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A B S T R A C T   

Spectroscopic methods have the advantages of being rapid and environmentally friendly and can be used in 
measurement and control of processing parameters during food production. It was aimed to predict several 
quality and chemical parameters of vinegar processing from UV-visible and mid-infrared spectroscopic profiles. 
Two processing lines of both traditional and submerged vinegar production from 2 separate grape varieties 
(green and red grapes) were monitored. Some of the important markers of the fermentation processes; pH, brix, 
total acidity, total flavonoid content, total and individual phenolic contents, organic acid, sugar, ethanol con-
centrations as well as UV-visible and mid-infrared spectra were obtained during both types of vinegar processing 
and quality and chemical parameters were predicted from spectroscopic data using chemometric methods. In-
dividual UV-visible and mid-infrared spectral profiles along with low level of data fusion were used in building of 
chemometric prediction models. Accurate, reliable and robust prediction models (R2cal and R2val >0.9) were 
obtained for quality parameters mostly with combination of two spectroscopic datasets. Predictive models used 
for phenolic components were below average except for p-coumaric and syringic acids. Citric and acetic acids 
were the most accurately estimated ones among organic acids along with ethanol. Close agreements between 
reference and predicted values were obtained during the monitoring of changes of some quality parameters for 
vinegar fermentation process through rapid and simultaneous spectroscopic measurements.   

1. Introduction 

Vinegar production is a two-stage process: alcoholic and acetic acid 
fermentations. Sugar source is converted into ethanol and CO2 in the 
first stage and fermentation takes place with the activity of Saccharo-
myces cerevisiae strains in anaerobic conditions. During the second stage 
of processing, acetic acid and water are produced from ethanol by acetic 
acid bacteria in aerobic conditions. 

Vinegar is commonly produced with traditional and submerged 
fermentation techniques. Traditional vinegar processing involves 
fermentation by the microbial culture which forms a film on the surface. 
A relatively longer time of around 6–14 weeks is required for acetifi-
cation of the must using this method [1]. Submerged fermentation, on 
the other hand, is a faster production technique. Fermentation takes 
place with the activity of acetic acid bacteria which is homogenously 
distributed in must [1]. Bioreactor is aerated from the bottom so that 
fermentation occurs not only on the surface but also throughout all 

fermentation media. Therefore, this type of production allows fast 
conversion to acetic acid and high yield and is preferred as a commercial 
processing technique. Acetic acid at 8–9% levels can be obtained within 
24–48 h after ethanol fermentation. 

Vinegar composition mainly depends on raw material and produc-
tion technique. Acetic acid and water constitute most of the vinegar; 
however, small amounts of organic acids, alcohol, phenolic compounds 
and amino acids are also present. Minor compounds are especially 
important for sensorial characteristics of this product. 

Various spectroscopic methods have been used especially in the 
characterization and authentication of different types of vinegars 
[26–29] and use of these techniques for vinegar was reviewed in liter-
ature [5,25]. Spectroscopic methods have been also applied to predict 
the chemical compositional parameters of different types of food prod-
ucts. There are studies in literature which monitored the critical 
compositional parameters such as total acidity, sugar, acetic acid and 
ethanol contents at different stages of vinegar production and minor 
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components such as volatiles, phenolic profile and total phenol content 
were also determined throughout fermentation processes [2,7,15,37]. 
Spectral data evaluated with chemometric techniques allow the simul-
taneous estimation of the concentrations of chemical constituents of 
different types of fermented food products [4,10,9,11,19]. Therefore, in 
some studies, various spectroscopic profiles during vinegar production 
or only of final product were also collected to predict the quality and 
chemical parameters. Fourteen parameters including total acidity, vol-
atile and non-volatile acids, organic acids, L-proline, dry matter, ash and 
chlorine contents of wine vinegar were successfully predicted from 
partial least square (PLS) regression models of near infrared (NIR) 
spectroscopic data [30]. Acetification process of vinegar produced from 
onion waste was followed with ethanol, acetic acid, biomass and NIR 
spectral measurements and these parameters were determined from the 
spectral data with PLS regression modelling [12]. NIR spectroscopy was 
also used in estimating the ethanol and acetic acid concentrations in 
culture broth samples obtained from rice vinegar fermentation [41]. In 
another study, Raman spectroscopy was used in monitoring grape vin-
egar production and, changes in glucose, fructose, ethanol and acetic 
acid concentrations were predicted with high coefficient of determina-
tion values through the evaluation of spectral data with PLS regression 
[39]. In this study, traditional and submerged fermentation types of 
vinegar production from two grape varieties were monitored with the 
determination of 22 quality and chemical parameters (brix, total 
phenolic content, total flavonoid content, titratable acidity, pH, and 
concentrations of citric acid, lactic acid, malic acid, succinic acid, tar-
taric acid, acetic acid, caffeic acid, catechin, epicatechin, coumaric acid, 
gallic acid, syringic acid, vanillic acid, ethanol, sucrose, glucose, fruc-
tose) along with the collection of UV-visible (UV-Vis) and Fourier 
transform infrared (FTIR) spectra. It was aimed to predict these quality 
and chemical parameters from spectral data using various chemometric 
techniques in order to determine several parameters simultaneously and 
rapidly during vinegar production. 

