
Predicting the Soft Error Vulnerability of Parallel
Applications Using Machine Learning

Işıl Öz1 • Sanem Arslan2

Received: 11 August 2020 / Accepted: 12 March 2021 / Published online: 28 March 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
With the widespread use of the multicore systems having smaller transistor sizes,

soft errors become an important issue for parallel program execution. Fault injection

is a prevalent method to quantify the soft error rates of the applications. However, it

is very time consuming to perform detailed fault injection experiments. Therefore,

prediction-based techniques have been proposed to evaluate the soft error vulner-

ability in a faster way. In this work, we present a soft error vulnerability prediction

approach for parallel applications using machine learning algorithms. We define a

set of features including thread communication, data sharing, parallel programming,

and performance characteristics; and train our models based on three ML algo-

rithms. This study uses the parallel programming features, as well as the combi-

nation of all features for the first time in vulnerability prediction of parallel

programs. We propose two models for the soft error vulnerability prediction: (1) A

regression model with rigorous feature selection analysis that estimates correct

execution rates, (2) A novel classification model that predicts the vulnerability level

of the target programs. We get maximum prediction accuracy rate of 73.2% for the

regression-based model, and achieve 89% F-score for our classification model.

Keywords Soft error analysis � Fault injection � Parallel programming � Machine

Learning

& Işıl Öz
isiloz@iyte.edu.tr

Sanem Arslan

sanem.arslan@marmara.edu.tr

1 Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

2 Computer Engineering Department, Marmara University, Istanbul, Turkey

123

International Journal of Parallel Programming (2021) 49:410–439
https://doi.org/10.1007/s10766-021-00707-0(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-8310-1143
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-021-00707-0&domain=pdf
https://doi.org/10.1007/s10766-021-00707-0

1 Introduction

With the larger availability of multicore architectures and their high potential on

performance improvement, the number of parallel programs utilizing the parallel

execution units on those architectures has been increasing. While the parallel

programs reduce the execution times substantially, they tend to be more error prone

due to their complexity in addition to soft error vulnerability of host parallel

systems. The soft error rates, which result from bit-flips in hardware components

due to environmental factors, keep increasing with design choices in parallel

systems like smaller transistor sizes and more aggressive power modes [35–37].

Therefore, the reliability becomes an important criteria in computer architecture.

Since the soft error vulnerability of modern computer systems tends to increase,

fault tolerance techniques providing higher reliability are becoming more crucial.

These hardware or software redundancy based techniques induce extra cost in the

system in terms of money or performance. Due to limited amount of resources and

budget, it may not make sense to protect programs that are not highly vulnerable to

soft errors. By obtaining the soft error vulnerability of the programs, we can make

decisions whether we need fault tolerance techniques, or how much redundancy we

need to have in our target system.

The prevalent method to analyze the program soft error vulnerability is fault

injection [15, 41]. This method deliberately introduces faults in the hardware

structures during the program execution, then examines the program outcomes to

understand the effect of the injected fault. By repeating this injection for several

times (enough to be statistically significant [19]), silent data corruption (SDC) rates

have been obtained and used as a soft error vulnerability metric. By utilizing SDC

rates acquired by fault injection experiments, we can decide possible fault tolerance

methods for our target execution. Specifically, we may choose applying explicit

redundancy techniques for the programs with higher SDC rates, while we rely on

available protection methods provided as part of the system for the execution of the

programs with low SDC rates.

Although the fault injection yields useful results, the large number of

experiments may become impractical, especially for the large-scale long-running

applications. For instance, if we have a program that takes 1-h to be completed, and

we need to repeat fault injection experiments for 1000 times (decided by statistical

analysis); we should spend roughly 40 days for our experiments. Since the fault

injection also requires profiling and tracing the application during its execution, the

required time to obtain SDC rates would be impractical. Moreover, profiling the

parallel applications with several threads requires more effort/time to track all

execution contexts.

Since the fault injection is too time-consuming for soft error vulnerability

evaluation of programs, prediction-based approaches have been proposed

recently [14, 18, 21–23, 29]. The proposed methods build a machine learning

model based on program/system characteristics, and use the model to predict soft

error proneness of the programs without conducting fault injection experiments.

Although they achieve comparable accuracy rates in prediction of program

123

International Journal of Parallel Programming (2021) 49:410–439 411

vulnerability, they either require a detailed fault propagation analysis among the

program instructions [18, 21, 22], or only focus on performance-related program

characteristics [14, 29].

In this work, we present a soft error vulnerability prediction study for parallel

applications using machine learning. Our work aims to eliminate long fault injection

times, and predict the vulnerability of programs by using application characteristics

gathered from program profile. With our approach, parallel program developers can

understand which applications should be focused and heavily protected against soft

errors without conducting a fault injection study. While the existing studies evaluate

ML-based prediction mechanisms for reliability prediction, they do not consider

parallel program characteristics as model features. In this study, for the first time,

we consider parallel programming features within the thread communication, data

sharing, and performance features. Additionally, we propose a novel classification

model to predict the vulnerability level of the applications. To the best of our

knowledge, such an approach is not applied before. Previous studies use either

classification models for classifying individual instructions or regression models to

predict SDC rate of the applications. In our classification model, we classify

applications as vulnerable and not (less) vulnerable ones by putting an SDC

threshold. Our main contributions are as follows:

• We present ML-based soft error vulnerability prediction models for parallel

applications. Our approach uses parallel program features, for the first time, in

addition to traditional performance characteristics.

• We build a regression model with a detailed feature analysis to estimate correct

execution rates, and a novel classification model to assign a vulnerability level

for parallel programs.

• We collect both fault injection and profiling data for 30 parallel programs based

on pthread and OpenMP programming models, and utilize three ML algorithms

for our evaluation.

• While the prediction accuracy of our regression model reaches to 73.2% for

random forest regression with feature selection, our gradient boosting-based

classification model achieves 89% F-score for the balanced dataset.

The remainder of this paper is organized as follows: Sect. 2 explains our fault model

and presents some background on soft error vulnerability evaluation. We explain

our prediction models in Sect. 3. Then the experimental results are outlined in

Sect. 4. Section 5 presents the related work on vulnerability prediction methods.

Finally, in Sect. 6, we summarize the work with some conclusive remarks.

2 Soft Error Vulnerability

In this section, we present our fault model, and terminology related to soft error

vulnerability.

123

412 International Journal of Parallel Programming (2021) 49:410–439

2.1 Fault Model

In this paper, we consider soft errors [26], i.e., transient hardware faults flipping the

bits in register file. We do not consider the faults in memory or caches assuming that

they are protected by ECC. We focus on single-bit errors since they are much more

common.

2.2 Soft Error Vulnerability Evaluation

The most common way to characterize the soft error vulnerability of a program is to

perform fault injection experiments. We classify the possible outcomes of a fault

injection case as follows: (1) Correct Execution: The program terminates

successfully, and generates the expected output. (2) SDC: The program terminates,

but its output differs from the expected output. (3) Hang: The program continues its

execution for a time higher than the threshold. (4) Crash: The program execution

terminates with an error code. We measure the rate of each condition as collected

from fault injection experiments, and use SDC and correct execution rates as part of

our evaluation.

3 Methodology

3.1 Overview of Our Approach

Figure 1 presents the overview of our approach by demonstrating the machine

learning model flow. We assume that our target parallel programs have been

implemented by pthread or OpenMP programming model. First, as the input

variables, we extract program characteristics by profiling the program (We explain

the details in Sect. 3.2). Additionally, we perform fault injection experiments and

extract the SDC, crash, hang and the correct execution rates, which are utilized in

evaluation of our models. As the response variable, we use SDC and correct

execution rates collected from fault injection experiments. Then we build our

Fig. 1 Flow of our machine learning model

123

International Journal of Parallel Programming (2021) 49:410–439 413

models based on gathered program profiling and fault injection data. We apply

hyperparameter tuning in order to get the best parameters for the specific

algorithms. As part of our regression-based model, we also perform a feature

selection analysis to get the most influential features by eliminating redundant ones,

and train our models by using the subset of features. We explain the details of our

prediction model in Sect. 3.4.

3.2 Application Characterization

We analyze the characteristics that potentially affect the performance and the

reliability of a parallel application. Those characteristics can be listed in four

groups: Thread Communication Characteristics, Data Sharing Characteris-
tics, Parallel Programming Characteristics, and Performance Characteristics. An
application should be profiled in advance to obtain these characteristics. Then, the

relation between them and the reliability behavior of the application can be analyzed

in more detail. Our thread communication characteristics are similar to [11], and

data sharing characteristics are similar to [9]. As opposed to [11] and [9], we use

these features neither for performance prediction nor creating new synthetic parallel

programs. We utilize them for our vulnerability prediction models. We formalize

parallel programming characteristics as a new group which contains low-level sub-

characteristics. The performance characteristics are very commonly studied

microarchitecture dependent characteristics that have an impact on the application

performance. All of the characteristics are described in more detail in the following

subsections. Table 1 presents the characteristics we analyze as part of our proposed

model.

