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Abstract
Olive oils produced in different years from different varieties were studied with UV–Vis spectroscopy for classification 
and prediction. Multivariate models were created with second derivative spectral data, and tested with external valida-
tion sets. For varietal classification, orthogonal partial least square discriminant analysis resolved oil samples into various 
classes with correct classification rate more than 89% for validation set (n = 20). A sample of fresh and stored oils were also 
classified with a correct classification rate more than 90% for validation set (n = 20). In the predictions of chemical param-
eters (70 for calibration, 30 for validation), the combination of UV–Vis spectroscopy with orthogonal partial least square 
regression models showed potential for simultaneous quantification of chlorophylls (0.6–5.6 mg/kg; R2

val
 , 0.79; RPD, 1.97); 

carotenoids (0.6–3.3 mg/kg; R2

val
 , 0.80; RPD, 2.38); ratio of mono to polyunsaturated fatty acids (3.6–8.8; R2

val
 , 0.77; RPD, 

1.90), oleuropein derivatives (1.2–62.3 mg/kg; R2

val
 , 0.66; RPD, 1.77), and total phenol content (62.2–505 mg/kg; R2

val
 , 0.67; 

RPD, 1.74), although showed poor to moderate results for the quantification of free fatty acid (0.3–5.4%; R2

val
 , 0.67; RPD, 

1.64); monounsaturated fatty acids (66-76.5%; R2

val
 , 0.71; RPD, 1.67); polyunsaturated fatty acids (8.6–18.2%; R2

val
 , 0.73; 

RPD, 1.65). The models were unable to estimate oxidative stability, saturated fatty acids, and individual phenolics such as 
hydroxytyrosol, pinoresinol, luteolin, total phenolic acids ( R2

val
 , 0.26–0.64; RPD, 0.60–1.52). Results showed the capacities 

of UV–Vis spectroscopy for classification of olive oils, and prediction of total pigments and phenol content and ratio of 
mono to polyunsaturated fatty acids.

Keywords UV–Vis spectroscopy · Olive oil · Chemical analysis · Stored oils · Discriminant analysis · Partial least square 
regression

Introduction

Olive oil has been widely investigated for its characterization 
and authentication. There are common inherent attributes 
among oils obtained from different varieties, harvest time 
and years of olives. As the demands for a monovarietal olive 

oil and product origins continue to increase, some efforts 
by international organizations, such as European Union and 
International Olive Council, have been made to establish 
the guidelines for olive oil certification; stipulating qual-
ity reference limits for different classes and categories [1]. 
However, when it comes to dealing with large number of 
samples, rapid and less laborious methods of analyzing 
properties peculiar to oils of different sources like variety, 
harvest time, geographical origin and method of processing 
become necessary.

Applications of certain regions of electromagnetic spec-
trum as an easy-to-use tool for quality of food products have 
gained prominence. Consistent and practically reproducible 
fingerprints relating spectra responses to the underlined 
properties of olive oil have been accomplished using these 
spectroscopic methods [2]. These technologies have eco-
nomically contributed to the industry in terms of low cost, 
minimum waste and highly repeatable analysis of olive oil. 
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The most commonly applied regions are within mid and near 
infrared and quite a number of studies have shown some 
models developed in olive oil characterizations [3, 4]. One 
of its many advantages is the rapid classification of olive 
oils into different grades and categories with as much as 
low amount of chemicals spent. Usually, the spectroscopic 
classification of olive oils is applied in the areas of varietal 
and harvest time differentiation, production or geographical 
origin distinction, typicality in terms of chemical composi-
tion, adulteration detection and quantification [5–7]. Spec-
troscopy offers additional benefits of optimizing olive oil 
production process for better product control and real-time 
monitoring.

UV–Vis spectroscopy was shown as a practical technique 
for different uses in characterization, classification, and 
determination of adulteration in various kinds of foods such 
as oils [8–10], tea [11], ketchup [12], wines and spirits [13, 
14]. The technique has been satisfactorily applied to quantify 
color pigments in fruits and vegetables [15, 16]. Similarly, 
characterization and prediction of one or more chemical 
properties in other food products using UV–Vis spectros-
copy have also been profiled in recent years. The works of 
Cifuni et al. and Nguyen et al. show that lipid oxidation and 
myoglobin in meats can be successfully predicted [17, 18]. 
Comparatively, UV–Vis pattern analysis has been the least 
exploited technique in olive oil research. The intensity of the 
energy measured as absorbance against wavelength is capa-
ble of creating a unique profile containing information that 
can be expounded with chemometric tools. Data fusion strat-
egies of UV–Vis with other rapid, non-invasive technologies 
were also reported [19, 20]. The importance of inclusion of 
multivariate modeling in the evaluation of UV–Vis spectra 
in food analysis was also expressed in a recent review [21].

