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Abstract
Bitrate adaptation algorithms have received considerable attention recently. In order to evaluate these algorithms objectively,
multiple DASH datasets have been proposed. However, only few of them are compatible to SVC-based adaptation algorithms.
Apart from the dataset, to fully implement and evaluate an adaptation algorithm, many time-consuming steps are required
such as MPD parser design, adaptation logic design and network environment setup. In this paper, a dash simulator which
assesses the performance of SVC-based adaptation algorithmswithout the requirement of any additional implementation steps
is proposed. Also, an SVC dataset that includes both CBR and VBR encoded videos is designed. Demonstration is performed
as evaluation of an SVC-based adaptation algorithm under several throughput scenarios using the designed dataset. Results
show that the proposed system considerably reduces time requirement compared to real-time assessment. Dataset, throughput
generation tool and simulator are all publicly available so that the researchers can test their implementation and compare with
the results presented in this paper.

Keywords Dynamic adaptive streaming over HTTP (DASH) · Scalable video coding (SVC) · Streaming simulation · DASH
dataset

1 Introduction

As the share of video network traffic is estimated to increase
by 10 percent in 5years [1], researchers pay more an more
attention to optimization of adaptive video streaming. Many
of the adaptive video streaming platforms based on Dynamic
Adaptive Streaming over HTTP (DASH) [2] standard. How-
ever, the standard does not specify the adaptation part of the
framework which requires optimizations in many aspects.
Therefore, there are numerous implementations of DASH
adaptation with multiple video encoding schemes under
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various network scenarios. With the development of large
number of adaptation algorithms, accurate and extensive
evaluation and comparison of these studies become more
significant issue.

Recently, a number of researches covering evaluation of
DASH implementations have been conducted. In [3], aver-
age bitrate and bitrate switching amount of somewell-known
open source and commercial applications are measured with
a setup based on netem emulation. In [4], an environment is
designed for assessment of popular adaptive HTML5 players
usingMininet emulation. In [5], evaluation of authors’ previ-
ous study fDASH [6] and some of the recent implementations
are provided with the help of measured bitrate and inter-
rupt duration in vehicular scenarios. These researches have a
common approach of focusing on results which are achieved
with low number of trials in mostly non-reproducible test
conditions. On the other hand, proposed work focuses on
detailed description and generation of publicly accessible,
reproducible evaluation framework. Even if the studies with
larger scope are generally more result oriented, studies han-
dling the adaptive streaming evaluation in more specific
categories presents favorable outcomes for future researches.
These studies of DASH evaluation framework can be catego-
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rized into dataset design, throughput waveform creation and
simulation parts.

In general, DASH datasets contain several video chunks
each of which has representation and segment ids. Segments
specify the time interval where the video chunk belongs to.
A video chunk at a specific segment can have different rep-
resentation ids. Representations specify the quality or bitrate
of a video chunk for a given segment. For scalable encoded
videos, video chunks are represented with layer and segment
ids [7]. When the layer id increases the quality of the video
chunk increases as well. Higher layers have dependencies
to the lower layers; therefore, the adaptation algorithm can
improve the quality of segments inside the buffer at any time.
This flexibility of scalable coded videos [8] and lower storage
size requirement [9] make SVC favorable for DASH imple-
mentations. Although there are a number of DASH datasets
in the literature [10–14], few of them employ scalable encod-
ing [14]. In [14], videos are encoded with SVC in three to
five layers in four different variants. However, they have only
variable bitrate encoded videos in their dataset. In the pro-
posed dataset, the rawvideos are encoded in both variable and
constant bitrate modes so that DASH implementations can
be compared for datasets with different characteristics. Addi-
tionally, SSIM [15] values of video chunks are included in the
media presentation description (MPD) file of each stream.

Most of the rate adaptation studies adopt two main
approaches for throughput determination in the experiment
setup phase. One of them is manually specifying through-
put waveform [16–18], and the other one is using network
tracing [19–21]. Manual specification of throughput is time-
consuming thereby limiting the number of tests applied to
the adaptation algorithm. Using network tracing on the other
hand requires getting measurements from various locations
under different conditions. The papers that adopt network
tracing either make their own measurements or benefit from
available tracing studies [22–24]. For example, one of the
recent network trace database study [24] provides through-
put measurement of scenarios such as bus, static and car
in 4G networks. However, to utilize such studies, mea-
sured throughput mean and variation should be compatible
to those of DASH dataset. For instance, if the measure-
ment has higher throughput than the average bitrate of
maximum layer, the test will not be able to compare adap-
tation algorithms properly. In other words, network traces
should be compatible to dataset while satisfying high cover-
age of various network scenarios which may not occur for
many experiments. In the proposed work, to compare DASH
applications with extensive and compatible network charac-
teristics, throughput generation with the help of a stochastic
model is determined.With this method 1000waveformswith
a duration of 180s are produced with a large scale of net-
work feature variability. This variability is defined in three

main features which are mean, variance and stationarity of
the throughput waveform.