3.2.1 Thread Communication Characteristics

Thread communication characteristics are listed in four subgroups: communication
amount, communication ratio, communication heterogeneity, and communication
balance similar to [11]. These sub-characteristics describe the volume and the

structure of the communication events that may affect the propagation of a localized

error to other threads in a shared memory model. The communication events are

described in cache line granularity in this section. If the same cache line is accessed

by two different threads, then a communication event is recorded in our system.

First of all, we profile the input application and extract thread communication

matrix that shows communication events among the parallel executing threads. A

visualization of a communication matrix for FFT application with 9 threads is

shown in Fig. 2. In this figure, the labels indicate thread IDs and the darker cells

refer to more communication events. The sub-characteristics are described formally

based on the communication matrix of the application.

Communication amount and communication ratio metrics represent the volume

of the communication among the application threads. Communication amount,

represented as AComm, describes the average number of communication events per

thread with the following equation [11]:

123

414 International Journal of Parallel Programming (2021) 49:410–439

AComm ¼
PT

i¼1

PT
j¼1 M½i�½j�
T2

ð1Þ

where T represents the total number of threads in an application and M[i][j] rep-
resents the number of communication events between thread i and thread j. Com-

munication ratio, represented as RComm, describes the ratio of communication events

relative to the total number of memory accesses of a thread with the following

equation [11]:

Table 1 Application characteristics

Characteristics Sub-characteristics

Thread communication

characteristics

Communication amount

Communication ratio

Communication heterogeneity

Communication balance

Data sharing characteristics Private

Read-only

Producer-consumer

Migratory

Parallel programming

characteristics

Of pthread_create() functions (i.e., # of threads)

Of mutex variables

Of pthread_cond_wait() functions

Of pthread_cond_broadcast() functions

Of pthread_mutex_lock() - pthread_mutex_unlock function pairs

Of pthread_mutex_lock() - pthread_cond_wait() function pairs

Average # of instructions between pthread_mutex_lock() -

pthread_mutex_unlock function pairs

Average # of instructions between pthread_mutex_lock() -

pthread_cond_wait() function pairs

% Of instructions inside a thread function relative to the total #of

instructions

% Of stack pointer accesses inside a thread function relative to the total

stack pointer accesses in the program

Performance characteristics # Of instructions

% Of branch instructions

% Of load instructions

% Of store instructions

% Of context switches

Of TLB misses

Cache miss rate

123

International Journal of Parallel Programming (2021) 49:410–439 415

RComm ¼ AComm
PT

i¼1 AccV ½i�
ð2Þ

where AccV[i] is the total number of memory accesses belonging to the thread i. The
amount metric itself may not be adequate to characterize the volume of commu-

nication; therefore, the ratio of the number of memory accesses for communication

relative to its total number of memory accesses is considered in this metric.

Communication heterogeneity, represented as HComm, describes the variation of the

communication among thread pairs in an application with the following

equation [11]:

Mnorm ¼ M

maxðMÞ � 100;

HComm ¼
PT

i¼1 VarðMnorm½i�½1:::T�ÞÞ
T

ð3Þ

where M is a matrix that shows communication events among each thread pairs. In

order to calculate the maximum and the variance values, the max and the Var
functions are utilized. To calculate HComm, the communication matrix M is nor-

malized firstly, and then the average variance of the number of communication

events per thread is calculated. A higher variation of the communication events

indicates that a group of threads communicates more in the group than communi-

cating with the others. This information might be important in the sense that an error

may propagate faster in a group of threads. Communication balance, represented as

BComm, describes the balance among the thread communication events with the

following equation [11]:

Fig. 2 Visualization of communication matrix for FFT application (darker cells refer to more
communication)

123

416 International Journal of Parallel Programming (2021) 49:410–439

CommV ½i� ¼
XT

j¼1

M½i�½j�;

BComm ¼ maxðCommVÞ
PT

i¼1 CommV ½i�=T
� 1

 !

� 100%

ð4Þ

where CommV[i] is a communication vector for the thread i. To calculate BComm, the

communication vector for each thread is calculated firstly, and then the classic

formulation for load balance is utilized [32]. The higher value of BComm indicates

that there is a highly imbalanced communication behavior among the threads, on the

contrary, if it is close to 0 a highly balanced communication behavior is occurred

among the threads.

Figure 3 presents the normalized amount, ratio, heterogeneity, and balance

values for our target programs. There is a fairly balanced communication among all

threads for water � nsquared with the highest amount value. On the other hand, for

susan.2, which has a strong communication with a few thread groups, it is low and

highly imbalanced. The communication behaviour is heterogeneous for most of the

applications.

3.2.2 Data Sharing Characteristics

Data sharing characteristics are listed in four subgroups: private, read-only,
producer-consumer, and migratory similar to [3, 9, 33]. Data sharing characteristics

of an application may have an impact on the propagation of an error occurred on a

shared data item to other threads. To calculate these values, the unique number of

threads that access to a cache line for read or write purposes is counted. If the unique

number of readers and writers equals to one, the corresponding cache line is tagged

with the private sub-characteristic. If the unique number of readers is more than

zero, and the unique number of writers equals to zero; the corresponding cache line

bl
ac

ks
ho

le
s

bo
dy

tr
ac

k
ch

ol
es

ky fft
fm

m
lu

.c
on

lu
.n

co
n

ra
di

x
ra

yt
ra

ce
sw

ap
tio

ns
w

at
er

.n
sq

ua
re

d
w

at
er

.s
pa

tia
l

di
jk

st
ra

.1
di

jk
st

ra
.2

st
rin

gs
ea

rc
h.

1
st

rin
gs

ea
rc

h.
2

st
rin

gs
ea

rc
h.

3
su

sa
n.

1
su

sa
n.

2
su

sa
n.

3
bi

tc
ou

nt
bl

ac
ks

ho
le

s.
om

p
cr

ay
.o

m
p

cr
ay

.p
th

re
ad

ho
ts

po
t

m
d5

st
re

am
cl

us
te

r
sg

em
m

sp
m

v
st

en
ci

l

0.0

0.2

0.4

0.6

0.8

1.0

Comm.Amount
Comm.Ratio
Comm.Heterogeneity
Comm.Balance

Fig. 3 Communication characteristics of our target programs

123

International Journal of Parallel Programming (2021) 49:410–439 417

is tagged with the read-only sub-characteristic. If the same cache line is accessed by

more than one thread, and at least one of the accesses is for write purpose; the

corresponding cache line is shared among multiple threads. If there are more readers

than the writers, the corresponding cache line is tagged with the producer-consumer
sub-characteristic. On the contrary, if the readers are less than or equal to the

writers, the corresponding cache line is tagged with the migratory sub-character-

istic. We extract each of these sub-characteristics for each cache line, and present

the average of each case as a percentage value for a given application.

Figure 4 presents the data sharing characteristics for our target programs. While

search algorithms (like dijkstra and stringsearch versions) have larger read-only

data, programs with heavy data-sharing (like lu) have high producer-consumer

values.

3.2.3 Parallel Programming Characteristics

We consider parallel programming characteristics as influential features in our

evaluation. We profile all pthread library function calls in our execution to capture

multithreaded execution behavior of an application. Our framework supports both

pthread and OpenMP programming models. Since OpenMP runtime uses pthreads
for its implementation, we directly use the same tracking method for programs

based on both programming models.

Firstly, we count the number of pthread createðÞ function calls to extract the

actual number of threads created in the application. Moreover, we record

synchronization events such as critical sections, barriers, condition variables to

characterize an application’s synchronization behavior. Since inter-thread synchro-

nization events are the key factors to determine the behavior of parallel programs,

we consider those in our evaluation. Specifically, we track pthread mutex lockðÞ,

bl
ac

ks
ho

le
s

bo
dy

tr
ac

k
ch

ol
es

ky fft
fm

m
lu

.c
on

lu
.n

co
n

ra
di

x
ra

yt
ra

ce
sw

ap
tio

ns
w

at
er

.n
sq

ua
re

d
w

at
er

.s
pa

tia
l

di
jk

st
ra

.1
di

jk
st

ra
.2

st
rin

gs
ea

rc
h.

1
st

rin
gs

ea
rc

h.
2

st
rin

gs
ea

rc
h.

3
su

sa
n.

1
su

sa
n.

2
su

sa
n.

3
bi

tc
ou

nt
bl

ac
ks

ho
le

s.
om

p
cr

ay
.o

m
p

cr
ay

.p
th

re
ad

ho
ts

po
t

m
d5

st
re

am
cl

us
te

r
sg

em
m

sp
m

v
st

en
ci

l

0.0

0.2

0.4

0.6

0.8

1.0

Private
Read−only
Producer−Consumer
Migratory

Fig. 4 Data sharing characteristics of our target programs

123

418 International Journal of Parallel Programming (2021) 49:410–439

pthread mutex unlockðÞ, pthread cond waitðÞ, pthread cond broadcastðÞ,
pthread barrier waitðÞ, pthread cond signalðÞ, and sem waitðÞ function calls.

