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A B S T R A C T

An efficient numerical method is proposed for the solution of the nonlinear cubic Schrödinger equation. The
proposed method is based on the Fréchet derivative and the meshless method with radial basis functions.
An important characteristic of the method is that it can be extended from one-dimensional problems to
multi-dimensional ones easily. By using the Fréchet derivative and Newton–Raphson technique, the nonlinear
equation is converted into a set of linear algebraic equations which are solved iteratively. Numerical examples
reveal that the proposed method is efficient and reliable with respect to the accuracy and stability.
1. Introduction

Schrödinger equation plays an essential role to predict the energy
of the quantum mechanical system. Thus, it is an important equation
both in physics and in engineering contexts. Among different types of
Schrödinger equations, cubic nonlinear Schrödinger equation has got
central importance due to its many applications. Several phenomena
in physics and engineering can be modelled using cubic nonlinear
Schrödinger equation.

An important type of nonlinear Schrödinger equation is the equa-
tion with the cubic nonlinear term (|𝜓|2𝜓) which is called the cubic
nonlinear Schrödinger equation and is given as follows:

𝑖
𝜕𝜓(𝑡, 𝐱)
𝜕𝑡

=
(

−𝛼𝛥 + 𝛽|𝜓(𝑡, 𝐱)|2 + 𝜔(𝐱)
)

𝜓(𝑡, 𝐱), (𝑡, 𝐱) ∈ (0, 𝑇 ] ×𝛺 (1)

subjects to either Dirichlet or Neumann boundary conditions and with
an initial condition

𝜓(0, 𝐱) = 𝜓0(𝐱), 𝑥 ∈ 𝛺

where 𝜓(𝑡, 𝐱) is the complex valued function, 𝑡 is the time variable, 𝛼 is
a positive constant, 𝛽 is a constant, 𝛺 ⊂ 𝐑𝑑 is a bounded domain. The
external potential function 𝜔(𝑥) is a real-valued function.

Solving nonlinear Schrödinger equation analytically is difficult and
sometimes impossible. Therefore, several researchers have worked on
numerical solution of Schrödinger equations: Subaşı has applied fi-
nite difference schemes for the numerical solution of two-dimensional
Schrödinger equation [1]. Bratsos has used a linearized Crank–Nicolson
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scheme for numerical solution of nonlinear cubic Schrödinger equa-
tion [2]. Wu has used Dufort–Frankel-type methods for solving linear
and nonlinear Schrödinger equations [3]. Dehghan and Taleei have ap-
plied a compact split-step finite difference method for solving the non-
linear Schrödinger equations [4]. Dehghan has presented finite differ-
ence procedures for solving two-dimensional Schrödinger equation [5].
Taleei and Dehghan have applied a time splitting pseudo-spectral do-
main decomposition method [6] for solving the nonlinear Schrödinger
equations. Quintic B-spline Galerkin finite element method has been
applied to nonlinear Schrödinger equation for Neumann type boundary
condition [7], exponential cubic B-spline finite element method has
been considered in [8].

Recently, there has been an improvement for the space discretiza-
tion technique which is called meshless method. Since the classical
mesh based methods such as finite difference, finite element and fi-
nite volume methods are not appropriate for all types of domains,
the meshless method has become more attractive in the numerical
investigations. There are several types of meshless methods which have
been applied for numerical solution of linear and nonlinear partial
differential equations. Due to its easy application, meshless method
with radial basis is the most important one among various types. The
studies on meshless collocation method with radial basis functions can
be found in the Refs. [9–17].
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In the present work, a numerical solution of cubic nonlinear
Schrödinger equation in both one- and two-dimensional cases is pro-
posed. In order to tackle the nonlinearity, Fréchet derivative tech-
nique [18] is applied as a tool. The essential idea behind the process is
Newton–Raphson iterative process combining with the Fréchet deriva-
tive. In so doing, nonlinear equation is converted into a linear one. After
that, to obtain the numerical solution, the meshless method with radial
basis function is applied for spatial discretization and Crank–Nicolson
method is applied for time discretization.

The outline of this paper is as follows. Section 2.1 is dedicated to
the introduction of the proposed linearized method. In Section 2.2,
the meshless method with radial basis function will be described.
Numerical tests and simulations for the proposed linearized method
will be considered in Section 3. In Section 4, some conclusions of the
proposed work will be drawn.