As the next step, testing of the DASH application is
required. Most of the related studies employ a client and
server hardware setup with a network emulation tool embed-
ded in the server [16–19]. In this setup, client requests and
receives the video chunks from server with a throughput set
by a network emulator such as Linux traffic control util-
ity. The disadvantage of this setup is the requirement of too
much time for an extensive test since it needs to wait for
the playback time before the evaluation. Moreover, the net-
work emulation tools cause multiple reproducibility issues.
First one is being unable to produce the exact same wave-
form in different executions due to emulation error. The other
one is the synchronization issue that stems from execution
of network emulation and adaptation from different devices
that are server and client. Another approach on adaptation
test phase is designing a system which employs Mininet
instead of client and server hardware setup. For example,
a framework for both subjective and objective evaluation of
adaptive streaming algorithms is proposed in [25]. Although
they come up with a well-designed framework with a num-
ber of metrics, there is no information regarding generation
of throughput waveforms. Besides, their system still suffers
from excessive execution time while testing with an exten-
sive throughput dataset as it still relies on real time emulation
of network. To overcome these problems, a program which
simulates the streaming of video chunks is designed in the
proposed work. The simulator runs after adaptation logic in
each streaming cycle to inform adaptation inputs such as
instantaneous buffer length, bitrate and SSIM of the video
chunks. Alongside adaptation inputs, QoE parameters such
as average length of playback interrupts, SSIM mean and
variance of streamed video chunks and low buffer detection
information are calculated and illustrated according to user’s
selection. Designed dataset, throughput generation code and
simulator are all provided in [26] for researchers to test their
implementations.

The organization of remaining paper is structured as fol-
lows. In Sect. 2, the evaluation system details are described
including designed SVC dataset, throughput generation pro-
cess and streamsimulator framework. InSect. 3, performance
of our previous work on SVC-based implementation [27]
is tested against two adaptation algorithms with the help of
designed evaluation system. Lastly, the summary of the paper
is provided in Sect. 4.

2 Evaluation system

The majority of the system is designed in Python while
throughput generation and graphic outputs are acquired using
MATLAB.With all three sub-sections designed individually,
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Fig. 1 Algorithm evaluation system

there are no external requirements. A brief overview of the
evaluation system is represented in Fig. 1. The proposed sys-
tem requires twomain inputs, namelyDASHdataset andTCP
throughput waveform. The system is designed specifically
for SVC datasets and SVC-based adaptation algorithms;
however,withminormodifications, it can be adjusted towork
with other standards. The user can directly take the results of
the default dataset and throughput generation configuration
aswell as specifying these according to their test scenario. As
the next step, streaming simulator computes the performance
of the adaptationmuchmore efficiently than the conventional
approach which is the real-time streaming under emulated
network. By means of a PID controller, the streaming sim-
ulator can also compare two adaptation algorithms while
eliminating possible fairness-related issues which can stem
from their target buffer length difference. Finally, selected
output QoE parameters are displayed with respect to desired
throughput characteristics. Hence, the users can observe defi-
cient aspects of their algorithm and tune it easilywith the help
of fast computation.

2.1 SVC dataset

Created dataset can be investigated under two main cate-
gories which are CBR andVBRmodes. In CBRmode, repre-
sentations correspond to different bitrate levels. Although the
bitrate within a particular representation stays near constant,
the subjective quality of that representation may fluctuate
a lot between segments. In VBR mode on the other hand,
bitrate fluctuations increase while quality stays steadier com-
pared to CBR mode. Implementing both modes brings the
ability to measure the performance of adaptation against
opposite dataset features. Moreover, some adaptation algo-
rithms assume that the representations have steady bitrate
or steady subjective quality and they design their adapta-
tion logic accordingly. Such assumptionsmake an adaptation

sensitive to changes in encoding modes. Hence, usage of
separate coding modes enables measuring the dependency
of adaptation to the characteristics of dataset. The modes of
the designed dataset have some common properties which
are described as follows. Both dataset modes are encoded
with JSVM [28] at 640 × 360px resolution. They have the
frame rate, GOP size and segment duration of 24 frame/s,
8 frames and 2s respectively. IDR period is selected as 48
frames since the start of each segment must be encoded inde-
pendently. Each mode is encoded from publicly available
three raw videos which are Big Buck Bunny [29], Tears of
Steel [31] and Sintel [30]. MPD files are created using the
descriptions of SVC demultiplexer tool proposed by [14].
Additionally, SSIM of individual video chunks are provided
in MPD files.