The applications with different complexity levels may utilize different kinds of

synchronization events. Therefore, we also record several synchronization attributes

such as the number of mutex variables used, the number of pthread cond waitðÞ
function calls, the number of pthread cond broadcastðÞ calls, the number of

pthread mutex lockðÞ and pthread mutex unlockðÞ function pairs, and the number

of pthread mutex lockðÞ and pthread cond waitðÞ function pairs in order to

distinguish different synchronization events. As an example, condition variables are

commonly used synchronization primitives in parallel programming. They can be

either used for barrier implementation to block the executing threads until a variable

reaches to a specific value, or for implementing semaphores by using signal,

broadcast, and wait functions. Since our applications do not utilize

pthread barrier waitðÞ, pthread cond signalðÞ, sem waitðÞ functions, we omit

these features in our list.

In order to define a critical section, we track pthread mutex lockðÞ and

pthread mutex unlockðÞ function calls, and we calculate total number of instruc-

tions executed between these two calls. Since there might be multiple critical

sections in an application, we consider the average number of the instructions

executed in the critical sections. We consider critical sections as influential in our

evaluation due to the behavior of the applications during the critical section

execution. When one thread acquires a lock (mutex_lock), any other thread

requiring that lock needs to enter in a waiting state without performing any useful

computation. If we consider the time spent by the threads while waiting for a critical

section inactively, we expect less vulnerability from those threads during this time

interval. Since the threads do not perform any computation, it is less probable that a

soft error hit during inactive time would cause an output corruption. If the size of the

critical sections is too large, an occurred soft error may hit the data of only a single

thread that executes the critical section, and the remaining threads may not be

affected from this error. Essentially, we observe this behavior from our results: the

SDC rates of the programs having more locks, and consequently more instructions

in critical sections are lower than the ones with less critical sections. Specifically,

when we look at the parallel programming characteristics (see Table 2) and SDC

rates (see Fig. 5), you can see that fmm, raytrace, and bitcount programs with larger

mutex counts have low SDC rates (considered as NOT VULNERABLE class in our

classification model).

While using a mutex can provide a critical section implementation; if a thread

needs to know whether a condition is met, using a condition variable lets the thread

find out that the event occurred. While the same requirement can be satisfied by

using a mutex, and continually polling the condition, the threads would be busy/

active instead of just waiting for the condition variable. When a thread invokes

pthread cond waitðÞ, it automatically releases the lock in pthread mutex lockðÞ
function. Therefore, we account those regions as critical sections in our model, and

calculate the average number of instructions between pthread mutex lockðÞ and

pthread cond waitðÞ function calls as well.

123

International Journal of Parallel Programming (2021) 49:410–439 419

Ta
bl
e
2

P
ar
al
le
l
p
ro
g
ra
m
m
in
g
ch
ar
ac
te
ri
st
ic
s
o
f
o
u
r
ta
rg
et

p
ro
g
ra
m
s

A
p
p
li
ca
ti
o
n
s

P
ar
al
le
l
P
ro
g
ra
m
m
in
g
C
h
ar
ac
te
ri
st
ic
s

#
O
f

th
re
ad

cr
ea
ti
o
n
s

#
O
f

m
u
te
x
es

#
O
f

co
n
d
.

w
ai
t

#
O
f

co
n
d
.

b
ro
ad
ca
st

#
O
f

m
u
te
x
_
lo
ck
()

-
u
n
lo
ck
()

#
O
f

m
u
te
x
_
lo
ck
()
-

co
n
d
_
w
ai
t(
)

A
v
.
#
o
f
in
st
.

b
et
w
ee
n
lo
ck
()
-

u
n
lo
ck
()

A
v
.
#
o
f
in
st
.

b
et
w
ee
n
lo
ck
()
-

co
n
d
_
w
ai
t(
)

R
at
io

o
f

in
st
.

in
si
d
e
T
F

#
o
f
st
ac
k

p
o
in
te
r
ac
ce
ss
es

in
si
d
e
T
F

b
la
ck
sh
o
le
s

8
2

0
0

2
0

7
3
1
0

0
8
4
.5
3

2
8
6
7
2
7
2

b
o
d
y
tr
ac
k

9
2
9
6
7

1
8
7

2
4

2
7
8
0

1
8
7

2
9
7
4
2

1
8
7
9

9
1
.8
6

1
2
8
1
8
6
0

ch
o
le
sk
y

7
2
2
0
6
6

2
8

4
2
2
0
3
8

2
8

1
6
9
0
6
0

5
6
9

7
7
.1
2

5
5
2
0
0
6

ff
t

7
6
6

4
9

7
1
7

4
9

7
6
8
3

7
9
6

9
.6
6

6
7
3
8

fm
m

7
4
5
2
3
0

2
3
8

3
4

4
4
9
8
0

2
3
8

6
7
7
8
8
7

2
6
8
4

9
6
.4
4

1
0
6
0
2
9
0

lu
-c
o
n

7
5
4
6

4
6
9

6
7

7
7

4
6
9

8
3
6
5

5
2
4
5

8
9
.4
7

5
2
8
2
2
8

lu
-n
co
n

7
1
6
2

1
3
3

1
9

2
9

1
3
3

7
8
3
6

1
7
4
1

7
7
.1
9

3
4
8
3
2

ra
d
ix

7
1
5
6

9
6

4
1

6
0

9
6

7
9
5
5

1
0
8
3

1
6
.5
8

1
6
0
4

ra
y
tr
ac
e

7
1
5
2
7
7
1

7
1

1
5
2
7
6
4

7
1
2
9
0
3
4
3

3
2
9

9
6
.3
6

2
1
7
9
4
0
0

sw
ap
ti
o
n
s

8
2

0
0

2
0

7
4
1
9

0
9
9
.8
8

8
6
3
6
0
2
7

w
at
er
-

n
sq
u
ar
ed

7
1
0
5
3
8

1
4
0

2
0

1
0
3
9
8

1
4
0

1
0
5
0
6
5

1
7
3
4

9
5
.0
9

7
9
5
7
0
4

w
at
er
-s
p
at
ia
l

7
3
1
5

1
4
0

2
0

1
7
5

1
4
0

1
1
2
7
2

1
7
1
6

9
7
.4
4

1
7
2
5
0
4
5

d
ij
k
st
ra
.1

8
1
0

7
1

3
7

7
5
2
1

1
6
0

1
4
.9
5

3
1
2
8
6

d
ij
k
st
ra
.2

8
3
1
9
9
4

2
7
9
9
3

3
9
9
9

4
0
0
1

2
7
9
9
3

5
6
5
5
8

1
8
6
4
5
1

1
6
.4
7

2
0
0
5
4
6

st
ri
n
g
se
ar
ch
.1

8
4
3

0
0

4
3

0
3
1
1
7
1
2

0
0
.0
0

0

st
ri
n
g
se
ar
ch
.2

8
4
3

0
0

4
3

0
3
1
1
7
1
2

0
0
.0
0

0

st
ri
n
g
se
ar
ch
.3

8
4
3

0
0

4
3

0
3
1
1
5
9
6

0
0
.0
0

0

su
sa
n
.1

2
4

1
1
5

2
8

4
8
7

2
8

3
4
3
5
9
1

1
6
1

0
.3
2

1
1
3
4

su
sa
n
.2

3
2

1
9

1
4

2
5

1
4

3
7

6
9

7
7
.0
9

1
7
3
9

su
sa
n
.3

2
4

2
7

1
4

2
1
2

1
4

6
9

7
4

9
5
.6
1

1
7
0
5

b
it
co
u
n
t

8
7
3
5
8
7

6
4
3
8
6

9
1
9
8

9
2
0
1

6
4
3
8
6

1
0
7
8
4
1

3
7
7
0
7
3

8
4
.5
1

4
7
2
3
5
2

123

420 International Journal of Parallel Programming (2021) 49:410–439

Ta
bl
e
2
co
n
ti
n
u
ed

A
p
p
li
ca
ti
o
n
s

P
ar
al
le
l
P
ro
g
ra
m
m
in
g
C
h
ar
ac
te
ri
st
ic
s

#
O
f

th
re
ad

cr
ea
ti
o
n
s

#
O
f

m
u
te
x
es

#
O
f

co
n
d
.

w
ai
t

#
O
f

co
n
d
.

b
ro
ad
ca
st

#
O
f

m
u
te
x
_
lo
ck
()

-
u
n
lo
ck
()

#
O
f

m
u
te
x
_
lo
ck
()
-

co
n
d
_
w
ai
t(
)

A
v
.
#
o
f
in
st
.

b
et
w
ee
n
lo
ck
()
-

u
n
lo
ck
()

A
v
.
#
o
f
in
st
.

b
et
w
ee
n
lo
ck
()
-

co
n
d
_
w
ai
t(
)

R
at
io

o
f

in
st
.

in
si
d
e
T
F

#
o
f
st
ac
k

p
o
in
te
r
ac
ce
ss
es

in
si
d
e
T
F

b
la
ck
sh
o
le
s-

o
m
p

7
2

0
0

2
0

7
4
1
4

0
0
.7
9

3
0
0
3
5
0
0

cr
ay
-o
m
p

7
2

0
0

2
0

7
4
5
9

0
9
6
.0
4

1
3
5
0
7
5
7
1

cr
ay
-p
th
re
ad

8
1
1

8
1

3
8

7
8
1
5

1
5
6

9
4
.3
4

2
2
2
7
7
9
3

h
o
ts
p
o
t

7
2

0
0

2
0

7
3
7
5

0
0
.1
6

2
7
2
5
9
9
8
7

m
d
5

8
2

0
0

2
0

7
2
7
2

0
8
.5
1

1
9
7

st
re
am

cl
u
st
er

1
6

2
6

6
3

2
0

6
3
7
7
0

7
7

8
4
.2
7

1
7
0
3
2

sg
em

m
7

3
0

0
3

0
8
6
2
4

0
0
.0
1

1
0
4
0
6

sp
m
v

7
2

0
0

2
0

7
4
2
8

0
0
.0
0

1
7
1
8

st
en
ci
l

7
2

0
0

2
0

7
3
7
2

0
0
.0
0

1
5
5
4

123

International Journal of Parallel Programming (2021) 49:410–439 421

We also consider the different implementations of critical sections (whether

based on lock/unlock pair or lock/cond_wait pair) as distinct characteristics due to

the fact that threads spend those critical sections busy or inactive state. We believe

that this busy/inactive waiting state of the threads may affect the soft error

vulnerability of the application.