2. Construction of the method

2.1. Linearization technique

The essential idea of the proposed method is Newton–Raphson
iterative process via Fréchet derivatives. To introduce this method
briefly, we first consider the general nonlinear differential equation as
follows:

𝐿(𝑈 ) = 0, (2)

where 𝐿 is a differential operator. The solution of Eq. (2) can be
described in the following form:

𝑈𝑛+1 = 𝑈𝑛 + 𝜃𝑛. (3)

Here 𝑛 corresponds to the iteration number and 𝜃𝑛 corresponds to the
refinement variable for correcting function 𝑈𝑛. Primarily, for solving
refinement variable, we deal with the following differential equation

𝜃𝑛𝐿′(𝑈𝑛) + 𝐿(𝑈𝑛) = 0. (4)

By means of the definition of Fréchet derivative, the term 𝜃𝑛𝐿′(𝑈𝑛) is
defined as

𝜃𝑛𝐿′(𝑈𝑛) = 𝜕
𝜕𝜀
𝐿(𝑈𝑛 + 𝜀𝜃𝑛)||

|𝜀=0
. (5)

The above formulation can easily be extended to systems of partial
differential equations. As the cubic nonlinear Schrödinger equation
can be expressed as a system of two partial differential equations by
separating the real and imaginary parts, therefore, we consider the case
of two partial differential equations only in this paper. Thus, we have
the system containing two nonlinear partial differential equations. That
is,

𝐿1(𝑈, 𝑉 ) = 0,

𝐿2(𝑈, 𝑉 ) = 0. (6)

Due to the Newton–Raphson method, the solution of Eq. (6) can be
expressed as

𝑈𝑛+1 = 𝑈𝑛 + 𝜃1𝑛,

𝑉 𝑛+1 = 𝑉 𝑛 + 𝜃2𝑛, (7)

where, as mentioned before, 𝜃1𝑛 and 𝜃2𝑛 which are the refinements
corresponding to the iteration number 𝑛 are obtained by dealing with
the following differential equations:

𝜃1
𝑛𝐿1

′(𝑈𝑛, 𝑉 𝑛) + 𝜃2𝑛𝐿1
′(𝑈𝑛, 𝑉 𝑛) + 𝐿1(𝑈𝑛, 𝑉 𝑛) = 0,

𝜃1
𝑛𝐿2

′(𝑈𝑛, 𝑉 𝑛) + 𝜃2𝑛𝐿2
′(𝑈𝑛, 𝑉 𝑛) + 𝐿2(𝑈𝑛, 𝑉 𝑛) = 0. (8)

After applying Fréchet derivatives to get 𝜃𝑖𝑛𝐿𝑗 ′(𝑈𝑛, 𝑉 𝑛), 𝑖, 𝑗 = 1, 2,

𝜃1
𝑛𝐿𝑖

′(𝑈𝑛, 𝑉 𝑛) = 𝜕 𝐿𝑖
(

𝑈𝑛 + 𝜀𝜃1𝑛, 𝑉 𝑛)|
| ,
264

𝜕𝜀 |

|𝜀=0
𝜃2
𝑛𝐿𝑖

′(𝑈𝑛, 𝑉 𝑛) = 𝜕
𝜕𝜀
𝐿𝑖

(

𝑈𝑛, 𝑉 𝑛 + 𝜀𝜃2𝑛
)|

|

|

|𝜀=0
, (9)

he linearized form can be easily obtained. Assuming 𝜓(𝑡, 𝐱) = 𝑈 (𝑡, 𝐱) +
𝑉 (𝑡, 𝐱), the cubic nonlinear Schrödinger equation can be expressed as
system of two partial differential equations as follows:

1(𝑈, 𝑉 ) = 𝑈𝑡 + 𝛼𝛥𝑉 − 𝛽
(

𝑈2 + 𝑉 2)𝑉 − 𝜔𝑉 = 0,

2(𝑈, 𝑉 ) = 𝑉𝑡 − 𝛼𝛥𝑈 + 𝛽
(

𝑈2 + 𝑉 2)𝑈 + 𝜔𝑈 = 0. (10)

pplying the linearization technique to the system given in Eq. (10)
ne can obtain
𝑛
1𝑡
+ 𝛼𝛥𝜃𝑛2 − 2𝛽𝑈𝑛𝑉 𝑛𝜃𝑛1 − 𝛽

