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ABSTRACT 

 

MUTATION ANALYSIS OF SPECIFICATION-BASED CONTRACTS 

IN SOFTWARE TESTING 

 

 Software used in fields such as medicine, finance, aviation and aerospace, 

nuclear power etc. is required to be reliable. Any software failures in these fields may 

have catastrophic consequences such as human and financial losses, which may cause a 

great damage to the economy and to social well-being. Hence, before launching, 

software should be rigorously tested. Testing can uncover the conditions, which 

software cannot handle. Those conditions might be overlooked during development. So, 

software testing points to the faults in the software under development to be patched. 

The important element of software testing is the use of the adequate test cases. If the 

outcome of the test case is positive, that means testing did not reveal any fault, then this 

test case might be considered as inefficient and useless for the tested version of 

software. Therefore, it is important to check test cases on adequacy, which can be 

achieved by mutation analysis. This thesis focuses on checking the adequacy of the test 

cases for Decision-Table-augmented Event Sequence Graphs (ESG-DTs) representation 

of a system under test by using mutation analysis. Test cases are represented in the 

Complete Event Sequence (CES) and Faulty CES (FCES) forms. This thesis presents a 

new set of mutation operators for mutation of contracts represented in Multi-Terminal 

Binary Decision Diagram (MTBDD). This thesis introduces a new approach for 

mutation of the ESG-DT model by using the proposed MTBDD mutation operators. The 

proposed approach is evaluated on three cases. The results for all cases show the 

drawback of specific FCES test sequences and the relationship between the mutant 

detection by CES/FCES sequences and proposed mutation operators. 
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ÖZET 

 

YAZILIM TESTİNDE SPESİFİKASYON TEMELLİ SÖZLEŞMELERİN 

MUTASYON ANALİZİ 

 

 Tıp, finans, havacılık ve uzay, nükleer enerji vb. alanlarda kullanılan yazılımlar 

güvenilir olması için gereklidir. Bu alanlardaki herhangi bir yazılım arızası, ekonomiye 

ve sosyal refahına büyük zarar verebilecek insan ve finansal kayıplar gibi feci sonuçlar 

doğurabilir. Bu nedenle, başlatmadan önce, yazılım titizlikle test edilmelidir. Test, 

yazılımın işleyemediği koşulları ortaya çıkarabilir. Bu koşullar gelişim sırasında göz 

ardı edilebilir. Bu nedenle, yazılım testi, geliştirilmekte olan yazılımdaki hataları 

düzeltmeye işaret eder. Yazılım testinin önemli bir unsuru, yeterli test durumlarının 

kullanılmasıdır. Test durumunun sonucu pozitifse, bu, testin herhangi bir arıza 

göstermediği anlamına gelir, daha sonra bu test durumu, test edilen yazılım sürümü için 

verimsiz ve işe yaramaz olarak kabul edilebilir. Bu nedenle, mutasyon analizi ile elde 

edilebilecek yeterlilik test durumlarını kontrol etmek önemlidir. Tez, mutasyon analizi 

kullanılarak test edilen bir sistemin Karar Tablosu ile artırılmış Olay Sıra Çizgeleri 

(OSÇ-KT'lar) gösterimi için test senaryolarının yeterliliğini kontrol etmeye odaklanır. 

Test durumları Tam Olay Sırası (TAS) ve Hatalı TAS (HTAS) formlarında temsil edilir. 

Bu tez, Sözleşme-Çok Uçlu İkili Karar Diyagramında (ÇTUIKD) temsil edilen 

sözleşmelerin mutasyonu için yeni bir mutasyon operatörleri seti sunar. Tez, önerilen 

ÇTUIKD mutasyon operatörlerini kullanarak OSÇ-KT modelinin mutasyon için yeni 

bir yaklaşım sunar. Değerlendirme bölümünde, sunulan mutasyon analizi algoritmasının 

uygulandığı üç durum sunulmaktadır. Tüm mutantlar için sonuçlar, spesifik HTAS test 

sıralarının dezavantajını ve TAS/HTAS sıraları tarafından mutant tespiti ile önerilen 

mutasyon operatörleri arasındaki ilişkiyi göstermektedir. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

The software development process includes not only the code writing, but also 

its testing. Testing is not only writing proper tests, but also preparing adequate test set to 

make sure that the software is ready for the next stage, or deployment. Even a well-

tested software does not guarantee that it will not crash in an unexpected situation. 

Therefore, test cases should not only make sure that the program is ready to fulfill its 

expectations, but also handle unexpected situations, e.g., handle incorrect input. The 

effectiveness of a test set can be checked by the technique called mutation analysis  1. 

The steps involved in mutation analysis are: 1) insertion of the different kinds of faults 

in the original program by means of mutation operators; 2) generating mutant 

programs; 3) finding distinguished mutants against the provided test set; 4) assessing 

the adequacy of the provided test set by dividing the number of the distinguished 

mutants to the total number of mutants. In its origin the mutation analysis is intended to 

be a code-based technique 1. Later, mutation analysis was adopted for specification-

based testing 2. As the specification of the system under test (SUT) can be provided in 

various forms, the mutated specifications permit to test different aspects/properties of 

the SUT.  

Mutating different specification representations demands the construction of 

corresponding mutation operators. As stated in the last step of mutation analysis, the 

adequacy is measured by the number of distinguished mutants. High adequacy mark 

describes the given test set as highly efficient one. 

This thesis is the continuation of the 3 and extends the ideas introduced in 4. The 

thesis investigates the adequacy of the test set generated from the original specification 

model by applying it on the mutants generated from the original specification model. 

The specification model is represented as Decision-Table-Augmented Event Sequence 

Graph (ESG-DT) 3. To perform mutation, the contract given as a DT is transformed to a 

multi-terminal binary decision diagram (MTBDD), then the mutation operators defined 
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on MTBDDs are applied to the MTBDD and finally the mutated MTBDD is 

transformed back to a DT, which becomes a mutated DT. This mutant model is tested 

by test set. The test set is represented as test sequences in two forms: CES and FCES. 

The CESs and FCESs are generated from the original model. The CES represents the 

expected behavior, which the specification should correspond, whereas FCES represents 

the faulty behavior which the specification should not correspond. The thesis proposes a 

new set of mutation operators for MTBDD mutation. The evaluation is performed on 

the ESG graph without the contract involvement. 

In this study, the quality of the CES and FCES test suites for ESG-DT model 

representation is assessed. Proposed mutation analysis approach is applied on the three 

cases. Considering the relation between the mutant detection properties of CES and 

FCES described in the discussion, one can say that the mutant will be detected if and 

only if (iff) there is a difference in the model behavior. According to the results, the 

impact of the mutation operators dealing directly with the terminal nodes of MTBDD is 

always noticeable by test sequences, because the mutated ESG-DT model will lose an 

edge and/or acquire a new one, i.e., difference in the model behavior. In case of 

MTBDD edge mutation, the impact is sometimes noticeable or non-noticeable at all. 

Another observation obtained from the results is the insensitivity of the certain FCESs 

to the mutants, of which reason is discussed in the Evaluation chapter. 

The thesis is constructed in the following way. The study starts with the 

literature review in CHAPTER 2. The following CHAPTER 3 describes the 

fundamental theory about ESG, ESG-DT, MTBDD, mutation analysis and mutation 

operators for ESGs and DTs. After the review of the thesis foundation, CHAPTER 4 

introduces new mutation operators for DT-augmented ESG mutation, and the algorithm 

used for implementation of mutation analysis.  CHAPTER 5 evaluates the application of 

the proposed algorithm and outcome of the proposed operators on three cases, namely 

CD player, Cruise Control, Simple Automated Teller Machine. The instruments used 

for the generation of mutants and test generation are described on CHAPTER 6. The 

last chapter concludes the thesis and provides further ways of improving and extending 

the work in this thesis. 
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CHAPTER 2  

 

 

RELATED WORK 

 

 

Testing software is an integral part of the software development cycle.  Testing 

is used for strengthening software, by considering different faults occurring during 

software exploitation. Therefore, testing is a resource and time-consuming procedure. 

For this case, mutation testing technique simplifies testing procedure. Mutation testing 

is originated as white-box/code-based testing technique. Mutation testing embraces 

different fault domains by inserting faults in the software. Fault insertion is done by 

mutation operators, which put changes in the source code of the software. After all 

mutants are tested with the prepared test set. Here, the aim of the test cases in a set is to 

fail the mutant, in other words killing or distinguishing mutants. The downside of 

mutation testing is the generation of the equivalent mutants, which any test set is 

incapable to distinguish from the original version of software. 

Unlike in code-based testing, the advantage of mutation analysis in black-box 

testing is that this process is fully automated and allows to reduce testing domain of 

system 2 so, that it allows to avoid equivalent mutant problem. The benefit of 

specification-based testing is that the system specifications are constructed in different 

representation forms.  

An integral part of mutation testing is the set of established mutation operators. 

Operators in mutation testing inject faults into the testing system. The injected faults 

represent the specific fault domain, which the corresponding mutation operator 

represents. As mutation analysis’s origin is a code-based testing technique the Yu-

Seung Ma et al. in 5 proposed the comprehensive set of mutation operators for class and 

inter-class mutations in Java language. The authors modified and extended already 

existed family of mutation operators by considering the faults, which may occur 

because of object-oriented principles, such as inheritance, polymorphism, and 

overloading. 

Offutt et al. in 6 shows two empirical comparisons between data flow and 

mutation testing. The aim is to find the powerful sides of both testing techniques or 
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derivation of a more efficient technique that offers the power of both mutation and data 

flow testing. Obtained results indicate that, despite of effectiveness of both techniques, 

mutation provides more stringent testing than data flow does, like mutation-adequate 

test sets detect more faults 6. 

Andrews et al. in 7 use mutation analysis to compare and estimate test suits and 

criteria in terms of their cost effectiveness. Research involved four common test 

coverage criteria as Block, Decision, C-Use and P-Use. Where the Block coverage tests 

the whole module from code by ensuring that each branch is executed at least once, 

Decision coverage is the validation of every of accessible source code by ensuring that 

each branch of all possible execution decision is triggered at least once. The P-Use and 

C-Use are categories of Usage criteria which examines all usages of variable, where c in 

C-Use stands for computational, inspects all usages of a variable as part of statement, as 

a function parameter and as output statement and p in P-Use is stands for predicate, 

inspects all usages of variable in decision making statements. Across the explored 

criteria the consistent results show that the reliability of mutation operators’ usage: 

generated mutants can be used to predict the detection effectiveness of real faults. The 

probability of detection faults given a test pool strongly affects the shape of relationship 

between fault detection, coverage levels, and test set sizes. 

Software testing is called positive when the software is tested on proper 

fulfillment of required tasks. The opposite of positive testing is the negative testing. The 

importance of negative testing helps to prevent failures by simply handling the 

erroneous states. Therefore, the demand in test cases supporting negative testing 

increases. Strug et al. targets the problem by providing a mutation testing-based method 

for generating negative test cases that can support an assessment of a system ability to 

handle a wide range of unexpected situations 8. The method is procedural, systematic, 

and human-unbiased way of defining the negative test cases without the necessity of 

any formal or informal description of unexpected situation. 

Meyer introduced Design by Contract (DbC) approach in 9, where the author 

introduces also the contract notion in software development. The contract represents a 

mutual responsibility between caller and called units, where both promise to fulfill their 

requirements. One of the main benefits of DbC approach is to help in detecting and 

locating faults 10. Traon et al. explores the efficiency of contract by adapting the 

mutation analysis 11. Mutation analysis is used as a systematic process for fault injection 

and the estimation of actual values for the isolated weakness of a component and error 
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detection probability 11. The mutations are done simple by injecting errors in the system. 

Afterwards, if contract is violated during the execution of a faulty system, this implies 

that the contract has detected an error 11. Efficiency is measured by checking the 

contracts’ efficiency on the mutants that are distinguished at least by one test case. 

Compared to traditional mutation operators defined by Aichernig in 12 and Jiang 

et al. in 13, operators proposed in 14 are high level contract mutation operators for testing 

components. Authors also propose a contract-based mutation, which should serve as a 

test adequacy criterion for component. The reason of creating high level operators is 

reducing the number of mutants. Indeed, the results given by proposed operators greatly 

reduce the mutant number in contrast to the traditional operators. Also, application of 

contract mutation operators in contract-based mutation provides the same ability as that 

of using traditional mutation operators. Another important discovery is that the test set 

selected by a contract based mutation can be reused during component regression 

testing 14. 

Another research of contract mutation presented in 15. Contracts are declared by 

Spec#, which is an extension for C# programming language. Unlike conventional 

mutation testing which mutates source code, the proposed 15 approach mutates program 

contracts and generate test-input data which distinguish the mutated contract from the 

original one. The test case generation is focused on reported counterexamples. The idea 

of approach is obtaining test cases which in turn prevent implementation of the 

“incorrect” contract. An inherent property of the approach is that equivalent mutants are 

ignored, meaning that no test cases are generated for them 15. 

The goals of mutation analysis as a black-box testing technique presented in 2 

are determining the ability of fault detection in programs and describing a class 

specifications, which would benefit from this kind of testing, checking on uniqueness of 

generated test cases and investigation of generated test sets sizes. Mutation is performed 

by substitution of language elements of semi-formal specifications for every other 

element. 

Fabri et al. perform the evaluation of mutation analysis criterion on Petri Nets-

based specification 16. As mutation analysis requires changes in original model, 

operators for Petri Nets mutations are presented. Mutation analysis criterion was 

performed manually on a test case. The mutant is considered as dead, if the mutant’s 

vector, which is the number of tokens in each place, was different than original model’s 

vector. To reduce testing expenses, authors examined the ideas of alternate mutation 
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criterions. In constrained mutation criterion a few types of mutants were examined. 

Randomly selected mutation required only 10% of mutants of each type were 

investigated. As a result, alternate mutation criteria provide great cost reduction in terms 

of test sequences and the mutant numbers. 

