect the edge from the “corrupted” event to the

event, represented by the new terminal node. The tnC operator is responsible for edge

redirection in ESG-DT. Similar results are already shown in 25 by for sO, sI and sC

operators.

The detection of mutants by CES and FCES depends on the connections

between events in mutant ESG-DTs. According to the results presented by three cases

the commonality between mutants detected by CES is the absence of the certain edge. A

FCES, on the contrary, distinguishes a mutant only if there is a certain edge connecting

two events, which is introduced in FCES generation.

Based on the observations on impact of presented MTBDD operator on ESG-

DT, omission, or redirection of the only incoming edge of the terminal node, omission,

or replacement of the terminal node in MTBDD will generated mutant ESG-DT, which

will be 100% distinguishable by the CES. This is achieved by edgeO, edgeC and tnO

operators. On the other hand, insertion, or replacement of the terminal node in MTBDD

will create 100% distinguishable by FCES mutant ESG-DT. Hence, only tnI and tnC

operators can generate such mutants.

The remaining edgeI and edgeS operators will always generate the living

mutants, as the resulting ESG-DT mutants are not distinguishable by both CES and

FCES.

Therefore, it is reasonable to say, that there exists a hierarchy for presented

mutants, where:

1) the operators, which generate mutants that are always detectable by both

CES and FCES, are presented in category I in Table 5.38.

2) the operators, which generate mutants that are always detectable by either

CES or FCES, are presented in category II in Table 5.38.

75

3) the operators, which generate mutants that are sometimes detectable by

either CES or FCES, are presented in category III in Table 5.38.

4) the operators, which generate mutants that are never detectable by neither

CES nor FCES, are presented in category IV in Table 5.38.

Table 5.38. The hierarchy of the MTBDD mutation operators.

Category Mutation operators

I tnC

II tnI, tnO

III edgeO, edgeC

IV edgeI, edgeS

The drawback in the FCES test sequences for ESG-DT mutation analysis is that,

those FCESs which second event (following pseudo-event [) which originally does not

come after the starting [pseudo-event in ESG-DT, cannot distinguish mutants generated

using the approach presented in thesis. As stated in the paragraph above, FCES can

distinguish a mutant if it sees the new edge introduced in its own generation in the

sequence of a mutant. However, mutation using MTBDD cannot deal with pseudo-

events, because the ESG-DT does not know under which conditions or what kind of

input or action can trigger the execution of the certain event in ESG-DT. This is

explained in Chapter 3.2.1 in Definition 3.4, where the Condition set cannot be empty

<=> C ≠ Ø.

It follows that initial pseudo-event cannot be used for mutation using presented

approach, since the corresponding MTBDD for it cannot be obtained, because the

respective DT does not exist! Hence, FCES with second event which is not the starting

event in ESG-DT will never distinguish a model-mutant from original model.

76

CHAPTER 6

TOOL SUPPORT

The approach proposed in this thesis is implemented on the pure Java without

the usage of the side libraries or frameworks and the Test Suite Designer (TSD) is used

for test sequence generation. This chapter describes the Java implementation and the

application of test sequences on produced mutant set.

6.1. Java SE

As the implementation is built on Java programming language, the minimum

requirement is the already installed Java 1.8.0 runtime environment or the newer

version. The reason is that the software is written on the Java 8, because the

implementation involves the usage of Java Stream API

(https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html).

6.2. IntelliJ Idea

IntelliJ Idea (https://www.jetbrains.com/idea) is the well-known powerful

Integrated Development Environment (IDE) mainly used for Java development. For

running the software, it is not important to use the specific version of this IDE, as it was

updated multiple times. It is publicly available, free of charge, proprietary IDE and can

be downloaded from https://www.jetbrains.com/idea/download.

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/download

77

6.3. Test Suite Designer

This is a non-commercial, free of charge tool designed for software analysis.

TSD is based on event sequence graphs. The tool is accessible from

http://download.ivknet.de. The purpose of the TSD usage is the generation of test

sequences CES and FCES, because the ESG is the main area of interest. First of all, it is

important to pass the ESG, simply by opening the pre-saved in filesystem ESG or by

creating from scratch a new one. The tool has a GUI support (Fig. 6.1):

Figure 6.1. TSD initial window.

The example on Fig. 6.2 shows the Cruise Control ESG, which is presented in

chapter 5.2, built in TSD tool.

http://download.ivknet.de/

78

Figure 6.2. CruiseControl ESG.

 Having the ready ESG, we can generate the test sequence by simply pressing the

Generiere Test-Skripte, which will open the window on Fig. 6.3. The important part is

leaving positive Testfälle (CES) generieren and negative Testfälle (FCES) generieren

enabled.

Figure 6.3. Test generation menu.