(

(𝑈𝑛)2 + 3 (𝑉 𝑛)2
)

𝜃𝑛2 − 𝜔𝜃
𝑛
2 + 𝐿1 (𝑈𝑛, 𝑉 𝑛) = 0,

(11)
𝑛
2𝑡
− 𝛼𝛥𝜃𝑛1 + 𝛽

(

3 (𝑈𝑛)2 + (𝑉 𝑛)2
)

𝜃𝑛1 + 2𝛽𝑈𝑛𝑉 𝑛𝜃𝑛2 + 𝜔𝜃
𝑛
1 + 𝐿2 (𝑈𝑛, 𝑉 𝑛) = 0.

(12)

ere Eqs. (11) and (12) are linear with respect to the 𝜃1 and 𝜃2. Matrix
otations of Eqs. (11) and (12) can be written as follows:
𝑛
𝑡 +𝛼𝐴𝛩

𝑛+𝐵𝛩𝑛+𝛽𝐶(𝑈𝑛, 𝑉 𝑛)𝛩𝑛 = −𝛹 𝑛𝑡 −𝛼𝐴𝛹
𝑛−𝐵𝛹 𝑛−𝛽𝐷(|𝛹 𝑛|)𝛹 𝑛 (13)

here 𝛩 = [𝜃1, 𝜃2]𝑇 and 𝛹 = [𝑈, 𝑉 ]𝑇 . Moreover,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝟎
𝑑
∑

𝑖=1

𝜕2

𝜕𝑥2𝑖

−
𝑑
∑

𝑖=1

𝜕2

𝜕𝑥2𝑖
𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐵 =
[

𝟎 −𝝎
𝝎 𝟎

]

(14)

𝐶(𝑈, 𝑉 ) =
[

−2𝑈𝑉 −(𝑈2 + 3𝑉 2)
(3𝑈2 + 𝑉 2) 2𝑈𝑉

]

,

𝐷(|𝜓|) =
[

𝟎 −(𝑈2 + 𝑉 2)
(𝑈2 + 𝑉 2) 𝟎

]

.
(15)

Notice that the operator ∑𝑑
𝑖=1

𝜕2

𝜕𝑥2𝑖
will be approximated by the meshless

method with radial basis functions. Moreover, 𝟎 denotes the zero matrix
and 𝝎 = 𝜔𝑰 where 𝑰 stands for the identity matrix. Applying the
Crank–Nicolson method to Eq. (13) one can obtain
𝛩𝑛𝑚+1 − 𝛩

𝑛
𝑚

𝛥𝑡
+ 𝛼𝐴

𝛩𝑛𝑚+1 + 𝛩
𝑛
𝑚

2
+ 𝐵

𝛩𝑛𝑚+1 + 𝛩
𝑛
𝑚

2

+ 𝛽𝐶
(

𝑈𝑛
𝑚+1, 𝑉

𝑛
𝑚+1

)
𝛩𝑛𝑚+1 + 𝛩

𝑛
𝑚

2

= −
𝛹 𝑛𝑚+1 − 𝛹

𝑛
𝑚

𝛥𝑡
− 𝛼𝐴

𝛹 𝑛𝑚+1 + 𝛹
𝑛
𝑚

2
− 𝐵

𝛹 𝑛𝑚+1 + 𝛹
𝑛
𝑚

2

− 𝛽𝐷

(

|

|

|

|

|

𝛹 𝑛𝑚+1 + 𝛹
𝑛
𝑚

2

|

|

|

|

|

)

𝛹 𝑛𝑚+1 + 𝛹
𝑛
𝑚

2
,

where 𝑡𝑚+1 = 𝑡0 + 𝑚𝛥𝑡, 𝛩𝑛𝑚+1 = 𝛩𝑛(𝑡𝑚+1), 𝛹 𝑛𝑚+1 = 𝛹 𝑛(𝑡𝑚+1) and 𝛥𝑡 is the
ime step.