Ammann et al. uses mutation analysis in combination with model checker and 

test generation 17. Test cases are defined as a set of inputs and expected results, and this 

is emphasized as complete test case. Authors declared two classes of mutation 

operators: those that produce test cases from which a correct implementation must differ 

and those that produce test cases with which it must agree. By making syntactic errors 

at the level of the model checker specification, mutation operators define a form of 

mutation analysis. As a result, the advantages of matching model checker with mutation 

analysis were automatic test case generation and as opposed to code-based mutation 

analysis, equivalent mutant identification became also automatic. 

Do Rocio Senger et al. provides 18 the mutation testing receipt for the validation 

of Estelle specifications. A mutation operator set for Estelle are based on the ideas of 

Interface Mutation. Hence, mutation testing investigates not only validation of 

behavioral aspect of specification, but also the intermodular communication and 

specification structure of Estelle. A key point for successful mutation testing of Estelle 

specification was also the illustration of mutation strategy, validate activity by giving 

priority to specific types of errors. In Estelle domain, the establishment of an 

incremental testing strategy becomes feasible. 

 Fabbri et al. proposes 19 the fundamental mechanism for validation of Statechart-

based specifications by mutation testing. Considering specific features of Statechart-

based specifications, the corresponding mutation operators set for statechart mutation is 

proposed. In that scope, mutation operators are considered as a fault model. Strategies 

based on mutation, incremental and hierarchical testing strategies are provided to 

explore statechart components separately from different Statechart features, which can 

cause inaccuracy in validation and testing stages. 

 Black et al. provides 20 a theoretical and empirical comparison of the 

effectiveness of mutation operators and the number of mutations the produce by 

following the combination of mutation analysis with 17. In proposed method the 

specification-based coverage metric is used. According to the methodology, all but one 

copy of inconsistent mutants, which are semantic duplicates of other mutants are 

excluded. Mutants are distinguished by SMV model checker. The coverage is calculated 
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by k/N (the number of distinguished and inconsistent mutants, respectively). Among the 

extensive set of mutation operators only three of them demonstrated high coverage at 

the smaller number of generated mutants. 

With the goal to reduce the number of faults in the actual programs constructed 

from formal specifications, Wong investigates analytically the relationships between 

detection conditions for several fault classes and the compares empirically the 

effectiveness of the mutation operators 21. 

Sugeta et al. provides mutation testing mechanism for Specification and 

Description language (SDL) specifications 22. Based on the behavioral features of 

processes, inter-process commutation and specification structure a mutant operator set is 

defined, which model corresponding errors. For a proper usage of mutant operators on 

SDL specifications a testing strategy is proposed. The advantage of the proposed 

strategy is that, if during the application of strategy, the error is found, the specification 

should be corrected, and the strategy applied again.  

Liu et al. presents another specification fault investigation for Object-Z 

specifications 23. Authors present five classes of mutation operators, which provide not 

only an assessing of specification-based test cases, but also introduce an approach of 

validating the correctness of specifications. 

 Belli et al. in 24 introduces Decision-Table-augmented Event Sequence Graphs 

(ESG-DT). Although the work does not contain a mutation testing notion, it introduces 

first simple insertion and omission mutation operators for mutating ESGs and DTs. 

Operators generate simple mutants which represent simple faults. Hence, for complex 

mutants it is enough to use a combination of them. Authors introduce a test set 

generation algorithm from obtained mutants. 

Belli et al. first presents in 25 multiple simple mutation operators for mutation of 

model-based specifications. Models are represented as Directed Graphs (DG), ESG, 

Finite-State Machines (FSM), Statecharts (SC). All mutation operators are divided in 

insertion and omission categories for above listed graph-based models. The advantage 

these operators bring is in generation of first-order mutants which simulate simple 

faults. Another advantage of these operators is that they can be combined for simulation 

of complex faults. The main objective is to assess the fault detection ability of test cases 

generated from models mutated from proposed operators. Based on empirically 

obtained results, test sets generated by insertion operators are more effective in 

revealing faults than those generated by omission operators. 
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Khalilov et al. extends 4 a mutation operator set for specification-based 

contracts. Apart from existing DT mutation operators 24, authors introduce a brand new 

simple mutation operators for Ordered Binary Decision Diagram (OBDD). As OBDDs 

are limited in the number of terminal nodes this thesis extends OBDD by using Multi-

Terminal Binary Decision Diagram (MTBDD). 

In this thesis, a set of mutation operators for the contract mutation is proposed. 

The mutation operators are divided into two categories: insertion and omission. By 

using these operators, mutated models are generated by mutating contracts in the 

original model. Test cases are generated from the original model are of two types. Test 

cases of the first type called CES should not agree with the generated faulty model to 

detect it. Second type, called FCES should agree with the faulty model, in order to 

detect it, since both FCES and mutant are the faulty models. The mutants are tested at 

the level of ESG of the ESG-DT model. Therefore, considering the level of the model 

being tested and detection properties of the test cases, we can predict which mutants are 

detectable and which are living and equivalent ones. 
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CHAPTER 3  

 

 

FUNDAMENTALS 

 

 

3.1. Event Sequence Graph (ESG) 

 

 

Event sequence graph (ESG) is a representation of a model of the system which 

is used in modeling of system behavior 26. Modeling is performed simply by retrieving 

all possible legal and illegal actions, occurring during execution, of the system under 

consideration from its specifications and establishing all possible sequences between 

actions. Actions in ESGs are represented by events which occur in system and 

connections between events are called sequences. An event in ESG is considered as 

input or stimulus which’s execution causes firing of another event. This phenomena 

helps to predict the next event and control the flow of model execution 26.  

Definition 3.1: An event sequence graph ESG = (V, E, Ξ, Γ) is a directed graph 

where V ≠ Ø is a finite set of vertices (nodes), E ⊆ V x V is a finite set of arcs 

(edges), Ξ, Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ, and γ ∈ Γ, called 

entry nodes and exit nodes, respectively, wherein ∀v ∈ V there is at least one sequence 

of vertices 〈ξ,v0, . . . ,vk〉 from each ξ ∈ Ξ to vk = v and one sequence of vertices 〈v0, . . . 

,vk, γ〉 from v0 = v to each γ ∈ Γ with (vi,vi+1) ∈ E, for i = 0, . . . , k-1 and v ≠ ξ,γ 3. 

Ξ (ESG), Γ (ESG) represent the entry nodes and exit nodes of a given ESG, 

respectively 3. To mark the entry and exit of an ESG, all ξ ∈ Ξ are preceded by a pseudo 

vertex “[“ ∈ V and all γ ∈ Γ are followed by another pseudo vertex “]” ∉ V 3. The 

semantics of an ESG is as follows 3. Any v ∈ V represents an event. For two events, v, 

v’ ∈ V, the event v’ must be enabled after the execution of v iff (v, v’) ∈ E 3.  

Example 3.1: The ESG depicted in Fig. 3.1, V = {stop, play, pause, load, off},  

Ξ = {stop, play, load}, Γ = {off} and E = {(stop, stop), (stop, play), (stop, load), (play, 

play), (play, stop), (play, load), (play, pause), (pause, play), (stop, off), (play, off), (load, 
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off), (load, stop), (load, play), (load, load)}. As it can be seen none of sets listed above, 

contain pseudo vertices “[“ and “]”. 

 

 

 

Figure 3.1. ESG of CD player.  

 

 

Definition 3.2: Let V, E be defined as in Definition 3.1. Then any sequence of 

vertices 〈v0, . . . ,vk〉 is called an event sequence (ES) iff (vi, vi+1) ∈ E, for i=0, . . ., k-1 3. 

Definition 3.3: In order to detect entry event and exit event of an ES α (initial) 

and ω (end) are used, i.e., α(ES) = v0, ω(ES) = vk. The successors set of ∀v ∈ V is 

denoted by N+(v) and the predecessor set of ∀v ∈ V is denoted by N-(v). The number of 

vertices of an ES is determined by the function l(length). If l(ES) = 1 then ES = < vi > is 

an ES of length (1). Each edge of ESG or an ES = <vi, vk> of length two (2) represent 

an event pair (EP). 

Example 3.2: The length of stop – play – pause ES shown in Fig. 3.1. is 3. 

Definition 3.4: An ES is called a complete ES (CES), if  α(ES) = ξ ∈ Ξ is the 

entry and ω(ES) = γ ∈ Γ is the exit 3. 

Example 3.3: The CES of ESG shown in Fig. 3.1. is stop – load – off. This is 

one of the ways of walking from the start of ESG to its finish. 

ESG test cases are represented as CES, the latter is presented in the following 

form: “(initial) user input(s) → (interim) system responses → … → (final) system 

response” 3. 
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3.2. Decision-Table-Augmented Event Sequence Graph (ESG-DT) 

 

 

3.2.1. Decision Table (DT) 

 

 

Decision Table (DT) is a popular tool in information processing and widely used 

in software testing. DT is a combination of possible inputs and corresponding system 

responses. DT logically connects conditions (“if”) with actions (“then”). In scope of this 

thesis, we consider DT simple, i.e., conditions can accept only T (true) and F (false).  

 

Definition 3.4: DT is a tabular  representation of  DT = (C, A, R) triple 3. Where 

C ≠ Ø and C = {c1, . . ., cn} is a finite set of conditions, A ≠ Ø and A = {a1, . . ., am} is a 

finite set of actions and R ≠ Ø and R = {r1, . . ., rk} is a finite set of rules, each of 

which invoke certain actions depending on a predefined combination of conditions 

3. 

 

Definition 3.5: Let R be as declared in Definition 3.4. Then, based on the 

number of conditions defined for current DT, the maximum number of rules in DT 

will be 2|C| = 2n 3. DT with |R| = 2n are called complete DT.  

If |R| > 2n, then the DT is inconsistent and should be reconstructed 3. 

 

Definition 3.6: Let R be defined as in Definition 3.4. Then, ∀r ∈ R can be 

defined as r = (Ctrue, Cfalse, Am), where Ctrue ⊆ C is the set of conditions that should be 

true. Cfalse ⊆ C is the set of conditions that should be false 3. Am ⊆ A is the set of actions 

that should be performed if all t ∈ Ctrue are resolved to true and all f ∈ Cfalse are resolved 

to false 3. Under regular circumstances: Ctrue ∪ Cfalse = C and Ctrue ∩ Cfalse  = Ø 3. In case 

if condition is not considered in certain situations it simply denoted as ‘-’ (don’t care) in 

rule 3. Based on the number of ‘-’ in rule it can simply be calculated the real number of 

rules of DT by the following way: Let u < |C| be the number of ‘-’ in r ∈ R, then the 

number of rules substituted by ‘-’ is 2u 3. 

 



 

12 

 

Example 3.4:  DT depicted on Table 3.1 is the simple complete DT. C = 

{offButtonPressed, isClosed, CDpresent, lastTrackPlayed} is condition set, A = {play, 

stop, load, off} is action set and R = {R1, R2, R3, R4, R5} is a rule set.  

For R5 = ({offButtonPressed|F}, {isClosed|T, CDPresent|T, lastTrackPlayed|T}, 

{stop}) according to R = (Cfalse, Ctrue, Ax) and r ∈ R.  

For ClastTrackPlayed = ‘-’ in R3 the real number of rules is 21 = 2. Therefore, R3 can 

be substituted DT = (C, A, (R\R3) ∪ {R3.1, R3.2}), where R3.1 = ({offButtonPressed|F, 

CDpresent|F}, {isClosed|T, lastTrackPlayed|T}, {stop}) and R3.2 = 

({offButtonPressed|F, CDpresent|F}, {isClosed|T, lastTrackPlayed|T}, {stop}). Now, 

the real number of rules in DT “stop” will be 23 for R1, 2
2 for R2, 2

1 for R3 => 23 + 22 + 

21 + 1 + 1 = 16. And the maximum possible number of rules according to the |R| = 2|C| = 

24 = 16. Hence, DT “stop” is a complete DT. 

  

Table 3.1. “stop” DT. 

stop 
Rules 

R1 R2 R3 R4 R5 

C
o

n
d

it
io

n
s offButtonPressed T F F F F 

isClosed - F T T T 

CDpresent - - F T T 

lastTrackPlayed - - - F T 

A
ct

io
n

s 

play       X   

stop     X   X 

load   X       

off X         

 

 

3.2.2. DT as ESG Extension 

 

 

According to Definition 3.5 the combination of conditions results in 2|C|, where 

|C| represents the number of conditions. Each combination of conditions would have to 

be modeled as vertex and is to be connected with appropriate successor 3. Thus a DT 

with n binary conditions subsumes 2n nodes to realize a thorough evaluation considering 

all combinations 3. To avoid this inflation, DT are introduced to refine a node of the 

ESG, whereas the successors of refined node represent the actions of the DT and vice 

versa 3.  



 

13 

 

 

Definition 3.7: An event v ∈ V of an ESG is called a data event (DE) if v is 

represented by a DT. A DE is represented as a DT, which is a contract. In turn, contracts 

are combined with events of ESG. 

 

Example 3.5: Fig. 3.2 clearly demonstrates how the “stop” DT (Table 3.1) is 

represented by double circling the event “stop” of ESG depicted in Fig. 3.1. Actions 

“play”, “stop”, “load” and “off” indicate the corresponding play, stop, load and off 

events. For instance, rule R4 says that if both offButtonPressed and lastTrackPlayed are 

resolved to false and both isClosed and CDpresent are resolved to true, then “play” 

action will be triggered and apparently the play will be executed, because it is one of the 

successors of the current event stop.  

 

 

Figure 3.2. DT augmented ESG. 

 

 

3.3. Multi-Terminal Binary Decision Diagram (MTBDD) 

 

  

DT represent a set of Conditions which take unique combination of boolean 

values True and False. The unique condition combination triggers a set of certain 

Actions. Therefore, DT has a Rule set, where each rule represents an execution of the 

certain action set called under satisfaction of the given condition set. 
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Table 3.2. An Example Decision Table. 

Example DT 
Rules 

R1 R2 R3 R4 

C
o

n
d

it
io

n
s 

C1 F F T T 

C2 F T F T 

A
ct

io
n

s A1 F T T F 

A2 T F T T 

 

 

The R1 in DT on Table 3.2, in propositional logic is represented in the following 

form: 

 

R1: = (¬C1 ∧ ¬C2) ∧ (¬A1 ∧ A2)                                 (3.1) 

 

where R1 is read in the following way: R1 holds iff when the conjunction of conditions 

(¬C1 ∧ ¬C2) and actions (¬A1 ∧ A2) is satisfiable only if both C1 and C2 values are 

resolved to False and action A1 is resolved to False and action A2 is resolved to True. 