2. Materials and methods 

2.1. Vinegar production and sampling 

Dried Sultaniye (white grape) and Alicante Bouchet (red grape) types 
of grapes were used separately in the production of vinegars. Samples 
from submerged culture fermentation were obtained from a commercial 
vinegar production line for these two grape varieties separately. Sam-
pling was done at various times of alcoholic and acetic acid fermenta-
tions twice. 29 and 71 samples were collected during alcoholic and 
acetic acid fermentations, respectively. 

Traditional type (surface fermentation) of vinegar processing was 
done with the same type of grapes separately and 2 batches were pre-
pared for each grape variety. Grape musts obtained from a commercial 
vinegar processing plant were used as raw materials for this type of 
production. Mother of vinegar obtained during pre-trials were added to 
grape musts (18 Brix) and musts, in glass bottles covered with cotton 
cloths, were kept in a dark place. Sampling was done at 0th, 2nd, 4th, 
6th, 10th, 15th, 20th, 25th, 30th and 40th days and a total of 40 samples 
were obtained during traditional production. In addition, 26 commer-
cial vinegars were obtained from markets to widen the range of 
measured variables and to increase the number of the samples which are 
critical in building prediction models. 

2.2. Chemical analysis 

2.2.1. Brix, pH and total acidity measurements 
pH of the samples was measured with a pH meter (WTW, Germany). 

Brix was determined with a digital refractometer (Isolab, Germany). 
Total acidity was measured with titration using NaOH [14] and 
expressed as volumetric percentage (% v/v). 

2.2.2. Total phenolic and flavonoid contents 
Total phenolic content (TPC) of the samples were determined with a 

spectrophotometric Folin-Ciocalteu assay adapted to microscale [24]. 
Results were reported as mg gallic acid/L. Total flavonoid content (TFC) 
was measured at 510 nm with a spectrophotometer [43] and expressed 
as mg catechin/L. 

2.2.3. Phenolic profiles 
Concentrations of individual phenolic compounds were determined 

according to a method described in the literature [38]. Samples were 
filtered through a syringe filter (0.45 µm, cellulose acetate) before 
chromatographic analysis. Then, they are injected into an HPLC-DAD 
system (Perkin Elmer 200, Waltham, MA, USA) according to the con-
ditions given in the same reference. C18 column (250×4.6 mm, 5 µm, 
ACE, Aberdeen, Scotland) was used in the analyses. Phenolic contents 
were calculated from at least 5 points standard curves of catechin, epi-
catechin, gallic acid, caffeic acid, syringic acid, p-coumaric acid and 
vanillic acid. All phenolic standards were purchased from Sigma-Aldrich 
(Germany). 

2.2.4. Organic acid, sugar and ethanol contents 
Organic acid, sugar and ethanol concentrations of vinegars were 

determined simultaneously with an HPLC having refractive index de-
tector (Agilent 1200, Santa Clara, CA, USA) according to a method in 
literature [6]. Aminex 87H column (300×7.8 mm, 9 µm, Bio-Rad Lab-
oratories, Hercules, CA, USA) was used for the analysis. Acetic, citric, 
malic, tartaric and succinic acids, glucose, fructose, sucrose and ethanol 
concentrations were determined from standard curves. All standards 
were obtained from Sigma-Aldrich (Germany). 