Olive oil is a very characteristics food article, as it does 
not necessarily need any pretreatment prior to UV–Vis spec-
trum acquisition. For this reason, it is important to show 
more effective usage of UV–Vis spectroscopy in oil analy-
sis as a classification and prediction tool. A comprehensive 
study was aimed for the use of UV–Vis spectral data of olive 
oils for their classification and prediction of major chemical 
parameters by using samples of different years and differ-
ent varieties. Simultaneous changes in spectra intensities 
with olive oil quality were elaborated and chemical proper-
ties such as phenolics, fatty acids and quality indices were 
predicted using orthogonal projection to latent structure 
regression models. In order to confirm this hypothesis, the 
multivariate models were validated with independent data 
sets for evaluation of the method to monitor variations in 
the properties of olive oil as a function of variety and year.

Materials and methods

Olive oil samples

A hundred olive oil samples obtained between 2012 and 
2016 were evaluated. All the samples belonged to Aegean 
region (west coast of Turkey), more specifically around 
150–200 km distance to north, east and south from the city 
of Izmir. The olives from different harvest times (early, 
mid and late) and different varieties over different harvest 
years were included in the sampling to cover a wide range 
of olive oil samples. The oils were mainly from Ayvalik 
(A), Memecik (M) and Erkence (E) olive varieties with 
few others from local varieties. In the harvest year of 2012, 
thirty-six olive oil samples (eighteen from each of Ayvalik 
and Memecik varieties) were collected. These 36 olives 
belong to early, mid, and late harvest times. Four Ayvalik 
oil samples were obtained in 2014 harvest year. In 2015, 
twelve oils of Erkence variety, 10 oils of local varieties, 
and 8 oils of Ayvalik and Memecik varieties from mid to 
late harvest times were analyzed; then they were stored in 
amber bottles in dark at room temperature for 12 months, 
and re-evaluated in 2016 (Table 1). Taris Olive and Olive 
Oil Cooperatives Union provided the oil samples of Ayva-
lik and Memecik, while others were provided by known 
and trusted local producers. Maturation degree for Ayvalik 
and Memecik olives were varied from early to late, while 
Erkence oils were obtained from olives at late matura-
tion. Other local oils were obtained at the mid maturation 
degree. The chemical and spectroscopic analysis were 
conducted in an order without a specific time interval on 
the same year the samples were collected. 2016 oils are 
the stored oils of year 2015, so they have undergone the 
same treatment after one year of storage. The oil samples 
collected yearly were carefully preserved in clean airtight 
bottles and kept at refrigeration temperature  (4oC) until 
analyzed. A constant replacement of headspace of the 
sample with nitrogen was ensured throughout the course 
of the analyses.

Chemicals

The standards for phenolic acids such as caffeic, 2,3-dihy-
droxylbenoiz, 4-hydroxyphenylacetic, p-coumaric, 
3-hydroxyphenylacetic acid ferulic acids that are profiled 
in the oil were products of Extrasynthese (France), while 
phenolic alcohols (hydroxytyrosol and tyrosol), luteolin 
and pinoresinol were sourced from Fluka (Germany). 
The Fatty Acid Methyl Ester (FAME) mixture used in the 
percentage quantification of individual fatty acids was a 
brand of Supelco37 (C4–C24 Supelco #47,885-U). All the 
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reagents and HPLC grade solvents (methanol, acetic acid, 
ethanol, ethyl ether, cyclohexane, hexane) were the prod-
ucts of Sigma-Aldrich and Fluka (Germany). Ultrapure 
water used for general cleaning and reagents’ solvent was 
produced in Sartorius Arium 611 VF system (Sartorius 
AG, Gottingen, Germany).

UV–Vis spectra acquisition

Spectra of oils were collected using UV–Vis spectropho-
tometer (Shimadzu UV-2450 Kyoto, Japan) equipped with 
deuterium-discharge lamp as a source of ultraviolet wave-
length range and a tungsten lamp for the visible range, 
and a resolution of 2.0 nm, was used. Absorption spectra 
of oils were acquired in UV and visible ranges (200–800 
nm) at 1 cm path length, thus resulting in 301 wavelengths 
(spectral variables) in data matrix. Spectra were collected 
in replicates and averaged out, then, they were pretreated in 
SIMCA (v.16, Umetrics, Umea, Sweden) prior to multivari-
ate analysis.

Oxidative stability index (OSI)

An automated Rancimat system (Model 873 Biodiesel, 
Metrohm, Switzerland) was used to estimate the oxidative 
stability of the oil samples [22]. The system contains reac-
tion vessels into which 3.0 g of olive oil was measured. The 
vessels were covered and connected to conductivity cells 
containing ultrapure water as volatile adsorbent. Airflow at 
20 L/h and 120 °C facilitates rapid oxidation of the oil and 
serves as a carrier of the primary oxidative products from 
the vessel to the absorbent, while the rate of oxidation is 
monitored by thermal conductivity. Oxidative stability in 
Rancimat method is reported in terms of time (induction 
point) needed to fully oxidize the oil samples in this acceler-
ated process.

Total phenol content (TPC)

Phenolic extract of olive oil was quantified according to the 
method of Montedoro et al. [23], using Folin Ciocalteau spec-
trometric method. A total of 10 mL of the reaction mixture 
(consisting of 1 mL of phenolic extract, 6 mL of dionized 
water, 0.5 mL of Folin reagent and 2 mL of 15% g/mL  Na2CO3 
solution) was mixed and incubated for 2 h in the dark, and then 
absorbance values at 765 nm were taken. TPC was expressed 
as equivalent of gallic acid (mg GA/kg oil).

