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Summary

Each operational modal analysis (OMA) technique may produce significant

errors during the identification procedure due to the applied methodology,

environmental/operational conditions, and instrumentation. Consequently,

those errors can adversely affect the quality of identified parameters. In this

context, this study aims at providing a comprehensive discussion on the propa-

gation of predictions errors in the frequency domain OMA. To mitigate the

prediction errors those considered to be induced by modeling and measure-

ment errors, an extended formulation is presented based on a recently devel-

oped Modified Frequency and Spatial Domain Decomposition technique. A

comprehensive investigation is presented for the probabilistic modeling of out-

put power spectral density (PSD), considering prediction errors. Numerical

and real data applications are conducted to show the effectiveness of the pro-

posed methodology.
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1 | INTRODUCTION

Output only modal identification techniques have an increasing popularity in the structural health monitoring (SHM)
community since it efficiently works under ambient operational conditions without need of any artificial loading. In
this context, the early-term implementations of output only techniques have generally dealt with the modal identifica-
tion problem in the time domain. Natural Excitation and Eigensystem Realization Algorithm (NexT-ERA),1 Ibrahim
time domain identification,2 or stochastic subspace identification (SSI)3 can be count one of the best knowns of these
time domain techniques. Among these, SSI techniques, which fundamentally undertake a stochastic process on the
state space representation of the output response, are widely implemented since they present fast and efficient proce-
dures. Various implementations of SSI techniques based on the forming of the Hankel matrix directly from the collected
data (SSI-Data) or its covariance (SSI-Cov) are also available in the literature.3–10 In the past two decades, more effective
techniques have been developed based on Bayesian theory.11,12 Bayesian time domain methods might be more success-
ful in comparison to NExT-ERA and/or SSI techniques especially in case of noisy data. The computational cost, how-
ever, arises an important challenge for such kinds of methods.

In general sense, frequency-domain output only techniques can be considered more practical and effective
compared to time-domain methods, due to the fact that they can focus on narrow bands in which a limited number
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of modes are excited. From this aspect, probabilistic techniques such as, Bayesian Spectral Density Approach
(BSDA)13 and Bayesian Fast Fourier Transform Approach (BFFTA)14,15 might be much more effective in comparison
to conventional frequency domain techniques. All these methods estimate the modal parameters from a probabilistic
model framed on either the fast Fourier transform (FFT) or power spectral density (PSD) matrix of the response
data. During this procedure uncertainties stem from the modeling errors and/or measurement noise are also consid-
ered. Using this posterior uncertainty information, Bayesian operational modal analysis (BAYOMA) = techniques
can also be integrated to two-stage finite element model updating and/or damage detection procedures.16–20 Differ-
ent variants of BAYOMA methods are available in the literature such as Bayesian Spectral Trace Approach
(BSTA),21 extended BFFTA for asynchronous vibration data22 or Hierarchical Bayesian modal identification.23

Despite their superiority, the most important disadvantage of Bayesian methods is that the computational effort can
be significantly enhanced due to the increasing complexity under large uncertainties (e.g., weakly excited modes,
large modeling error and channel noise). Therefore, some simplified versions of Bayesian methods are also available
in literature especially for uncertainty quantification using the large signal-to-noise ratio (snr) asymptotic behavior
of the response data.24,25

As one of the most classical frequency domain approaches, frequency domain decomposition (FDD) technique pre-
sents a fast and efficient tool for output only modal identification and it is widely referred to by the researchers during
the past two decades.26–28 Although the classical FDD method shows successful performance for natural frequency and
mode shape vector identification, not achieving a similar success in modal damping estimation is an important issue.
This issue has been partially addressed by a modified technique, called enhanced FDD (EFDD).29 More complex and
effective methods such as refined FDD (rFDD) are also available in the literature to surpass the limitations in the classi-
cal FDD implementation.30–32 In rFDD, a special attention is given for the heavy modal damping and earthquake input
motion problem which are solved by the implementation of an iterative procedure using various signal processing tools
such as Welch's modified periodogram and Wiener Khinchin theorem.33–36

Frequency and spatial domain decomposition (FSDD) technique appears as one of the most successful modifications
of the classical FDD approaches for more sensitive modal damping estimation.37 Similar to the classical FDD, modal
shape vector is estimated by singular value decomposition of the output PSD, at the peak response frequency. Then, an
equivalent single degree of freedom (SDOF) response is filtered by pre and post multiplying the output PSD by the
modal shape vector. Finally, the modal frequencies and damping ratios are determined by the solution of a least squares
equation.