2.3. Spectroscopic analyses 

2.3.1. UV-visible spectroscopy 
UV-visible (UV-Vis) spectra of the samples were collected in 

200–550 nm range with a Thermo Multiscan UV-Vis spectrophotometer 
(Thermofisher Scientific, Waltham, MA, USA). 

2.3.2. Fourier transform infrared spectroscopy 
Mid-infrared spectra of the samples were obtained with an FTIR 

spectrophotometer having a horizontal ZnSe-ATR accessory and a DTGS 
detector (Spectrum 100, Perkin Elmer, Waltham, MA, ABD) in 
4000–800 cm− 1 range. Measurements were performed with 128 scans 
and 4 cm− 1 resolution. Spectra of air were taken as background before 
each sample reading. 

2.4. Chemometric modelling 

All chemometric analyses were performed with ‘ropls package’ 
(Version 3.12) in R [33]. 2/3 of the data were used for calibration and 1/ 
3 was separated to validate the models, and 107 and 62 samples were 
used in the development of calibration and validation models, respec-
tively. Stratified random sampling was applied prior to multivariate 
statistical analyses to choose calibration and validation samples [31]. 
For measured properties, every sample was split into subgroups based on 
percentiles and random sampling was done within these subgroups. 

Chemometric models were constructed to predict the chemical pa-
rameters of the samples that were obtained during two types of vinegar 
production along with commercial vinegars from individual UV-Vis and 
FTIR spectra. FTIR and UV-Vis measurements contain absorbance values 
between 4000 and 800 cm− 1 wavenumbers and 200–550 nm wave-
lengths of the samples, respectively. Low level data fusion with the 
combinations of two spectroscopic data were also used in model build-
ing. Complementary integration of homogeneous FTIR data with UV-Vis 
data was applied to increase descriptive power and to reduce informa-
tion gaps [32]. 

Partial least square (PLS) and orthogonal partial least square (OPLS) 
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regression methods were used to generate the prediction models. All 
spectroscopic data including two individual spectroscopic profiles along 
with their combinations were transformed with square, first, second and 
third derivative transformations, Savitzky-Golay filtering (SGF), stan-
dard normal variate (SNV) and multiplicative signal correction (MSC) 
methods before construction of prediction models for each variable. 
More information regarding the pre-processing techniques can be found 
in literature [20,23]. Fourteen models were generated for each param-
eter and the performance of these models were tested with the number 
of latent variables (LV), coefficient of determination for calibration 
(R2cal), coefficient of determination for validation (R2val), root mean 
square of error for calibration (RMSEC), root mean square of error for 
prediction (RMSEP) and residual predictive deviation (RPD) [36]. R2 

values close to 1 and small RMSE values relative to measurement ranges 
show the reliability of the models. RPD can be used as an indicator for 
the evaluation of a model’s predictive ability. RPD value which is less 
than 1.5 indicates that the model’s predictive capability is poor. Model is 
classified as average when the RPD value is between 1.5 and 2.0. RPD 
values between 2.0 and 2.5 shows that the model effect is relatively good 
and it is suitable for quantitative analysis. RPD values between 2.5 and 
3.0 shows that the model is very effective and higher values than 3 in-
dicates that the model has a very good prediction ability [42]. 

3. Results and discussion 

Quality parameters and concentrations of several important com-
ponents during grape vinegar production with two different techniques 

(traditional and submerged culture fermentation) were determined 
using reference methods. Two different grape types and two production 
techniques along with commercial vinegar samples provided a wide 
range of parameters. Range and spread of measured values and number 
of analyzed samples are critical to obtain good prediction models. 
Reference results were compared with predicted results obtained from 
PLS and OPLS models developed by using FTIR and UV-Vis spectroscopic 
data along with their combinations. Several transformations were 
applied to all data before model building for each parameter as 
explained in Section 2.4 and only the results of the best models are 
presented here. 