79

After clicking Generieren button in the bottom, the tool will provide the window

(Fig. 6.4) containing all possible CESs and FCESs for the given ESG.

Figure 6.4. Generated CESs and FCESs.

6.4. Mutant Generator Software

This tool is written in Java programming language and represents a console

application. The tool provides the facility for transformation of Decision Tables (DT)

into Multi-Terminal Binary Decision Diagrams (MTBDD) and MTBDDs into DTs.

Besides transformations, it also offers mutation of MTBDDs. Another feature proposed

by this tool is the DT augmented Event Sequence Graph (ESG) processing. The work

with ESG-DTs involves only the graph modification in accordance with a mutated

contract in the corresponding event. The tool accepts DT in a text file format.

The following class diagrams represent the software architecture. Classes

responsible for DT construction are Action, Condition, Rule, Pair, DTFileReader (Fig.

6.9), Utility (Fig 6.10), and DecisionTable (Fig. 6.11).

Classes Action.java (Fig. 6.5) and Condition.java (Fig. 6.6) represent the

Actions and Conditions correspondingly in DT.

80

Figure 6.5. Action.java class diagram

Figure 6.6. Condition.java class diagram.

81

Figure 6.7. Rule.java class diagram.

Figure 6.8. Pair.java class diagram.

82

Class Pair.java (Fig. 6.8) represents a pair of either Action and Boolean or

Condition and Boolean. A Boolean is chosen as wrapper not primitive, in order to

introduce ‘don’t care’ as null in Java. Also, it returns a copy of itself. Class Rule.java

(Fig. 6.7) represents a container of Condition Pairs list and Action Pairs list.

Figure 6.9. DTFileReader class diagram.

Class DTFileReader.java (Fig. 6.9) reads a DT from a text file. The method

which prepares a conditions and actions for DT is listOfPairLists().

Figure 6.10. Utility.java class diagram.

83

The Utility.java (Fig. 6.10) class serves as a helper for the DecisionTable.java

(6.11) class. The DecisionTable.java class represents a DT and provides such methods

as shortenDT() which simplifies DT (merges Rules if possible), expandDT() shows DT

with all of its Rules (the opposite of shortenDT()), creates a deep copy of DT.

Figure 6.11. DecisionTable.java class diagram.

MTBDD is based on the following classes: MTBDD, MTBDDBuilder, Node.

The relationship between them is represented on Figure 6.12.

Figure 6.12. MTBDD representation class relation diagram.

84

Class Converter is used for converting DT represented by DecisionTable.java

into MTBDD represented by MTBDD.java and vices versa. Figure 6.13 represents a

class structure of Converter.java. It consists of two main methods DT_into_MTBDD()

and MTBDD_into_DT() for converting DT into MTBDD and vice versa. Methods

DTs_into_MTBDDs() and MTBDDS_into_DTs() use two beforementioned

corresponding methods for conversion of multiple MTBDDs into DTs and vice versa.

Figure 6.13. Converter class diagram.

MTBDDMutationOperators (Fig 6.14) class provides a set of methods which

represent proposed mutation operators.

Figure 6.14. MTBDD mutation operators class diagram.

85

The ESG-DT is built on the ESG_DT class. The class diagram on Fig. 6.15

represents an event in ESG.

Figure 6.15. ESG_DT class diagram.

Class responsible for the model mutation is shown on Figure 6.19. Its purpose is

only the mutation of the given model.

86

Figure 6.16. Model Mutator class diagram

87

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, mutation analysis is proposed for the specifications modeled using

the Decision Table augmented ESGs. For the generation of mutants from this model

representation, we proposed mutation operators for the contracts represented in Multi-

Terminal Binary Decision Diagram form, obtained by translating the Decision Table

inside the event. The presented mutation operators are: edgeI, edgeO, edgeC, edgeS, tnI,

tnO, and tnC. The test cases are generated from the original ESG-DT graph and called

test sequences. Test sequences are presented as CES and FCES. The proposed operators

mutate MTBDD, thereby change the resulting DT.

The evaluation performed on the three cases shows that the ESG-DT mutants

obtained after tnC application are always detected by both CES and FCES test

sequences. The tnO and tnI operators return ESG-DT mutants detectable only by CES

and FCES, respectively. On the contrary, mutants generated after the usage of edgeI and

edgeS operators are never distinguishable by both CES and FCES test sets. The reason

behind is that test sequences can reveal a mutant only at the ESG level of the ESG-DT.

Depending on the number of the incoming edges of MTBDD terminal node, the edgeO

and edgeC operators produce both distinguishable (only by CES) and indistinguishable

by both CESs and FCESs. For conclusion, the detection of mutated model depends on

the existence of the terminal node. That is why, tnI, tnO and tnC generated faulty

models are always distinguished.