Motivated from the Bayesian approaches, a modified version of FSDD, which is named as modified frequency and
spatial domain decomposition (MFSDD), has been recently developed.38 Different from classical FDD techniques, the
theoretical output PSD matrix is revisited from a probabilistic perspective, by inclusion of a prediction error term. Simi-
lar probabilistic approaches are also available in the literature which apply a maximum likelihood estimation on the
frequency response functions (FRF) to extract the most probable modal parameters.39–42 However, the major difference
of MFSDD from the other maximum likelihood-based approaches is that the probabilistic expectation of the output
PSD matrix is modeled using central complex Wishart distribution.

Assuming that the snr value is significantly large within a narrow band, the modal shape vector and prediction error
term can be obtained in the closed form, similar to BFFTA. This assumption, however, may cause an additional model-
ing error, which may adversely influence the parameter identification quality. To see the propagation of the prediction
(or identification) errors in MFSDD, an extended version is developed in this study. An extensive numerical example
based on the channel noise, heavy modal damping, and earthquake input effects is conducted. Laboratory and real data
examples which comprise large noise effects and closely spaced modes are also presented to see the performance of the
extended MFSDD.

2 | THEORETICAL BACKGROUND OF FDD

In FDD, the theoretical value of the output PSD is estimated as a composition of the input PSD and the transfer func-
tion in the pole-residue form, which defines the relation between input force and output response. More specifically,
the theoretical spectral density matrix of a structure, whose N number of degrees of freedom (DOF) response are mea-
sured, is given by26

Gyy ωkð Þ¼H ωkð ÞGxx ωkð ÞH� ωkð Þ ð1Þ

2 of 24 HIZAL AND AKTAŞ



where ωk = discrete excitation frequency at kth step, Gyy (ωk) = N � N sized output PSD matrix, Gxx (ωk) = input PSD
matrix, and H(ωk) represents the transfer function which is defined by

H ωkð Þ¼
XNm

n¼1

Rn

iωk� λn
þ

�Rn

iωk� λ�n

� �
ð2Þ

where H*(ωk) stands for the complex conjugate and transpose of H (ωk), and �R n represents the conjugate of Rn.
Here, both Gxx (ωk) and H (ωk) would be N�N sized matrices when all DOFs are considered as reference [26, 30]. In

Equation (2), Nm=number of considered modes, Rn = φnΓ�
n, λn=�σn+ωdn, σn = ξnωn, ωdn=ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 – ξ2n
� �q

, and ωn, ξn

represent the nth mode natural frequency and modal damping ratio, respectively. In addition, φn=N� 1 sized modal
shape vector and Γn= 1 �N sized modal participation vector.

Under operational conditions such that the structure is excited by unknown and small amplitude input excita-
tions, it can be assumed that these excitation forces are randomly distributed and uncorrelated variables, resulting
in a stationary Gaussian process. Based on these assumptions, the input PSD can be modeled as a diagonal matrix
such as Gxx (ωk) = GxxIN. In this modeling assumption, Gxx and IN represent the spectral density of input force
(corresponds to a scalar), and N � N sized identity matrix, respectively. Thus, the theoretical PSD matrix can be
written as37

Gyy ωkð Þ¼
XNm

m¼1

XNm

n¼1

�Rm

�iωk� λm
þ Rm

�iωk� λ�m

� �
Gxx

RT
n

iωk�λn
þ R�

n

iωk�λ�n

� �� �
ð3Þ

where RT
n represents the transpose of Rn. After some arrangements and mathematical manipulations, the output PSD

can be written as below.30

Gyy ωkð Þ¼
XNm

n¼1

An

iωk�λn
� A�

n

iωkþλ�n
þ

�An

iωk�λ�n
� AT

n

iωkþλn

� �
ð4Þ

Assuming small damping ratio (about 1%–2%), An can be approximately defined as30

An ¼
XNm

n¼1

Rn

2 ξnωn� iωnð Þþ
�Rn

2ξnωn

� �
GxxRT

n ffiφndnφ�
n ð5Þ

where dn ¼ ΓnGxxΓ�
n

� �
= 2σnð Þ , corresponds to a real scalar. Substituting Equation (5) into (4) and after some arrange-

ments, the output PSD matrix can be written as

Gyy ωkð Þ¼
XNm

n¼1

φnRe
2dn

iωk�λn

� �
φ�
n ð6Þ

where “Re(.)” indicates the real part of a complex scalar.

3 | MODELING OF OUTPUT PSD CONSIDERING PREDICTION ERROR

Operational conditions (e.g., stationary input, adequately large measurement duration and sampling frequency) and
considered dynamical properties in the theoretical formulation of FDD approaches have a crucial importance on the
modal parameter estimation quality. In addition to these, measurement noise induced by the instrumented sensors
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and/or data acquisition systems may cause a biased error during the analysis procedure. Considering all of these
aspects, a statistical expected value can be defined for the theoretical output PSD as follows.38

E Gyy ωkð Þ	 
¼XNm

n¼1

φnRe
2dn

iωk� λn

� �
φ�
nþ
XNm

n¼1

δnIN þ εmIN ð7Þ

where E[Gyy (ωk)] represents the statistical expectation of Gyy (ωk). In addition, δn and εm represent the modeling and
measurement errors, respectively. Here, some leading reasons why such kinds of prediction errors arise can be classified
as below.