As the rest of the rules is readable in the following way as R1, the propositional 

logic of DT is represented as the disjunction of Rules: 

 

DT: = R1 ∨ R2 ∨ R3 ∨ R4                                                             (3.2) 

 

which is read: The DT is valid iff one of the given rules is satisfiable.  

DT represented on Table II, can be expanded followingly: 

 

DT: = (¬C1 ∧ ¬C2 ∧ ¬A1 ∧ A2) ∨ (¬C1 ∧ C2 ∧ A1 ∧ ¬A2) 

 ∨ (C1 ∧ ¬C2 ∧ A1 ∧ A2) ∨ (C1 ∧ C2 ∧ ¬A1 ∧ A2)              (3.3) 

 

The disadvantage of the DT is that it has fixed size and depending on its size 

(the number of conditions and actions) the disjunctive normal form (DNF) of DT 

becomes hardly readable and is takes a lot of time to process. Instead of comprehending 

whole DNF of DT, it is reasonable to read DT in Shannon Normal Form (SNF), which 

is represented using IF-THEN-ELSE operator: 
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x => y | g                                                      (3.4) 

 

is read: IF x THEN y ELSE g. 

SNF is successfully implemented by Binary Decision Diagrams (BDD), 

introduced by Bryant in 27. BDD is a directed acyclic graph data structure representing a 

boolean function. Also, BDD requires a strict variable ordering, and its leaf nodes are 

False and True. Figure 3.3 shows a BDD graph, where child nodes do not point on their 

parent nodes, thus the BDD is acyclic, i.e., no cycles in a graph. Due to acyclicity, 

BDDs are depicted without arrows on the end of the edges. 

 

 

Figure 3.3. Binary Decision Diagram. 

 

Definition 3.7: Let D be a finite set and Var be a finite set of Boolean variables 

equipped with a total ordering < ⸦ Var x Var 28. A multi terminal binary decision 

diagram (MTBDD) over (Var, <) is a rooted acyclic directed graph with vertex set V 

and the following labelling: Each terminal vertex v is labeled by an element of D, 

denoted by value(v) 28. Each non-terminal vertex v is labelled by a variable var(v) ∈ Var 

and has two children then(v), else(v) ∈ V 28. In addition the labelling of the non-terminal 

vertices by variables respect the given ordering <, i.e. var(then(v)) > var(v) < 

var(else(v)) for all non-terminal vertices v 28. 

The edge from v to then(v) represents the case where var(v) is true; conversely 

the edge from v to else(v) the case where var(v) is false 28. 

Multi-Terminal Binary Decision Diagram (MTBDD), so called algebraic 

decision diagrams, extend Binary Decision Diagram (BDD) such that they can represent 

functions of an arbitrary range, while their domain is still a multidimensional Boolean 

space 29.  
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Definition 3.7: Let D be a finite set and Var be a finite set of Boolean variables 

equipped with a total ordering < ⸦ Var x Var 28. A multi terminal binary decision 

diagram (MTBDD) over (Var, <) is a rooted acyclic directed graph with vertex set V 

and the following labelling: Each terminal vertex v is labeled by an element of D, 

denoted by value(v) 28. Each non-terminal vertex v is labelled by a variable var(v) ∈ Var 

and has two children then(v), else(v) ∈ V 28. In addition the labelling of the non-terminal 

vertices by variables respect the given ordering <, i.e. var(then(v)) > var(v) < 

var(else(v)) for all non-terminal vertices v 28. 

The edge from v to then(v) represents the case where var(v) is true; conversely 

the edge from v to else(v) the case where var(v) is false 28. 

Example 3.6: Fig. 3.3. shows an ordinary multi-terminal binary decision 

diagram, where a root vertex is represented by ‘A’ node, its low and high children 

represented by ‘B’ labeled nodes and a set of terminal nodes D = {‘T0’, ‘T1’, ‘T2’}. 

According to Definition 3.7, this MTBDD is read by following the expression 

var(then(v)) > var(v) < else(var(v)):  

1) for ‘A’: var(A) = A; then(A) = B (high);  

else(A) = B (low) => B(high) > A < B(low). 

2) for ‘B(low)’: var(B(low)) = B(low); then(B(low)) = T0(high);  

else(B(low)) = T0(low) => T0(high) > B(low) < T0(low). 

3) for ‘B (high)’: var(B(high)) = B(high);  

then(B(high)) = T2; else(B(high)) = T1 => T2 > B(high) < T1. 

Generally, the ordering of the structure is: var(A) < var(B) < var(D), where D is the set 

of the terminal nodes (see Definition 3.7). 

 

 

Figure 3.4. Multi-Terminal Binary Decision Diagram 
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The MTBDD on Figure 3.4 in SNF: MTBDD: = (A => (B => T2 | T1) | (B => T0 | T0)). 

 

Definition 3.8: A MTBDD M is called reduced iff 

1) for each non-terminal vertex v the two children are distinct, i.e. 

then(v) ≠ else(v) 28. Each terminal vertex v has a distinct value(v) 28. 

2) for all vertices v, v’ with the same labeling, if the subgraphs with root 

v and v’ respectively are isomorphic (i.e. coincide up to the names of 

the services) then v = v’ 28. Formally, if var(v) = var(v’) and else(v) = 

else(v’) and then(v) = then(v’), then v = v’ 28. 

Reduced MTBDDs effectively represent DTs as a graph, which is used to 

generate test cases in the presented approach 28.   

Example 3.7: According to the Definition 3.8, MTBDD depicted on Fig. 3.4 is a 

reduced representation of the Fig. 3.3 MTBDD. None of the non-terminal nodes have 

the same descendants. Terminal node T0 appears only once, unlike the T0 which occurs 

twice in Fig. 3.3 MTBDD. Another moment is the absence of the B (low) non-terminal 

node. This is explained by its uselessness, because both of its test cases are pointing to 

the same expected value T0. As the result, reduced MTBDD (rMTBDD) preserves the 

logic and properties embedded in Fig. 3.3 MTBDD, at the same time Fig. 3.4 rMTBDD 

requires the smaller number of test cases for its full coverage. 

 

 

Figure 3.5. Reduced MTBDD. 

 

The MTBDD on Figure 3.5 in SNF: MTBDD: = (A => (B => T2 | T1) | T0). 
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According to the definition 9 given by Meyer claims that the mutual obligation 

between caller and callee modules of software is called the contract. As DT represents a 

contract in ESG event, thereby making that event data event, the MTBDD representing 

a contract DT should also bear responsibility of contract. It means, that the event 

containing incoming edge from the current DE can be triggered iff the path starting 

from the non-terminal root node of MTBDD leading till the terminal node representing 

the next event is satisfied. 

  In the scope of this thesis, MTBDD is the graph representation of the contract 

DT in a data event of ESG. Reducing MTBDD causes the loss of conditions after 

conversion it back into DT. This thesis considers that the final DT can differ from the 

initial DT, only after the usage of mutation operators proposed in the Chapter 4.4. 

Another reason is that mutation operators of insertion type are unable to insert an edge 

or terminal node in a reduced MTBDD, therefore reducing operation cannot be applied 

before mutation. Hereby, we introduce the following assumption: 

Assumption of MTBDD reduction: It is assumed that MTBDDs are not 

necessarily reduced. 

 

 

3.4. Mutation Analysis 

 

 

The purpose of the software testing is to find faults, for further elimination. For 

this purpose, a tester needs efficient test cases. The test case which is unable to detect 

fault is useless for testing. DT augmented ESG test cases are generated from the model 

itself. It means that the constructed ESG-DT is not necessarily correct. To test ESG-DT, 

it is important to have test cases which can bring out the model vulnerabilities. 

Therefore, we need to assess the efficiency of the generated test set. For this purpose, 

the Mutation Analysis is the key technique. 

DeMillo et. al. in 30 first proposed the idea of mutation analysis and Budd et. al. 

gave an extensible explanation for it 1. Originally it was intended as a white-box 

technique. The aim of mutation analysis is a generation of program’s slight variations 

and killing them with test sets. It is said that if one test case kills all mutants then the 
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rest of test cases in a set are considered as effective as a killer test case. By means of 

mutation analysis the effectiveness of a test set is assessed.  

Consider P as an original program, L ≠ Ø as a set of mutation operators, U ≠ Ø 

as a set of mutants, T ≠ Ø as a set of test sets, a mutant generator function Ф(P, L), a 

testing function Q(U, t ∈ T). Then, the application of the mutation analysis requires the 

execution of the following steps: 

1) U = Ф (P, L). Generate mutant, by inserting slight deviations in P by means 

of mutation operator L.  

2) Q (U, t ∈ T). Fail all u ∈ U.  

If none of the t ∈T can distinguish a behavior of a u ∈ U from P, then that m is 

considered as a living mutant or in worst case as equivalent mutant. The equivalency 

phenomena of u ∈ U to the P, arouses when there is no such T the t ∈ T can detect 

faulty version of P. Such mutants are detected manually. 

In black box-based testing mutation analysis is applied on the program’s 

specifications. In the scope of this thesis, the specification of program P is 

represented as a model M using ESG. 

 

 

3.5. Mutation Operators 

 

 

The purpose of the test set is being able to recognize faults in the given model. 

For this purpose, mutation analysis intentionally inserts different known faults in the 

model, thereby generates faulty models. After that faulty models are tested with the test 

cases in the test set. If the result of the original model tested with defined test cases is 

the same as the result of the faulty model, then the test set is not able to detect the fault 

in the faulty model. Otherwise, test set is useful because it can detect the specific 

inserted fault and can be used for the further testing of software. The model is the initial 

representation of the system under test. For test case qualification, the faulty models are 

generated from the original model. The faulty model in mutation analysis is called a 

mutant. The faulty model is generated by insertion of the specific fault in the original 

model, which is done by means of mutation operators. Mutation operators are 
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instruments representing the specific fault domain. The concise version of the given 

terms: 

To generate mutants from model M, the set of mutation operators L is required. 

Mutation operator l (l ∈ L) changes the structure of M by generating a mutant u (u ∈ U). 

Mutation operators imitate the faults which may occur in P. Therefore, they are 

categorized by fault classes. The following group of mutation operators are used in this 

work.  

 

 

3.5.1. ESG Mutation Operators 

 

 

ESG is a graph representation of the system model and the test cases for testing 

ESG are generated from the model itself. Therefore, we must assess the quality of the 

generated test set. This sub-chapter revises the existing mutation operators for ESG 

mutation. 

As ESG consists of events and sequences, there is a necessity to imitate the possible 

faults in ESG. Belli et. al. in 25 proposed the set of mutation operators for ESG 

mutation, where any changes in ESG results in change of whole model ESG = (V, E, Ξ , 

Γ) -> ESG* = (V*, E*, Ξ*, Γ*). 

1) eI -> event insertion operator, v ∉ V. This results in Ф(ESG, eI), where V* = 

V ∪ {v} 25. 

2) e0 -> event omission operator, v ∈ V. This results in Ф(ESG, eO), where V* 

= V\{v} 25. 

3) sI -> sequence insertion, inserts sequence which is not presented in ESG 25. 

4) sO -> sequence omission, omits sequence which is presented in ESG 25. 

5) eC -> event corruption operator, substitutes an existing event with a new 

one. Performed by combination of {eO, eI} 25. 

6) sC -> sequence corruption operator, substitutes an existing sequence with a 

new one. Performed by combination of {sO, sI} 25. 

 

 

 



 

21 

 

 

 

3.5.2. DT Mutation Operators 

 

 

As DT consist of sets (C, A, R), the following are the mutation operators 

proposed in 24: 

1) aI -> action insertion, inserts a new action a ∉ A => DT = (C, A ∪ {a}, R) 

24. 

2) a0 -> action omission, omits an existing action a ∈ A => DT = (C, A\{a}, R) 

24. 

3) aC -> action corruption, substitutes an existing action with a new one. DT = 

(C, A\{a} ∪ a’, R) 24. 

4) cI -> condition insertion, inserts a new condition c ∉ C => DT = (C ∪ {c}, 

A, R) 24. 

5) c0 -> condition omission, omits an existing condition c ∈ C => DT = (C\{c}, 

A, R) 24. 

6) cC -> condition corruption, substitutes an existing condition with a new one. 

DT = (C\{c} ∪ c’, A, R) 24. 

7) rI -> rule insertion, inserts a new rule r ∉ R => DT = (C, A, R ∪ {r}) 24. 

8) r0 -> rule omission, omits an existing rule r ∈ R => DT = (C, A, R\{r}) 24. 

9) rC -> rule corruption, substitutes an existing rule with a new one. DT = (C, 

A, R\{r} ∪ r’) 24. 
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CHAPTER 4  

 

 

CONTRACT-BASED MUTATION OPERATORS FOR 

DECISION-TABLE-AUGMENTED EVENT SEQUENCE 

GRAPH 

 

 

4.1. MTBDD-based Mutation Operators for ESG-DT 

 

 

Apart from ESG and DT mutation operators described in the sections 3.5.1 and 

3.5.2 respectively, this thesis proposes new mutation operators for MTBDDs. In 

Chapter 3.3, the term MTBDD, which is a contract representation of MTBDD, is 

defined. Khalilov et. al. introduced the mutation operators for Ordered Binary Decision 

Diagrams (OBDD) in 4. The OBDD is the a BDD with a strict variable ordering 27. 

Therefore, it also implements the SNF. This thesis uses the mutation operators 4 for 

MTBDD mutation and proposes a set of new operators. The idea of MTBDD mutation 

remains the same, i.e., executional part consists of two and more terminal nodes and 

they are attached to the non-terminal nodes same as in OBDD by incoming edges. 