Sample UV-Vis and FTIR spectra obtained during vinegar production 
are shown in Fig. 1. As expected, both spectra have variations in the 
absorbance values of the peaks with respect to process stage due to re-
actions taking place throughout the processing. The peaks in 280–500 
nm region of UV-Vis spectra are associated with phenolic compounds 
and organic acids [35,40]. As far as the FTIR spectra is concerned, major 
differences were observed in 1500–900 cm− 1 region although all peaks 
varied somewhat with processing stage. Peak in 3800–2790 cm− 1 region 
is attributed to –OH group of water and C–H stretching of acetic acid. In 
addition, 1300–1000 cm− 1 is related with absorption due to organic 
acids while the peak in 1100–1000 cm− 1 belongs to C-O stretching. 
Then, peaks at 1065–1030 cm− 1 are associated with O–H and –CH2 
groups of sugars. Absorptions due to C––O stretching of aldehydes, -C-O 
and –OH groups of phenolic compounds take place in 1700–1600 cm− 1 

and 1800–900 cm− 1 regions of FTIR spectra, respectively [10,26]. 

Fig. 1. FTIR (A) and UV-Vis (B) spectra of the samples collected during traditional vinegar processing of Sultaniye grape must.  

Table 1 
Statistical parameters of predictive models for quality measurements.  

Component Dataset Transformation* Method LV R2-Cal R2-Val RMSEC RMSEP RPD 

Brix Combined SNV OPLS 9  0.98  0.98  0.47  0.48  2.65  
FTIR SNV PLS 7  0.98  0.97  0.47  0.62  1.92  
UV-Vis Raw Data PLS 6  0.97  0.97  0.61  0.65  1.72  

TPC Combined Raw Data OPLS 9  0.99  0.97  53.07  107.54  2.70  
FTIR MSC PLS 6  0.97  0.96  96.64  119.21  2.39  
UV-Vis MSC PLS 5  0.97  0.96  96.24  113.78  2.30  

TFC Combined SNV PLS 11  0.99  0.97  18.03  26.11  2.99  
FTIR MSC PLS 6  0.96  0.89  31.79  52.64  1.38  
UV-Vis SGF PLS 6  0.94  0.93  37.90  41.38  1.99  

pH Combined Square PLS 12  1.00  1.00  0.04  0.10  2.29  
FTIR Square PLS 10  1.00  1.00  0.06  0.10  2.48  
UV-Vis SGF OPLS 19  1.00  0.99  0.11  0.33  0.92  

Titratable Acidity Combined Raw Data PLS 9  0.99  0.99  0.36  0.27  5.35  
FTIR Raw Data OPLS 5  0.97  0.99  0.50  0.30  5.12  
UV-Vis SGF OPLS 20  0.94  0.54  0.73  2.09  0.91  

* SNV: standard normal variate, MSC: multiplicative signal correction, SGF: Savitzky-Golay Filtering. 
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3.1. Prediction of quality parameters 