Furthermore, we record the average number of instructions in a thread function to

show the complexity of the thread functions, and the total number of stack pointer

accesses inside the thread functions to track local variable accesses. Those features

may affect the reliability behaviour of the applications either directly or indirectly.

As an example, if the number of stack pointer accesses inside a thread function is

relatively high, an occurred error may corrupt the private data of the executing

thread rather than shared data.

Table 2 presents the parallel programming characteristics of a set of applications.

3.2.4 Performance Characteristics

We analyze several performance metrics in this section including the dynamic
instruction count, the percentage of branch instructions executed, the percentage of
load/store instructions executed, the number of context switches, the TLB miss
count, and the total cache miss rate.

While the number of context switches is related to operating system that the

program is executing on, the other sub-characteristics are commonly used

performance metrics in the literature and depend on the micro-architecture used.

Some of these performance sub-characteristics have a high impact on the reliability

requirements of applications [29]. As an example, an application with a low cache

miss rate may utilize the processor resources more frequently than the other

applications and its live data resident in the cache might be more vulnerable to

errors. An occurrence of error on this data may easily propagate to the other sections

of the program, which directly affects the SDC rate of the target application. As

bl
ac

ks
ho

le
s

bo
dy

tr
ac

k
ch

ol
es

ky fft
fm

m
lu

.c
on

lu
.n

co
n

ra
di

x
ra

yt
ra

ce
sw

ap
tio

ns
w

at
er

.n
sq

ua
re

d
w

at
er

.s
pa

tia
l

di
jk

st
ra

.1
di

jk
st

ra
.2

st
rin

gs
ea

rc
h.

1
st

rin
gs

ea
rc

h.
2

st
rin

gs
ea

rc
h.

3
su

sa
n.

1
su

sa
n.

2
su

sa
n.

3
bi

tc
ou

nt
bl

ac
ks

ho
le

s.
om

p
cr

ay
.o

m
p

cr
ay

.p
th

re
ad

ho
ts

po
t

m
d5

st
re

am
cl

us
te

r
sg

em
m

sp
m

v
st

en
ci

l

0

20

40

60

80

100

Correct Execution
SDC
Crash
Hang

Fig. 5 Fault injection results

123

422 International Journal of Parallel Programming (2021) 49:410–439

another example, the percentage of load/store instructions might have a great impact

on the application resilience, since the successive instructions may use the

loaded/stored values [14]. Moreover, the number of context switches is an

important metric that may affect the performance of a parallel application. There

might be some direct overheads such as saving/restoring registers, reloading TLB,

and flushing pipeline, or indirect overheads caused by cache sharing among the

application threads. Since we focus on faults in register file, the utilization of

registers by the switched threads may impact the vulnerability.

The metrics that might affect the performance of an application may also affect

the vulnerability of an application; therefore, we include the performance sub-

characteristics of parallel applications to predict the soft error vulnerability of the

corresponding applications. Table 3 presents the performance characteristics of a set

of applications.

3.2.5 Characterization Tools

To collect characteristics of a parallel application during its execution, we utilize

Pin [24], a dynamic binary instrumentation tool. Specifically, we use numalize [10],

a Pin-based memory tracing tool, to extract thread communication matrix and thread

memory access behaviour. Additionally, we update this tool to extract data-sharing

sub-characteristics during the application execution. We also implement a Pin tool

to track pthread function calls and instructions. Moreover, we use perf tool [1] to
gather performance characteristics.

3.3 Fault Injection Framework

We perform fault injection experiments to measure the soft error vulnerability of

our benchmark applications. In this work, we use PINFI [41], an assembly-level

instrumentation tool for x86-architecture processors. We prefer using an assembly

code level fault injection due to its high accuracy and low cost in terms of both time

and hardware. While physical beam experiments, performed directly on real

hardware components, present soft error rates in realistic physical conditions, they

are hard and costly [30]. On the other hand, microarchitectural fault injection

experiments based on architectural simulation may lack accuracy in terms of target

architecture details and the simulation may make the long running fault injection

experiments impractical [31, 39]. Performing hardware-, simulator- or assembly-

level fault injections presents a trade-off between accuracy vs. time vs. cost [6, 25].

The state-of-the-art fault prediction methods [14, 18, 23, 29] follow a similar way

by performing high-level fault injection experiments to collect more input data for

their ML frameworks, which require as much as possible data points. While there

are some efforts that propose soft error evaluation tools to accelerate simulation-

based fault injection experiments in order to eliminate large fault injection

overheads [8], they focus on microarchitectural characteristics. Since we target

analyzing the effects of high-level parallel programming features on the faults

reaching to the application level in our prediction framework, we prefer utilizing the

assembly-level PINFI framework for fault injection experiments.

123

International Journal of Parallel Programming (2021) 49:410–439 423

PINFI emulates transient faults in the register file by flipping random bits in the

registers using binary instrumentation. As a result of a fault injection experiment,

we collect the SDC, crash, hang, and correction execution rates for each application.

Our prediction models utilize SDC or correct execution rates as a response variable.

Table 3 Performance characteristics of our target programs

Applications Performance Characteristics

Of

instructions

% Of

branch

instructions

% Of

memory

store

instructions

% Of

memory

load

instructions

Of

context

switches

% Of

d-TLB

misses

Cache

miss

rate

(%)

blacksholes 322,067,753 9.65 8.19 22 18 0 0

bodytrack 1,221,094,063 8.95 4.65 19.09 705 0 5.26

cholesky 1,157,208,970 10.24 10.06 27.06 293 0 4.16

fft 3,966,865 15.97 14.53 22.55 69 0 0

fmm 2,495,344,110 9.44 2.52 14.48 302 0 1.25

lu-con 374,672,516 11.42 8.84 21.74 497 0 1.52

lu-ncon 6,755,904 12.03 10.49 24.19 171 0.01 0

radix 276,321,114 13.6 15.24 21.05 118 0 0.21

raytrace 5,053,472,794 11.36 2.95 38.27 357 0 27.59

swaptions 1,850,247,092 11.08 7.86 27.21 42 0 1.43

water-

nsquared

460,053,343 10.6 11.25 27.97 151 0.01 3.16

water-spatial 449,358,785 9.98 10.85 27.94 180 0 0

dijkstra.1 2,049,008,292 17.34 19.94 29.53 53 0 0.03

dijkstra.2 2,086,238,122 17.1 19.3 28.51 28,003 0.0005 0.35

stringsearch.1 17,261,817,538 25.88 0.25 29.48 1,115 0.0004 7.86

stringsearch.2 10,235,589,415 23.07 0.01 46.42 1,975 0.0004 8.12

stringsearch.3 10,587,897,254 22.47 0.87 47.51 2,106 0.0004 7.82

susan.1 25,604,572 9.14 1.43 22.2 84 0 0

susan.2 2,505,445 8.32 6.84 35.83 82 0 0

susan.3 10,224,164 4.07 36.94 44.78 89 0 0

bitcount 101,203,986 17.18 13.23 12.37 64,438 0.0161 13.55

blacksholes-

omp

342,669,007 10.77 7.72 21.55 4 0.0001 0

cray-omp 2,378,564,425 6.29 14.44 46.54 9 0 0.08

cray-pthread 1,178,891,158 8.3 8.52 21.82 16 0 0.46

hotspot 7,207,307,204 17.82 15.94 21.68 11 0 0.09

md5 4,032,348 13.81 16.68 22.93 16 0 0

streamcluster 1,942,325 13.6 14.32 23.14 12,281 0.0005 0

sgemm 248,757,223 15.57 12.13 33.67 19 0.0002 11.1

spmv 51,395,480 21.1 6.05 25.57 5 0.0003 0

stencil 7,183,198,670 3.28 1.56 47.7 13 0 5.76

123

424 International Journal of Parallel Programming (2021) 49:410–439

For a fault injection point, we randomly select one register among 132 user-

accessible registers and one bit among 64 bits of the target register as our target

architecture indicates its fault location space with available register bits. We use

1000 fault injections per each benchmark by using statistical approach [19] with the

confidence level of 95% and the error margin 3%. We take a fixed number of fault

injections, i.e., 1000, for all target applications, since an increase in the program

execution time does not affect the sample size with the given confidence level and

the error margin in the calculation. Figure 5 shows the results of fault injection

experiments for each application by demonstrating the correct execution, SDC,

crash, and the hang cases.