According to the 4, node omissions of OBDD can be applied at the terminal and 

non-terminal levels and they will produce different results. Since the thesis concentrates 

on the mutation of ESG-DT, the main interest in MTBDD are terminal nodes, because 

they represent the corresponding events in the model. The present thesis concentrates on 

omission of the terminal node in MTBDD by tnO operator, which in turn produces new 

DT without corresponding action. This operation produces a new ESG-DT without edge 

from the current DE to the event represented by the omitted action. Meanwhile, 4 claims 

that the insertion of the terminal node is possible only if the corresponding non-terminal 

node at the level adjacent to the terminal has zero or one child. Otherwise, it becomes 

impossible to insert a terminal node, because the maximum number of outgoing edges 

of non-terminal nodes in OBDD is two, therefore, due to the limitation of the number of 
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children a third child addition is an invalid operation. Since the MTBDD is an extension 

of the OBDD, terminal node insertion takes place due to tnI mutation operator. 

Since MTBDD is a graph, manipulations can be performed not only on its nodes 

(vertices), but also on its edges (arcs). This is inspired by 25, where graph-based 

structures such as DG, FSM, SC and ESG have been changed by removing or adding 

not only theirs vertices (nodes), but also arcs (edges). Hence, thesis introduces edgeI 

and edgeO operators for MTBDD edge related mutations, which are semantically equal 

to arc, sequence and transition mutation operators in 25.  

Both can be applied on any MTBDD edge, but we focus on terminal nodes’ 

incoming edges, because edits on edges at the higher levels will drastically change the 

resulting contract. edgeO operator removes one edge between non-terminal and terminal 

nodes. This change will reduce the rule number of the final DT by one rule. In case if a 

terminal node is attached to non-terminal only by one edge (has one incoming edge), 

edgeO will totally disconnect it from MTBDD structure. Consequently, the finite DT 

will lack not only one rule, but also one action. The opposite to edgeO, edgeI creates 

one new connection between existing terminal and non-terminal nodes. The DT 

obtained afterwards, acquires one new rule, with a corresponding enabled action. The 

restriction imposed on usage of edgeI is the same as for the tnI. Again, in MTBDD non-

terminal nodes have limitations on the number of children nodes, which cannot exceed 

two. Consequently, those non-terminal nodes which have one child or have not got any, 

can end the path passing through it by the edgeI application. 

The representation of MTBDD diminishes the size of MTBDD structure and 

decreases the required test set size for it. The drawback of reducing MTBDD is the 

impossibility of tnI and edgeI usage. The terminal node corruption (tnC) and edge 

corruption (edgeC) mutation operators fix this disadvantage. The essence of corruption 

mutation operators is in replacement of the existing parts of MTBDD structure. The 

edgeC allows to replace existing edge with a new one, simply by removing it with 

edgeO and using edgeI operator. The edgeC can redirect existing edge to the different 

terminal node. Mutation operator tnC replaces the existing terminal node with a new 

terminal node, by preserving all incoming edges of the previous terminal node for a new 

node. The edge switcher (edgeS) mutation operator switches the outgoing edges of the 

non-terminal node by involving the application of edgeC operator twice for each edge. 

First, it removes both outgoing edges, then descendant nodes get the opposite valued 
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edges. This is explained by the inability of the edgeC’s single usage for inverting the 

edge value, because non-terminal nodes cannot have equal values outgoing edges. 

Reducing of MTBDDs leads to the omission of the redundant nodes. The 

subsequent DT after this operation may have decreased number of conditions, although 

the mutations are performed on terminal nodes, not on non-terminal ones. 

A summary on the MTBDD mutation operators is given below: 

1) tnI (nodeI) -> terminal node insertion operator. Inserts a new terminal node in 

MTBDD by connecting it with a new edge 4. Consider newTNode as a new 

terminal node and NTNode as an existing non-terminal node, then tnI(MTBDD, 

newTNode, NTNode) => MTBDD* = (C ∪ (A ∪ {newTNode}), E ∪ {NTNode, 

newTNode}). Fig. 4.1 represents MTBDD and Fig. 4.2 *MTBDD after being 

mutated by tnI.  

 

 

Figure 4.1. MTBDD before the tnI application. 

 

 

Figure 4.2. MTBDD* after the application of tnI. 
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2) tnO (nodeO) -> terminal node omission operator. Omits an existing terminal node 

from MTBDD and subsequently all of its incoming edges 4. Consider TNode as a 

terminal node being removed and its incoming edge set Er, which is Er ∈ E, then 

tnO(MTBDD, TNode) => MTBDD* = (C ∪ (A \ {TNode}), E \ Er). Fig.4.3 

represents the original MTBDD before being mutated by tnO and the mutated 

*MTBDD is depicted on Fig.4.4. 

 

 

Figure 4.3. MTBDD before the tnO application. 

 

 

Figure 4.4. MTBDD* after the application of tnO. 
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3) tnC -> terminal node corruption. Replaces the existing terminal node with a new 

one, by preserving all incoming edges of the old node for the new node. Consider 

TNodeOld and TNodeNew as old and new terminal nodes, respectively. Then 

tnC(MTBDD, TNodeOld, TNodeNew) => MTBDD* = (C ∪ A\{TNodeOld} ∪ 

{TNodeNew}, E). *MTBDD shown on Fig.4.6 is a mutant derived after mutation 

of Fig.4.5. MTBDD by tnC. 

 

 

Figure 4.5. MTBDD before the tnC application. 

 

 

Figure 4.6. MTBDD* after the application of tnC. 

 

4) edgeI -> edge insertion. Inserts a new edge, by connecting an existing terminal 

node to the non-terminal node. Consider NTNode as an existing non-terminal 
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node which has only one descendant and TNode as an existing terminal node. 

edgeI(MTBDD, NTNode, TNode) => MTBDD* = (C ∪ A, E ∪ {NTNode, 

TNode}). The edgeI operator explicitly demonstrates the result of edge insertion 

to the original MTBDD on Fig.4.7. and as a result, obtaining mutant depicted on 

Fig.4.8. 

 

Figure 4.7. MTBDD before the edgeI application. 

 

 

Figure 4.8. MTBDD* after the application of edgeI. 

 

5) edgeO -> edge omission. Omits an existing incoming edge of a certain terminal 

node, may cause in total disconnection of a terminal node from MTBDD. 
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Consider NTNode as an existing non-terminal node and TNode as an existing 

terminal node. edgeO(MTBDD, NTNode, TNode) => MTBDD* = (C ∪ A, E \ 

{NTNode, TNode}). The result of the edge removal by edgeO is shown clearly on 

Fig.4.10. 

 

Figure 4.9. MTBDD before the edgeO application. 

 

 

Figure 4.10. MTBDD* after the application of edgeO. 

 

6) edgeC -> edge corruption. Redirects an existing outgoing edge of a certain non-

terminal node from one terminal node to another one. The edge corruption 

operator involves the execution of edgeO and edgeI. Consider TNode1 and 

TNode2 as terminal nodes and NTNode as nonterminal node, where TNode1 has 

2 incoming edges. If apply edgeC on the {NTNode, TNode1} edge and redirect it 
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to the TNode2, the resulting MTBDD: edgeC(MTBDD, NTNode, TNode1, 

TNode2) => MTBDD* = (C ∪ A, E \ {NTNode, TNode1} ∪ {NTNode, 

TNode2}), for redirecting. The Fig. 4.11 shows the outcome (Fig.4.12) of the 

edgeC operator application on the structure on Fig.4.11.  

 

Figure 4.11. Case 1: MTBDD before the edgeC application. 

 

 

Figure 4.12. Case 1: MTBDD* after the application of edgeC. 

 

In case if TNode1 has only one incoming edge then edgeC in redirecting 

operation will totally disconnect TNode1 from reduced MTBDD structure.  

edgeC(MTBDD, NTNode, TNode1, TNode2) =>  MTBDD* = (C ∪ 
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A\{TNode1}, E \ {NTNode, TNode1} ∪ {NTNode, TNode2}). This case is 

explicitly shown on Fig.4.13 and the result on Fig.14. 

 

 

Figure 4.13. Case 2: MTBDD before the edgeC application.  

 

 

Figure 4.14. Case 2: MTBDD* after the application of edgeC. 

 

7) edgeS -> edge switcher. Switches the outgoing edges of the existing non-terminal 

node, so that its descendants get the inverted valued edges. This operation 

involves the application of two edgeC operators. edgeS(MTBDD, NTNode, 

TNode1, TNode2) =>  MTBDD* = (C ∪ A, E \ {{NTNode, TNode1}, {NTNode, 
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TNode2}} ∪ {!{NTNode, TNode1}, !{NTNode, TNode2}}). The result of edgeS 

mutation operator usage is represented on Fig.4.16.  

 

 

Figure 4.15. MTBDD before the edgeS application. 

 

 

Figure 4.16. MTBDD* after the application of edgeS. 

 

 

From the above-mentioned formulations of proposed MTBDD mutation 

operators, the need in operators’ categorization arises. As mutation operators intend to 

change the original specifications either slightly or considerably, we place operators 

into two groups: Simple Mutation and Composed Mutation: 
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Definition 4.1: Simple Mutation group operators aim to modify MTBDD by 

either removing or adding one component (edge or terminal node) once per mutation. 

Definition 4.2: Composed Mutation group operators will rearrange MTBDD 

component or components. This action involves the application of two mutation 

operators at least one time from Simple Mutation group. 

 

 

Table 4.1. Composition of mutation operators. 

 

Mutation 

Operators 

Simple 

Mutation 

Composed 

Mutation 

tnI +  

tnO +  

tnC  + 

edgeI +  

edgeO +  

edgeC  + 

edgeS  + 

 

 

Based on the Definitions 4.1 and 4.2, the Table 4.1 clearly separates these two 

categories. The simple mutation operator set is {tnI, tnO, edgeO, edgeI} and {tnC, 

edgeC, edgeS} are elements of the composed mutation operators set. As tnI (Fig. 4.17), 

edgeI (Fig. 4.18) just insert corresponding components per mutation and tnO (Fig. 

4.19), edgeO (Fig. 4.20) omit corresponding components without involvement of any 

other operation, hence they belong to Simple Mutation group. On the other hand, tnC 

and edgeC involve corresponding insertion and omission operators by replacing 

corresponding components. The tnC operator first removes the corrupted terminal node 

by means of tnO, then engages tnI to insert a “fresh” terminal node, which is a new 

expected result. Fig. 4.21 and Fig. 4.22 clearly explicitly shows steps of tnC and edgeC 

execution corresponding ESGs. Finally, the edgeS operator targets on switching 

outgoing edges of nonterminal node, where at least one edge attaches the terminal node. 

This operation involves performing of two edgeI and two edgeO operators. Initially, 

edges are removed by two edgeO operators, then inserted into opposite positions by the 

execution of edgeI operators. This process is shown on Fig. 4.23 by ESG of edgeS. 
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Figure 4.17. ESG of tnI operator. 

 

 
 

Figure 4.18. ESG of edgeI operator. 

 

 
 

Figure 4.19. ESG of tnO operator. 

 

 
 

Figure 4.20. ESG of edgeO operator. 

 

 
 

Figure 4.21. ESG of tnC operator. 

 

 
 

Figure 4.22. ESG of edgeC operator. 
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Figure 4.23. ESG of edgeS operator. 

 

 

4.2. Mutant Generation 
 

 

As the research field of this thesis is DT-augmented ESGs, all mutations are 

performed on the level of data events (DEs), i.e., Event with DT (EwDT). Considering 

that DT in ESG represents a refined event, based on input values passed to it, triggers 

next predefined successor, DT and MTBDD mutation operators provided in 3.5.2 and 

4.1.1, respectively, provide a more accurate way of managing the sequence flow. 

To get a mutated ESG, by mutating event with DT it is necessary to aim on  

1) complete removal of any notion of the action in all rules which leads to the 

omission of the corresponding sequence in ESG. 

2) complementing DT action set with a new action which should be activated in 

at least one, possibly new, rule, which leads to the new sequence in ESG. 

3) application in strict sequence of the ways 1, 2 to change the direction of 

sequence, also leads to the creation of the new ESG. 

Meanwhile, obtaining a new ESG, by mutating event with MTBDD it is enough 

to perform: 

1) completely detach a terminal node from MTBDD, which is responsible for 

certain sequence. Hence, this operation effects on existence of certain 

sequence in ESG. This can be achieved by either removal of the terminal 

node’s only incoming edge or complete omission of the terminal node. 
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2) insert, if possible, a new terminal node into MTBDD, which creates a new 

sequence in ESG. 

Here it can be concluded that, the sequences of ESG depends on connectivity of the 

terminal nodes to the MTBDD. 

As thesis relies on simple mutations, i.e., one mutation applied by one mutation 

operator at a time, the DT based event mutation may not always produce a new ESG, 

different from an original one. This can be explained by cases such that application of 

rO operator not necessarily completely disables an action in DT or aI always requires rI 

operator. MTBDD mutation, on the other hand, can provide simple mutation by 

insertion of action element without requiring another MTBDD mutation operator. 

Therefore, MTBDD is considered as an extension for DT mutations.  

To start mutating MTBDD based event is it important to convert MTBDD into 

DT and after mutation convert it back into DT. By using a DT mutation operator and 

newly proposed MTBDD mutation operators research offers an algorithm for generation 

of faulty models. 

The aim of mutation analysis is measuring the ability of fault detection of the 

test cases. Test cases in DT augmented ESG are represented as CES. To generate new 

CESs from mutants of DT augmented ESG, the generation of a faulty models are 

required. Considering ∆ as a DT and MTBDD mutation operators set, where ∆ = {rI, 

rO, tnI, tnO, edgeI, edgeO}, DT augmented ESG as an original model M, MM as a 

mutated model set, which is MM = {MM1, MM2, …, MMk}, test cases generated from 

M as T = {CES1, CES2, …, CESn} and MM based test set as MT = {CES*1, …, 

CES*m}, the algorithm 1 describes thoroughly a method of mutant generation and 

subsequently the test case generation. 

 

Algorithm 1. 

Input: M: = DT augmented ESG. 

Output: The quality of the generated CES and FCES. 