Measurement errors:

• Channel noise
• Distortions in the sensor orientations
• Errors in the data transmission cables and/or data acquisition device

Modeling errors:

• Large damping ratio
• Non-stationary input data
• Non-orthogonal mode shapes

Identifying the measurement and modeling errors separately appears as a major challenge in OMA. Some probabi-
listic methods21,38,43 are capable of providing a prediction error for the identification process. However, all these
methods are more successful in extracting measurement errors rather than the modeling assumptions based one. There-
fore, it might be more reasonable to define a prediction error term that covers both measurement and modeling errors,
as follows.

Δe ¼
XNm

n¼1

δnþ εm ð8Þ

Substituting Equation (8) into (7) and after some mathematical manipulations yields:

E Gyy ωkð Þ	 
¼XNm

n¼1

φn cnα ωk,ωn,ξnð ÞþΔeð Þφ�
nþ

XN
j¼Nmþ1

Δeuju�
j ð9Þ

where cn ¼ΓnGxxΓ�
n , α(ωk,ωn, ξn)=Re(1/σn(iωk – λn)), and UU*= IN. In addition, U= [u1,…,uN] represents a unitary

matrix that spans N number of orthogonal vectors. Consequently, the modal parameters including ωn,ξn and φn as well
as the prediction error, Δe, are estimated based on Equation (9). To show the relation between the channel noise,
modeling errors and the quality of identified modal parameters, two similar methodologies are employed in this study,
namely MFSDD and extended MFSDD, respectively. The first one has been recently introduced based on a modified
theory of the classical FSDD technique, using a maximum likelihood estimation-based methodology. The latter one is
an extended version of MFSDD which is developed to consider the effect of considerably large prediction errors.

4 | MFSDD METHODOLOGY FOR FREQUENCY DOMAIN OMA

The underlying theory of the MFSDD approach, which is developed by motivating from frequency domain BAYOMA
techniques, are discussed in detail in this section. The major difference of MSDD from BAYOMA applications is that it
is derived based on the classical frequency domain decomposition theory. Moreover, MFSDD does not require any pos-
terior probability inference and uncertainty quantification in contrast to Bayesian approaches.
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4.1 | Derivation of MFSDD

According to MFSDD, the expected output PSD is obtained by maximizing the following probability density function
(pdf).38

p Gyy ωkð Þ��cn,ωn,ξn,Δe,φn

� �¼Y
k

E Gyy ωkð Þ	 
�� ���1
exp �tr E Gyy ωkð Þ	 
�1

Gyy ωkð Þ
� n o

ð10Þ

where “tr(.)” represents the trace of a matrix. The given pdf represents a central complex Wishart distribution with
M degrees of freedom which must provide the condition such that M > N. To do so, FFTs of measured data can be sepa-
rated into Nt/M non-overlapping segments, each spanning M number of independent sample PSDs. By making use of

this, the set of averaged output PSDs are defined as �Gs
yy ω�kð Þ

n oNt=M

s¼1
. Here, Nt= the number of output PSD samples. In

addition, �Gs
yy ω�kð Þ and ω�k represent the sample average of each segment and the average discrete frequency, which are

defined by

�Gs
yy ω�kð Þ¼ 1

M

XMþk

r¼k

Gyy ωrð Þ; ω�k ¼
M �k�1
� �
ΔtNt

; �k¼ 1, :::,Nt=M
� � ð11Þ

where Δt = sampling time. As the measurement duration increases (Nt !∞ ), the theoretical expected value of �Gs
yy �ωkð Þ

can be assumed as equivalent to that of Gyy(ωk). Consequently, M �Gs
yy �ωkð Þ follows the following probability

distribution.13

p M �Gs
yy �ωkð Þ

� 
¼ κ0 E Gyy ωkð Þ	 
�� ���M

exp �Mtr E Gyy ωkð Þ	 
�1 �Gs
yy �ωkð Þ

� n o
ð12Þ

where, κ0 = MN M –Nð Þ �Gs
yy �ωkð Þ

��� ��� M –Nð Þ
πN N – 1ð Þ=2=

QN
j¼1 M – jð Þ!, represents a scalar for the normalization of the given pdf.