2.1.1 VBRmode

VBRmode of the dataset consists of five layers. Since JSVM
permits two CGS enhancement layers, MGS is used to add
remaining enhancement layers. Individual CGS layers have
constant QPs which are specified considering their impact on
average bitrate and average quality. For example, the average
bitrate of maximum layer have two constraints. First one is
that average bitrate of the highest layer should be lower than
the maximum limit that can be set from Token Bucket Filter
(tbf),which is a tool to arrange the network traffic usingLinux
tc command. With this constraint the dataset is made appli-
cable to the test setups that utilize tbf. Another constraint is
the maximum SSIM which is set according to experiment of
[32] in low-resolution images. Their experiment measures
SSIM value of the compressed images that corresponds to
Just Noticeable Difference (JND). Hence, average SSIM of
the maximum layer is limited by SSIM value of 0.96 con-
sidering the JND match. After setting maximum layer QPs
of raw videos according these constraints, lower layer QPs
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Table 1 VBR mode average
dataset characteristics Parameters Base layer CGS-1 CGS-2

MGS-1 MGS-2 MGS-3 MGS-4

QP 39.3 33.3 29.3

MGS Weights – 3 13 3 13

Bitrate (Kbit/s) 153 302 405 635 845

Mean SSIM 0.880 0.917 0.931 0.947 0.957

Variance SSIM 0.00368 0.00178 0.00111 0.00068 0.00041

Table 2 CBR mode average dataset characteristics

Parameters Base layer CGS-1 CGS-2

Bitrate (Kbit/s) 177 350 703

Mean SSIM 0.8732 0.9177 0.9552

Variance SSIM 0.00784 0.00395 0.00133

and MGS vector weights are set such that a smooth quality
and bitrate transition can occur between layers. Then, com-
pressed videos are segmented by grouping the frames with
the identical layer id. In this process, layer id of a frame is
identified with the help of NALU prefixes and NALU head-
ers. Average VBR mode dataset characteristics of all three
videos are given in Table 1. The individual characteristics of
each input video is provided in supplementary material for
both modes.

2.1.2 CBRmode

UnlikeVBRencoding, input videos are segmented before the
compression in this part. A base layer and two CGS enhance-
ment layers are used.Twoseconds long segments are encoded
iteratively until the desired bitrate thresholds are satisfied for
each layer. Layer QPs are updated in each iteration with the
help of JSVM FixedQPEncoder tool. If the iteration num-
ber reaches a specified maximum limit, the last iteration is
accepted. The desired bitrates of layers are determined as
180, 360 and 720Kbit/s. The thresholds are set as ±3% of
the desired bitrates, while the maximum iteration number
is set to 10. Since the input files are segmented before the
encoding phase, only layer grouping is applied to the output
of the encoder. Features of video chunks are presented in
Table 2. The configuration file of each mode is supplied in
[26] as well as the output dataset.

2.2 Sample throughput generation

One of themost underestimated parts of performance evalua-
tionmaybe throughput generation. Inmanyof the researches,

Table 3 Desired throughput features

Minimum Maximum Interval length

Mean (μ) (Kbit/s) 150 900 150

Variance (σ 2) 0.1μ 0.6μ 0.1μ

Percent stationarity 15% 75% 15%

implementations are compared using insufficient number of
manually generated waveforms. In this paper, designing suf-
ficient number of throughput waveforms for many different
network characteristics is aimed.

Firstly, the produced waveform should cover a wide
range of network characteristics. To this end, we specify
three features to represent the characteristics of through-
put, which are mean, variance and stationarity ratio. Mean
is the most straightforward feature to be defined since it
enables observation of the adaptation algorithm under vari-
ous average connection speeds. Variance allows assessment
of the algorithm behavior against the alteration in connection
conditions. Lastly, stationarity ratio provides performance
measurement against both predictable and non-predictable
changes in the waveform. Before throughput generation,
desired ranges of these three features are determined. These
ranges are divided into intervals with certain length as
described in Table 3. With the combination of mean, vari-
ance and stationarity intervals, 100 desired feature slots are
specified as default. In the next phase, throughput generation
will be performed such that ten waveforms are produced for
each feature slot.