.2. Meshless method with radial basis functions

There are several types of radial basis functions, however, multi-
uadric radial basis function (MQ RBF) is the most commonly used
mong all radial basis functions and we will use MQ RBF in this
aper. In this approach, the formulation of the problem starts with
he representation of the unknown function 𝜓(𝐱) with MQ RBF on the
ntire domain. The derivatives are then calculated by differentiation of
he MQ RBF function. The RBF approximation for 𝜓(𝐱) is given in the
ollowing form:

(𝐱) ≃
𝑁
∑

𝑘=1
𝜙(𝑟, 𝑐)𝜆𝑘, 𝐱 ∈ 𝐑𝑑 , (16)

here 𝜆𝑘, 𝑘 = 1, 2,… , 𝑁 are the RBF’s coefficients and

= ‖𝐱 − 𝐱 ‖ =
√

(𝑥 − 𝑥 )2 +⋯ + (𝑥 − 𝑥 )2.
𝐤 2 1 𝑘1 𝑑 𝑘𝑑
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The MQ RBF is defined as

𝜙(𝑟, 𝑐) =
√

𝑟2 + 𝑐2, (17)

where 𝑐 is the shape parameter. It is important to note that the shape
parameter has a crucial role on the convergence and accuracy of the
meshless method.

The variables 𝑈 and 𝑉 can be approximated as follows:

𝑈 (𝐱) ≃
𝑁
∑

𝑘=1
𝜙(𝑟, 𝑐1)𝜆𝑘, (18)

and

𝑉 (𝐱) ≃
𝑁
∑

𝑘=1
𝜙(𝑟, 𝑐2)𝛾𝑘, (19)

where 𝜙 is MQ radial basis function. The unknown parameters 𝜆𝑘 and
𝑘, 𝑘 = 1, 2,… , 𝑁 can be found using the collocation points in the
ollowing form:

(𝐱𝑖) =
𝑁
∑

𝑘=1
𝜙(𝑟𝑖𝑘, 𝑐1)𝜆𝑘, (20)

(𝐱𝑖) =
𝑁
∑

𝑘=1
𝜙(𝑟𝑖𝑘, 𝑐2)𝛾𝑘, 𝑖 = 1,… , 𝑁. (21)

here 𝑟 =
√

(𝑥1 − 𝑥𝑘1 )
2 +⋯ + (𝑥𝑑 − 𝑥𝑘𝑑 )

2. Eqs. (20) and (21) can be
written in matrix form as:

𝐔 = 𝐀𝐔𝜆, (22)

and

𝐕 = 𝐀𝐕𝛾, (23)

where

𝐀𝐔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜙(𝑟11, 𝑐1) 𝜙(𝑟12, 𝑐1) … 𝜙(𝑟1𝑁 , 𝑐1)
𝜙(𝑟21, 𝑐1) 𝜙(𝑟22, 𝑐1) … 𝜙(𝑟2𝑁 , 𝑐1)

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

𝜙(𝑟𝑁1, 𝑐1) 𝜙(𝑟𝑁2, 𝑐1) … 𝜙(𝑟𝑁𝑁 , 𝑐1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐀𝐕 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜙(𝑟11, 𝑐2) 𝜙(𝑟12, 𝑐2) … 𝜙(𝑟1𝑁 , 𝑐2)
𝜙(𝑟21, 𝑐2) 𝜙(𝑟22, 𝑐2) … 𝜙(𝑟2𝑁 , 𝑐2)

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

𝜙(𝑟𝑁1, 𝑐2) 𝜙(𝑟𝑁2, 𝑐2) … 𝜙(𝑟𝑁𝑁 , 𝑐2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑟𝑖𝑘 =
√

(𝑥𝑖1 − 𝑥𝑘1 )
2 +⋯ + (𝑥𝑖𝑑 − 𝑥𝑘𝑑 )

2, 𝜆 = [𝜆1, 𝜆2,… , 𝜆𝑁 ]𝑇 and 𝛾 =
[𝛾1, 𝛾2,… , 𝛾𝑁 ]𝑇 . Therefore,

𝜆 = 𝐀𝐔
−1𝐔, (24)

and

𝛾 = 𝐀𝐕
−1𝐕. (25)

RBF approximations for the derivatives of variables U and V can be
represented by