3.4 Prediction Model

We evaluate two approaches for vulnerability prediction problem: Regression

model and Classification model. Our first prediction model relies on regression

analysis, where we target to predict the correct execution rates of the parallel

programs without executing fault injection experiments. In our model, the SDC

rates of the applications are not predicted directly since those values might be too

small to make accurate predictions. Therefore, we prefer to predict the correct

execution rates of the applications, which are calculated by subtracting the SDC, the

crash, and the hang rates from 1.0. Since these rates are represented with real

numbers between 0.0 and 1.0, our problem is modeled as a regression problem as

the first attempt. Since it is difficult to predict SDC rates, as an alternative approach,

we evaluate SDC prediction as a classification problem. We assume that there are

two distinct classes of SDC rate ranges, which can provide a classification for the

vulnerability level of the applications. We define the vulnerability level of target

program as following:

VL ¼
VULNERABLE; if SDC� 0:1

NOT VULNERABLE; otherwise

�

ð5Þ

We assume that by predicting a program’s vulnerability class, we can have a basic

idea about the soft error characteristics of the given application.

3.4.1 Machine Learning Algorithms

We use three machine learning methods: Support Vector Machine (SVM), Gradient

Boosting (GB), and Random Forest (RF). Support Vector Machine is a commonly

used supervised learning based method with high accuracy values in classification

problems [7]. This method is extended to regression problems with Support Vector

Regressions [12]. Gradient Boosting is an ensembling based algorithm which

combines multiple learners sequentially [13]. Random Forest is another kind of

ensembling algorithm, which is based on combined multiple independent decision

trees to make accurate predictions [5]. We use these three algorithms for both

approaches, namely predicting the correct execution rates as a regression model, and

123

International Journal of Parallel Programming (2021) 49:410–439 425

predicting the vulnerability levels as a classification model for the given parallel

program.

3.4.2 Features

We utilize 25 application characteristics given in Table 1 as features in our

prediction model. Either related or unrelated features may affect the prediction

accuracy of a machine learning model. We perform a correlation analysis to extract

the most significant features and determine the most influential features on the

correct execution of the programs. Specifically, we apply Pearson’s correlation

method and Spearman’s rank correlation method, and select 6 and 4 features,

respectively, as more correlated features with the correct execution rates of the

applications. Table 4 and Table 5 present those selected features with their

correlation values, respectively. We can see that both methods show higher positive

correlation for migratory and the percentage of thread instructions over the total
number of instructions with correct execution rates. On the other hand, the total
number of instructions are found to be negatively correlated. This implies that

parallel programs with relatively larger thread functions and parallel programs with

threads having migratory (the reader threads are less than or equal to the writer

threads) characteristics tend to complete their execution correctly; while larger

programs, e.g., programs having more instructions, tend to finish with an error or

data corruption. By using this observation, the parallel program developers may

focus on thread characteristics if they aim to write fault-tolerant programs.

As a result, we include migratory sub-characteristic from the data sharing

features, the percentage of thread instructions over the total number of instructions
from the parallel programming characteristics, and the total number of instructions
from the performance characteristics. Additionally, the private feature from the

thread communication characteristics is selected based on Spearman’s correlation

method. The Pearson correlation method additionally selects the communication
ratio from the thread communication characteristics, and the percentage of branch
and memory load instructions over the total number of instructions from the

Table 4 Selected features by Pearson’s correlation method

Features Pearson’s correlation

value

Comm. ratio 0.347

Migratory 0.275

% Of instructions inside a thread function relative to the total # of

instructions

0.430

Of instructions –0.535

Of branch-instructions –0.448

Of memory-load-instructions –0.298

123

426 International Journal of Parallel Programming (2021) 49:410–439

performance characteristics. We discuss the performance of the regression models

based on those selected features in Sect. 4.2.1.

Since we have only two-classes (vulnerable vs not vulnerable) in our

classification model, we do not prefer to make correlation analysis.

3.4.3 Performance Metrics

We mainly evaluate the prediction accuracy metric to compute the success level of

our prediction models. Specifically, for the regression model, Paccuracy is

calculated as follows:

Paccuracy ¼ 1� Predictedrate � Observedratej j
Observedrate

� �

� 100%

where Predictedrate is the value predicted by the corresponding machine learning

model, and Observedrate is the actual value taken as the results of fault injection

experiments. It simply calculates the relative error between the predicted value and

the observed value. A Paccuracy value close to 100% indicates an accurate prediction

model.

For the classification model, accuracy is simply calculated as follows:

accuracy ¼ number of correctly labeled instances

total number of instances

Additionally, for our classification model evaluation, we use precision, recall, and

F-score metrics. We compute our measures for both NOT VULNERABLE (NV)

and VULNERABLE (V) classes. The metrics for NV class (similarly for V class)

are computed as follows:

precisionðNVÞ ¼ number of NV instances correctly labeled

total number of instances labeled NV

recallðNVÞ ¼ number of NV instances correctly labeled

number of instances that are NV

F � scoreðNVÞ ¼ 2� precisionðNVÞ � recallðNVÞ
precisionðNVÞ þ recallðNVÞ

Table 5 Selected features by Spearman’s rank correlation method

Features Spearman’s rank correlation

value

Private 0.494

Migratory 0.455

% Of instructions inside a thread function relative to the total # of

instructions

0.454

Of instructions –0.424

123

International Journal of Parallel Programming (2021) 49:410–439 427

3.4.4 Training and Testing Phases

In a machine learning algorithm, the input dataset should be divided into two parts,

which are training and testing sets. The algorithm should be trained with the training

data, and the success of the algorithm should be measured by using a set of unseen

data, which is the testing set. In our model, we firstly apply leave-one-out cross

validation method in order to eliminate overfitting occurrence. In this cross

validation method, one datum is left for testing, and the model is trained with the

rest of the input data. This process is repeated by the size of the input data. The

leave-one-out cross validation method is a suitable technique especially for the

small-size datasets. Alternatively, in our regression model, we utilize 80:20 split

method, in which 80% of dataset is used as the training data, and 20% of dataset is

used as the testing data. Since the accuracy of the prediction model might change

depending on the data used in the training and testing sets, an average of 10 runs is

taken for each test case. We explore different splitting in our classification model,

where the details are explained in Sect. 4.2.2. We evaluate the effectiveness of our

prediction framework systematically through testing phase by comparing perfor-

mance metrics given in Sect. 3.4.3, which are the common metrics defined for the

accuracy evaluation of the machine-learning techniques.

3.4.5 Model Tuning

Our three ML models have multiple hyperparameters that affect the accuracy level

of the prediction. A grid-search based method is performed to decide the final set of

model parameters with the highest prediction accuracy for testing phase.

4 Experimental Study

4.1 Experimental Setup

We perform our experiments in an Intel Xeon-based workstation with 2x Xeon

Silver 4114 processors, and 32 GB main memory. We select pthread implemen-

tations of blackscholes, bodytrack, radix, swaptions programs from PARSEC [4],

and cholesky, fft, ffm, lu� contiguous, lu� non� contiguous, raytrace,
water � nsquared, water � spatial from SPLASH-2 [42] benchmark suites. Two

implementations of dijkstra using either shared or private queues, and three

implementations of stringsearch using three different algorithms (i.e., Pratt-Boyer-

Moore String Search, Case-sensitive Boyer-Moore-Horspool String Search, and

Case-Insensitive Boyer-Moore-Horspool String Search), three implementations of

susan that either smooths an input image, or recognizes edges or corners in the input

image, and bitcount applications are selected from ParMiBench benchmark

suite [16]. Additionally, we use both pthread and OpenMP versions of cray, and
pthread versions of md5 and streamcluster from Starbench benchmark suite [2].

Finally, we use OpenMP versions of sgemm, spmv, and stencil from Parboil

123

428 International Journal of Parallel Programming (2021) 49:410–439

benchmark suite [38]. Therefore, a total of 30 parallel programs is profiled in our

dataset. We utilize both pthread and OpenMP implementations of a set of

applications since they might show different vulnerability characteristics to soft

errors [34].

4.2 Experimental Results

In this section, we present the results of different machine learning algorithms in

predicting soft error vulnerability of the applications. We also perform feature

selection (only for the regression model) and hyperparameter tuning (for both

model) to increase the accuracy level of each algorithm. We analyze the regression

and the classification results separately in the following subsections.

4.2.1 Regression Results

In the concept of regression problem, the correct execution rates of the applications

are estimated utilizing three machine learning algorithms, as mentioned earlier in

Sect. 3.4.1. We utilize a total of 24 applications in this section since the applications

with very low correct execution rates lead to incorrect estimation that decreases the

average prediction accuracy aggressively. Therefore, we exclude 6 applications

(i.e., stencil, streamcluster, stringsearch1, sgemm, swaptions, and spmv) with

correct execution rates less than 0.25 by means of outliers. We expect that the

accuracy of our regression models might be low for the applications with very low

correct execution rates, however this is a general problem for regression models

resulting from observing very small output values. We believe that dropping the

outlier data is fair in prediction models. To deal with this limitation and be able to

work with programs having very low correct execution rates, we offer our

classification model which works feasible for the complete dataset (as given in

Sect. 4.2.2).