One direction for future work would be to propose an enhanced test sequence for

detecting faults considered at the contract level of ESG-DT, as the existing test

sequences are insufficient for this purpose. Another future work would be to improve

the existing test sequence generation tool.

It is also noticed that the proposed mutation operators are unable to deal with the

pseudo events [and] of the DT augmented ESG. The reason behind of this is that the

contracts can be operated only with real events. The FCESs which start with [and

88

continue with the event which originally is not supposed to be one of the initial events,

are never triggered. One other future work could be dedicated to the exploration of this

phenomenon.

89

REFERENCES

(1) Budd, T. A.; Lipton, R. J.; DeMillo, R. A.; Sayward, F. G. Mutation Analysis.;

YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE, 1979.

(2) Murnane, T.; Reed, K. On the Effectiveness of Mutation Analysis as a Black Box

Testing Technique. In Proceedings 2001 Australian Software Engineering

Conference; 2001; pp 12–20. https://doi.org/10.1109/ASWEC.2001.948492.

(3) Tuglular, T.; Belli, F.; Linschulte, M. Input Contract Testing of Graphical User

Interfaces. Int. J. Softw. Eng. Knowl. Eng. 2016, 26 (02), 183–215.

https://doi.org/10.1142/S0218194016500091.

(4) Khalilov, A.; Tuglular, T.; Belli, F. Mutation Operators for Decision Table-Based

Contracts Used in Software Testing. In 2020 Turkish National Software

Engineering Symposium (UYMS); 2020; pp 1–6.

https://doi.org/10.1109/UYMS50627.2020.9247061.

(5) Yu-Seung Ma; Yong-Rae Kwon; Offutt, J. Inter-Class Mutation Operators for

Java. In 13th International Symposium on Software Reliability Engineering,

2002. Proceedings.; 2002; pp 352–363.

https://doi.org/10.1109/ISSRE.2002.1173287.

(6) Offutt, A. J.; Pan, J.; Tewary, K.; Zhang, T. An Experimental Evaluation of Data

Flow and Mutation Testing. Softw. Pract. Exp. 1996, 26 (2), 165–176.

https://doi.org/10.1002/(SICI)1097-024X(199602)26:2<165::AID-

SPE5>3.0.CO;2-K.

(7) Andrews, J. H.; Briand, L. C.; Labiche, Y.; Namin, A. S. Using Mutation

Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Trans.

Softw. Eng. 2006, 32 (8), 608–624. https://doi.org/10.1109/TSE.2006.83.

(8) Mutation Testing Approach to Negative Testing

https://www.hindawi.com/journals/je/2016/6589140/ (accessed 2020 -11 -04).

(9) Meyer, B. Applying “Design by Contract.” Computer 1992, 25 (10), 40–51.

https://doi.org/10.1109/2.161279.

(10) Jezequel, J.-M.; Deveaux, D.; Traon, Y. L. Reliable Objects: A Lightweight

Approach Applied to Java. In N O 4, July/August 2001; 2001; pp 76–83.

90

(11) Traon, Y. L.; Baudry, B.; Jezequel, J.-. Design by Contract to Improve Software

Vigilance. IEEE Trans. Softw. Eng. 2006, 32 (8), 571–586.

https://doi.org/10.1109/TSE.2006.79.

(12) Aichernig, B. K. Mutation Testing in the Refinement Calculus. Form. Asp.

Comput. 2003, 15 (2–3), 280–295. https://doi.org/10.1007/s00165-003-0011-8.

(13) Jiang, Y.; Xin, G.-M.; Shan, J.-H.; Zhang, L.; Xie, B.; Yang, F.-Q. Method of

Automated Test Data Generation for Web Service. 2005, 28, 568–577.

(14) Ying Jiang; Shan-Shan Hou; Jin-Hui Shan; Lu Zhang; Bing Xie. Contract-Based

Mutation for Testing Components. In 21st IEEE International Conference on

Software Maintenance (ICSM’05); 2005; pp 483–492.

https://doi.org/10.1109/ICSM.2005.36.

(15) Krenn, W.; Aichernig, B. Test Case Generation by Contract Mutation in Spec#.

Electron. Notes Theor. Comput. Sci. 2009, 253, 71–86.

https://doi.org/10.1016/j.entcs.2009.09.052.

(16) Fabbri, S. C. P. F.; Maldonado, J. C.; Masiero, P. C.; Delamaro, M. E.; Wong, E.

Mutation Testing Applied to Validate Specifications Based on Petri Nets. In

Formal Description Techniques VIII; Bochmann, G. v., Dssouli, R., Rafiq, O.,

Eds.; IFIP Advances in Information and Communication Technology; Springer

US: Boston, MA, 1996; pp 329–337. https://doi.org/10.1007/978-0-387-34945-

9_24.