𝜕2𝑈 (𝑥𝑖)
𝜕𝑥2𝑗

≃
𝑁
∑

𝑘=1

𝜕2

𝜕𝑥2𝑗
𝜙(𝑟𝑖𝑘, 𝑐1)𝜆𝑘, (26)

and

𝜕2𝑉 (𝑥𝑖)
𝜕𝑥2𝑗

≃
𝑁
∑

𝑘=1

𝜕2

𝜕𝑥2𝑗
𝜙(𝑟𝑖𝑘, 𝑐2)𝛾𝑘. (27)

The differentiation matrices can be defined as

𝐷𝑈 = 𝐻1𝐀𝐔
−1, (28)

and

𝐷 = 𝐻 𝐀 −1, (29)
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𝑉 2 𝐕
where the entries of 𝐻1 and 𝐻2 are

ℎ1𝑖𝑘 = 𝜕2

𝜕𝑥2𝑗
𝜙(𝑟𝑖𝑘, 𝑐1),

and

ℎ2𝑖𝑘 = 𝜕2

𝜕𝑥2𝑗
𝜙(𝑟𝑖𝑘, 𝑐2),

𝑘, 𝑖 = 1, 2,… , 𝑁 .

3. Numerical examples and simulations

In this section, we will apply the proposed method to benchmark
problems from the literature. It is crucial to note that any numerical
method developed for solving solitary wave equations must preserve
some physical characteristics of solitary waves such as structural be-
haviour, mass, and energy conservation. To test the validity of any
numerical method on solitary wave conservation of both mass and
energy is also required to confirm. The mass and energy conservations
are mathematically defined as

𝑀(𝑡) ∶= ∫𝛺
|𝜓|2𝑑𝑥 ∶=𝑀(0), (30)

𝐸(𝑡) ∶= 1
2 ∫𝛺

(

𝛼|∇𝜓|2 + 𝜔(𝐱)|𝜓|2 + 𝛽
2
|𝜓|4

)

𝑑𝑥 ∶= 𝐸(0). (31)

In discrete space, mass and energy conservations can be expressed as
follows:

𝐸𝑀𝐶 = 𝛥𝑥
𝑁𝑥
∑

𝑘=1
|𝑀𝑛

𝑘 −𝑀
0
𝑘 |, (32)

𝐸𝐸𝐶 = 𝛥𝑥
𝑁𝑥
∑

𝑘=1
(𝐸𝑛𝑘 − 𝐸

0
𝑘). (33)

Here, 𝐸𝑀𝐶 and 𝐸𝐸𝐶 denote the errors of mass conservation and of
energy conservation, respectively. Moreover, 𝐸0 and 𝑀0 denote the
initial energy and initial mass, respectively. Then, from Eqs. (30) and
(31), we have

𝐸𝑛𝑖 = 𝛼
2
((𝑎𝑛𝑖 )

2 + (𝑏𝑛𝑖 )
2) +

𝜔(𝑥𝑖)
2

((𝑉 𝑛
𝑖 )

2 + (𝑈𝑛
𝑖 )

2) +
𝛽
4
((𝑉 𝑛

𝑖 )
2 + (𝑈𝑛

𝑖 )
2)2, (34)

𝑛
𝑖 = (𝑉 𝑛

𝑖 )
2 + (𝑈𝑛

𝑖 )
2, (35)

here 𝑎 = ∇𝑈 , 𝑏 = ∇𝑉 for 𝛹 = 𝑈 + 𝑖𝑉 and 𝐸𝑛𝑖 is the energy at 𝑡 = 𝑛𝛥𝑡
nd 𝑥 = 𝑥𝑖. It is important to state that throughout the section we have
ssentially focused on the above-mentioned characteristics.

.1. One-dimensional cubic nonlinear Schrödinger equation

As our first example, we consider the one-dimensional cubic non-
inear Schrödinger equation:

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + |𝜓|2𝜓 = 0, (36)
(𝑥𝐿, 𝑡) = 𝜓(𝑥𝑅, 𝑡) = 0,

he initial condition is taken as

(𝑥, 0) =
√

2 sech(𝑥 + 10)𝑒𝑖𝑥∕4, (37)

where 𝜓(𝑥, 𝑡) denotes the probability amplitude for the particle to be
ound at position 𝑥 at time 𝑡, 𝑥𝐿 = −20 and 𝑥𝑅 = 5. In order to solve
he equation we put it into system form by considering 𝜓 = 𝑈 + 𝑖𝑉 in
q. (36).