As described in Section 3.4.4, we firstly use the leave-one-out cross validation

method since we have a small set of applications in our dataset. The success level of

each algorithm including feature selection and parameter tuning approaches is

shown in Fig. 6. Our first observation is that each algorithm demonstrates a different

success level with different number of features. As an example, the best performing

algorithm is the base SVM algorithm with 67.2% average prediction accuracy rate

based on a total of 25 features. On the other hand, the tuned version of the RFR

algorithm is the best alternative with 72.2% average prediction accuracy rate, when

we use only 6 features based on Pearson correlation method. The base SVM

algorithm is performing best with 71.2% average prediction accuracy rate, when a

total of 4 features is used based on Spearman’s correlation method. Although these

average prediction rates do not seem to be very high, the values are promising when

we consider only a total of 24 inputs in our dataset.

Our second observation is that, the effect of feature selection is appeared as

different in the success level of each algorithm. As an example, the base SVM

algorithm has low accuracy rates with 25 and 6 features; however, its accuracy is the

best with 71.2% average prediction accuracy in case of 4 features. On the other

123

International Journal of Parallel Programming (2021) 49:410–439 429

hand, the tuned version of GBR algorithm is not affected with different number of

features by having 64.9% accuracy rate, and the base GBR algorithm increases its

accuracy level from 65.5% to 71.5%, when we decrease the number of features from

25 to 6. As another result, RFR algorithm benefits from 6 features a lot, and its

performance is the best with the 70.3% and 72.2% accuracy rates for the base and

the tuned versions, respectively. Those results indicate that the feature selection

approach further improves the accuracy of a set of algorithms with more than 5%.

On the other hand, some algorithms do not show improved results with different

number of features based on that dataset.

As a second set of experiments, we split our dataset based on 80:20 method, in

which the 80% of input dataset (i.e., 19 applications) is used in training phase, and

20% of input dataset (i.e., 5 applications) is used in testing phase. Since the

prediction accuracy might change based on the data sample used in training/testing

phases, we randomly select the data points to be used in training and testing phases,

and report the average of 10 repeated experiments. The accuracy rate of each

algorithm including feature selection and parameter tuning approaches is shown in

fe
at

ur
es

.2
5

fe
at

ur
es

.6

fe
at

ur
es

.4

A
ve

ra
ge

 P
re

di
ct

io
n

 a

cc
ur

ac
y

(%
)

0

20

40

60

80

67
.2

66
.7

65
.5

64
.9

67
.0

66
.8

65
.0

63
.4 71

.5

64
.9 70

.3

72
.2

71
.2

63
.9

64
.5

64
.9 69

.6

68
.9

SVM
SVM_tuned
GBR
GBR_tuned
RFR
RFR_tuned

Fig. 6 The average prediction accuracy for correct execution rates with different number of features

fe
at

ur
es

.2
5

fe
at

ur
es

.6

fe
at

ur
es

.4

A
ve

ra
ge

 P
re

di
ct

io
n

ac

cu
ra

cy
 (

%
)

0

20

40

60

80

64
.0

66
.9

63
.8 68

.4

63
.5

64
.5

67
.3

66
.9

64
.9

64
.2 73

.2

73
.0

72
.7

71
.9

67
.2

64
.4

62
.4

59
.9

SVM
SVM_tuned
GBR
GBR_tuned
RFR
RFR_tuned

Fig. 7 The average prediction accuracy when an 80:20 split method is used in dataset

123

430 International Journal of Parallel Programming (2021) 49:410–439

Fig. 7. In this case, the best performing algorithm is the tuned version of GBR

algorithm with 68.4% accuracy rate based on 25 features. On the other hand, the

base RFR shows the best performance with 73.2% accuracy rate in case of 6

features used. Finally, the base SVM shows 72.7% accuracy rate when we use 4

features based on Spearman’s correlation method. These results are mostly

consistent with previous results, where RFR algorithms are the best alternatives

with 6 features, and the base SVM is the best alternative in case of 4 features. The

best performing algorithm is the base SVM with 67.2% accuracy rate in leave-one-

out cross validation when we use a total of 25 features; contrarily, the tuned version

of GBR is the best option with 68.4% accuracy rate in 80:20 split method in case of

25 features. However, the values are quite close to each other. When we consider

the grand average of all methods with all different case of feature sets, the average

of 67.15% accuracy rate is obtained with leave-one-out cross validation method, and

the average of 66.62% accuracy rate is obtained with 80:20 split method.

After these results, we select a representative machine learning model, the tuned

version of RFR, which has the highest accuracy level with 72.2% among different

algorithms, and different number of features based on leave-one-out cross validation

method. Then, we analyze the application-specific prediction results in Fig. 8. As

seen, the prediction results of only 4 applications (i.e., lu.con, radix, susan.1, and
cray.omp) decrease the average value aggressively by having very small prediction

accuracy. When we analyze the results of fault injection experiments in Fig. 5, those

applications also have relatively low correct execution rates compared to the

remaining ones. Therefore, our prediction model does not perform well for the

applications with low correct execution rates. On the other hand, the prediction

results of the remaining 20 applications are higher than (or close to) the average

with the maximum of 98.5% for the cholesky and susan.2. Those results apparently
demonstrate that we can make accurate predictions for a set of applications by

bl
ac

ks
ho

le
s

bo
dy

tr
ac

k

ch
ol

es
ky fft

fm
m

lu
.c

on

lu
.n

co
n

ra
di

x

ra
yt

ra
ce

w
at

er
.n

sq
ua

re
d

w
at

er
.s

pa
tia

l

di
jk

st
ra

.1

di
jk

st
ra

.2

st
rin

gs
ea

rc
h.

2

st
rin

gs
ea

rc
h.

3

su
sa

n.
1

su
sa

n.
2

su
sa

n.
3

bi
tc

ou
nt

bl
ac

ks
ho

le
s.

om
p

cr
ay

.o
m

p

cr
ay

.p
th

re
ad

ho
ts

po
t

m
d5

A
V

G

A
ve

ra
ge

 P
re

di
ct

io
n

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

73
.7 84

.1

98
.5

82
.0 92

.6

11
.5

74
.9

15
.8

87
.9

80
.6

72
.1

97
.6

96
.8

79
.2

62
.4

18
.9

98
.5

65
.5 75

.5

71
.8

33
.0

88
.3

87
.2

84
.2

72
.2

Fig. 8 Application-specific prediction results of RFR-tuned model with 6 features

123

International Journal of Parallel Programming (2021) 49:410–439 431

analyzing high level and low level application features. Rather than performing

long-lasting fault injection experiments, prediction results may give us an idea about

the reliability behaviour of the applications.

4.2.2 Classification Results

We apply the same prediction methods for our classification model as in the

regression model. We include all 25 features in our evaluation.

Firstly, we evaluate our classification model using complete dataset (30

instances), and apply leave-one-out cross validation. Table 6 presents our prediction

results for each classifier algorithm. We observe that imbalance in the dataset, with

18 NOT VULNERABLE, 12 VULNERABLE classes, results in low accuracy

values. While the precision and recall values are better for NOT VULNERABLE

(NV) cases, we get lower measures for VULNERABLE (V) cases. The accuracy

results seem to be biased against VULNERABLE cases. Although it is a minority

class in the dataset, it might be more important to correctly predict the applications

from this class.

Due to the problems of unbalanced data, for better accuracy, we construct

balanced dataset including equal number of VULNERABLE and NOT VULNER-

ABLE classes. Since there are many alternatives to build balanced data (eliminating

6 NOT VULNERABLE cases among 18), we evaluate accuracy values for random

30% of all possible choices (approximately 6000 datasets) for shortest-running RF

method. Then we select the datasets with the best result (two datasets with the same

accuracy in our case), and apply other methods for these balanced datasets as well.

Table 7 and Table 8 present our prediction results for the two best balanced

datasets (Dataset-I and Dataset-II). We achieve 88% accuracy (21 correct

predictions out of 24 instances) with tuned version of Gradient-Boosting method.

We also observe that other methods exhibit more balanced values for precision/

recall measures, which indicates the low accuracy results from the ineffectiveness of

the algorithm rather than a problem in the dataset used. Therefore, we can rely on

the stability of both dataset.

We also conduct experiments by splitting our 24 instance-datasets as training and

test data, and apply our algorithms to observe the prediction accuracy. Since we

need to have balanced data in both training and test sets, we include the same

Table 6 Classification results for full dataset

Method Acc. Prec. (NV) Recall (NV) F-score (NV) Prec. (V) Recall (V) F-score (V)

SVM 0.57 0.63 0.67 0.65 0.45 0.42 0.43

SVM_tuned 0.57 0.63 0.67 0.65 0.45 0.42 0.43

GB 0.67 0.72 0.72 0.72 0.58 0.58 0.58

GB_tuned 0.63 0.73 0.61 0.67 0.53 0.67 0.59

RF 0.67 0.70 0.78 0.74 0.60 0.50 0.55

RF_tuned 0.67 0.70 0.78 0.74 0.60 0.50 0.55

123

432 International Journal of Parallel Programming (2021) 49:410–439

number of instances from two different classes. Moreover, due to low performance

in the leave-one-out cross validation, we skip SVM in this part of our evaluation.