Using a successful throughput estimation model enables
generation of more realistic waveforms. In this manner,
throughput prediction studies can be investigated in two
categories which are formula-based approaches and history-
based approaches [33]. Formula-based approaches make
prediction according to their calculations using network
parameters such as measured packet loss, round trip time
and bandwidth. On the other hand, history-based approaches
treat TCP throughput as time series and make prediction
with stochastic modeling. Since stochastic modeling is more
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applicable in the design procedure of realistic throughput
waveform, we apply one of the history-based method which
is proposed by [34].

yt = c + φyt−1 + εt (1)

In [34], AR(1) process is used for throughput modeling after
converting TCP throughput to time series as shown in Eq. (1).
This process is stationary for φ < 0 and non-stationary for
φ = 0. Firstly, stationarity of the process is measured with
unit root test or Dickey-Fuller Test [35] specifically. Unit root
test is calculated on a windowwith the length of 30 samples1

in the waveform. The sampling window is shifted to mea-
sure the fluctuations in stationarity at each time instance.
Therefore, the result of stationarity analysis forms another
time series whose elements can take only the values 0 and 1.
Afterward, stationarity analysis results are smoothed using
exponential moving average so that they can be used as
a random variable to specify probability of being station-
ary. Additionally, the probability of next time instance in an
AR(1) process can be described as Gaussian process whose
parameters can be calculated using estimations of c, φ and
ε. Equations (2), (3), (4) and (5) state mean and variance of
these Gaussian processes for stationary and non-stationary
cases, respectively.

Es = c + φyt−1 (2)

Vs = σ 2
εt
(1 + φ) (3)

Ens = yt−1 (4)

Vns = σ 2
εt

(5)

Finally, [34] models the probability density function of yt in
Eq. (6) as a mixture of two normal distributions that belong
to stationary and non-stationary cases. The model in [34] is
in fact more general and includes estimation of all of the
future values starting from the latest measurement(yt0 ). In
this paper, on the other hand, we only require the pdf of
yt0+1. Therefore, Eqs. (2), (3), (4) and (5) are provided for
particular case of t = t0 + 1 where t0 is the time instance of
latest available sample.

f mixyt0+1
(y) = rt0+1 f

non−st
yt0+1

(y) + (1 − rt0+1) f
st
yt0+1

(y) (6)

To generate TCP throughput samples using MATLAB from
the explained model, 30 normal random numbers are gen-
erated within desired mean and variance intervals. These
random numbers work as initiator of the time series. Unit
root test result, estimations of c, φ and ε, and pdf of yt0+1

are calculated. The sample of the next time instance is gen-
erated randomly from the conditional pdf of yt0+1 given

1 In the rest of the paper, we describe the process with a window length
of 30 samples which is the same value used in [34].

0 < yt0+1 < 3μd in Eq. (7) where μd stands for desired
throughput mean. The remaining samples of the time series
are generated similarly after updating latest 30 available sam-
ples.

f finalyt0+1(y) =
f mixyt0+1

(y)

P(0 < y < 3μd)
, where 0 < y < 3μd (7)

After eliminating the first 30 initiator samples, throughput
waveforms with the length of 180 samples are generated.
The generation is performed iteratively until all the desired
feature slots given in Table 3 are filled with ten waveforms.
If the features of a generated waveform is not inside the
desired threshold or the corresponding slot is filled, thewave-
form is discarded. As a result, 1000 time series are acquired
with homogeneous distribution within desired network fea-
ture ranges to represent TCP throughput.

2.3 Stream simulator

The stream simulator takes each generated sample through-
put waveform as input and simulates the behavior of stream-
ing process. Simulator is called after the layer and segment
decision processes to calculate the video buffer time and
playback position. It informs the adaptation logic about the
streaming process so that the adaptation logic can determine
which video chunk to stream in the next cycle. It also records
the SSIMwaveform and total playback interrupt time to eval-
uate the performance of adaptation algorithm. The details of
the stream simulator are described in Algorithm 1.