Free fatty acid (FFA)

European Official Methods of Analysis [24] was used to 
determine FFA, which is expressed as oleic acid %. It was 
determined by neutralizing oil solution (ethanol: ethyl ether, 
1:1) with 0.1 N KOH in the presence of phenolphthalein.

Total pigments

The pigment content of the oil as chlorophyll and carot-
enoids were estimated according to a procedure by 
Mínguez-Mosquera et al. [25]. Olive oil sample (7.5 g) 
was mixed and made up to 25 mL with cyclohexane. The 
absorbance representing chlorophyll  (A670) and carote-
noids  (A470) were measured with a UV spectrophotometer 
(Shimadzu UV-2450 Kyoto, Japan), having optical path 
length (d) of 1 cm. Chlorophyll and carotenoid contents 
were expressed as mg/kg of oil using Eqs. 1 and 2:

(1)Chlorophyll (mg∕kg) =
A
670

× 10
6

(613 × 100 × d)

(2)Carotenoid (mg∕kg) =
A
470

× 10
6

(2000 × 100 × d)

Table 1  Olive oil samples

Region 1: North of Izmir; Region 2: South of Izmir; Region 3: Izmir; Region 4: East of Izmir
A Ayvalik, M Memecik, E Erkence, Unk unknown
a 2016 oils: oils of harvest year 2015 stored for 12 months

Olive variety Region Year Total

2012 2014 2015 2016a

Ayvalik A Region 1 18 4 5 5 32
Memecik M Region 2 18 3 3 24
Erkence E Region 3 12 12 24
Local 1 Unk Region 3 1 1 2
Local 2 Unk Region 3 1 1 2
Local 3 Unk Region 4 4 4 8
Local 4 Unk Region 3 3 3 6
Local 5 Unk Region 3 1 1 2

36 4 30 30 100
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Phenolic profile by HPLC

Phenolic extraction was done according to the method 
described by Alkan et al. [26]. HPLC system (Agilent 1200, 
Santa Clara, CA, USA) equipped with a quaternary pump, 
an auto-sampler and a DAD photodiode array detector was 
used to resolve individual phenolic compounds composed 
in the sample. A C18 column (250 mm, 4mm, 5 μm, SGE 
8211, Australia), maintained at 35 °C, with injection vol-
ume of 20 µL was used for the analyses. Initially, the mobile 
phase was 90% of water/acetic acid (99.8:0.2 v/v) and 10% 
methanol and the concentrations were adjusted according 
to a predetermined gradient. Each phenolic compound was 
quantified by comparing its response to that of commercial 
standard at two wavelengths, 280 and 320 nm. Gallic acid 
was used as internal standard, five-point calibration curves 
were prepared for each phenol standard and the results were 
expressed in mg/kg oil. Oleoropein derivative (O-der) is the 
summation of hydroxytyrosol (Hyt) and tyrosol (Tyr). Total 
phenolic acids (TPA) represent the summation of phenolic 
acids (caffeic, 2,3-dihydroxylbenoiz, 3 and 4-hydroxyphe-
nylacetic, p-coumaric, and ferulic acids) determined in the 
sample.

Fatty acid profile by GC

GC-FID system (Agilent 6890, USA) equipped with split/
split-less (1:50) injector, HP 88 capillary column (100 m 
× 0.25 mm × 0.20 mm, Agilent, USA) was used to profile 
fatty acid methyl ester contents of the oils in accordance 
to European Official Methods of Analysis [24]. Helium at 
2 mL/min flow rate was used as the carrier gas. Injection 
temperature and volume was 250 °C and 1 mL, respectively. 
Initially, the oven temperature was set at 140 °C, maintained 
for 10 min and increased to 220 °C at 3 °C/min rate. The 
detector temperature was kept at 280 °C. Individual fatty 
acids were quantified in percentages by comparing samples 
chromatograms with FAME standard (C4–C24 Supelco 
#47,885-U). Results were given as total saturated (SFA), 
monounsaturated (MUFA), polyunsaturated fatty acids 
(PUFA), as well as MUFA/PUFA and oleic acid to linoleic 
acid (C18:1/C18:2) ratios.

Data matrices and multivariate analysis

Mean, standard deviation, minimum and maximum val-
ues of each of the parameters in classification prediction 
models are given in Tables 2, 3 and 4. As a result of prior 
comparisons of the results, the best models in classification 
and prediction were created with standard normal variate 

Table 2  Descriptive statistics 
of the chemical parameters 
of olive oil samples used in 
calibration and validation sets 
for classification with respect to 
variety (A, M, E varieties)

SDc and  SDV: standard deviation of calibration (C) and validation (V) sets; range = maximum–minimum; 
 RangeC and  RangeV: range values of calibration and validation sets

Parameters            Calibration (40 samples)            Validation (20 samples)