1.BEGIN 

 2. Generate CESs and FCESs from M. 

 3. FOREACH DE in M. 

  4. Convert DE into MTBDD 

  5. FOREACH MTBDD mutation operator from ∆ set 

  6. BEGIN 
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(cont. on next page) 

   7. MM = ∆MTBDD(M); 

  8. END 

 9. END 

 10. FOREACH MM* in MM 

  11. FOREACH CES* in CES test set 

   12. BEGIN 

    13. If MM* fails CES* 

14. Test passed. 

   15. END 

  16. FOREACH FCES* in FCES test set 

   17. BEGIN 

    18. If MM* passes FCES* 

     19. Test passed 

   20. END 

21. END 

 

 Example for mutant generation: ESG-DT on Fig. 4.24, consists of events a, b, 

c, and d, where only event a is a data event, i.e., has a DT. 

  

 

 
 

Figure 4.24. Dummy ESG. 

 

 

A DT in the event a is shown on Table 4.2, consists of two rules, two conditions 

and two actions representing corresponding events in ESG-DT on Fig. 4.24. The 

corresponding MTBDD of Table 4.2 DT is depicted on Fig. 4.25. 

 

 

Table 4.2. DT “a” of event a. 

 

DT a 
Rules 

R1 R2 
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Table 4.2 (cont.) 

 

C
o
n
d
it

io
n
 C1 F T 

C2 T F 

A
ct

io
n

 

b X  

d  X 

 

 

 

 
 

Figure 4.25. MTBDD contract representation in “a” DE. 

 

 

 According to Algorithm 1, the event which has a contract is picked for the 

further mutation. Therefore, the DT on Table III, which is contract in the event a is used 

for the further mutation process. Before mutation starts, it should be transformed into 

MTBDD (Fig. 4.25), on which the proposed in Chapter 4.1 mutation operators are 

applied only once. For example, here tnI operator is applied on Fig. 4.25. MTBDD adds 

c node, which represents event c. The result of application is on Fig. 4.26. Table 4.3 DT 

is obtained from transformation of MTBDD into DT form. 

 

 

 
 

Figure 4.26. Mutated MTBDD of contract in DE “a”. 
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Table 4.3. Mutated “a” DT. 

 

DT a 
Rules 

R1 R2 R3 

C
o
n
d
it

io
n
 

C1 F T F 

C2 T F F 

A
ct

io
n

 b X     

d   X   

c     X 

 

 

The final ESG-DT will look as it is depicted on Fig. 4.27: 

 

 
 

Figure 4.27. Final ESG-DT mutant. 

 

 

Figure 4.28 shows same mutant as in Fig. 4.27 but shows the changes which 

took place after mutation of MTBDD. The change is represented by the dashed edge, 

outgoing from event a to event c. Further changes in ESG-DT models are represented 

by dashed and dotted lines, which represent inserted and omitted edges, respectively. 

 

 
 

Figure 4.28. Changes of the resulting final ESG-DT mutant. 

 

 

Algorithm 1 is the extended and modified version of the “Algorithm 2. K-

Robustness testing process” from 24. Like its predecessor, Algorithm 1 also involves 

mutation operators for model mutation and generates test cases represented in CES and 
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FCES forms from the obtained mutants. The modification includes the enlarged list of 

mutation operators for seeding faults into MTBDD and additional mutation of the ESG-

DT by converting DT in DE into MTBDD. 

 

 

4.3. Equivalent Mutants 
 

 

As the side effect of mutation testing is equivalent mutants, which cannot be 

distinguished by any test set, we have chosen certain mutation operators based on 

assumption given in Chapter 4.2. As the manipulations with sequences are performed 

on DE level, we claim that the mutations performed in following cases will always 

produce non-equivalent mutants: 

1) If action in DT is active only in one rule, then omission of that rule 

completely removes the corresponding sequence in DT augmented ESG. 

2) If terminal node in MTBDD has only one incoming edge, then omission of 

that edge will completely remove action and corresponding rule from DT 

and as consequence whole sequence from DT augmented ESG. 

3) The omission of terminal node in MTBDD will also remove all its incoming 

edges and in resulting DT corresponding action with all corresponding rules 

will disappear. As a result, it leads to the omission of respective sequence. 

4) The insertion of a new terminal node in MTBDD will add a new edge and a 

final DT will have a new action and a new corresponding rule. Finally, DT 

augmented ESG will have one new sequence. 
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CHAPTER 5  

  

 

EVALUATION 

 

 

This chapter provides an evaluation of ESG-DT mutation analysis for the newly 

developed mutation operators in this thesis on three cases, namely CD player, Cruise 

Control, and Simple Automated Teller Machine (ATM). Initially, each of these cases 

has its original model, which is consistent with the corresponding original system. The 

models of these systems are represented as DT augmented ESGs. As mutant generation 

being the main part of mutation analysis, this thesis involves the application of the 

proposed MTBDD operators along with the proposed DT mutation operators. The 

instruction for obtaining mutants and generating test sequences from them are described 

in Algorithm 1. 

 

It is necessary to note the following representations on ESG-DT mutants:  

• The omitted edges in ESG-DT mutants are represented as dotted arrows 

 .  

• The inserted edges in ESG-DT mutants are represented as dashed arrows 

. 

 

 

5.1. CD Player 
 

 

5.1.1. CD Player ESG-DT Model 
 

 

The ESG-DT model of CD player 31 is presented as the first case. Fig. 5.1 model 

contains five nodes, where stop, play, load are events with DT and nodes pause and off 

are simple nodes without contracts inside.  
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Figure 5.1. CD Player ESG-DT. 

 

 

 Table 5.1 shows the “stop” event DT, which corresponds to the stop node of 

ESG-DT in Fig. 5.1. For instance, it indicates that, if the first condition 

“offButtonPressed” is resolved to be true, then, no matter of what the value of the other 

conditions will be, the off action will be triggered. Therefore, in ESG-DT model, the 

next possible event is certainly the off event. The “load” event DT in Table 5.2 

represents the load event of ESG-DT in Fig. 5.1. 

 

Table 5.1. The original “stop” DT.  

 

stop 
Rules 

R0 R1 R2 R3 R4 

C
o

n
d

it
io

n
s offButtonPressed T F F F F 

isClosed - F T T T 

Cdpresent - - F T T 

lastTrackPlayed - - - F T 

A
ct

io
n

s 

play       X   

stop     X   X 

load   X       

off X         

 

 

 
 

Figure 5.2. MTBDD of the original “stop” DT. 
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Table 5.2. The original “load” DT. 

 

load 
Rules 

R0 R1 R2 R3 R4 

C
o

n
d

it
io

n
s offButtonPressed T F F F F 

isClosed - F T T T 

CDpresent - - F T T 

lastTrackPlayed - - - F T 

A
ct

io
n

s 

play       X   

stop     X   X 

load   X       

off X         

 

 

 
 

Figure 5.3. MTBDD of the original “load” DT. 

 

 

Table 5.3. The original “play” DT. 

 

play 
Rules 

R0 R1 R2 R3 R4 R5 

C
o

n
d

it
io

n
s 

offButtonPressed T F F F F F 

isClosed - F T T T T 

CDpresent - - F T T T 

lastTrackPlayed - - - F F T 

pauseButtonPressed - - - F T - 

A
ct

io
n

s 

play       X     

pause         X   

stop     X     X 

load   X         

off X           
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Figure 5.4. MTBDD of the original “play” DT. 

 

 

The test sequences are generated from the original ESG of the CD player. As the 

model is in the ESG form, the corresponding test sequences will be in the form CES and 

FCES. The tool Test Suite Designer (TSD) 3, 32 generates test sequences from the ESG 

in Fig. 5.1 without taking DTs into consideration. This may be considered as generating 

test sequences with respect to branch coverage from source code, although condition 

coverage is possible but costly. TSD provides four CESs consisting of 20 events (given 

in Table 5.4) and twelve FCESs consisting of 30 events (given in Table 5.5). 

 

 

Table 5.4. CESs of CD Player ESG-DT. 

 

5 nodes CES: [, play, play, pause, play, off, ] 

5 nodes CES: [, stop, load, stop, stop, off, ] 

3 nodes CES: [, load, load, off, ] 

7 nodes CES: [, play, stop, play, load, play, pause, off, ] 
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Table 5.5. FCESs of CD Player ESG-DT. 

 

2 nodes FCES: [, stop, pause, 

3 nodes FCES: [, play, pause, stop, 

3 nodes FCES: [, play, pause, pause, 

3 nodes FCES: [, play, pause, load, 

2 nodes FCES: [, load, pause, 

3 nodes FCES: [, play, off, stop, 

3 nodes FCES: [, play, off, play, 

3 nodes FCES: [, play, off, pause, 

3 nodes FCES: [, play, off, load, 

3 nodes FCES: [, play, off, off, 

1 nodes FCES: [, pause, 

1 nodes FCES: [, off, 

 

 

5.1.2. CD Player Mutation Analysis 
 

 

According to the Algorithm 1, the mutation process starts by traversing all 

events containing DTs. In case of CD player, they are stop, play, and load, which means 

that operations will be performed on these nodes. To show how changes in DT 

influence on the resulting ESG-DT we apply decision table mutation operators. In 

thesis, only rI and rO operators are involved for DT mutation. 

 

 

Table 5.6. “stop” DT after the application of rO. 

 

Stop 
Rules 

R0 R1 R2 R3 

C
o

n
d

it
io

n
s offButtonPressed T F F F 

isClosed - F T T 

Cdpresent - - F T 

lastTrackPlayed - - - F 

A
ct

io
n

s 

play       X 

stop     X   

load   X     

off X       
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Table 5.7. “load” DT after the application of rO 

 

load 
Rules 

R0 R1 R2 R4 

C
o

n
d

it
io

n
s 

offButtonPressed T F F F 

isClosed - F T T 

CDpresent - - F T 

lastTrackPlayed - - - T 

A
ct

io
n

s 

play         

stop     X X 

load   X     

off X       

 

 

Although the fourth rule has been omitted in Table 5.6 DT, all actions are 

working in the remained rule, therefore, the resulting graph (Fig. 5.5) is not changed. In 

case of Table 5.7. DT, the rule R3 is omitted, where the action play was working, action 

play became inactive. Therefore, the resulting Fig. 5.6 ESG-DT does not have the edge 

from “load” to “play” event. 

 

 
 

Figure 5.5. The mutant ESG-DT obtained after the application of rO on “stop” DT (note 

that it is equivalent to the original ESG layer). 

 

 

 
 

Figure 5.6. The mutant ESG-DT derived after the application of rO on “load” DT. 
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The application of the rO on the R4 rule of Table 5.3 DT leads to the DT in 

Table 5.8, which generated the mutated ESG in Fig. 5.7, with the omitted edge from 

play to pause. 

 

Table 5.8. “play” DT after the application of rO. 

 

play 
Rules 

R0 R1 R2 R3 R5 
C

o
n

d
it

io
n

s 
offButtonPressed T F F F F 

isClosed - F T T T 

CDpresent - - F T T 

lastTrackPlayed - - - F T 

pauseButtonPressed - - - F - 

A
ct

io
n

s 

play       X   

pause           

stop     X   X 

load   X       

off X         

 

 

 

 

 
 

Figure 5.7. The ESG-DT mutant obtained after the application of rO on the “play” DT. 

 

 

Mutant ESGs generated by DT mutation are shown above. Now, we convert the 

original DTs into MTBDD form and generate mutant ESGs using MTBDD mutation 

operators proposed in this thesis. The Fig. 5.4 represents MTBDD of the DT in Table 

5.3. Here, the transformed contracts (from DT to MTBDD) are mutated by newly 

proposed mutation operators. This step embraces the application of all MTBDD 

mutation operators. The obtained mutated MTBDDs are converted back into DT 

representation form so that the effect of mutation can be reflected on the ESG. 
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Figure 5.8. “play” MTBDD after the application of the tnO. 

 

 

Table 5.9. “play” DT the application of tnO on the “play” MTBDD. 

 

play 
Rules 

R0 R1 R2 R3 

C
o

n
d

it
io

n
s 

offButtonPressed F F F T 

isClosed T T F - 

Cdpresent T T - - 

lastTrackPlayed F F - - 

pauseButtonPressed F T - - 

A
ct

io
n

s 

play X    

pause 
 X   

load 
  X  

off 
   X 
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As there is no rule with active “stop” action in the Table 5.9 DT, the edge going 

from event play to event stop must be omitted and the model on Fig. 5.1 becomes ESG-

DT on Fig. 5.9. 

 

 

 
 

Figure 5.9. “CD Player” ESG-DT after the tnO usage. 

  

 

As the FCESs of the original model are considered to be faulty models 26, FCES 

is said to be efficient if it is able to distinguish the mutant by matching to it. Matching 

means that FCES exists as a part of an existing path in an ESG. 

According to the ESG mutation testing, the generated mutant is tested with 

CESs. A CES distinguishes a mutant only if the CES does not match to the mutant, 

which means that there is at least one difference between the CES and the event 

sequence of the mutant. If a given ESG does not contain same event sequences as a 

given CES, then the CES is not sensitive enough to recognize ESG as mutant. If none of 

the CESs in the test set can distinguish the mutant, then this test set is said to be not 

sensitive enough or ineffective. For instance, the mutant shown in Fig. 5.9 fails the [, 

play, stop, play, load, play, pause, off, ] CES. At the same time, FCES test set cannot 

distinguish this mutant from the original, because the mutant shows the same behavior 

during testing as the original graph.  

 The edgeO mutation operator transforms the original MTBDD in Fig. 5.4 into 

the one in Fig. 5.10. 
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Table 5.10. “play” DT the application of edgeO on the “play” MTBDD. 

 

play 
Rules 

R0 R2 R3 R4 R5 

C
o

n
d

it
io

n
s 

offButtonPressed T F F F F 

isClosed - T T T T 

CDpresent - F T T T 

lastTrackPlayed - - F F T 

pauseButtonPressed - - F T - 
A

ct
io

n
s 

play     X     

pause       X   

stop   X     X 

off X         

 

 

 
 

Figure 5.10. “play” MTBDD after the application of the edgeO. 