Prediction results of five quality parameters (brix, TPC, TFC, pH and 
titratable acidity) are shown in Table 1. Brix values of the samples range 
between 0.5 and 31.2. PLS and OPLS regression analyses indicated that 
the use of only FTIR and UV-Vis data resulted in average models ac-
cording to the performance criteria explained in Section 2.4; however, 
low level data fusion improved prediction vigor. Combination of FTIR 
and UV-Vis spectral data analyzed with OPLS after transformation with 
SNV generated the best results (R2cal = 0.984, R2val = 0.983, RMSEC =
0.468, RMSEP = 0.478, RPD = 2.652). TPC of the samples were deter-
mined as in the range of 120 – 3020 ppm. Similarly, combined dataset 
without any transformation provided the best predictive model (R2cal =
0.992, R2val = 0.969, RMSEC = 53.07, RMSEP = 107.5, RPD = 2.704), 
while the model predictions created with FTIR and UV-Vis datasets had 
average precisions. Although RMSEC values of TPC predictive models 
are a little bit high, measured TPC values are also high and comparison 
should be done considering measured values. A reason for high RMSEC 
values can be the relatively higher standard deviations of TPC mea-
surements. However, these standard deviations are taken into account in 
RPD calculations and RPD and R2 values of TPC model indicate very 
effective predictive ability of the data fusion model for this variable 
[42]. Maximum and minimum TFC values of the samples were 1.62 and 
1500 ppm, respectively. TPC and TFC had wide ranges since both white 
and red grape types were used in the production. Although combined 
dataset estimated the closest values to the reference measurements 
(R2cal = 0.986, R2val = 0.973, RMSEC = 18.03, RMSEP = 26.11, RPD =
2.993) similar to the previous parameters, UV-Vis dataset seemed to be 
dominant over FTIR dataset in the combination model. Since UV-Vis 
spectroscopy is based on absorption of colored components its dataset 
provided good results for TPC and TFC predictions. Since grape juice has 
already acidic properties, pH values of the samples varied between 2.78 
and 4.44. In the prediction of this parameter, UV-Vis dataset provided 
less contribution compared with the previous parameters. As a result, 
square transformed FTIR dataset with PLS regression had the most ac-
curate results with R2cal = 1, R2val = 0.999, RMSEC = 0.055, RMSEP =
0.099, RPD = 2.481. Titratable acidity of vinegars results from the 
presence of different organic acids at different stages of fermentation. 
Late fermentation stages were dominated by acetic acid produced by the 
activity of acetic acid bacteria, while acidity is originated from fruit 

itself at the beginning of the fermentation. Maximum and minimum 
titratable acidity values of the samples were recorded as 0.25 and 7.94, 
respectively. UV-Vis dataset was unsuccessful to create robust prediction 
model; however, FTIR dataset and FTIR dominated combined dataset 
analyzed with PLS and OPLS resulted in excellent predictive models 
(R2cal = 0.986, R2val = 0.991, RMSEC = 0.355, RMSEP = 0.273, RPD =
5.351). Low level data fusion was more successful in construction of 
predictive models for quality parameters except pH compared with in-
dividual spectroscopic data. FTIR spectroscopic data alone provided a 
better result for estimation of pH values of the samples. Although 
number of LV’s are between 9 and 11 for these models, models were 
built using 3450 variables (3200 for FTIR and 250 for UV-Vis) with 
combination of two spectroscopic data sets. Graphs of measured vs. 
predicted values plotted using the best prediction models are shown in 
Fig. 2. As can be seen from these graphs and Table 1, very good agree-
ments between measured and predicted values were obtained. 

Several studies that used individual or combination of spectroscopic 
techniques with chemometric methods on vinegar samples are present in 
the literature. Some of these articles focused on commercial final 
products while the others aimed to monitor fermentation process. Sol-
uble solids content and pH of white vinegars were determined using Vis/ 
NIR data that was analyzed with least square support vector machine 
(LS-SVM) and PLS regression methods [3]. In another study, total acidity 
of traditional Chinese vinegars was predicted correctly using NIR data 
analyzed with non-linear regression technique [8]. Mid-IR spectroscopy 
connected with flow lines was used to determine acidity on a group of 
samples containing wine, cherry, apple and balsamic vinegars [21]. 
Analysis of data with parallel factor analysis (PARAFAC) and PLS 
regression provided excellent predictive models. TPC of apple, rice, 
grape, pomegranate, balsamic, white, rose and red wine vinegars was 
determined using FTIR spectroscopy data and PLS regression technique 
by [16]. As in the examples of these studies in literature, successful 
models also were obtained for the estimation of the quality parameters 
during vinegar processing in this study. 

3.2. Prediction of phenolic compounds 

In addition to TPC, estimation of phenolic compounds, that are 
known to be in vinegar, were studied. Reference values for those 
phenolic compounds were measured with HPLC. Prediction results of 

Fig. 2. Measured vs predicted plots constructed with the best chemometric regression models for a) brix, b) total phenol content (TPC), c) titratable acidity, d) total 
flavonoid content (TFC), and e) pH. 
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individual phenolic compounds are shown in Table 2. Concentration 
value ranges were measured as 0 – 30 ppm for gallic acid, 0–60 ppm for 
catechin, 0 – 15 ppm for epicatechin, 0 – 10 ppm for coumaric acid, 0 – 
40 ppm for caffeic acid, 0 – 15 ppm for vanillic acid and 0 – 3.5 ppm for 

syringic acid. Similar phenolic compounds were determined in studies 
performed with grape vinegars in the literature [18,22] and the con-
centrations of these compounds are function of the grape type and 
processing type and processing stage. Although usage of combined 

Table 2 
Predictive models for phenolic compounds content.  