Mean SDc RangeC Mean SDV RangeV

Quality parameters
 FFA (%) 1.6 1.1 4.9–0.4 1.6 1.2 4.9–0.5
 OSI (hr) 5.2 1.4 7.5–2.7 5.1 1.4 7.3–2.7
 Chl (mg/kg) 2.4 1.1 5.4–0.6 2.5 1.3 5.1–1.0
 Car (mg/kg) 1.6 0.6 3.3–0.6 1.6 0.6 2.4–0.8

Fatty acid profile (%)
 SFA 16.2 1.5 23.1–13.9 16.0 1.2 19.7–14.1
 MUFA 72.2 3.0 76.5–66.3 71.7 2.9 76.0–66.0
 PUFA 11.9 2.8 18.2–8.6 12.1 2.5 17.2–9.1
 MU/PU 6.4 1.5 8.8–3.6 6.2 1.3 8.2–3.9
 18:1/18:2 6.7 1.6 9.5–3.8 6.5 1.4 8.8–4.0

Phenolic profile (mg/kg)
 Hyt 1.1 1.1 4.5–0.1 1.3 1.0 3.3–0.1
 Tyr 4.8 3.9 19.4–0.6 6.4 4.6 16.6–1.4
 O-der 6.1 4.15 21.4–1.3 7.6 4.8 19.9–1.7
 Pin 7.2 5.6 24.0–0.5 8.2 4.8 20.6–1.0
 Lut 4.0 2.3 13.5–0.1 4.2 3.4 13.4–0.1
 TPA 5.3 5.2 22.2–1.2 4.9 4.1 16.9–1.2
 TPC 217.5 127.5 478–62.2 195.2 117.8 448–82.1
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Table 3  Descriptive statistics 
of the chemical parameters 
of olive oil samples used in 
calibration and validation sets 
for classification with respect 
to storage effect (oils of 2015, 
2016)

SDc and  SDV: standard deviation of calibration (C) and validation (V) sets; range = maximum–minimum; 
 RangeC and  RangeV: range values of calibration and validation sets

Parameters            Calibration (40 samples)            Validation (20 samples)

Mean SDc RangeC Mean SDV RangeV

Quality Parameters
 FFA (%) 2.1 1.3 5.4–0.3 2.2 1.4 4.9–0.4
 OSI (hr) 4.2 1.8 8.4–1.2 4.2 1.7 7.2–2.2
 Chl (mg/kg) 2.7 1.3 5.6–0.8 2.8 1.1 5.1–1.2
 Car (mg/kg) 1.4 0.6 2.9–0.7 1.5 0.5 2.4–0.8

Fatty acid profile (%)
 SFA 16.4 1.2 19.7–14.6 16.5 2.8 19.0–14.7
 MUFA 69.7 2.3 74.1–66.1 69.6 2.4 74.1–66.0
 PUFA 13.9 2.8 18.1–9.0 13.9 2.5 18.2–10.5
 MU/PU 5.3 1.3 8.2–3.7 5.2 1.1 7.0–3.6
 18:1/18:2 5.5 1.5 8.7–3.8 5.4 1.2 7.5–3.8

Phenolic profile (mg/kg)
 Hyt 9.0 9.4 32.4–0.1 9.2 9.7 32.4–0.6
 Tyr 13.0 11.4 39.3–0.6 11.7 10.9 32.3–1.0
 O-der 22.3 19.1 62.3–1.2 20.3 20.6 56.6–1.3
 Pin 14.6 9.3 45.4–3.3 15.6 8.1 30.2–4.1
 Lut 3.8 3.4 15.0–0.3 3.9 3.5 13.4–0.4
 TPA 3.7 2.7 13.5–0.5 3.5 2.7 9.4–0.6
 TPC 322.7 67.8 504.7–190.2 324.3 81.1 477.7–233.3

Table 4  Descriptive statistics 
of the chemical parameters 
of olive oil samples used in 
calibration and validation sets 
for prediction of chemical 
parameters

SDc and  SDV: standard deviation of calibration (C) and validation (V) sets; range = maximum–minimum; 
 RangeC and  RangeV: range values of calibration and validation sets

Parameters            Calibration set (70 samples)            Validation set (30 samples)

Mean SDc RangeC Mean SDV RangeV

Quality param-
eters

 FFA (%) 1.7 1.3 5.4–0.3 1.8 1.2 4.9–0.5
 OSI (hr) 5.0 1.7 9.0–1.2 4.5 1.5 7.2–1.9
 Chl (mg/kg) 2.4 1.2 5.6–0.6 2.6 1.2 5.1–0.8
 Car (mg/kg) 1.5 0.6 3.3–0.6 1.4 0.5 2.4–0.7

Fatty acid profile 
(%)

 SFA 16.3 1.5 23.1–13.9 16.2 1.0 18.2–14.1
 MUFA 71.1 2.9 76.5–66 71.6 2.6 76.3–66.5
 PUFA 12.7 2.9 18.2–8.6 12.2 2.2 17.1–8.9
 MUFA/PUFA 5.9 1.5 8.8–3.6 6.1 1.2 8.2–4
 C18:1/C18:2 6.2 1.6 9.5–3.8 6.4 1.3 8.8–4.1

Phenolic profile 
(mg/kg)