B ←− cumulativeSum(b);
for each adaptation cycle do

Determine l, s in adaptation logic
S ←− S + f ilesi zel,s ;
if l = 0 then

tbu f ←− tbu f + tseg ;
end
// Updating tplay , tact and tbu f
for i ← ilast to NB do

if Bi > S then
i = i − 1;
break;

end
end
// Interpolation to get finer details
inc ←− i + (S − Bi )/(Bi+1 − Bi ) − tact ;
tact ←− tact + inc;
ilast ←− roundDown(tact );
if playing then

tplay = tplay + inc;
tbu f = tbu f − inc;
if tbu f < 0 then

tplay ←− tplay + tbu f ;
tbu f ←− 0;
// Notify Playback Interrupt

end
end

end
Algorithm 1: Stream Simulator
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In Algorithm 1, storage variables b, B, S, correspond to
throughput, cumulative throughput and downloaded cumula-
tive video chunk size, respectively. S and B are comparable
since b is generated in Sect. 2.2 with sampling period of
1 s. Hence, b and B may have units of both kbit/s and kbit.
Adaptation variables l and s stand for layer and segment.
Time variables tact, tplay and tbu f correspond to current time
in throughput graph, playback position and current buffer
length, respectively. When the adaptation algorithm make
the decision of video chunk to be streamed, the S is updated
as the first step. If the video chunk is from the base layer, tbuf
is increased by segment duration (tseg). Then, the algorithm
searches the point where downloaded cumulative video size
just exceeds the cumulative throughput. The search is per-
formed starting from the last search output (ilast) to the length
of B (NB). Since the cumulative waveform is monotonically
increasing, and the search is usually resulted in the first a few
trials, linear search is adopted. The index of B that is returned
by the search roughly gives the time passed since the start
of the video stream (tact). In order to get more detailed time
information, interpolation is applied. Afterward, tplay and tbuf
are updated if the initial buffering phase ends and video is
not paused by the user. In case of any stalling, the tplay and
tbuf is corrected and playback interrupt-related information is
recorded in the corresponding variables. In a broader sense,
the designed simulation algorithm consists of two modes as
described in Fig. 1. In single adaptation mode, a selected
algorithm is assessed with respect to various datasets or
throughput properties directly as described in Algorithm 1.
The researchers may use this mode to observe the weak
aspects of their algorithm and adjust its streaming parameters
accordingly. Additionally, multiple adaptation mode can be
used to sequentially simulate selected number of algorithms.
However, additional fairness-related adjustment should be
considered as a crucial step which is widely disregarded in
the previous researches.

Regarding the fairness of the simulation, setting the final
evaluated segment for compared DASH implementations
should be one of themajor concerns.When the test concluded
as the throughput waveform reaches to final time sample,
compared algorithms may naturally have different buffer
length and playback positions. Since SVC-based adaptations
have opportunity to upgrade the segments inside buffer, this
part should not be included in the evaluation.However, differ-
ence in playback position still poses a problem. In this case,
some of the segments may be included in one algorithm,
while the same segments may be omitted or not streamed in
the other one. Therefore, the minimum of playback segments
among the compared algorithms can be chosen for latest seg-
ment to include in the evaluation. Final fairness problem in
this case is the size of the omitted segments. They may as
well differ between the tested algorithms. To solve this prob-
lem, a constant of one of the algorithms should be adjusted

such that average2 omitted video chunk size should be equal
among the tested algorithms. The constants to adjust can be
determined from the desired buffer size-related parameters,
since video chunks to omit are selected from the buffer. In this
sense, a PID controller is added at the output of the simula-
tion. If the difference between the omitted chunk sizes of the
adaptations is above a specified threshold, the PID controller
minimizes it by adjusting the selected parameter.

Compared to more general network emulators such as
[36], the proposed simulator is specifically designed for SVC
DASH implementations, and it is very easy to implement new
adaptations algorithms. Briefly, the new adaptation loop can
be added as a function that takes single object as parameter.
This object informs the adaptation loop about the parameters
regarding DASH dataset and the streaming process such as
current buffer level, playback position, video chunk sizes,
segment and layer numbers.

3 Test results

Evaluation is performed using comparison of DASH imple-
mentations with a variety of QoE parameters. Also, the
comparison of VBR and CBR datasets with the same QoE
parameters are provided in the supplementary material.
These parameters are average SSIM of the streamed video
chunks, average variance, average interrupt time and low
buffer experience time. Low buffer experience time con-
sists of five counters. The low buffer term is defined as five
time regions ([0, 1], [1, 2]..[4, 5] seconds), andwhenever the
buffer stays in one of these regions during the streaming, the
corresponding counter is incremented. The user selects eval-
uation parameter as well as the throughput parameters which
the output are illustrated for.