Component Dataset Transformation* Method LV R2-Cal R2-Val RMSEC RMSEP RPD 

Gallic Acid Combined Raw Data OPLS 11  0.97  0.82  0.46  1.23  1.24  
FTIR SNV OPLS 6  0.89  0.81  0.90  1.27  1.07  
UV-Vis Square PLS 5  0.84  0.79  1.10  1.34  0.97  

Catechin Combined SGF PLS 11  0.92  0.61  0.53  1.07  0.80  
FTIR SGF PLS 7  0.84  0.64  0.74  1.02  0.65  
UV-Vis SGF OPLS 8  0.74  0.69  0.95  0.98  0.68  

Epicatechin Combined SNV PLS 16  0.99  0.78  0.61  2.50  1.32  
FTIR Square PLS 9  0.91  0.72  1.44  2.83  0.85  
UV-Vis Square PLS 7  0.83  0.68  2.00  3.01  1.02  

p-coumaric Acid Combined SNV PLS 14  0.98  0.87  0.10  0.32  1.84  
FTIR Savitzky-Golay Filtering OPLS 11  0.97  0.60  0.15  0.57  1.06  
UV-Vis First Derivative PLS 5  0.93  0.87  0.21  0.32  1.92  

Caffeic Acid Combined Square OPLS 7  0.85  0.77  1.83  2.17  1.36  
FTIR SGF OPLS 15  0.99  0.53  0.52  3.67  1.12  
UV-Vis SGF PLS 7  0.81  0.80  2.04  2.08  1.45  

Vanillic Acid Combined MSC OPLS 12  0.98  0.31  0.10  0.76  0.79  
FTIR SGF PLS 8  0.93  0.48  0.22  0.64  0.67  
UV-Vis Third Derivative PLS 5  0.96  0.37  0.16  0.72  0.67  

Syringic Acid Combined SGF PLS 10  0.97  0.86  0.06  0.15  1.81  
FTIR Raw Data PLS 6  0.91  0.83  0.11  0.16  1.38  
UV-Vis SGF OPLS 7  0.85  0.54  0.14  0.27  0.89  

* SNV: standard normal variate, MSC: multiplicative signal correction, SGF: Savitzky-Golay Filtering. 

Table 3 
Predictive models for sugars, ethanol and organic acids.  

Component Dataset Transformation* Method LV R2-Cal R2-Val RMSEC RMSEP RPD 

Citric Acid Combined SNV OPLS 11  0.97  0.85  131.32  311.27  1.99  
FTIR MSC OPLS 4  0.77  0.79  343.83  363.42  1.54  
UV-Vis SGF PLS 7  0.81  0.80  313.45  353.52  1.46  

Lactic Acid Combined Square PLS 12  0.99  0.77  443.84  1947.51  1.05  
FTIR Square OPLS 13  0.99  0.70  362.79  2237.19  1.07  
UV-Vis SGF OPLS 16  0.93  0.49  987.23  3311.03  0.90  

Malic Acid Combined SNV OPLS 17  0.99  0.67  88.85  555.39  0.94  
FTIR Square PLS 11  0.97  0.51  155.75  694.85  0.82  
UV-Vis SNV PLS 6  0.86  0.64  353.05  564.47  0.77  

Succinic Acid Combined MSC PLS 9  0.91  0.79  524.75  874.39  1.05  
FTIR Square PLS 13  0.99  0.66  201.98  1110.15  0.89  
UV-Vis SGF OPLS 9  0.89  0.84  578.77  765.58  1.10  

Tartaric Acid Combined SNV PLS 14  0.99  0.87  149.50  667.07  1.46  
FTIR Raw Data PLS 8  0.97  0.74  285.33  1013.74  1.23  
UV-Vis SGF OPLS 10  0.93  0.64  461.66  1300.20  1.00  