Substituting Equation (11) into (12) yields

p M �Gs
yy �ωkð Þ

� 
¼ κ0

YM
r¼1

E Gyy ωkð Þ	 
�� ���1
exp �tr E Gyy ωkð Þ	 
�1

Gyy ωkð Þ
� n o

ð13Þ

Since each segment is assumed as independent variables set, the expectations of discrete output PSD can be assembled
as below.

p Gyy ωkð Þ� �
Nt

� 
¼ κ0

Y
�k

YM
r¼1

E Gyy ωkð Þ	 
�� ���1
exp �tr E Gyy ωkð Þ	 
�1

Gyy ωkð Þ
� n o

¼ κ0
Y
k

E Gyy ωkð Þ	 
�� ���1
exp �tr E Gyy ωkð Þ	 
�1

Gyy ωkð Þ
� n o ð14Þ

which is equivalent of Equation (10).
Selection of M and its influence on the accuracy of the assumed pdf have been widely investigated in the literature

as regarding the theory of Bayesian PSD approach.13,21,44 In general sense, choosing M = 1 does not affect the shape of
the accepted pdf which is numerically equivalent to that obtained by Bayesian FFT method. On the other hand, a selec-
tion such as M < N results in mathematically undefined pdf, since the scaling factor becomes an undefined number.
This arises as an important issue in Bayesian analysis in which the modeling assumptions for the accepted pdf should
be strictly obeyed. In maximum likelihood estimation, however, making such a selection might be acceptable in prac-
tice due to the fact that only the maximum likelihoods in the pdf are of interest.

In the original form of Bayesian PSD approach, it is assumed that there are M (>N) number of independent mea-
surement sets, which seems not practical at all, for real life applications. From this aspect, as a more realistic situation,
dividing a single set measurement into multiple segments might be much more useful. In such a case, however, the
quality of identified modal parameters are negatively influenced by the larger values of M due to spectral leakage.44 The
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derivations presented above, however, mathematically show that segmenting the FFT ordinates instead of time-domain
response gives the same solution with M = 1 case. Thus, it is unnecessary to divide time domain response data in the
analysis procedure. This derivation can also produce modeling assumptions when Nt/M is not large enough. In this
case, however, only κ0 is affected by the selected M size, which is also irrelevant to the maximum likelihood estimation.

4.2 | Computational procedure

During the analysis process, employing a negative-logarithm likelihood function might be much more convenient
instead of using Equation (10) directly. To do so, the negative logarithm likelihood function of Equation (10) is obtained
as

L cn,ωn,ξn,Δe,φnð Þ¼�ln p Gyy ωkð Þ��cn,ωn,ξn,Δe,φn

� �	 

¼ ln E Gyy ωkð Þ	 
�� ��þ tr E Gyy ωkð Þ	 
�1

Gyy ωkð Þ
�  ð15Þ

Thus, most probable modal parameters can be estimated by gradient based minimization of Equation (15). Some impor-
tant issues and computational difficulties such as calculation of inverse and determinant of E[Gyy(ωk)], however, might
arise during this minimization process. In order to overcome those issues, the inverse and the determinant of E[Gyy(ωk)]
can be analytically derived.43,45 During this process, in a narrow resonant frequency band, MFSDD employs an assump-
tion that cnα(ωk,ωn, ξn)�Δe, which makes it possible to obtain a closed form solution for cn,Δe and φn.

38 This
assumption, however, can produce an additional modeling error whose normalized value can be approximately repre-
sented by

er ¼ Δe

cnα ωk,ωn,ξnð Þ � 100 %ð Þ ð16Þ

Here, one can be concluded the normalized error given by Equation (16) also corresponds to the modal noise-to-signal
ratio (or inverse of modal snr).45 Therefore, it is apparent that this assumption will give better results in case the spec-
tral density level of the signal is considerably larger than the prediction error. In this context, Figure 1 presents the vari-
ation of normalized error with respect to the modal signal-to-noise ratio. For better illustration, the presented graph is
separated into three regions according to the signal-to-noise ratio levels. In this classification, the first region (snr < 10)
represents the unreasonable signal range in which the mode of interest is rather weakly excited and/or prediction error
term is very large. Furthermore, the second region spans (10 < snr < 250) the reasonable range in which the signal-to-
noise ratio remains within the acceptable limits. Finally, the third region (snr > 250) defines the ideal range that repre-
sents a very strong excitation signal and/or very small prediction error.

FIGURE 1 Variation of normalized error in expected output

power spectral density (PSD) versus signal-to-noise ratio (snr)
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5 | EXTENDED MFSDD

In the light of recent technological developments, it is possible to use highly sensitive accelerometer sensors and data
acquisition systems which are widely produced for SHM applications. Therefore, it may not be possible to experience a
snr level in unreasonable range unless there is an extreme problem such as cable error, sensor failure and/or large
amount of modeling error (e.g., heavy damping, inadequate measurement duration). From this perspective, it should be
clearly stated MFSDD provides better results for the reasonable and ideal signal levels, in comparison to classical FDD
methods.38 On the other hand, considering the exact theoretical spectral density matrix may significantly contribute to
improve the modal parameter estimation even if it can lead to an increase in computational effort. To do so, an
extended formulation is presented here for the defined unreasonable snr range.