 Hyt 5.2 7.8 32.5–0.1 7.0 10.2 32.4–0.1
 Tyr 8.9 9.3 39.3–0.6 12.2 10 32.6–0.8
 O-der 14.2 16.3 62.3–1.2 19.1 18.4 59.8–1.3
 Pin 11.1 9.0 45.4–0.5 12 8.9 34.4–1.0
 Lut 3.8 3.2 15– 0.1 3.2 2.0 7.9–0.1
 TPA 4.5 4.2 22.2–0.5 5.0 4.0 16.9–0.7
 TPC 246.7 117.6 505–62.2 246.2 105.5 415.8–82.1
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filtering (SNV) treated second derivative spectra (SNV-2d). 
In addition to the whole spectral (200–800 nm) data, reduced 
spectral range (270–700 nm) was also considered in variable 
prediction. The UV–Vis spectra and chemical parameters 
were designed in three different ways to apply multivariate 
techniques:

a. Data for classification with respect to variety: the matrix 
consists of UV–Vis spectra of 60 samples of known 
varieties (Ayvalik, Memecik and Erkence) from 2012, 
2014 and 2015 harvest years; calibration and external 
validation sets were selected as 40 and 20 observations, 
respectively (samples in calibration set: 2012 (25); 2014 
(2); 2015 (13)).

b. Data for classification with respect to storage for over 
a year: the matrix consists of UV–Vis spectra of 30 
samples obtained in 2015 and those stored for one-year 
(2016); calibration and external validation sets were 
selected as 40 and 20 observations, respectively (sam-
ples in calibration set: 2015 (20); 2016 (20)).

c. Data for prediction of chemical parameters: the matrix 
consists of UV–Vis spectra of 100 samples (70 calibra-
tion and 30 validation) with quality parameters (FFA, 
OSI, chlorophylls, and carotenoids), fatty acids (SFA, 
MUFA, PUFA, MUFA/PUFA and C18:1/C18:2 ratios) 
and phenolic compounds (hydroxytyrosol, tyrosol, ole-
uropein derivatives, pinoresinol, luteolin, total phenolic 
acids, and total phenol content).

Partial least square discriminant analysis and orthogo-
nal form of partial least square analysis (OPLS-DA) were 
tried for classification, as the latter produced models with 
higher cross validation. OPLS-DA evaluates the relation-
ship between X (spectra) and Y (user-defined class alloca-
tion matrix): class 1 (Ayvalik), class 2 (Memecik), class3 
(Erkence) for the varietal differences, and 5 (2015) and 6 
(2016) in the case of discrimination with respect to year. 
The variations in X matrix are partitioned into two: a predic-
tive part correlated to Y variable (class information in this 
case) and an orthogonal part uncorrelated to Y. OPLS-DA 
models were validated using leave-one-out cross validation 
(internal validation) and external validation. Class modelling 
performances were measured by considering percentage of 
correctly classified samples (confusion matrices) for both 
calibration and prediction. OPLS regression was applied to 
model the predictive capacity of the spectra over chemi-
cal parameters of oxidative stability, nutritional and quality 
characteristics. Output of the models were given in terms of 
root mean square error of calibration  (RMSEcal), cross-vali-
dation  (RMSECV), external validation  (RMSEval), regression 
coefficients for calibration, R2

cal
 , cross-validation R2

cv
 , and 

validation R2

val
 . The ratio of performance to deviation (RPD) 

for external validation were presented [27]. RPD values for 

validation sets were calculated as the ratio of standard devia-
tion of the data to the root mean squared errors. The number 
of significant principal components of OPLS models were 
recorded as  PCp +  PCo, where p and o stand for predictive 
and orthogonal components, respectively. Multivariate data 
analyses were carried out using SIMCA 14 (Umetrics, Umea 
Sweden). VIP (variable importance) values summarize the 
overall contribution of X variables (UV–Vis wavelengths) 
to the PLS models of classification and prediction. The sig-
nificant wavelength ranges were given based on the VIP lists 
of SIMCA.

Results and discussion

Chemical parameters of olive oils samples

Olive fruit shows variation in chemical parameters with 
respect to variety, harvest year and time of harvest, geogra-
phy, and agricultural applications. The variation in quality 
variables, fatty acid and phenolic profiles of tested olive oil 
samples are the result of these factors and the oil produc-
tion phase, as well (Tables 2, 3 and 4). FFA is the basic 
parameter used in the classification of olive oils with respect 
to quality. FFA is mainly affected by the olive harvest, oil 
production, and storage practices [24]. The oils with FFA 
less than 0.8% are defined as extra virgin olive oil. The oils 
with low acidity have high OSI (h). The samples with FFA 
less than 1.0% belongs to A and M oils, and they conse-
quently had high OSI values (such as 7.5 h). Most of the E 
oils had high free fatty acid (> 3.0%), which resulted in low 
OSI (such as 2.7 h). The samples have a wide range of pig-
ment concentration (1.0 to 5.4 mg/kg for chlorophyll; 0.8 to 
3.3 mg/kg for carotenoids). It was observed that E oils had 
lower pigment concentrations compared to A and M oils. 
The main mono-unsaturated fatty acid in olive oil is oleic 
acid (C18:1). The range of oleic acid was observed within 
66 and 76.5%. M and A oils have higher oleic acid content 
than E oils. The other important fatty acid group are poly-
unsaturated fatty acids. Two significant poly-unsaturated 
fatty acids in olive oils are linoleic (C18:2) and linolenic 
(C18:3) acids, which adversely affect the oxidative stability 
[28]. The range of this group among fatty acids was deter-
mined as [8.6–18.2%]. The E oils had higher amount of these 
fatty acid groups, which explain their low OSI. Among all 
chemical parameters, the phenolic compounds showed larger 
standard deviations due to their high variability with respect 
to variety, maturity, harvest year, pre and post extraction 
processes (Table 4). A and M oils had higher concentrations 
of hydroxytyrosol (Hyt) and tyrosol (Tyr) than E oils did. 
These two derivatives of secoiridoids are known to contrib-
ute antioxidant capacity of oils, and positively affect OSI 
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values. TPC of oils changed between 62.2 and 505 mg/kg, 
not necessarily contributing to high OSI [28].