Acetic Acid Combined Raw Data PLS 8  0.98  0.90  0.37  0.95  1.92  
FTIR MSC PLS 6  0.98  0.91  0.40  0.91  1.94  
UV-Vis SGF OPLS 15  0.90  0.53  0.88  2.33  0.96  

Sucrose Combined Square PLS 13  0.99  0.49  11.69  84.27  0.77  
FTIR Square PLS 12  0.99  0.45  12.43  96.17  0.86  
UV-Vis Square OPLS 6  0.87  0.31  39.95  97.76  0.76  

Glucose Combined SNV PLS 11  0.93  0.28  276.76  978.03  0.88  
FTIR MSC OPLS 8  0.92  0.36  301.81  879.08  0.79  
UV-Vis Square OPLS 12  0.86  0.10  396.36  956.77  0.74  

Fructose Combined SNV OPLS 10  0.92  0.26  610.52  2827.76  0.83  
FTIR Raw Data OPLS 10  0.99  0.16  248.66  3019.96  0.71  
UV-Vis Raw Data OPLS 13  0.92  0.34  604.57  2622.50  0.85  

Ethanol Combined MSC OPLS 9  0.89  0.84  0.31  0.45  1.84  
FTIR SNV PLS 5  0.88  0.82  0.40  0.39  2.08  
UV-Vis First Derivative PLS 6  0.92  0.37  0.26  1.47  1.06  

* SNV: standard normal variate, MSC: multiplicative signal correction, SGF: Savitzky-Golay Filtering. 
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dataset was more successful in the prediction of quality parameters, a 
generalization for prediction of phenolic compounds is not possible. 
Combined dataset with SGF resulted in the most successful prediction 
model for syringic acid, while first derivative transformation of UV-Vis 
dataset with PLS regression was preferable for p-coumaric acid. FTIR 
dataset alone did not produce any model better than UV-Vis data for the 
phenolic compounds. Combination models for gallic acid and epi-
catechin have high R2cal (0.97 and 0.99) and average R2val (0.82 and 
0.78) values; however, their RPD values are not satisfactory. Expanded 
uncertainty [34] for gallic acid was calculated as 2.23 while RMSEP 
value for this parameter was 1.23. None of the datasets produced any 

reliable model for catechin, caffeic acid and vanillic acid. Since these 
components are minor compounds of food matrix, statistical analyses 
resulted in average and below average success rates for predictive 
models. 

3.3. Prediction of organic acids and sugars 

Sugars and organic acids are the major components of fruits. Con-
centrations of these compounds and ethanol, produced during fermen-
tation, are important parameters to monitor the process. Although total 
titratable acidity includes sum of individual organic acid concentration, 

Fig. 3. Changes in quality parameters during surface fermentation process of vinegar with respect to time. A, C, E and G vinegar production with Sultaniye grapes 
and B, D, F and H are vinegar production with Alicante Bouchet grapes. Solid and dashed lines represent measured and predicted values, respectively. 
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source of acidity may have importance for several processes such as 
wine fermentation. Obtained spectral data was also analyzed in order to 
test predictive capabilities in terms of sugars, acids and ethanol. Refer-
ence values for organic acids, sugars and ethanol were measured with 
HPLC. Prediction results of these compounds are shown in Table 3. 
Measured values ranged between 1 and 150 ppm for citric acid, 
100–10,000 ppm for lactic acid, 4–2500 ppm for malic acid, 100–4500 
ppm for succinic acid, 0–4730 ppm for tartaric acid, 0–7.14 % (v/v) for 
acetic acid, 0–300 ppm for sucrose, 0–3500 ppm for glucose, 0–10,000 
ppm for fructose and 0–8 % (v/v) for ethanol. Although amounts of 
organic acids varied with grape type and processing, same type of 
organic acids were also determined in studies performed with grape 
vinegars [13,18,22]. Combined dataset produced better results for citric 
acid (R2cal = 0.97, R2val = 0.85) and tartaric acid (R2cal = 0.99, R2val 
= 0.87) prediction; nevertheless, FTIR data was favorable for estimation 
of ethanol (R2cal = 0.88, R2val = 0.82) and acetic acid (R2cal = 0.98, 
R2val = 0.91) concentrations. RMSEP value for citric acid was deter-
mined as 311, while expanded uncertainty was 568. UV-Vis dataset did 
not create any preferable predictive models. In the prediction of lactic 
acid, malic acid, succinic acid sucrose, fructose and glucose concentra-
tions; none of the datasets were successful enough. Since these compo-
nents can exist in very small amounts depending on the fermentation 
stage, concentrations in the data range are not well distributed and this 
causes generation of poor prediction models for some compounds. In 
literature, Vis/NIR data and various multivariate statistical analysis 
techniques were used in combination to predict organic acid content of 
plum vinegars and LS-SVM was determined as the most precise tech-
nique [17] and better prediction models using variable selection were 
developed for acetic, tartaric and lactic acids compared to current study. 