 

The DT presented in Table 5.10 have not got the load action, therefore, it 

considers the original model on Fig.1 without the edge between play and load events, as 

shown on Fig.5.11: 

 

 
 

Figure 5.11. “CD Player” ESG-DT after the edgeO usage. 
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 The mutant on Fig. 5.11 has omitted edge from event play to load. This 

happened due to application of edgeO mutation operator on MTBDD on Fig. 5.4, which 

results in Fig. 5.10. The corresponding ESG-DT mutant is distinguished only by [, play, 

stop, play, load, play, pause, off, ] CES of original model. This is the same test 

sequence from the same test set applied on the mutated model in Fig. 5.9. FCESs also 

cannot distinguish the graph of the mutant ESG-DT from the original. 

 As the eC operator redirects the edge from one terminal node to another, the 

resulting mutated “play” DT and MTBDD are 

 

 

Table 5.11. “play” DT the application of edgeC on the “play” MTBDD. 

 

play 
Rules 

R0 R1 R2 R3 R4 R5 

C
o

n
d

it
io

n
s offButtonPressed T F F F F F 

isClosed - F T T T T 

CDpresent - - F T T T 

lastTrackPlayed - - - F F T 

pauseButtonPressed - - - F T - 

A
ct

io
n

s play       X     

stop     X     X 

load   X         

off X       X   

 

 

 

 
 

Figure 5.12. “play” MTBDD after the application of the edgeC. 
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The edgeC redirects the edge from pause to off and the resulting DT loses the 

pause action and the edge from event play to pause also is removed. The mutant on Fig. 

5.13 is distinguished from the original model by CESs [, play, play, pause, play, off, ] 

and [, play, stop, play, load, play, pause, off, ]. FCES could not eliminate the mutated 

model on the Fig. 5.13, because the event sequences do not match.  

 

 

 
 

Figure 5.13. “CD Player” ESG-DT after the edgeC usage. 

 

 

The MTBDD on Fig. 5.14 is the result of tnC application on Fig 5.2: 

 

 

 
 

Figure 5.14. “stop” MTBDD after the application of tnC. 
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Table 5.12. “stop” DT the application of tnC on the “stop” MTBDD. 

 

stop 
Rules 

R0 R1 R2 R3 R4 

C
o

n
d

it
io

n
s 

offButtonPressed T F F F F 

isClosed - F T T T 

CDpresent - - F T T 

lastTrackPlayed - - - F T 

A
ct

io
n

s 

pause       X   

stop     X   X 

load   X       

off X         

 

 

The resulting ESG-DT on Fig.5.15, made from usage of tnC operator on Fig. 5.2 

MTBDD, acquired a new edge stop -> pause (dashed arrow) and lost stop -> play. For 

Fig. 5.15, only the CES [, play, stop, play, load, play, pause, off, ] kills mutated ESG-

DT. In case of FCES set, only [, stop, pause, FCES test sequence is covered. 

 

 

 
 

Figure 5.15. “CD Player” ESG-DT after the tnC usage. 

 

 

The edgeS operator influence on Fig. 5.4 MTBDD is depicted on Fig. 5.17, 

which shows inversed outgoing edges going from lastTrackPlayed non-terminal node to 

stop and pauseButtonPressed nodes: 
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Figure 5.16. “play” MTBDD after the application of edgeS. 

 

 

 

Table 5.13. “play” DT the application  

of edgeS on the “play” MTBDD. 

 

play 
Rules 

R0 R1 R2 R3 R4 R5 

C
o

n
d

it
io

n
s 

offButton 

Pressed 
T F F F F F 

isClosed - F T T T T 

CDpresent - - F T T T 

lastTrack 

Played 
- - - T T F 

pauseButton 

Pressed 
- - - F T - 

A
ct

io
n

s 

play       X     

pause         X   

stop     X     X 

load   X         

off X           
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The resulting ESG in Fig. 5.17, generated by using edgeS mutation operator, has 

not changed at all. This mutant’s graph is equivalent to the original graph. 

 

 

 
 

Figure 5.17. “CD Player” after the edgeS usage. 

 

 

By applying tnO, tnC, edgeO, edgeC and edgeS MTBDD mutation operators on 

MTBDDs obtained from DT in Fig.5.1. ESG, we generated 46 mutated ESG-DTs. The 

Table 5.14 provides the number of ESG-DT mutants per mutation operator.  

 

 

Table 5.14. The number of mutants per operator for “CDplayer” ESG-DT. 

 

edgeC edgeI edgeO edgeS tnC tnI tnO 

6 NA 16 3 8 NA 13 

 

 

According to the Algorithm 1, we must test these mutants via test sequences 

generated from the original model, represented in Tables 5.4 and 5.5. A mutant is 

distinguished when at least one CES can distinguish a mutant iff there is no sequence in 

mutant that can match a sequence of CES. In case of FCES, a mutant is distinguished 

when at least one FCES matches the mutant, because FCES is a faulty model of the 

original ESG-DT.  

The Table 5.15 shows the number of mutants per operator, for each original 

MTBDD: 
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Table 5.15. The number of mutants of all original MTBDDs. 

 

ESG-

DT 

mutants 

edgeC edgeI edgeO edgeS tnC tnI tnO Total 

play 2 NA 6 1 NA NA 5 14 

stop 2 NA 5 1 4 NA 4 16 

load 2 NA 5 1 4 NA 4 16 

 

 

In total, 16 ESG-DT mutants were obtained after mutating the play MTBDD by 

the listed operators. For the mutation of the play MTBDD on Fig. 5.4 only edgeC, 

edgeO, edgeS and tnO operators are used. The application of the edgeI and tnI operators 

is impossible because all non-terminal nodes already have both descendant nodes. The 

application of tnC is not reasonable in the event play, since it already has outgoing 

edges with all existing nodes. Four out of six ESG-DT mutants derived from edgeO are 

detected by the CESs in the first and fourth rows in Table 5.4. However, the FCESs are 

not able to distinguish any mutants. CES in the first row of Table 5.4 distinguishes only 

one edgeC derived mutant, when the other mutants pass all CESs. But both mutants fail 

all FCESs, therefore are not distinguished. Same first and fourth CESs detects tnO 

derived mutants and none of the FCESs can distinguish them. In case of edgeS obtained 

ESG-DT mutant test sequences in neither CES and nor FCES test sets can see mutant in 

it. 

In total, 16 ESG-DT mutants were obtained after mutating the stop MTBDD by 

the listed operators. The stop MTBDD in Fig. 5.2 is mutated by edgeC, edgeO, edgeS, 

tnC and tnO. The edgeI and tnI operator usage is unreasonable, as all non-terminal 

nodes already have both descendant nodes. The mutants generated by tnC were detected 

by test sequences from both CESs and FCESs, where the test sequences of the second 

and fourth rows in Table 5.4. and the first FCES in Table 5.5 were able to kill them. 

However, edgeS generated an undetectable mutant. The fourth CES could detect half of 

the mutants generated by edgeC, another half was not distinguished and none of the 

FCESs could say that they are mutants. Three out five of edgeO and all tnO generated 

mutants were detected by the second and the fourth CES test sequences, but FCES test 

set was not able to distinguish mutants in them. 

Totally 16 ESG-DT mutated models are generated by mutating “load” MTBDD. 

ESG-DT mutants are obtained from mutation of the “load” MTBDD (Fig. 5.3) by 

involving edgeC, edgeO, edgeS, tnC and tnO operators. Simple insertions operators are 
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not used, because all non-terminal nodes already have both descendants, therefore 

insertion of the new edge or terminal node becomes impossible. Mutated ESG-DT 

obtained with tnC operator are detected by both CESs in the second, third and fourth 

rows of Table 5.4 and the fifth FCES. The mutants obtained by the rest of the operators 

are not distinguished with FCES test set. Test cases two, three and four in Table 5.4 can 

distinguish faulty models constructed with tnO operator. CESs three and four could 

detect three out of five edgeO made mutants, whereas only the fourth CES could find 

half of mutants created with edgeC operator. The edgeS made faulty ESG-DT went 

unnoticed. 

The results are presented in Table 5.16: 

 

 

Table 5.16. Test results 

 

Operator CES FCES 

tnO 13 mutants are distinguished No mutant is distinguished 

tnC 8 mutants are distinguished 8 mutants are distinguished 

edgeO 10 mutants are distinguished No mutant is distinguished 

edgeC 3 mutants are distinguished No mutant is distinguished 

edgeS No mutant is distinguished No mutant is distinguished 

 

 

According to the results provided in Table 5.16, the mutants obtained after tnC 

usage are distinguished by both CESs and FCESs from the original model. On the 

contrary, the graphs of the edgeS derived mutants are completely identical to the graphs 

of the original model, as the result are not distinguished from behavior of the original 

ESG. Mutants derived from tnO, edgeO and edgeC are detected only by CESs. 

Every mutant is distinguished only once by a certain CES. It means that mutants 

are not distinguished by two and more different FCESs Table 5.18 shows the number of 

detected mutants per mutation operator. It also shows the number of undetected mutants 

by certain FCES and the number of undetected mutants per mutation operator. 
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Table 5.17. CES detected number of mutants per mutation operator. 

 

CES 

ID 
CES tnO tnC edgeO edgeC edgeS 

Number of 

undetected 

mutants 

1 
[, play, play, 

pause, play, off, ] 
2 0 2 1  0 41 

2 
[, stop, load, stop, 

stop, off, ] 
4 4 2 0 0 36 

3 [, load, load, off, ] 2 2 2  0 0 40 

4 

[, play, stop, play, 

load, play, pause, 

off, ] 

5 2 4 2 0 33 

- 

Undetected 

mutant number 

per operator 

0 0 6 3 3 - 

 

 

 Every mutant is distinguished only once by certain FCES. It means that mutants 

are not distinguished by two and more different FCESs. Table 5.18 shows the number 

of detected mutants per mutation operator. It also shows the number of undetected 

mutants by certain FCES and the number of undetected mutants per mutation operator. 

 

 

Table 5.18. FCES detected number of mutants per mutation operator. 

 

FCES 

ID 
FCES tnO tnC edgeO edgeC edgeS 

Number of 

undetected 

mutants 

1 [, stop, pause, 0 4 0 0 0 42 

5 [, load, pause, 0 4 0 0 0 42 

- 

Undetected 

mutant number 

per operator 

13 0 16 6 3 - 

 

 

The mutation score is calculated by the following formula: 

 

                   (5.1) 
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Mutation score of all CESs and FCESs, that distinguished at least one mutant is 

presented on Table 5.19. 

 

 

Table 5.19. CD Player ESG-DT test sequences mutation score. 

 

CES ID Score FCES ID Score 

1 ≈10,87 % 1 ≈ 9.52 % 

2 ≈21,74 % 5 ≈ 9.52 % 

3 ≈13,04 % - - 

4 ≈28,26 % - - 

 

 

5.2. Cruise Control 
 

 

 Cruise Control’s specification is taken from 17. Originally it is represented as 

transition table, which in turn is transformed into DT augmented ESG. Each mode is 

represented by events in ESG-DT and all inputs are used in corresponding DE in DTs. 

In total Cruise Control ESG-DT consists of four off, inactive, cruise, override. 

 

 

 
 

Figure 5.18. Cruise Control ESG-DT.  

 

 

For Cruise Control ESG-DT, one CES (Table 5.20) and nine FCESs (Table 

5.21) are generated, consisting of 18 and 22 events, respectively. 
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Table 5.20. CES of the Cruise Control ESG-DT. 

 

CES 
[, off, off, inactive, off, inactive, cruise, inactive, cruise, off, inactive, 

cruise, override, cruise, override, inactive, cruise, override, off, ] 

 

 

Table 5.21. FCESs of the Cruise Control ESG-DT. 

 

2 [, off, cruise,  

2 [, off, override,  

3 [, off, inactive, inactive,  

3 [, off, inactive, override,  

4 [, off, inactive, cruise, cruise,  

5 [, off, inactive, cruise, override, override,  

1 [, inactive,  

1 [, cruise,  

1 [, override,  

 

 

Table 5.22. The original “off” DT. 

 

off 
Rules 

R0 R1 

C
o

n
d

it
io

n
s 

Ignited T F 

A
ct

io
n

s inactive X   

off   X 

 

 

 
 

Figure 5.19. MTBDD of the original “off” DT. 
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For “off” MTBDD on Fig.5.19 edgeO, edgeS, tnC and tnO mutation operators 

are used. As it has only one non-terminal node with two outgoing edges the usage of 

edgeI and tnI operators is impossible and using edgeC also becomes pointless, because 

same child node for one non-terminal operator is considered as a redundant test. In total, 

seven ESG-DT mutants are derived by mutating “off” MTBDD. The Table 5.23 shows 

the number of mutants per operator: 

 

 

Table 5.23. The number of Cruise Control mutants of all original MTBDDs. 

 

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO 

off NA NA 2 1 2 NA 2 

inactive 1 1 2 1 4 2 2 

cruise 3 3 3 NA 3 1 3 

override 3 1 3 1 3 1 3 

 

 

The ESG-DT mutants derived from edgeO, are distinguished by CES, but 

FCESs are not able to distinguishe them. edgeS derived mutant is not distinguished by 

neither CES nor FCESs. The ESG-DTs derived by tnC are distinguished by failing CES 

and passing FCESs in the first and second rows in Table 5.21. Finally, testing of tnO 

derived mutant shows same result as for edgeO. 

 

 

Table 5.24. The original “inactive” DT. 

 

inactive 

Rules 

R0 R1 

C
o

n
d

it
in

s Ignited F T 

EngRun - F 

A
ct

io
n

s off X   

cruise   X 
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Figure 5.20. MTBDD of the original “inactive” DT. 

 

 

The “inactive” MTBDD on Fig.5.20 is mutated by means of all presented 

operators. In total, 13 ESG-DT mutants are derived by mutating “inactive” MTBDD. 

The ESG-DT mutants derived by using edgeC, edgeO, and tnO are distinguished by 

CES by not passing test, meanwhile none of the FCESs are able to match them. On the 

contrary, mutants made by tnI are not distinguished by CES, but they are distinguished 

by the FCESs in the third and fourth rows of Table 5.21. The mutants generated by 

edgeI and edgeS operators are not distinguishable by both CES and FCES test set. 