Spectra characterization

Representative spectra for oils of different varieties, and 
oils as fresh and stored are shown in Fig. 1. The informa-
tion embedded in the bands of the spectrum can reveal both 
qualitative and quantitative differences among oils. Spectra 
differ particularly in the visible range between 380 and 720 
nm, which constitutes the most informative bands, alongside 
a broad band at near ultraviolent region between 300 and 
390 nm. In olive oils, characteristic absorbance between 300 
and 500 nm have been linked to different classes of phenolic 
compounds and other minor constituents in general [29]. The 
range of 440–500 nm corresponds to carotenoid pigments 
such as lutein and beta-carotene. Chlorophylls as pheophytin 
a and pheophytin b compounds give maximum absorbance 
between 415 and 440 nm and also 655–670 nm [20]. There 
are three small peaks along the spectrum at 540 nm, 610 nm 
and 670 nm. Only high quality olive oils possess these three 
peaks as in the case of Ayvalik and Memecik oils, which had 
lower free fatty acid content (less than 1.0%). These peaks 
tend to disappear in the low quality oils (Erkence oils with 

free fatty acid content greater than 1.0%), as also observed 
by other researchers [30]. The weak peak around 540 nm can 
be attributed to anthocyanins [29]. The main peaks at 670 
nm and other at 610 nm are caused by electronic transitions 
between grounds and first excited state of chlorophylls. It 
can be stated that transitions to higher energy state corre-
sponds with the absorptions in these shorter wavelengths 
[31, 32]. The appearance of the peaks in terms of height and 
width indicate broadening of those states. Strong absorption 
bands at 400–500 nm range were observed in both high and 
low quality olive oils. However, the shape of the spectra 
differed from those containing significant amount of chlo-
rophyll (Memecik and Ayvalik) as supported by Tarakowski 
et al. [30]. A detailed information in another study supports 
the explanation of observed peaks between 400 and 500 
(mainly carotenoids and derivatives, and some derivatives 
of chlorophylls such as pheophytin a), 530–565 (anthocya-
nins), 610–670 (chlorophylls) [33].

The differences in the spectra of 2015 and 2016 oils 
(stored) was observed in the range of 440–510 nm (Fig. 1b). 
The increase in concentration of more stable pigment deriva-
tives during storage was reported as a result of pheophyti-
nization, pyropheophytinization, and isomeration reactions 
[33, 34]. Similarly, there are some amount of increase in 
hydroxytyrosol and tyrosol concentrations during 12-month 
storage as reported elsewhere [35]. The total effects of 
these transformations can be explained as the increase of 
the absorbance between 440 and 500 nm at the end of the 
storage.

Classification with respect to variety and storage 
effect

In the classification of olive oil samples with UV–Vis 
spectra, OPLS-DA models were created by untreated, 
SNV-2d treated and reduced-SNV-2d (270–700 nm) 
spectra. Details of multivariate models in terms of num-
ber of principal components,  R2 for calibration and cross 
validation, and confusion matrix containing the percent-
age of correctly classified observations (CC%) in each 
group are given in Table 5. For varietal classification of 
olive oils, OPLS-DA models were built with classes 1, 
2 and 3 ascribed to oils of Ayvalik (A), Erkence (E) and 
Memecik (M) varieties, respectively, as shown in the score 
plot (Fig. 2a). It was seen that models were successful in 
terms of correct classification for calibration data (100%). 
Reduced SNV-2d filtered data gave the best results (greater 
than 89%) for validation data with a 4-component model. 
According to VIP results of the model, the important 
contributors are in the ranges of 282–350 nm, 392–426 
nm, and 442–546 nm. In Table 6, the significant UV–Vis 
wavelength ranges are given for each chemical parameter. 
It can be deduced that all chemical parameters had their 