Spectroscopic methods combined with chemometric techniques can 
provide opportunities to determine several quality parameters of food 
products simultaneously, rapidly and easily. In the current study, suc-
cessful results were obtained for the estimation of brix, pH, titratable 
acidity, TPC and TFC along with average predictions of ethanol, acetic 
acid, citric acid, p-coumaric acid and syringic acid and, mostly combi-
nation of FTIR and UV-vis data provided better predictions. 

Some of the most successful models (pH, titratable acidity, TPC and 
TFC) were used in predicting the changes during vinegar production. For 
this purpose, quality parameters of vinegar samples of both grape va-
rieties which were collected during the production with surface 
fermentation technique are compared with the predicted values (Fig. 3). 
As can be seen from the figure, quite close agreements between pre-
dicted and measured values especially for pH and titratable acidity are 
observed. There are some deviations in TPC and TFC estimations. As can 
be seen from the plots (Fig. 3), particularly TPC measurements have 
relatively higher standard deviations. Therefore, deviations in pre-
dictions of these variables can be related with higher variability in 
measurements. Despite this, prediction models for quality variables can 
be considered as quite effective in monitoring the vinegar processing 
and can be used in monitoring of vinegar process. 

4. Conclusion 

In this study, various quality parameters, phenolic compounds, 
organic acid and sugar profiles of vinegars produced from Sultaniye and 
Alicante grape varieties by submerged and surface fermentation tech-
niques are estimated from FTIR and UV-Vis spectral data in combination 
with PLS and OPLS regression analyses. 

Spectral data and chemometric methods are successful in prediction 
of total amount of sugars, phenolics, flavonoids and organic acids. 
However, concentration of individual components which are portion of 
total sugar, phenolics or organic acids cannot be predicted with high 
precision. Successful results showed that FTIR and UV-Vis spectral data 
analyzed with chemometrics have potential to be cheap, non-hazardous, 
and fast methods in order to monitor vinegar fermentation processes. 
Simultaneous analyses of these parameters would provide better control 

of quality during fermentation and also can be helpful in determining 
the authenticity of the product. 

CRediT authorship contribution statement 

Cagri Cavdaroglu: Conceptualization, Investigation, Methodology, 
Software, Formal analysis, Writing – original draft, Visualization. Banu 
Ozen: Conceptualization, Supervision, Resources, Project administra-
tion, Funding acquisition, Writing – original draft, Writing – review & 
editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This study was funded by the Scientific and Technological Research 
Council of Turkey (TUBITAK 119O166). We would like to thank Izmir 
Institute of Technology Integrated Research Centers for their assistance 
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[30] M.J. Sáiz-Abajo, J.M. González-Sáiz, C. Pizarro, Prediction of organic acids and 
other quality parameters of wine vinegar by near-infrared spectroscopy, 
A feasibility study. Food Chemistry 99 (3) (2006) 615–621, https://doi.org/ 
10.1016/j.foodchem.2005.08.006. 

[31] Särndal C. E., Swensson, B., Wretman, J. 2003. In Model assisted survey sampling 
(pp.100–109). Springer. 

[32] M. Schmitt, X.X. Zhu, Data fusion and remote sensing: An ever-growing 
relationship, IEEE Geoscience and Remote Sensing Magazine 4 (4) (2016) 6–23, 
https://doi.org/10.1109/MGRS.2016.2561021. 
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