(17) Ammann, P. E.; Black, P. E.; Majurski, W. Using Model Checking to Generate

Tests from Specifications. In Proceedings Second International Conference on

Formal Engineering Methods (Cat.No.98EX241); IEEE Comput. Soc: Brisbane,

Qld., Australia, 1998; pp 46–54. https://doi.org/10.1109/ICFEM.1998.730569.

(18) Do Rocio Senger De Souza, S.; Maldonado, J. C.; Fabbri, S. C. P. F.; Lopes de

Souza, W. Mutation Testing Applied to Estelle Specifications. In Proceedings of

the 33rd Annual Hawaii International Conference on System Sciences; IEEE

Comput. Soc: Maui, HI, USA, 2000; Vol. vol.1, p 10.

https://doi.org/10.1109/HICSS.2000.926973.

(19) Fabbri, S. C. P. F.; Maldonado, J. C.; Sugeta, T.; Masiero, P. C. Mutation Testing

Applied to Validate Specifications Based on Statecharts. In Proceedings 10th

International Symposium on Software Reliability Engineering (Cat.

No.PR00443); IEEE Comput. Soc: Boca Raton, FL, USA, 1999; pp 210–219.

https://doi.org/10.1109/ISSRE.1999.809326.

(20) Black, P. E.; Okun, V.; Yesha, Y. Mutation Operators for Specifications. In

Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated

Software Engineering; IEEE: Grenoble, France, 2000; pp 81–88.

https://doi.org/10.1109/ASE.2000.873653.

91

(21) Black, P. E.; Okun, V.; Yesha, Y. Mutation of Model Checker Specifications for

Test Generation and Evaluation. In Mutation Testing for the New Century; Wong,

W. E., Ed.; Springer US: Boston, MA, 2001; pp 14–20.

https://doi.org/10.1007/978-1-4757-5939-6_5.

(22) Sugeta, T.; Maldonado, J. C.; Wong, W. E. Mutation Testing Applied to Validate

SDL Specifications. In Testing of Communicating Systems; Groz, R., Hierons, R.

M., Eds.; Lecture Notes in Computer Science; Springer Berlin Heidelberg:

Berlin, Heidelberg, 2004; Vol. 2978, pp 193–208. https://doi.org/10.1007/978-3-

540-24704-3_13.

(23) Ling Liu; Huaikou Miao. Mutation Operators for Object-Z Specification. In 10th

IEEE International Conference on Engineering of Complex Computer Systems

(ICECCS’05); IEEE: Shanghai, China, 2005; pp 498–506.

https://doi.org/10.1109/ICECCS.2005.65.

(24) Belli, F.; Hollmann, A.; Wong, W. E. Towards Scalable Robustness Testing. In

2010 Fourth International Conference on Secure Software Integration and

Reliability Improvement; IEEE: Singapore, Singapore, 2010; pp 208–216.

https://doi.org/10.1109/SSIRI.2010.14.

(25) Belli, F.; Budnik, C. J.; Hollmann, A.; Tuglular, T.; Wong, W. E. Model-Based

Mutation Testing—Approach and Case Studies. Sci. Comput. Program. 2016,

120, 25–48. https://doi.org/10.1016/j.scico.2016.01.003.

(26) Belli, F.; Nissanke, N.; Budnik, C. J.; Mathur, A. Test Generation Using Event

Sequence Graphs. Softw. Eng. 2005, 52.

(27) Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Trans. Comput. 1986, C–35 (8), 677–691.

https://doi.org/10.1109/TC.1986.1676819.

(28) Tuglular, T.; Muftuoglu, A.; Belli, F.; Linschulte, M. Model-Based Contract

Testing of Graphical User Interfaces. IEICE Trans. Inf. Syst. 2015, E98-D (7),

1297–1305.

(29) Hermanns, H.; Meyer-Kayser, J.; Siegle, M. Multi Terminal Binary Decision

Diagrams to Represent and Analyse Continuous Time Markov Chains; 1999.

(30) DeMillo, R. A.; Lipton, R. J.; Sayward, F. G. Hints on Test Data Selection: Help

for the Practicing Programmer. Computer 1978, 11 (4), 34–41.

https://doi.org/10.1109/C-M.1978.218136.

92

(31) Behaviour and State Change Models II

https://personal.cis.strath.ac.uk/sotirios.terzis/classes/52.234_old/Behaviour%20a

nd%20State%20Change%20Models_B.htm (accessed 2021 -04 -06).

(32) On the Role of Test Sequence Length, Model Refinement, and Test Coverage for

Reliability; 2013.