a

b

Fig. 1  Representative UV–Vis spectra of olive oils a three varieties, b 
fresh and stored oils (2015 and 2016)
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effects on the varietal discrimination. With validation 
set, the classification capacity of UV–Vis spectroscopy 
showed similar or better performances than those observed 
in case of combined data of UV–Vis and headspace mass 
spectroscopy data [31, 36]. The results are comparable to 
another report about classification techniques applied on 
selected wavelengths of UV–Vis spectra and sensory data 
of larger olive oil samples [37]. The spectra of olive oils of 
2015 were modeled with the spectra of the same oils after 
they were stored for a year (2016) to show the capacity of 
UV–Vis spectroscopy in discriminating fresh and stored 
oils. The score plot of OPLS-DA model with two classes 
is shown in Fig. 2b. Models for calibration produced 100% 
correct classification for calibration and 90–100% for vali-
dation data. Untreated and reduced SNV-2d spectra gave 
similar results. VIP plots of OPLS-DA model showed that 
the most significant wavelength ranges were 282–328 nm 
and 426–546 nm. These UV–Vis ranges match up with 
phenolic compounds and pigment content of oils (Table 6). 
Chemical analyses showed that hydroxytyrosol, tyrosol, 
pinoresinol contents of stored oils increased even though 
total phenolic contents decreased up to 25%. The chlo-
rophyll and carotenoid contents of stored oils decreased 
by 40 and 32%, respectively (data not shown). No sig-
nificant changes observed in fatty acid profiles, while free 
fatty acid values increased and oxidative stability values 
decreased, in general. A recent study indicated fluctuations 
in some chemical components of olive oils, especially the 
“fluorophores” such as pigments, phenolic compounds, 
tocopherols and its derivatives, during a long time stor-
age [38]. UV–Vis spectroscopic evaluation of olive oil 
with respect to its freshness has a potential of being used 
in authentication problems to verify its quality consistency 
over time.

Prediction of olive oil quality and chemical 
parameters

The set of predicted variables consist of quality parameters 
(FFA, OSI, total chlorophylls and carotenoids), fatty acids 
(SFA, MUFA, PUFA, ratios of MUFA/PUFA and oleic/
linoleic acid), and phenolic compounds (individual phenols 
including hydroxytyrosol, tyrosol, pinoresinol, luteolin, total 
phenolic acids, and total phenol content). The best OPLS 
models were obtained with pretreated data, and results are 
given in terms of calibration and validation in Table 6. The 
characteristics of models were discussed in terms of param-
eters of external validation.

Quality parameters

The acidity of olive oils was predicted with a 5-compo-
nent model, R2

val
 of 0.67 and RPD of 1.64. The prediction 

of OSI with 5 latent variables generated R2

val
 of 0.66 and 

RPD of 1.15. The most informative wavelength ranges (VIP 
from Simca) were determined as 300–410 nm for FFA and 
390–680 nm for OSI. The indicative wavelengths for oxi-
dative stability index overlapped with those for phenolic 
compounds and pigments, which are the main protective 
components against oxidation in olive oils. However, the 
performance of the UV–Vis spectra model on induction 
values was found lower compared to mid-IR spectra [39]. 
The prediction of total chlorophylls and carotenoids were 
resulted in R2

val
 of 0.79 and 0.80; RPD of 1.97 and 2.38, 

respectively. Borello and Domenici [40] showed the use of 
UV–Vis spectra over visible range to determine olive oil 
pigment concentration, and discussed better estimation of 
pigments by the whole range of UV–Vis as oppose to the 
absorbance readings at single wavelengths. The significant 

a b

Fig. 2  OPLS-DA models with reduced SNV-2d treated UV–Vis spectra a oils from different varieties (A Ayvalik, M Memecik and E Erkence), b 
fresh and stored oils (5: 2015 (fresh oils) and 6: 2016 (stored oils))
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wavelength range for pigments in the prediction models were 
determined as the band of 412–698 nm. There are sources 
reporting that RPD values of 2.0 or less are considered as 
poor models [27]. According to classifications of RPD val-
ues in other studies, pigment models can be considered as 
good, FFA model as moderate, OSI model as poor [41, 42].

Lower RMSE values, and higher  R2 and RPD values for 
chlorophyll and carotenoids (compared to those for other 
parameters) support that the responsiveness of UV–Vis 
spectroscopy to strong chromophore-containing or chro-
mogen-like chemical substances (pigments in olive oil) is 
higher than that to other chemical compounds. In a study, the 
absorbance at these wavelengths corresponding to the pig-
ments was found useful for adulteration detection in EVOO 
in which the concentration of the adulterant is inversely pro-
portional to the absorption intensities [30].

Fatty acids

The predictions of oleic acid and MUFA, and predictions 
of linoleic acid and PUFA with UV–Vis spectra gave very 
similar results. MUFA and PUFA have been reported to con-
tribute positively and negatively to the oxidative stability of 
olive oil, respectively [28]. The 6-component models of the 

ratio of MUFA/PUFA and C18:1/C18:2, and 5-component 
models of MUFA and PUFA were found similar in terms 
of validation  R2 and RPD values. These observations are 
slightly lower than those obtained by mid-IR spectra [43]. 
Yet, the present results appear more promising as opposed to 
the other reports claiming that UV–Vis spectra have limita-
tions in oleic and linoleic acid predictions [44]. The most 
informative bands for the ratio of mono and poly-unsaturated 
fatty acids were determined as [340–500]. The prediction 
of SFA was not found successful with UV–Vis spectra 
(RPD = 0.6).