In the extended MFSDD, similar to the calculations presented by Au43, the inverse and determinant of the theoreti-
cal spectral density matrix are obtained as below.

E Gyy ωkð Þ	 
�1 ¼
XNm

n¼1

φn cnα ωk,ωn,ξnð ÞþΔe½ ��1φ�
nþΔ�1

e In�
XNm

n¼1

φnφ�
n

" #
ð17Þ

E Gyy ωkð Þ	 
�� ��¼ cnα ωk,ωn,ξnð ÞþΔe½ �Δe
N�Nmð Þ ð18Þ

Substituting Equations (17) and (18) into (15), and after some mathematical manipulations, the following objective
function is obtained.

J cn,ωn,ξn,Δe,φnð Þ¼Nωln N�Nmð Þþ
X
k

ln cnα ωk,ωn,ξnð ÞþΔe½ �

þΔ�1
e tr

X
k

Gyy ωkð Þ
 !

�φ�
n wk

X
k

Gyy ωkð Þ
 !

φnþ
XNm

n¼1

βn φ�
nφn�1

� � ð19Þ

where Nω = number of FFT ordinates within the selected resonant band, β¼ β1,…,βNm

	 

represents the set of Lagrange

multipliers to satisfy the unitary assumption of theoretical spectral density matrix, and wk= {Δe(1+er)}
�1.

Minimizing of (19) in its present form might be a difficult task since the given objective function is highly non-linear
and multi-dimensional. Therefore, a two-stage procedure can be adapted here to obtain a condensed objective func-
tion.43,46 For this purpose, as a first step, the most probable mode shape vector can be obtained as

rφn
J ¼�φ�

n

X
k

wkGyy ωkð Þ
 !

φnþφ�
nβn ¼ 0 )

X
k

wkGyy ωkð Þ
 !

φ̂n ¼ βnφ̂n ð20Þ

TABLE 1 Extended MFSDD algorithm

Initial Calculations

1. Detect the possible modes on SV or PSD spectrum by peak-picking

2. Select proper bandwidths for the detected possible modes

Minimization process

1. Determine the initial guess for modal frequency and damping ratio,

2. Determine initial guess of φn as the eigenvector of
P

kGyy ωkð Þ
3. Determine initial guesses for cn and Δe by using Equation (23)

4. Update the MPVs of cn,ωn, ξn and Δe by minimizing Equation (22)

5. Update the MPV of φn as the eigenvector of
P

kŵkGyy ωkð Þ
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where “^” represents the most probable value (MPV). It can be deduced from the here that the most probable mode
shape vector depends on the remaining parameters. Here, the MPV of nth mode shape vector can be parametrically
obtained by solving the eigenvalue equation in Equation (20), which also indicates that βn can be represented as a func-
tion of cn,ωn, ξn and Δe, at φn ¼ φ̂n:

43,45,46

βn cn,ωn,ξn,Δeð Þ¼ φ̂�
n

X
k

wkGyy ωkð Þ
 !

φ̂n ð21Þ

At the next step, a condensed objective function can be obtained for cn,ωn, ξn, and Δe at φn ¼ φ̂n , by substituting Equa-
tion (21) into (19), as below.

J cn,ωn,ξn,Δeð Þ¼Nω N�Nmð ÞlnΔeþ
X

k
ln cnα ωk,ωn,ξnð ÞþΔe½ �þΔ�1

e tr
X
k

Gyy ωkð Þ
 !

�βn cn,ωn,ξn,Δeð Þ
ð22Þ

Consequently, the most probable mode shape vector can be updated as the nth eigenvector of
P

kŵkGyy ωkð Þ,
when eigenvalues are sorted in descending order. A pseudo code is presented in Table 1 to summarize the overall proce-
dure. Here, as an initial guess, the possible modal frequencies can be detected on the SV or PSD spectrum by peak-pick-
ing. Then, a proper bandwidth selection is required for the detected modes. These bandwidths can be determined so
that it covers the spectral bell curve on the spectrum plot provided that it does not exceed 20% of the modal frequency.38

In the minimization phase, an initial guess about 1% can be selected for modal damping ratio.45 If the measured struc-
ture possibly has heavy modal damping, a larger initial guess should be selected. In addition, an initial guess can be cal-
culated for the mode shape vector as the eigenvector of

P
kGyy ωkð Þ.38,43,45 Finally, the initial guesses for cn and Δe can

be calculated by using the following formulae which are derived for MFSDD.38

cn0 ¼
X
k

φ̂�
nGyy ωkð Þφ̂n

Nωα ωk,ωn,ξnð Þ ; Δ̂e0 ¼

P
k
tr Gyy ωkð Þ IN �PNm

n¼1
φnφ�

n

� �� �
Nω N�Nmð Þ ð23Þ

FIGURE 2 Schematic view of four-story shear frame
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6 | NUMERICAL ANALYSIS AND REAL DATA APPLICATIONS

In this section, a comprehensive investigation is undertaken to find out the effectiveness of MFSDD under some
extreme cases and real operational conditions. To do so, a numerical example which investigates the effect of channel
noise, heavy damping and earthquake loads is presented first. Second, a laboratory data example is investigated to see
the effectiveness of the extended methodology under very low snr values. Then, a real data application which contains
closely spaced and weakly excited modes is conducted.