Finally, tnC operator generates mutants which are distinguished by both CES and 

FCESs in the third and fourth rows of Table 5.21. 

 

 

Table 5.25. The original “cruise” DT. 

 

cruise 
Rules 

R0 R1 R2 

C
o

n
d

it
io

n
s 

Ignited F T T 

EngRun - F T 

TooFast - T F 

Brake - - T 

Deactivate - - T 

A
ct

io
n

s off X     

inactive   X   

override     X 
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(cont. on next page) 

 
 

Figure 5.21.  MTBDD of the original “cruise” DT. 

 

 

Mutation of “cruise” MTBDD is done by all introduced MTBDD operators, 

except edgeS. The reason is the single outgoing edges connecting terminal nodes with 

corresponding non-terminal nodes. In total, 16 ESG-DT mutants are derived by 

mutating “cruise” MTBDD. Mutants obtained by means of edgeC, edgeO and tnO are 

detected similarly, with sole CES, by not passing it and are not distinguished at all by 

any test in a FCES set. The behavior of tnI derived mutant shows opposite result: 

despite of model being changed, the CES cannot distinguish the mutant, but FCES in 

the fifth row of the Table 5.21 is able to distinguish it. The tnC-based mutant is 

distinguished by both CES and FCES in fifth row of the Table 5.21. In the end, edgeI 

created mutant is not distinguished by any test sequence. 

 

 

Table 5.26. The original “override” DT. 

 

override 
Rules 

R0 R1 R2 

C
o

n
d

it
io

n
s Ignited F T T 

EngRun - F T 

TooFast - - F 

Brake - - F 
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Table 5.26. (cont.) 

 

 Activate - - T 

Resume - - T 

A
ct

io
n

s off X     

inactive   X   

cruise     X 

 

 

 
 

Figure 5.22. MTBDD of the original “override” DT. 

 

 

For “override” MTBDD mutation all mutation operators are involved. In total, 

15 ESG-DT mutants are derived by mutating “override” MTBDD. The testing of the 

edgeC, edgeO and tnO derived ESG-DT mutants, show same outcome, because they fail 

CES and therefore are distinguished, but FCES test set is unable to detect them. The tnI 

derived mutant is distinguished by the sixth FCES, but not distinguished by CES. 

However, tnC-based mutant is distinguished by both CES and FCES located in the sixth 

row of the Table 5.21. The mutants generated after edgeI and edgeS application on 

“override” are not distinguished by CES and FCES test sequences, therefore these 

mutants are living ones. 

Each mutant is distinguished only once by the certain CES. It means that 

mutants are not distinguished by two and more different CESs Table 5.27 shows the 

number of distinguished mutants per mutation operator. It also shows the number of 
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undetected mutants by the CES and the number of undetected mutants per mutation 

operator. 

 

Table 5.27. CES detected number of mutants per mutation operator. 

 

CES 

ID 
CES tnO tnI tnC edgeI edgeO edgeC edgeS 

Number 

of 

undetected 

mutants 

1 

[, off, off, 

inactive, 

off, 

inactive, 

cruise, 

inactive, 

cruise, off, 

inactive, 

cruise, 

override, 

cruise, 

override, 

inactive, 

cruise, 

override, 

off, ] 

10 0 12 0 10 7 0 12 

- 

Undetected 

mutant 

number 

per 

operator 

0 4 0 7 0 0 3 - 

 

 

Each FCES sequence can detect only one mutant. It means that mutants are not 

distinguished by two and more different FCESs Table 5.28 shows the number of 

detected mutants per mutation operator. It also shows the number of undetected mutants 

by certain FCES and the number of undetected mutants per mutation operator. 
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Table 5.28. FCES detected number of mutants per mutation operator. 

 

FCES 

ID 
FCES tnO tnI tnC edgeI edgeO edgeC edgeS 

Number 

of 

undetected 

mutants 

1 
[, off, 

cruise, 
0 0 1 0 0 0 0 50 

2 
[, off, 

override, 
0 0 1 0 0 0 0 50 

3 

[, off, 

inactive, 

inactive, 

0 1 2 0 0 0 0 48 

4 

[, off, 

inactive, 

override, 

0 1 2 0 0 0 0 48 

5 

[, off, 

inactive, 

cruise, 

cruise, 

0 1 3 0 0 0 0 47 

6 

[, off, 

inactive, 

cruise, 

override, 

override, 

0 1 3 0 0 0 0 47 

- 

Undetected 

mutant 

number 

per 

operator 

10 0 0 5 10 7 3 - 

 

 

The mutation score is calculated by the following formula: 

 

                   (5.2) 

 

Table 5.29. Cruise Control ESG-DT test sequences mutation score. 

 

CES ID Score FCES ID Score 

1 ≈ 76,47 % 1 ≈ 1.96 % 

- - 2 ≈ 1.96 % 

- - 3 ≈ 5.88 % 

- - 4 ≈ 5.88 % 

- - 5 ≈ 7.84 % 

- - 6 ≈ 7.84 % 
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(cont. on next page) 

Table 5.29 presents a mutation score of each test sequence used for this case. 

 

 

5.3. Simple Automated Teller Machine 
 

 

The Simple Automated Teller Machine (SATM) is a simplified model of the real 

ATMs. The model used in thesis consists of eight events Insert Card, Account, Deposit, 

Withdrawal, Insert Envelope, Cancel, Proceed, Withdraw Card, where only two events 

Insert Card, Withdrawal hold DTs.  

 

 

 
 

Figure 5.23. Simple ATM ESG-DT. 

 

 

Table 5.30. CESs of the Simple ATM ESG-DT. 

 

5 nodes 

CES 

[, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, ],  

9 nodes 

CES 

[, Insert Card, Insert Card, Account, Withdrawal, Cancel, Account, 

Withdrawal, Proceed, Withdraw Card, ] 

 

 

Table 5.31. FCESs of the Simple ATM ESG-DT. 

 

2 [, Insert Card, Withdrawal,  

2 [, Insert Card, Insert Envelope,  

2 [, Insert Card, Cancel,  

2 [, Insert Card, Proceed,  

2 [, Insert Card, Withdraw Card,  

2 [, Insert Card, Deposit,  

3 [, Insert Card, Account, Insert Card,  
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(cont. on next page) 

Table 5.31. (cont.) 

 

3 [, Insert Card, Account, Account,  

3 [, Insert Card, Account, Insert Envelope,  

3 [, Insert Card, Account, Cancel,  

3 [, Insert Card, Account, Proceed,  

3 [, Insert Card, Account, Withdraw Card,  

4 [, Insert Card, Account, Withdrawal, Insert Card,  

4 [, Insert Card, Account, Withdrawal, Account,  

4 [, Insert Card, Account, Withdrawal, Withdrawal,  

4 [, Insert Card, Account, Withdrawal, Insert Envelope,  

4 [, Insert Card, Account, Withdrawal, Withdraw Card,  

4 [, Insert Card, Account, Withdrawal, Deposit,  

5 [, Insert Card, Account, Deposit, Insert Envelope, Insert 

Card,  

5 [, Insert Card, Account, Deposit, Insert Envelope, 

Account,  

5 [, Insert Card, Account, Deposit, Insert Envelope, 

Withdrawal,  

5 [, Insert Card, Account, Deposit, Insert Envelope, Insert 

Envelope,  

5 [, Insert Card, Account, Deposit, Insert Envelope, Cancel,  

5 [, Insert Card, Account, Deposit, Insert Envelope, 

Proceed,  

5 [, Insert Card, Account, Deposit, Insert Envelope, 

Deposit,  

5 [, Insert Card, Account, Withdrawal, Cancel, Insert Card,  

5 [, Insert Card, Account, Withdrawal, Cancel, Withdrawal,  

5 [, Insert Card, Account, Withdrawal, Cancel, Insert 

Envelope,  

5 [, Insert Card, Account, Withdrawal, Cancel, Cancel,  

5 [, Insert Card, Account, Withdrawal, Cancel, Proceed,  

5 [, Insert Card, Account, Withdrawal, Cancel, Withdraw 

Card,  

5 [, Insert Card, Account, Withdrawal, Cancel, Deposit,  

5 [, Insert Card, Account, Withdrawal, Proceed, Insert 

Card,  

5 [, Insert Card, Account, Withdrawal, Proceed, Account,  

5 [, Insert Card, Account, Withdrawal, Proceed, 

Withdrawal,  

5 [, Insert Card, Account, Withdrawal, Proceed, Insert 

Envelope,  

5 [, Insert Card, Account, Withdrawal, Proceed, Cancel,  

5 [, Insert Card, Account, Withdrawal, Proceed, Proceed,  

5 [, Insert Card, Account, Withdrawal, Proceed, Deposit,  

6 [, Insert Card, Account, Deposit, Insert Envelope, 

Withdraw Card, Insert Card,  
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Table 5.31. (cont.) 

 

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Account,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, 

Withdrawal,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Insert 

Envelope,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Cancel,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Proceed,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Withdraw 

Card,  

6 [, Insert Card, Account, Deposit, Insert Envelope, Withdraw Card, Deposit,  

4 [, Insert Card, Account, Deposit, Insert Card,  

4 [, Insert Card, Account, Deposit, Account,  

4 [, Insert Card, Account, Deposit, Withdrawal,  

4 [, Insert Card, Account, Deposit, Cancel,  

4 [, Insert Card, Account, Deposit, Proceed,  

4 [, Insert Card, Account, Deposit, Withdraw Card,  

4 [, Insert Card, Account, Deposit, Deposit,  

1 [, Account,  

1 [, Withdrawal,  

1 [, Insert Envelope,  

1 [, Cancel,  

1 [, Proceed,  

1 [, Withdraw Card,  

1 [, Deposit,  
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Figure 5.24. MTBDD of the original “insert card” DT. 

 

 

Table 5.32. The original “insert card” DT. 

 

insert card 
Rules 

R0 R1 R2 

C
o
n
d
it

io
n
s 

isCardValid? F T T 

PIN ok? - F T 

A
ct

io
n
s 

insert card X X   

account     X 

 

 

The mutation operators edgeO, edgeS, tnC and tnO are involved in “insert card” 

MTBDD, depicted in Fig. 5.24, mutation. edgeI and tnI are used because non-terminal 

nodes have both low and high child nodes. 

According to the Table 5.33, 16 ESG-DT mutants are derived by mutating 

“insert card” MTBDD. All mutants obtained after the application of tnC operator are 

detected by both CES and FCESs test sets. Half of the mutants are detected by all CESs 

and another half by only the second CES in Table 5.30. FCESs which are successfully 

passed by 12 mutants are in the first, second, third, fourth, fifth and sixth rows of the 

Table 5.31. On the other hand, neither of CESs and FCESs can find edgeS derived 

mutant, because it passes all CESs and fails all FCESs as the original model. The whole 

CES test set can detect the edgeO derived mutant, but not FCES. Finally, the first 
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mutant obtained by tnO operator successfully fails all CESs, whereas the second mutant 

is detected only by the CES in the second row of Table 5.30. Both mutants are not 

distinguished by FCES test set. 

 

 

Table 5.33. The number of Simple ATM mutants of all original MTBDDs. 

 

MTBDD edgeC edgeI edgeO edgeS tnC tnI tnO 

insert card NA NA 1 1 12 NA 2 

withdrawal 2 2 2 NA 12 6 2 

 

 

For “withdrawal” MTBDD mutation (Fig. 5.25) are involved all introduced 

operators except edgeS. In accordance with Table 5.32, 26 faulty ESG-DTs are 

generated by mutating “withdrawal” contract. 

 

 

Table 5.34. The original “withdrawal” DT. 

 

withdrawal 
Rules 

R0 R1 R2 

C
o
n
d
it

io
n
s amount <= balance F T T 

buttonProceedPressed - T F 

buttonCancelPressed - F T 

A
ct

io
n
s 

cancel X   X 

proceed   X   

 

 

 
 

Figure 5.25. MTBDD of the original “withdrawal” DT. 
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Unlike the results provided for testing of tnC derived mutants for “insert card” 

MTBDD, mutants generated with the same operator for “withdrawal” are distinhuised 

only by the second CES in Table 5.30. For FCESs, among of 61 test sequences, the 

13th, 14th, 15th, 16th, 17th, and 18th test sequences are passed successfully, therefore 

these faulty models are distinguished from the original model. The tnI derived ESG-

DTs, are detected by the same FCESs used in tnC. However, the CESs are not able to 

distinguish it from the original model. edgeC and edgeO show same results, where their 

mutants fail all FCESs, like the original model. In case, of testing with CES half of their 

mutants are distinguished by all tests in a set and another half by only with the second 

test sequence. Whereas tnO operator mutants are distinguished by only with the second 

CES (Table 5.30). The notorious testing results are obtained after testing of edgeI-based 

mutants, where all CESs are passed and FCESs are failed. 

Every mutant is distinguished by a unique CES. It means that mutants are not 

distinguished by two and more different CESs Table 5.35 shows the number of detected 

mutants per mutation operator. It also shows the number of undetected mutants by 

certain CES and the number of undetected mutants per mutation operator. 

 

 

Table 5.35. CES detected number of mutants per mutation operator. 

 

CES 

ID 
tnO tnI tnC edgeI edgeO edgeC edgeS 

Number of 

undetected 

mutants 

1 0 0 0 0 0 0 0 42 

2 3 0 18 0 1 1 0 19 

- 1 6 6 2 2 1 1 - 

 

 

Each mutant is distinguished by one unique FCES. It means that any mutant is 

not distinguished by two and more different FCESs. Table 5.36 shows the number of 

detected mutants per mutation operator. It also shows the number of undetected mutants 

by certain FCES and the number of undetected mutants per mutation operator. 
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(cont. on next page) 

Table 5.36. FCES detected number of mutants per mutation operator. 