In this part, our previous study on SVCDASH implemen-
tation3 [27], Video Quality Adaptation Framework (VQAF)
[37] and a straightforward threshold-based algorithm are
simulated in multiple adaptation mode. To summarize the
approaches in these adaptations, sDASH selects the desired
buffer length as a function of instantaneous buffered video
quality and has a novel segment prioritization method. In
VQAF, enhancement level to download is adjusted consider-
ing bothmeasured throughput and current buffer length. They
try to smooth the quality of previously requested segments if
their buffer reaches a certain threshold. The threshold-based
algorithm streams from the base layer if the buffer thresh-
old is not met and it starts streaming enhancement layers in
the opposite condition. According to the QoE and through-

2 The average omitted video chunk size of corresponding adaptation
algorithm for all throughput waveforms.
3 sDASH term will be used to refer this implementation in the rest of
the paper.
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Fig. 2 Mean SSIM with respect to mean throughput where blue rep-
resents sDASH orange represent VQAF and red represents threshold-
based implementation

put parameter selection of the user, nine output graphs can
be acquired in multiple adaptation modes for single stream.
Additionally, the graphs can be created with respect to one
or two different throughput parameters in single adapta-
tion mode which results in 12 additional graphs including
low buffer detection. Due to space constraints, two results
from multiple and one result from single adaptation modes
for Big Buck Bunny in VBR mode are given in Figs. 2, 3
and 4, respectively. Figures 2 and 3 indicate higher aver-
age quality and lower quality switching of sDASH compared
to other two implementations. As threshold-based algorithm
only focuses onmaximizing quality, it outperforms VQAF in
terms of average SSIM whereas VQAF has smoother qual-
ity variations compared to threshold-based method. Figure 4
illustrates the range of standard deviation and mean through-
put values which results in stalling.

Simulation graphs can also be acquired by averaging the
simulation results of entire designed dataset which corre-
spond to 6000 streaming measurement (1000 waveforms, 3
videos and 2 modes) for each implementation. Total run time
depends on numerous factors such as initial input of the PID
controller and selected acceptable omitted chunk size differ-
ence. However, computation time of 30min is achieved with
the default settings in a system with 2.8GHz, 4 core pro-
cessor and 8GB of RAM. If the real-time evaluation were
applied instead, this comprehensive test would last around
900 hours (6000 streaming measurements for each of the
three adaptation algorithms with a streaming duration of
180s) without the PID controller. The time efficiency of the
proposed method is favorable for tuning adaptation in its
design process as well as comparing with other implementa-
tions in the evaluation phase.

Fig. 3 Variance SSIM with respect to stationarity of throughput with
previous color indication

Fig. 4 Average stalling time versus mean and standard deviation of
throughput for sDASH

As the final part of this section, the accuracy of simulator
is compared to that of real-time assessment. To this end, a
netem emulated client–server setup is constructed. A refer-
ence adaptation algorithm (sDASH) is tested for both systems
with identical throughput traces. Firstly, the performance of
sDASH is computed for both systems in terms of average
SSIM and variance of SSIM. Then, mean absolute percent-
age error (MAPE) for both QoE parameters are calculated by
taking the real-time assessment results as reference. MAPE
of average SSIM is obtained as 0.17%, while MAPE of vari-
ance of SSIM is obtained as 3.95%. As described in Sect. 1,
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real-time assessment itself does not produce ideal results due
to imperfect control of emulator and synchronization issues.
To measure the reliability of real-time assessment, the same
waveforms are tested multiple times for the same adaptation
algorithm. In this case, relative standard deviation (RSD)
of average SSIM and variance of SSIM are calculated as
0.128% and 3.97%, respectively. As a result, the proposed
system achieves much faster computation accuracy with a
decent reliability compared to real-time assessment.

4 Conclusion

The proposed work contains an SVC dataset, throughput
waveformgenerator and adaptive streaming simulator, which
can be used both individually and integrally. Researchers
may adjust throughput characteristics and choose datasets
to test implementations according to a desired scenario. The
simulation results of three implementations are provided so
that the researchers can also compare their work directly.
The proposed methods can easily be adapted to non-scalable
encoding styles.

Funding Theonline version supplementarymaterial available at https://
doi.org/10.1007/s11760-021-01880-y.
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