6.1 | Channel noise, heavy modal damping, and earthquake load effects

To understand how the channel noise, heavy modal damping and earthquake loading influence the error propagation
in identified modal parameters, an extensive numerical analysis is presented in this section. In this context, a four-story
shear frame whose schematic representation is given in Figure 2 is numerically modeled. Then, the aforementioned
effects are investigated separately based on the constructed numerical model. Finally, the combined effect of heavy
modal damping and earthquake loading on the modal parameter estimation quality is assessed. A similar investigation
which compares the effectiveness of MFSDD with respect to classical FSDD, SSI-Cov, and rFDD techniques can be
found in Hızal.38 Therefore, only MFSDD and its extended version (MFSDD*) are implemented in this presented
numerical example from a more comprehensive perspective.

FIGURE 3 Variation of identified frequency values with respect to modal signal-to-noise ratio (snr)
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6.1.1 | Channel noise effect

To find out the pure channel noise effect on the modal identification results for the presented numerical model, a
modal damping ratio is selected as 1% for all modes. Moreover, independent and identically distributed (i.i.d.) Gaussian
forces are applied to floor levels of the structure so that the spectral density of the modal excitation will be 1 μg2/Hz for
all modes. The acceleration responses at each floor are simulated by the Newmark-beta integration scheme with
1/10000-s time sampling rate. Then, the simulated responses are contaminated by i.i.d. Gaussian numbers which repre-
sent the channel noise. Here, the considered channel noises are arranged so that their one-sided spectral density levels,
Sn, will vary between 0.25 and 1000 μg2/Hz. Thus, the resulting snr levels vary between 2.5 and 10,000. For each chan-
nel noise density level, totally 1000 trials have been simulated. The acceleration responses are acquired with 250-Hz
sampling frequency and 5-min duration for each trial. Finally, the most probable values as well as the standard devia-
tions of the modal parameters and prediction error are evaluated from those 1000 trials simulated for each channel
noise density level.

Variations in the expected value of identified modal parameters as well as their standard deviations, with respect to
the modal snr values are presented in Figure 3–6. The presented figures indicate that there is not a significant difference
between the results obtained by MFSDD and MFSDD* for natural frequencies, modal shape vectors and prediction
errors. Here, the most remarkable difference is observed in the results obtained for damping ratios at lower snr values.
More specifically, the extended version of the MFSDD gives rather high-quality results for damping ratios under large
channel noise effects (e.g., snr < 50). Moreover, it is also observed that the standard deviations of the expected values
decrease for larger snr. However, an uncertainty still exists for the results obtained at larger snr values. In the other
word, small channel noise and modeling errors do not guarantee that the uncertainty of the expected values are
completely consumed.45 Here, it should be noted that the given uncertainties are obtained by a frequentist perspective,
which calculates the standard deviations obtained from the ensemble data sets. Instead, those uncertainties can also be

FIGURE 4 Variation of identified damping ratios with respect to modal signal-to-noise ratio (snr)
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estimated by a probabilistic perspective using a Bayesian approach, such as previous works.13,14,43 On the other hand, it
is known from the literature that the uncertainty information obtained by frequentist and probabilistic (Bayesian) per-
spectives equalize as the number of trials significantly increases.47 Similarly, in case of uniform prior pdf, the expected
values obtained by frequentist and Bayesian approaches become approximately the same for a large number of trials.
Therefore, it can be deduced from here that the calculated expected values and standard deviations also reflect the prob-
abilistic uncertainty information for the identified values.

Although a small modal damping ratio and Gaussian white noise input are considered for this numerical example,
a modeling error may be inevitably observed, especially at the higher modes. This modeling error can be considered to
stem from the contribution of unconsidered modes in the theoretical modeling of the single mode response. According
to the results for prediction errors presented in Figure 6, one can observe that this modeling error term becomes more
perceptible at higher modes. Here, Figure 6 presents the variation of the relative error ratio which is defined by Δe/Sn.
For lower snr values, the modeling error term becomes negligibly small with respect to the channel noise, and therefore
the relative error ratio approaches 1. As the channel noise decreases significantly (for snr > 100) modeling errors
become more dominant on the identified prediction error term. The simulated results indicate that the modeling error
term increases up to the pre-defined channel noise level (0.25 μg2/Hz) at fourth mode. This increase, however, does not
influence the identification qualities significantly since it remains in very small levels with respect to the spectral den-
sity of modal response.