Here, the exact solution is given in [19] as

(𝑥, 𝑡) =
√

2 sech
(

𝑥 − 𝑡
2
+ 10

)

𝑒𝑖
(

𝑥
4 +

15
16 𝑡

)

. (38)

The numerical results are shown in Fig. 1. One important property of
the solitary waves is that they can travel without changing their whole
structure and energy, which is evident from this figure. On the other
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Fig. 1. Exact and numerical solutions of Eq. (36) for 𝑁 = 100 and 𝑐1 = 𝑐2 = 0.5 at a certain time for Problem 3.1.
Fig. 2. Surface plot of the real part of the numerical and the exact solution at time 𝑡 = 1 for Problem 3.2.
hand, we also check the conservation of mass of the proposed method
on 𝑥 ∈ [−5, 20] and 𝑡 ∈ [0, 3]. The errors are presented in different
norms, namely 𝐿1 and 𝐿2. Table 1 shows that the proposed method is
very efficient in terms of the conservation of mass.

In order to check the long time behaviour of the proposed method,
we apply the proposed method on 𝑥 ∈ [−5, 20] and 𝑡 ∈ [0, 20]. Table 2
emphasizes that the proposed method can be applied for a long time
with accurate results.

Further, in order to compare the preservation of energy, we consider
the exact and numerical solutions on 𝑥 ∈ [−5, 20] and 𝑡 ∈ [0, 20]. For
266
exact solution, we have

∫

5

−20
|𝜓|2𝑑𝑥 = 4.0000, ∫

5

−20

(

−|𝜓𝑥|
2 +

|𝜓|4

2
)

𝑑𝑥 = 1.1749,

while for the numerical solution, we have, at 𝑡 = 3,

5
|𝜓|2𝑑𝑥 = 4.0000,

5
(

−|𝜓𝑥|
2 +

|𝜓|4 )
𝑑𝑥 = 1.1895.
∫−20 ∫−20 2
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∫

Fig. 3. Surface plot of the imaginary part of the numerical and the exact solution at time 𝑡 = 1 for Problem 3.2.
Fig. 4. Surface plot of the real part of the numerical and the exact solution at time 𝑡 = 3 for Problem 3.2.
w

Table 1
Errors of mass conservation for different 𝛥𝑡 and 𝛥𝑥 where 𝑥 ∈ [−5, 20] and 𝑡 ∈ [0, 3] for
Problem 3.1.
𝑁 𝛥𝑡 = 0.01 𝛥𝑡 = 0.001

𝐿1 𝐿2 𝐿1 𝐿2

25 0.0023 2.8192e−04 0.0015 6.3240e−05
50 4.5138e−05 4.4278e−06 5.4477e−05 1.5920e−06
100 3.7685e−07 2.3124e−08 1.1644e−06 2.3856e−08
150 2.7268e−07 2.0663e−08 2.8687e−07 5.7848e−09

Moreover, at 𝑡 = 20, we obtain
5 5

(
|𝜓|4 )
267
−20

|𝜓|2𝑑𝑥 = 3.9996, ∫−20
−|𝜓𝑥|

2 +
2

𝑑𝑥 = 1.1734, 𝜓
which guarantees that the proposed method has the long-time be-
haviour not only for mass conservation but also for energy conserva-
tion.

3.2. Two-dimensional cubic nonlinear Schrödinger equation

Secondly, we consider the two-dimensional cubic nonlinear
Schrödinger equation [20]:

𝑖
𝜕𝜓
𝜕𝑡

+
𝜕2𝜓
𝜕𝑥2

+
𝜕2𝜓
𝜕𝑦2

+ 𝑞|𝜓|2𝜓 = 0, (𝑥, 𝑦) ∈ [0, 𝜋]2, 𝑡 ∈ [0, 3] (39)

ith the exact solution of the given model [21,22]

(𝑥, 𝑦, 𝑡) = 𝐴 exp(𝑖(𝑘 𝑥 + 𝑘 𝑦 − 𝜌𝑡)), (40)
1 2
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𝑡

Fig. 5. Surface plot of the imaginary part of the numerical and the exact solution at time 𝑡 = 3 for Problem 3.2.
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Fig. 6. Errors of mass conservations with 𝑁 = 16 × 16, 𝑐1 = 𝑐2 = 0.7, 𝛺 = [0, 𝜋]2 and
𝑡 ∈ [0, 3] for Problem 3.2.