Phenolics

In the case of phenolic compounds, validation measures of 
models are found lower compared to those of quality indices 
and fatty acids. Among phenolic compounds, total phenolic 
content (TPC) modeled by SNV-2d pretreated, reduced spec-
tra between 270 and 700 nm produced R2

val
 of 0.67 and RPD 

of 1.74. The concentration of oleuropein derivatives (sum-
mation of hydroxytyrosol and tyrosol) was estimated by a 
6-component model with R2

val
 of 0.66 and RPD of 1.77. As 

for the other phenolics, models produced validation results 
in terms of  R2 and RPD values in the ranges of [0.26–0.65] 

Table 6  OPLS regression models for quality parameters, fatty acids and phenolics of olive oils

OSI oxidative stability index, Chl chlorophyll, Car carotenoid, SFA saturated fatty acids, MUFA monounsaturated fatty acids, PUFA polyunsatu-
rated fatty acids, 18:1/18:2 oleic:linoleic acid ratio, TPC  total phenol content, Hyt hydroxytyrosol, Tyr  tyrosol, O-der oleuropein-derivatives, 
Lut luteolin, Pin pinoresinol, TPA total phenolic acids, PCs  PCp +  PCo OPLS predictive + orthogonal principal components, R2

cal
 calibration coef-

ficient of determination, R2

cv
 cross-validation coefficient of determination, R2

val
 validation coefficient of determination, RMSE root mean square 

errors, RPD ratio of performance to deviation, UV–Vis range the most significant wavelength ranges in prediction, SNV standard normal variate, 
2d 2nd derivative, Reduced-spectra 270–700 nm range

Variables Spectra PCs R
2

cal
R
2

cv
R
2

val
RMSEcal RMSEcv RMSEval RPD UV–Vis range (nm)

Quality parameters
 FFA (%) SNV-2d 1 + 4 0.93 0.73 0.67 0.35 0.43 0.73 1.64 298–410
 OSI (hr) SNV-2d 1 + 4 0.9 0.6 0.66 0.52 1 1.3 1.15 390–682
 Chl (mg/kg) SNV-2d 1 + 2 0.91 0.86 0.79 0.35 0.43 0.61 1.97 412–692
 Car (mg/kg) SNV-2d 1 + 3 0.91 0.78 0.8 0.2 0.29 0.21 2.38 412–698

Fatty acid profile (%)
 SFA Reduced-SNV-2d 1 + 5 0.81 0.6 0.62 0.51 0.71 1.66 0.60 324–388
 MUFA Reduced-SNV-2d 1 + 4 0.87 0.74 0.71 1.12 1.5 1.56 1.67 444–514
 PUFA SNV-2d 1 + 4 0.95 0.81 0.73 0.65 1.23 1.33 1.65 338–495
 MUFA/PUFA SNV-2d 1 + 5 0.98 0.83 0.77 0.22 0.58 0.63 1.90 340–498
 C18:1/C18:2 SNV-2d 1 + 5 0.98 0.83 0.75 0.25 0.63 0.72 1.81 340–496

Phenolic profile (mg/kg)
 Hyt Reduced-SNV-2d 1 + 3 0.77 0.64 0.52 3.85 4.72 6.69 1.52 400–500
 Tyr Reduced-SNV-2d 1 + 8 0.83 0.65 0.7 3.78 4.88 5.97 1.68 400–500
 O-der Reduced-SNV-2d 1 + 5 0.78 0.7 0.66 7.32 8.1 10.37 1.77 400–500
 Pin Reduced-SNV-2d 1 + 3 0.68 0.49 0.61 5.33 6.47 6.18 1.44 386–486
 Lut Reduced-SNV-2d 1 + 4 0.79 0.62 0.59 1.36 1.75 1.39 1.44 282–430
 TPA Reduced-SNV-2d 1 + 4 0.65 0.45 0.53 1.89 2.23 2.79 1.43 378–502
 TPC Reduced-SNV-2d 1 + 4 0.88 0.78 0.67 42.74 55.04 60.65 1.74 276–500
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and [0.84–1.52], respectively. The uncertainty in the spectral 
band responsible for phenols is due to the low selectivity 
of UV–Vis spectroscopy for olive oil minor compounds; a 
view that was also shared by Gonçalves et al. [45]. The most 
informative wavelengths for TPC model were determined 
as 276–500 nm, which covers all the significant ranges 
observed for individual phenolic compounds (between 282 
and 500 nm).

Conclusions

UV–Vis spectroscopy and chemometrics was found appli-
cable in classification with respect to variety, and classifica-
tion with respect to freshness. SNV filtered 2nd derivative 
spectra produced models that classified oils of three varieties 
with over 89% correct classification rate in validation data. 
Similarly, validation data of fresh and stored olive oils were 
classified with over 90% correct classification rates. Multi-
variate regression models produced promising results for the 
estimation of some chemical parameters (total chlorophyll 
and carotenoids, ratio of mono-unsaturated to poly-unsat-
urated fatty acids, total phenol content), with RPD values 
between 1.74 and 2.38. The improvements in classification 
and prediction models can be achieved by using higher num-
ber of observations from different varieties, harvest time, 
harvest year, and quality.
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