6.1.2 | Heavy damping effect

Neglecting the channel noise, the influence of heavy damping on the effectiveness of the applied methodology is inves-
tigated in this section. Here, modal damping ratios are arranged as 3%, 5%, 7%, and 9% for the considered numerical

FIGURE 5 Variation of MAC values with respect to modal signal-to-noise ratio (snr)
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model, respectively. Totally 1000 trials have been simulated, each one is excited by Gaussian forces which make the
spectral density of modal excitation 1 μg2/Hz. For each trial, the acceleration responses at floor levels are recorded with
250-Hz sampling frequency and 5-min duration.

The SV spectrum that represents the simulated responses is presented in Figure 7. Here, the solid line indicates the
expected value for the largest SVs calculated from the ensemble average of those obtained by the trials. Moreover,
the standard deviations are also represented by the shaded area in the presented figure. One can deduce from here that
the amplitude of the mean value shows a significant decrease at third and fourth modes, which amplifies the modeling

FIGURE 6 Variation of normalized prediction errors with respect to modal signal-to-noise ratio (snr)

FIGURE 7 SV spectrum of the generated responses that represent heavy damped case (std: Standard deviation)
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errors due to small modal damping assumption significantly. In addition, the deviations may also cause significant fluc-
tuations among the simulated trials. Therefore, the standard deviations calculated for the modal parameters belonging
to third and fourth modes can be expected larger than those calculated for the first two modes.

Expected value of the identified modal parameters as well as their standard deviations are presented in Figure 8.
Here, the presented results for modal frequencies and damping ratios are normalized with respect to their actual values.
At first view, it is apparently viewed that the results for MFSDD and MFSDD* perfectly match. In addition, the identi-
fied modal parameters show very small deviations from their actual values. Here, the maximum difference is observed
in the third mode for modal frequencies (about 1.5%), and in the fourth mode for the damping ratio (about 40%) and
the mode shape vector (about 3%), respectively. On the other hand, the identified standard deviations gradually increase
at the larger modes. As it is mentioned above, it can be expected that the results obtained for the third and the fourth
modes have larger standard deviations due to the large damping effect. This expectation is also compatible with the
identified results. However, an unexpected increase is observed in the standard deviations of identified modal frequen-
cies and damping ratios for the second mode. Similarly, the identified prediction errors gradually increase at higher
modes, resulting in a modal snr about 25 for the fourth mode.

6.1.3 | Earthquake load effect

In this section, to illustrate the pure effect of the non-stationary input, the considered numerical model is investigated
under earthquake excitations, considering 1% modal damping ratio, and neglecting the channel noise. For this purpose,
totally eight earthquake records, whose auto-PSD spectra are given in Figure 9, are selected. Here, all the selected earth-
quakes have a sampling frequency rate of 200 Hz.

Identification results in terms of the expected modal parameters and corresponding standard deviations are pres-
ented in Figure 10. Here, the expected values reflect the ensemble average of the modal parameters obtained for the

FIGURE 8 Variation of identified modal parameters with ±standard deviations
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selected records. Similar to the heavy modal damping case, the results by MFSDD* show better convergence to
the actual values in comparison to MFSDD. The identified modal frequencies are compatible with the actual values and
show a maximum deviation about 1%. For modal damping ratios, however, this deviation increases up to 40% for
MFSDD while values by MFSDD* have a less divergence from the actual ones. On the other hand, the first three mode
shape vectors show a good match with the actual values. Here, the minimum MAC value is obtained about 0.98 for the
fourth modal shape vector, which can be considered quite reasonable for OMA applications.

Since the larger modes are weakly excited in earthquake induced motions, the prediction errors are expected to
increase. In addition, the modeling errors may also increase in the prediction errors as it is observed from the previous
examples. To the contrary, from Figure 10, one can observe that the identified prediction errors achieve a maximum at
the third mode, and then show a decrease. This observation is also compatible with the result reported by Hızal38.
Therefore, such a decrease can be induced by the loss of the quality in the identified prediction error term. This result
indicates that if the signal quality of a mode significantly drops due to any reason (channel noise and/or modeling
error) not only the identified modal frequencies, damping ratios and mode shape vectors but also the prediction error
term can be adversely influenced. In the other word, inclusion of a prediction error term in the theoretical PSD does
not guarantee that the possible prediction errors can be perfectly identified in case of weakly excited modes.