Fig. 7. Errors of energy conservations with 𝑁 = 16 × 16, 𝑐1 = 𝑐2 = 0.7, 𝛺 = [0, 𝜋]2 and
∈ [0, 3] for Problem 3.2.
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a

able 2
rrors of mass conservation for different 𝛥𝑡 and 𝛥𝑥 where 𝑥 ∈ [−5, 20] and 𝑡 ∈ [0, 20]
or Problem 3.1.
𝛥𝑡 𝑁 = 50 𝑁 = 100

𝐿1 𝐿2 𝐿1 𝐿2

0.4 0.0444 0.0082 0.0169 0.0033
0.2 0.0218 0.0030 0.0030 6.7571e−04
0.1 0.0180 0.0180 0.0022 4.7494e−04
0.05 0.0180 0.0012 0.0020 3.1777e−04

where

𝜌 = 𝑘1
2 + 𝑘22 − 𝑞|𝐴|

2, (41)

ubject to initial and boundary conditions

(𝑥, 𝑦, 0) = 𝜓0(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝛺, (42)
𝜓(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ 𝜕𝛺, 𝑡 > 0, (43)

here 𝜓(𝑥, 𝑦, 𝑡) is a complex function, 𝛺 = [0, 𝜋]2 is a rectangular region
nd 𝜕𝛺 denotes the boundary of 𝛺.

The proposed method is applied to this example and the numerical
esults are shown in Table 3. The error norms 𝐿1 and 𝐿2 for the real and
maginary parts are presented with fixed number of collocation points
= 10×10 at different times up to𝑡 = 1 with fixed 𝛥𝑡 = 0.001. Numerical

esults are shown in Figs. 2 and 3 and it is evident from this figure that
he solution obtained by the proposed method is in a perfect agreement
ith the exact solution. Here, meshfree method is used for discretizing

he space derivatives and the linearization process which is defined by
eans of the Fréchet derivatives is used for time discretization where
= 10 × 10 and the shape of the radial basis is 0.5. Moreover, initial

nd boundary conditions are chosen from the exact solution. In Table 4
rror norms for different number of collocation points with t = 0.001
re shown. It can be observed that the accuracy of the method improves
y increasing the number of collocation points.

In order to check the behaviour of the proposed method for long
ime, the numerical results at time 𝑡 = 3 are shown in Figs. 4 and 5.
rom these figures, it is clear that the proposed method preserves the
ehaviour of the analytic solution for a long time. Table 5 gives the
rror at 𝑡 = 3. This emphasizes that the proposed method is numerically
table. Figs. 6 and 7 show that the discrete energy and the discrete mass

re well preserved.
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f

Fig. 8. Exact and numerical solutions of Eq. (44) at 𝑡 = 1 with 𝑁 = 16 × 16 and 𝑐1 = 𝑐2 = 0.7 for Problem 3.3.
P

n

𝑡

Table 3
Numerical errors for 𝑁 = 10 × 10 with 𝛥𝑡 = 0.001 and 𝑐1 = 𝑐2 = 0.5 for Problem 3.2.
𝑡 Real part Imaginary part

𝐿1 𝐿2 𝐿1 𝐿2

0.1 1.2916e−02 6.1962e−03 4.1602e−03 2.1514e−03
0.2 1.8770e−02 9.6928e−03 4.7991e−03 2.4357e−03
0.3 2.2654e−02 1.2328e−02 4.2126e−03 2.3923e−03
0.4 1.9275e−02 1.1574e−02 4.8929e−03 3.3571e−03
0.5 2.0306e−02 1.4381e−02 7.4393e−03 4.8017e−03
0.6 2.4049e−02 1.5879e−02 7.4599e−03 5.6786e−03
0.7 2.8174e−02 1.8491e−02 8.6283e−03 5.4560e−03
0.8 3.0907e−02 2.3580e−02 6.7824e−03 4.6352e−03
0.9 3.4673e−02 2.7562e−02 4.8147e−03 3.4125e−03
1 3.8240e−02 2.8358e−02 4.2647e−03 2.9836e−03

Table 4
Error norms of the approximate solutions for 𝛥𝑡 = 0.001 on 𝑡 ∈ [0, 1] with 𝑐1 = 𝑐2 = 0.7
or Problem 3.2.
𝑡 𝑁 = 8 𝑁 = 16