 

FCES 

ID 
tnO tnI tnC edgeI edgeO edgeC edgeS 

Number of 

undetected 

mutants 

1 0 0 2 0 0 0 0 40 

2 0 0 2 0 0 0 0 40 

3 0 0 2 0 0 0 0 40 

4 0 0 2 0 0 0 0 40 

5 0 0 2 0 0 0 0 40 

6 0 0 2 0 0 0 0 40 

13 0 1 2 0 0 0 0 39 

14 0 1 2 0 0 0 0 39 

15 0 1 2 0 0 0 0 39 

16 0 1 2 0 0 0 0 39 

17 0 1 2 0 0 0 0 39 

18 0 1 2 0 0 0 0 39 

- 4 0 0 2 3 2 1 - 

 

The mutation score of each CES and FCES is presented on Table 5.37 and 

calculated by the following formula: 

 

                      (5.3) 

 

 

Table 5.37. Simple ATM ESG-DT test sequences mutation score 

 

CES ID Score FCES ID Score 

1 ≈ 0 % 1 ≈ 4.76 % 

2 ≈ 54,76 % 2 ≈4.76 % 

- - 3 ≈4.76 % 

- - 4 ≈4.76 % 

- - 5 ≈4.76 % 

- - 6 ≈4.76 % 

- - 13 ≈ 7,14 % 

- - 14 ≈ 7,14 % 
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Table 5.37. (cont.) 

 

CES ID Score FCES ID Score 

- - 15 ≈ 7,14 % 

- - 16 ≈ 7,14 % 

- - 17 ≈ 7,14 % 

- - 18 ≈ 7,14 % 

 

 

5.4. Discussion 
 

 

The mutation analysis of three cases indicated that some operators produce 

undetectable mutants, so that neither CES nor FCES test sets can distinguish them. 

Some operators produce a set of mutants of which detection depends on certain 

conditions. The reason of this phenomenon lies in the number of connections between 

terminal and non-terminal nodes of MTBDD.  

The existence of an edge in ESG-DT from node A to node B depends on the 

existence of at least one rule containing the corresponding action B in the event A’s DT. 

The DT rules are represented as paths to the terminal node in MTBDD. The terminal 

node can have at least one incoming edge to be considered a part of MTBDD. If there is 

only one incoming edge, then omission of that edge leads to the detaching of the 

corresponding terminal node and the DT after conversion will have one less rule and 

absent action. The final ESG-DT will not have the corresponding edge. Otherwise, 

when the number of incoming edges is minimum two, then the omission of one of the 

selected edges will reduce the number of rules by one and remain the corresponding 

action in DT. The final ESG-DT graph will preserve all its edges. So, whenever the 

edgeC redirects an edge or edgeO omits the edge in MTBDD, preservation of the 

terminal node will depend only on the number of its incoming edges.  

The insertion and swapping of the edges in MTBDD results in the increase of 

the number of rules in DT and the exchange of the triggered actions of two rules in DT, 

respectively. The application of edgeI and edgeS operators changes the contracts in data 

events, i.e., events with DT, but does not change the edge number or direction of ESG-

DT graph. 

The operations on terminal nodes have inevitable impact on the resulting ESG-

DT graph. The omission of the terminal node in MTBDD results in the omission of the 



 

74 

 

corresponding action from DT and all related rules. Therefore, the edge going from the 

respective data event to the event representing the omitted action will be removed. The 

tnO operator is responsible for this change. Insertion of the terminal node attaches a 

new terminal node to MTBDD and adds a new action with corresponding rule in DT. 

The final ESG-DT will acquire a new edge going from the current event to another 

event, represented as a new terminal node. This change is performed by tnI operator. 

Finally, the substitution of the corrupted terminal node replaces the chosen terminal 

node with a new one, by preserving all incoming edges. The event DT will have an 

updated action. The ESG-DT will redirect the edge from the “corrupted” event to the 

event, represented by the new terminal node. The tnC operator is responsible for edge 

redirection in ESG-DT. Similar results are already shown in 25 by for sO, sI and sC 

operators.  

The detection of mutants by CES and FCES depends on the connections 

between events in mutant ESG-DTs. According to the results presented by three cases 

the commonality between mutants detected by CES is the absence of the certain edge. A 

FCES, on the contrary, distinguishes a mutant only if there is a certain edge connecting 

two events, which is introduced in FCES generation. 

Based on the observations on impact of presented MTBDD operator on ESG-

DT, omission, or redirection of the only incoming edge of the terminal node, omission, 

or replacement of the terminal node in MTBDD will generated mutant ESG-DT, which 

will be 100% distinguishable by the CES. This is achieved by edgeO, edgeC and tnO 

operators. On the other hand, insertion, or replacement of the terminal node in MTBDD 

will create 100% distinguishable by FCES mutant ESG-DT. Hence, only tnI and tnC 

operators can generate such mutants. 

The remaining edgeI and edgeS operators will always generate the living 

mutants, as the resulting ESG-DT mutants are not distinguishable by both CES and 

FCES. 

Therefore, it is reasonable to say, that there exists a hierarchy for presented 

mutants, where:  

1) the operators, which generate mutants that are always detectable by both 

CES and FCES, are presented in category I in Table 5.38. 

2) the operators, which generate mutants that are always detectable by either 

CES or FCES, are presented in category II in Table 5.38. 
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3) the operators, which generate mutants that are sometimes detectable by 

either CES or FCES, are presented in category III in Table 5.38. 

4) the operators, which generate mutants that are never detectable by neither 

CES nor FCES, are presented in category IV in Table 5.38. 

 

 

Table 5.38. The hierarchy of the MTBDD mutation operators. 

 

Category Mutation operators 

I tnC 

II tnI, tnO 

III edgeO, edgeC 

IV edgeI, edgeS 

 

 

The drawback in the FCES test sequences for ESG-DT mutation analysis is that, 

those FCESs which second event (following pseudo-event [ ) which originally does not 

come after the starting [ pseudo-event in ESG-DT, cannot distinguish mutants generated 

using the approach presented in thesis. As stated in the paragraph above, FCES can 

distinguish a mutant if it sees the new edge introduced in its own generation in the 

sequence of a mutant. However, mutation using MTBDD cannot deal with pseudo-

events, because the ESG-DT does not know under which conditions or what kind of 

input or action can trigger the execution of the certain event in ESG-DT. This is 

explained in Chapter 3.2.1 in Definition 3.4, where the Condition set cannot be empty 

<=> C ≠ Ø.  

It follows that initial pseudo-event cannot be used for mutation using presented 

approach, since the corresponding MTBDD for it cannot be obtained, because the 

respective DT does not exist! Hence, FCES with second event which is not the starting 

event in ESG-DT will never distinguish a model-mutant from original model. 
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CHAPTER 6  

 

 

TOOL SUPPORT 

 

 

The approach proposed in this thesis is implemented on the pure Java without 

the usage of the side libraries or frameworks and the Test Suite Designer (TSD) is used 

for test sequence generation. This chapter describes the Java implementation and the 

application of test sequences on produced mutant set. 

 

 

6.1. Java SE 
 

 

As the implementation is built on Java programming language, the minimum 

requirement is the already installed Java 1.8.0 runtime environment or the newer 

version. The reason is that the software is written on the Java 8, because the 

implementation involves the usage of Java Stream API 

(https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html).  

 

 

6.2. IntelliJ Idea 
 

 

IntelliJ Idea (https://www.jetbrains.com/idea) is the well-known powerful 

Integrated Development Environment (IDE) mainly used for Java development. For 

running the software, it is not important to use the specific version of this IDE, as it was 

updated multiple times. It is publicly available, free of charge, proprietary IDE and can 

be downloaded from https://www.jetbrains.com/idea/download. 

 

 

 

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/download


 

77 

 

6.3. Test Suite Designer 
 

 

This is a non-commercial, free of charge tool designed for software analysis. 

TSD is based on event sequence graphs. The tool is accessible from 

http://download.ivknet.de. The purpose of the TSD usage is the generation of test 

sequences CES and FCES, because the ESG is the main area of interest. First of all, it is 

important to pass the ESG, simply by opening the pre-saved in filesystem ESG or by 

creating from scratch a new one. The tool has a GUI support (Fig. 6.1):  

 

 

 
 

Figure 6.1. TSD initial window. 

 

 

The example on Fig. 6.2 shows the Cruise Control ESG, which is presented in 

chapter 5.2, built in TSD tool. 

 

 

http://download.ivknet.de/
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Figure 6.2. CruiseControl ESG. 

 

 

 Having the ready ESG, we can generate the test sequence by simply pressing the 

Generiere Test-Skripte, which will open the window on Fig. 6.3. The important part is 

leaving positive Testfälle (CES) generieren and negative Testfälle (FCES) generieren 

enabled.  

 

 

 
 

Figure 6.3. Test generation menu. 
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After clicking Generieren button in the bottom, the tool will provide the window 

(Fig. 6.4) containing all possible CESs and FCESs for the given ESG. 

 

 
 

Figure 6.4. Generated CESs and FCESs. 

 

 

6.4. Mutant Generator Software 
 

 

This tool is written in Java programming language and represents a console 

application. The tool provides the facility for transformation of Decision Tables (DT) 

into Multi-Terminal Binary Decision Diagrams (MTBDD) and MTBDDs into DTs. 

Besides transformations, it also offers mutation of MTBDDs. Another feature proposed 

by this tool is the DT augmented Event Sequence Graph (ESG) processing. The work 

with ESG-DTs involves only the graph modification in accordance with a mutated 

contract in the corresponding event. The tool accepts DT in a text file format. 

The following class diagrams represent the software architecture. Classes 

responsible for DT construction are Action, Condition, Rule, Pair, DTFileReader (Fig. 

6.9), Utility (Fig 6.10), and DecisionTable (Fig. 6.11).  

Classes Action.java (Fig. 6.5) and Condition.java (Fig. 6.6) represent the 

Actions and Conditions correspondingly in DT. 

 

 



 

80 

 

 
 

Figure 6.5. Action.java class diagram 

 

 

 
 

Figure 6.6. Condition.java class diagram. 
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Figure 6.7. Rule.java class diagram. 

 

 

 
 

Figure 6.8. Pair.java class diagram. 
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Class Pair.java (Fig. 6.8) represents a pair of either Action and Boolean or 

Condition and Boolean. A Boolean is chosen as wrapper not primitive, in order to 

introduce ‘don’t care’ as null in Java. Also, it returns a copy of itself. Class Rule.java 

(Fig. 6.7) represents a container of Condition Pairs list and Action Pairs list. 

 

 

 
 

Figure 6.9. DTFileReader class diagram. 

 

 

Class DTFileReader.java (Fig. 6.9) reads a DT from a text file. The method 

which prepares a conditions and actions for DT is listOfPairLists().  

 

 

 
 

Figure 6.10. Utility.java class diagram. 
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The Utility.java (Fig. 6.10) class serves as a helper for the DecisionTable.java 

(6.11) class. The DecisionTable.java class represents a DT and provides such methods 

as shortenDT() which simplifies DT (merges Rules if possible), expandDT() shows DT 

with all of its Rules (the opposite of shortenDT()), creates a deep copy of DT. 

 

 
 

Figure 6.11. DecisionTable.java class diagram. 

 

 

MTBDD is based on the following classes: MTBDD, MTBDDBuilder, Node. 

The relationship between them is represented on Figure 6.12.  

 

 

 
 

Figure 6.12. MTBDD representation class relation diagram. 
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Class Converter is used for converting DT represented by DecisionTable.java 

into MTBDD represented by MTBDD.java and vices versa. Figure 6.13 represents a 

class structure of Converter.java. It consists of two main methods DT_into_MTBDD() 

and MTBDD_into_DT() for converting DT into MTBDD and vice versa. Methods 

DTs_into_MTBDDs() and MTBDDS_into_DTs() use two beforementioned 

corresponding methods for conversion of multiple MTBDDs into DTs and vice versa. 

 

 

 
 

Figure 6.13. Converter class diagram. 

 

 

MTBDDMutationOperators (Fig 6.14) class provides a set of methods which 

represent proposed mutation operators. 

 

 

 
 

Figure 6.14. MTBDD mutation operators class diagram. 
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The ESG-DT is built on the ESG_DT class. The class diagram on Fig. 6.15 

represents an event in ESG. 

 

 

 
 

Figure 6.15. ESG_DT class diagram. 

 

Class responsible for the model mutation is shown on Figure 6.19. Its purpose is 

only the mutation of the given model. 
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Figure 6.16. Model Mutator class diagram 
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CHAPTER 7  

 

 

CONCLUSION AND FUTURE WORK 

 

 

In this thesis, mutation analysis is proposed for the specifications modeled using 

the Decision Table augmented ESGs. For the generation of mutants from this model 

representation, we proposed mutation operators for the contracts represented in Multi-

Terminal Binary Decision Diagram form, obtained by translating the Decision Table 

inside the event. The presented mutation operators are: edgeI, edgeO, edgeC, edgeS, tnI, 

tnO, and tnC. The test cases are generated from the original ESG-DT graph and called 

test sequences. Test sequences are presented as CES and FCES. The proposed operators 

mutate MTBDD, thereby change the resulting DT.  

The evaluation performed on the three cases shows that the ESG-DT mutants 

obtained after tnC application are always detected by both CES and FCES test 

sequences. The tnO and tnI operators return ESG-DT mutants detectable only by CES 

and FCES, respectively. On the contrary, mutants generated after the usage of edgeI and 

edgeS operators are never distinguishable by both CES and FCES test sets. The reason 

behind is that test sequences can reveal a mutant only at the ESG level of the ESG-DT. 

Depending on the number of the incoming edges of MTBDD terminal node, the edgeO 

and edgeC operators produce both distinguishable (only by CES) and indistinguishable 

by both CESs and FCESs. For conclusion, the detection of mutated model depends on 

the existence of the terminal node. That is why, tnI, tnO and tnC generated faulty 

models are always distinguished. 

One direction for future work would be to propose an enhanced test sequence for 

detecting faults considered at the contract level of ESG-DT, as the existing test 

sequences are insufficient for this purpose. Another future work would be to improve 

the existing test sequence generation tool. 

It is also noticed that the proposed mutation operators are unable to deal with the 

pseudo events [ and ] of the DT augmented ESG. The reason behind of this is that the 

contracts can be operated only with real events. The FCESs which start with [ and 
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continue with the event which originally is not supposed to be one of the initial events, 

are never triggered. One other future work could be dedicated to the exploration of this 

phenomenon. 
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