We also demonstrate the impact of splitting data differently.

In our experiments, we consider four different splitting scenarios: 12 training/12

test (12/12), 14 training/10 test (14/10), 16 training/8 test (16/8), 18 training/6 test

(18/6). We apply random splitting by assuring the balanced distribution of classes in

both training and test sets, and perform 10 random splits for each case. Figures 9 and

10 give accuracy distribution box-plots for each algorithm for Dataset-I and

Dataset-II, respectively.

We observe that the splits with larger training set generally perform better.

However, we achieve 69% average accuracy at most. Since the dataset is relatively

small, comparing accuracy values becomes insignificant. For instance, in 18/6

splitting, the possible accuracy values are 100%, 83%, 67%, and so on.

Mispredicting only one test case would result in 17% accuracy loss. Therefore,

training/test splitting methodology for our classification approach does not yield

similar results to the leave-one-out cross validation.

The classification results demonstrate that ML-based classifiers have a potential

for vulnerability prediction of parallel programs. Since the information about the

vulnerability level provides an important insight about the fault tolerance of a

program, one can get benefit from our approach by formulating the problem as a

classification. By using the prediction outcome, she can decide whether to apply any

fault tolerance techniques.

Table 7 Classification results for Dataset-I

Method Acc. Prec. (NV) Recall (NV) F-score (NV) Prec. (V) Recall (V) F-score (V)

SVM 0.38 0.36 0.33 0.35 0.38 0.42 0.40

SVM_tuned 0.63 0.67 0.50 0.57 0.60 0.75 0.67

GB 0.54 0.55 0.50 0.52 0.54 0.58 0.56

GB_tuned 0.88 0.80 1.00 0.89 1.00 0.75 0.86

RF 0.79 0.73 0.92 0.81 0.89 0.67 0.76

RF_tuned 0.75 0.71 0.83 0.77 0.80 0.67 0.73

Table 8 Classification results for Dataset-II

Method Acc. Prec. (NV) Recall (NV) F-score (NV) Prec. (V) Recall (V) F-score (V)

SVM 0.42 0.40 0.33 0.36 0.43 0.50 0.46

SVM_tuned 0.42 0.40 0.33 0.36 0.43 0.50 0.46

GB 0.63 0.62 0.67 0.64 0.64 0.58 0.61

GB_tuned 0.88 0.85 0.92 0.88 0.91 0.83 0.87

RF 0.79 0.73 0.92 0.81 0.89 0.67 0.76

RF_tuned 0.67 0.64 0.75 0.69 0.70 0.58 0.64

123

International Journal of Parallel Programming (2021) 49:410–439 433

5 Related Work

To overcome long execution times of the fault injection experiments, prediction-

based approaches for soft error vulnerability evaluation have been proposed in the

literature.

Guo et al. [14] predicted the SDC, interrupt and success rates of a set of unseen

applications by training various regression models using a set of small kernels. In

their model, firstly, various instruction groups, resilience patterns, resilience weight,

and instruction-order information are used as features, then more related features are

selected by applying a filtering method. They also performed hyperparameter tuning

methods to improve the prediction accuracy of the models used.

Laguna et al. [18] used machine learning to classify instructions based on their

probability to produce erroneous outputs by considering instruction features like

instruction type, the properties of the basic block and function the instruction

belongs to, and the instructions that the instruction affects. They utilized SVM

classifier to predict the instructions that generate silent output corruption. Their

compiler framework duplicates only the selected instructions to mitigate the effect

of the errors. Similarly, Liu et al. [21] trained a random forest model to predict

SDC-causing instructions in a given application by using instruction-specific

features. Additionally, Liu et al. [22] proposed instruction SDC vulnerability

18/6

RF

(a)

18/6

RF_tuned

(b)

18/6

GB

(c)

12/12 14/10 16/8 12/12 14/10 16/8

12/12 14/10 16/8 12/12 14/10 16/8 18/6

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GB_tuned

(d)

Fig. 9 Accuracy distribution with different splits for each algorithm (Dataset-I)

123

434 International Journal of Parallel Programming (2021) 49:410–439

prediction based on an LSTM network model with instruction-specific features, and

compared their approach with SVM and decision tree classifiers. Yang and Wang

[43] built a machine learning model to predict the SDC vulnerability of instructions

with a lower cost of fault injection by executing partial experiments. They include

instruction and error propagation features to train their Classification and

Regression Tree (CART)-based model.

Lu et al. [23] proposed heuristics to predict SDC-proneness of program variables

by using static and dynamic analysis, and then extend their model to predict overall

SDC-proneness of an application relative to another application. They also applied

selective protection to reduce full-duplication overhead.

Oliveira et al. [29] presented program vulnerability factor (PVF) prediction

mechanism for HPC applications. They built an SVM-based model by using

application characteristics like cache miss rate, TLB miss rate, percentage of branch

and load/store instructions. Vishnu et al. [40] utilized semantic information

gathered from fault injection experiments to construct features for a machine

learning model. They created application fault models to predict whether the

extreme-scale applications will result in an error if there is a multi-bit memory error.

Mutlu et al. [27] proposed a machine learning model to evaluate ground-truth

prediction for soft-error of iterative methods. They utilized AdaBoost regression to

construct a ground-truth predictor to reduce the size of the fault injection

experiments.

18/6

RF

(a)
18/6

RF_tuned

(b)

18/6

GB

(c)

12/12 14/10 16/8 12/12 14/10 16/8

12/12 14/10 16/8 12/12 14/10 16/8 18/6

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GB_tuned

(d)

Fig. 10 Accuracy distribution with different splits for each algorithm (Dataset-II)

123

International Journal of Parallel Programming (2021) 49:410–439 435

Rosa et al. [8] proposed a soft error assessment flow including simulation-based

fault injection and soft error criticality evaluation. They utilized ML techniques to

identify the correlation between fault injection results and multicore parameters

such as application and platform characteristics.

Nie et al. [28] used a machine learning approach to predict GPU errors by

considering both temporal and spatial features, like application-specific character-

istics, temperature/power consumption, and node location. They utilized Logistic

Regression (LR), Gradient Boosting Decision Tree (GBDT), Support Vector

Machine (SVM), and Neural Network (NN) to analyze ML-based prediction models

for GPU soft errors.

Kalra et al. [17] presented a framework to predict vulnerability of GPU

applications by using micro-architecture independent features. Their framework

identifies a set of scalar and vector instructions as program features, and utilizes

linear regression and k-nearest neighbor to capture the statistical relationship

between the program features and the program resiliency.

Alternatively, Li et al. [20] proposed a compiler module that can predict SDC

probability of individual instructions as well as whole program by analyzing error

propagation in a program. They also applied selective duplication for individual

instructions to reduce overall SDC rate.

Our work has significant differences compared to studies listed here. Specifically,

we focus on prediction of soft error vulnerability for parallel programs (not a

vulnerability of a single instruction). We propose a machine learning model based

on high-level parallel programming features, for the first time, as opposed to

previous studies. We also propose a novel classification model for vulnerability

level prediction.

6 Conclusions

We present a soft error vulnerability prediction approach for parallel programs using

machine learning. Our approach evaluates both correct execution rates and

vulnerability level for target programs by applying a set of ML algorithms and

techniques. We evaluate the effectiveness of our prediction framework through

performance metrics defined for the accuracy evaluation of the machine-learning

techniques. Our results demonstrate that ML-based approach is useful for reliability

evaluation. A regression-based approach is more suitable for predicting the exact

correct execution rates of the applications (especially for the ones having higher

correct execution rates). On the other hand, a higher accuracy rate can be achieved

by designing the problem as a binary classification problem, and predicting the

relative vulnerability level.

Since our model performs highly accurate results for soft error outcomes, it can

be utilized as a fault tolerance level recommendation for the safety-critical systems

without performing costly fault injection experiments. Based on the prediction of

vulnerability characteristics of applications, a limited number of protection

resources (such as additional cores) might be utilized for highly vulnerable ones

in a given multi-application workload. Such applications might be selectively

123

436 International Journal of Parallel Programming (2021) 49:410–439

duplicated (to enable fault detection), triplicated (to enable fault correction), or re-

executed at different times compared to the remaining applications in the workload

to provide a cost-effective and reliable execution environment.