𝐿1 𝐿2 𝐿1 𝐿2

0.1 8.2572e−03 5.0463e−03 1.6233e−03 8.4697e−04
0.2 1.4362e−02 8.0032e−03 1.4246e−03 8.9173e−04
0.3 1.9362e−02 1.0506e−02 2.1029e−03 1.3948e−03
0.4 1.9564e−02 1.3560e−02 2.4511e−03 1.4347e−03
0.5 2.3993e−02 1.7731e−02 1.9402e−03 1.2821e−03
0.6 3.0219e−02 2.2057e−02 1.8258e−03 1.1608e−03
0.7 3.5083e−02 2.4959e−02 1.8729e−03 1.0928e−03
0.8 3.7903e−02 2.6853e−02 1.6465e−03 1.0567e−03
0.9 4.1190e−02 2.8474e−02 1.9067e−03 1.1634e−03
1 4.0474e−02 2.9549e−02 2.4241e−03 1.5675e−03

3.3. Two-dimensional cubic nonlinear Schrödinger equation with an exter-
nal potential

For the last example, we consider the two-dimensional cubic non-
linear Schrödinger equation

𝑖
𝜕𝜓
𝜕𝑡

+ 1
2

(

𝜕2𝜓
𝜕𝑥2

+
𝜕2𝜓
𝜕𝑦2

)

− |𝜓|2𝜓+𝜔(𝑥, 𝑦)𝜓 = 0, (𝑥, 𝑦) ∈ [0, 2𝜋]2, 𝑡 ∈ [0, 1]

(44)

with an external potential

𝜔(𝑥, 𝑦) = −(1 − sin2 𝑥 sin2 𝑦). (45)
269
Fig. 9. Errors of mass conservation of Eq. (44) for Problem 3.3.

Table 5
Error norms of the approximate solutions at final time 𝑡 = 3 with 𝑐1 = 𝑐2 = 0.7 for
roblem 3.2.
N 𝛥𝑡 𝐿1 𝐿2 CPU times

16 × 16 0.1 0.2305 0.1505 1.41
16 × 16 0.01 0.0175 0.0122 11.95
16 × 16 0.001 0.0027 0.0016 79.32

The exact solution is given in [21] as

𝜓(𝑥, 𝑦, 𝑡) = sin 𝑥 sin 𝑦𝑒−2𝑖𝑡. (46)

The boundary and initial values are extracted from Eq. (46). The
umerical experiments are performed for (𝑥, 𝑦) ∈ [0, 2𝜋] × [0, 2𝜋] by

collocating 𝑁 ×𝑁 = 16 × 16 for the shape parameter 𝑐1 = 𝑐2 = 0.7 and
∈ [0, 1] with various 𝛥𝑡 values. The numerical errors in 𝐿1 and 𝐿2

norms and CPU times in seconds are given in Table 6.
The listed values in Table 6 show that the presented method remains

stable for bigger choices of 𝛥𝑡 values. Additionally, Fig. 8 indicates how
well the approximate solutions fit the exact solution.

On the other hand, it is observed computationally and shown in
Fig. 9 that in the case of presence of an external potential the proposed
method may not preserve mass and, therefore, energy as well.



Engineering Analysis with Boundary Elements 132 (2021) 263–270N.İ. Karabaş et al.
Table 6
Error norms of the approximate solutions at 𝑡 = 1 with 𝑥, 𝑦 ∈ [0, 2𝜋]2, 𝑁 = 16 × 16 and
𝑐1 = 𝑐2 = 0.7 for Problem 3.3.
𝑁 𝛥𝑡 𝐿1 𝐿2 CPU times

16 × 16 0.01 0.0477 0.0377 5.79
16 × 16 0.001 0.0047 0.0038 41.38
16 × 16 0.0001 4.7352e−04 3.7539e−04 278

4. Conclusion

In this paper, a new numerical method which is combination of
Fréchet derivative and meshless method with radial basis functions is
developed and applied to cubic nonlinear Schrödinger equation both
in one- and two-dimensional cases. The numerical results confirm that
the method is accurate and efficient. Moreover, the study has been
enriched by considering the physical characteristic of the equation. The
validation of the proposed method has also been tested on mass and
energy conservation.
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