References

1. perf: Linux profiling with performance counters (2015). https://perf.wiki.kernel.org/index.php/Main_

Page

2. Andersch, M., Juurlink, B., Chi, C.C.: A benchmark suite for evaluating parallel programming

models. In: Proceedings 24th Workshop on Parallel Systems and Algorithms (2011)

3. Barrow-Williams, N., Fensch, C., Moore, S.: A communication characterisation of splash-2 and

parsec. In: IEEE International Symposium on Workload Characterization (IISWC) (2009)

4. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Characterization and archi-

tectural implications. In: Proceedings of the 17th International Conference on Parallel Architectures

and Compilation Techniques (2008)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

6. Chatzidimitriou, A., Bodmann, P., Papadimitriou, G., Gizopoulos, D., Rech, P.: Demystifying soft

error assessment strategies on arm cpus: microarchitectural fault injection vs. neutron beam exper-

iments. In: 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), pp. 26–38 (2019)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

8. da Rosa, F.R., Garibotti, R., Ost, L., Reis, R.: Using machine learning techniques to evaluate

multicore soft error reliability. IEEE Trans. Circuits Syst. I: Reg. Pap. 66(6), 2151–2164 (2019)

9. Deniz, E., Sen, A., Kahne, B., Holt, J.: Minime: Pattern-aware multicore benchmark synthesizer.

IEEE Trans. Comput. 64(8), 2239–2252 (2015). https://doi.org/10.1109/TC.2014.2349522

10. Diener, M., Cruz, E.H., Pilla, L.L., Dupros, F., Navaux, P.O.: Characterizing communication and

page usage of parallel applications for thread and data mapping. Perform. Eval. 88–89, 18–36 (2015)

11. Diener, M., Cruz, E.H.M., Alves, M.A.Z., Alhakeem, M.S., Navaux, P.O.A., Heiß, H.U.: Locality

and balance for communication-aware thread mapping in multicore systems. In: European Confer-

ence on Parallel Processing (Euro-Par) (2015)

12. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression

machines. In: Proceedings of the 9th International Conference on Neural Information Processing

Systems (NIPS) (1996)

13. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

14. Guo, L., Li, D., Laguna, I.: PARIS: Predicting Application Resilience Using Machine Learning.

arXiv e-prints arXiv:1812.02944 (2018)

15. Hari, S.K.S., Tsai, T., Stephenson, M., Keckler, S.W., Emer, J.: Sassifi: An architecture-level fault

injection tool for gpu application resilience evaluation. In: 2017 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS) (2017)

16. Iqbal, S.M.Z., Liang, Y., Grahn, H.: Parmibench—an open-source benchmark for embedded multi-

processor systems. IEEE Comput. Archit. Lett. 9(2), 45–48 (2010)

17. Kalra, C., Previlon, F., Li, X., Rubin, N., Kaeli, D.: Prism: Predicting resilience of gpu applications

using statistical methods. In: SC18: International Conference for High Performance Computing,

Networking, Storage and Analysis (2018)

18. Laguna, I., Schulz, M., Richards, D.F., Calhoun, J., Olson, L.: Ipas: Intelligent protection against

silent output corruption in scientific applications. In: 2016 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO) (2016)

19. Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P.: Statistical fault injection: quantified error and

confidence. In: Proceedings of the Conference on Design, Automation and Test in Europe (DATE)

(2009)

20. Li, G., Pattabiraman, K., Hari, S.K.S., Sullivan, M., Tsai, T.: Modeling soft-error propagation in

programs. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN) (2018)

123

International Journal of Parallel Programming (2021) 49:410–439 437

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1109/TC.2014.2349522

21. Liu, L., Ci, L., Liu, W., Yang, H.: Identifying sdc-causing instructions based on random forests

algorithm. KSII Trans. Internet Inf. Syst. 13, 1566–1582 (2019)

22. Liu, Y., Li, J., Zhuang, Y.: Instruction sdc vulnerability prediction using long short-term memory

neural network. In: Gan, G., Li, B., Li, X., Wang, S. (eds.) Advanced Data Mining and Applications,

pp. 140–149. Springer, Cham (2018)

23. Lu, Q., Pattabiraman, K., Gupta, M.S., Rivers, J.A.: Sdctune: A model for predicting the sdc

proneness of an application for configurable protection. In: International Conference on Compilers,

Architecture and Synthesis for Embedded Systems (CASES) (2014)

24. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,

Hazelwood, K.: Pin: Building customized program analysis tools with dynamic instrumentation. In:

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI) (2005)

25. Mittal, S., Vetter, J.S.: A survey of techniques for modeling and improving reliability of computing

systems. IEEE Trans. Parall. Distrib. Syst. 27(4), 1226–1238 (2016)

26. Mukherjee, S.: Architecture Design for Soft Errors. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA (2008)

27. Mutlu, B.O., Kestor, G., Cristal, A., Unsal, O., Krishnamoorthy, S.: Ground-truth prediction to

accelerate soft-error impact analysis for iterative methods. In: 2019 IEEE 26th International Con-

ference on High Performance Computing, Data, and Analytics (HiPC) (2019)

28. Nie, B., Xue, J., Gupta, S., Patel, T., Engelmann, C., Smirni, E., Tiwari, D.: Machine learning models

for gpu error prediction in a large scale hpc system. In: 2018 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN) (2018)

29. Oliveira, D., Moreira, F.B., Rech, P., Navaux, P.: Predicting the reliability behavior of hpc appli-

cations. In: International Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD) (2018)

30. Oliveira, D.A.G.D., Pilla, L.L., Hanzich, M., Fratin, V., Fernandes, F., Lunardi, C., Cela, J.M.,

Navaux, P.O.A., Carro, L., Rech, P.: Radiation-induced error criticality in modern hpc parallel

accelerators. In: 2017 IEEE International Symposium on High Performance Computer Architecture

(HPCA), pp. 577–588 (2017)

31. Parasyris, K., Tziantzoulis, G., Antonopoulos, C.D., Bellas, N.: Gemfi: A fault injection tool for

studying the behavior of applications on unreliable substrates. In: 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pp. 622–629 (2014)

32. Pearce, O., Gamblin, T., de Supinski, B.R., Schulz, M., Amato, N.M.: Quantifying the effectiveness

of load balance algorithms. In: Proceedings of the 26th ACM International Conference on Super-

computing (2012)

33. Poovey, J., Railing, B., Conte, T.: Parallel pattern detection for architectural improvements. In:

Proceedings of the 3rd USENIX Conference Hot Topic Parallelism (2011)

34. Rodrigues, G.S., Kastensmidt, F.L., Reis, R., Rosa, F., Ost, L.: Analyzing the impact of using

pthreads versus openmp under fault injection in arm cortex-a9 dual-core. In: 16th European Con-

ference on Radiation and Its Effects on Components and Systems (RADECS) (2016)

35. Rosa, F.d., Bandeira, V., Reis, R., Ost, L.: Extensive evaluation of programming models and isas

impact on multicore soft error reliability. In: Proceedings of the 55th Annual Design Automation

Conference (DAC) (2018)

36. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Belak, J., Bose, P.,

Cappello, F., Carlson, B., Chien, A.A., Coteus, P., Debardeleben, N.A., Diniz, P.C., Engelmann, C.,

Erez, M., Fazzari, S., Geist, A., Gupta, R., Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D.,

Mitra, S., Munson, T., Schreiber, R., Stearley, J., Hensbergen, E.V.: Addressing failures in exascale

computing. Int. J. High Perform. Comput. Appl. 28(2), 129–173 (2014)

37. Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K.B., Stearley, J., Shalf, J., Gurumurthi, S.:

Memory errors in modern systems: The good, the bad, and the ugly. In: Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS) (2015)

38. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N., Liu, G.D., mei

W. Hwu, W.: Parboil: A revised benchmark suite for scientific and commercial throughput com-

puting. IMPACT Technical Report 12-01, University of Illinois at Urbana-Champaign (2012)

39. Tanikella, K., Koy, Y., Jeyapaul, R., Kyoungwoo Lee, Shrivastava, A.: gemv: A validated toolset for

the early exploration of system reliability. In: 2016 IEEE 27th International Conference on Appli-

cation-specific Systems, Architectures and Processors (ASAP), pp. 159–163 (2016)

123

438 International Journal of Parallel Programming (2021) 49:410–439

40. Vishnu, A.V., Dam, H., Tallent, N.R., Kerbyson, D.J., Hoisie, A.: Fault modeling of extreme scale

applications using machine learning. In: 2016 IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (2016)

41. Wei, J., Thomas, A., Li, G., Pattabiraman, K.: Quantifying the accuracy of high-level fault injection

techniques for hardware faults. In: International Conference on Dependable Systems and Networks

(DSN) (2014)

42. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs: Characterization and

methodological considerations. In: Proceedings of the 22Nd Annual International Symposium on

Computer Architecture (ISCA) (1995)

43. Yang, N., Wang, Y.: Predicting the silent data corruption vulnerability of instructions in programs.

In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

International Journal of Parallel Programming (2021) 49:410–439 439

	Predicting the Soft Error Vulnerability of Parallel Applications Using Machine Learning
	Abstract
	Introduction
	Soft Error Vulnerability
	Fault Model
	Soft Error Vulnerability Evaluation

	Methodology
	Overview of Our Approach
	Application Characterization
	Thread Communication Characteristics
	Data Sharing Characteristics
	Parallel Programming Characteristics
	Performance Characteristics
	Characterization Tools

	Fault Injection Framework
	Prediction Model
	Machine Learning Algorithms
	Features
	Performance Metrics
	Training and Testing Phases
	Model Tuning

	Experimental Study
	Experimental Setup
	Experimental Results
	Regression Results
	Classification Results

	Related Work
	Conclusions
	References