6.1.4 | Combined effect of heavy damping and earthquake load

To understand the influence of the combination of heavy damping and non-stationary input on the identification
results, the four-story shear frame is investigated in this section considering those effects. Similar to the previous exam-
ple, the previously used eight earthquake records are considered again. In addition, the modal damping ratios are

FIGURE 9 Power spectral density (PSD) spectra for the selected earthquake records (fk: Excitation frequency, Δf: Sampling frequency)
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arranged as 3%, 5%, 7%, and 9%, as similar to the numerical example 6.1.2. In this context, the identification results
are presented in Figure 11. In comparison to pure effects of heavy damping and earthquake loads, a dramatic decrease
is observed in the quality of third and fourth modal shape vectors. Compared to the mode shapes, the modal frequen-
cies and damping ratios show relatively better results. Here, the maximum relative deviations from the actual values
are observed in the range of 0.1%–10% for the modal frequencies, and 1%–45% for damping ratios, respectively. More-
over, the prediction error follows a similar trend with results presented in Section 6.1.3. Considering all these aspects,
one can conclude that the modal parameters are highly influenced by the combination of earthquake excitations
and heavy modal damping. The decrease in the quality of identified results may neither be directly induced by the
non-stationarity of input motion nor the heavy damping. Their combined effect, however, might be a much more
challenging issue since the modeling errors increase ultimately. Additionally, the short data duration and small
sampling frequency may also produce significant errors at the higher modes due to the increasing spectral leakage and
aliasing effects.

6.2 | Laboratory data example

A 10-story laboratory shear frame structure is investigated in this section for the experimental validation of the
extended methodology. This 10-story structure was previously used for the verification of various SHM applications
such as Bayesian mode shape assembly and finite element model updating algorithms,18,46 and pre-identification data
merging strategies.48,49 Therefore, reference values for modal parameters are also available for the considered structure
to reveal the improvement in the modal identification quality by the proposed extended version.

Schematic view of the laboratory model and experimental system is shown in Figure 12. A more detailed description
about the model and experimental system can also be found in the previous works.18,46 In this study, a multi-setup
measurement data which comprises significantly low snr values at the higher modes is used in the analysis. The
corresponding multi-setup acceleration data was measured in the weak direction under small amplitude excitations,

FIGURE 10 Variation of identified modal parameters with ±standard deviations
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and has been originally investigated by Hızal et al.46 for the experimental verification of a modified Bayesian mode
shape assembly technique. The configuration of the measurement setups is presented in Table 2.

The SV spectra of the used multi-setup data is presented in Figure 12C. The possible modes and selected bandwidths
are also highlighted in the presented figure. Here, the modal peak around the 15.50 Hz was not previously reported as a
vibration mode of the 10-story model in the weak direction,48 and therefore it is not considered in this study. The pres-
ented spectra reveal that the first five modes are well excited with neatly visible peaks. The larger modes, however,
seem to be very poorly excited with the modal peaks which are not well perceptible. It can also be expected that these
very poorly excited modes could negatively affect the modal identification quality. In this context, modal frequencies
and damping ratios identified by MFSDD and MFSDD* as well as the reference values are presented in Table 3. These
modal parameters are obtained as the sample mean of the values those identified at the individual setups. In addition,
the modal shape vectors are assembled those obtained by the local setups using the Global Least Squares Approach.50

The presented results for modal frequencies and damping ratios indicate that MFSDD* better converge to the reference
values at the higher modes in comparison to MFSDD. The effectiveness of the MFSDD* is more apparently visible in
the identified modal shape vectors which are presented in Figure 13. Especially at the seventh, eighth and ninth modes,
whose peaks are nearly invisible in the SV spectrum, the MFSDD* shows significantly better performance.

6.3 | Real data example

A 58-story building whose schematic representation is presented in Figure 14 is investigated using the ambient and
earthquake induced vibration records. The structural system of the considered building is composed of dual core
reinforced concrete shear walls which are combined by an outrigger belt-truss.51,52 A measurement system has been
previously instrumented by the California Strong Motion Instrumentation Program (CSMIP) of the California Geologi-
cal Survey (CGS).51 The measurement system comprises totally 32 accelerometers deployed on 14 floors of the

FIGURE 11 Variation of identified modal parameters with ±standard deviations
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building.51 The locations and directions of the instrumented accelerometer sensors are also presented in Figure 14A. In
this context, the modal parameters of the considered structure are first investigated using ambient vibration data. Sub-
sequently, the same procedure is undertaken using the measurement data obtained from the South Napa earthquake.
All the considered measurement data can be accessed at the United States Geological Survey (USGS), Center for
Engineering Strong Motion Data (CESMD).53

The SV spectra obtained for ambient measurement data is presented in Figure 14B. Here, the presented spectra
show the first three SVs of Gyy(ωk). At first view, totally six modes namely first and second East–West (EW),
North–South (NS) and torsional modes are visible, respectively. In addition, the selected bandwidths are also indicated

(a) (b)

(c)

FIGURE 12 (A) Schematic view of the laboratory structure, (B) experimental system (reproduced from Hızal and Turan18), (C) SV

spectrum obtained from the multi setup data

TABLE 2 Configuration of

measurement setups
Setup number Measured DOF

1 1, 2, 9, 10

2 3, 4, 9, 10

3 5, 6, 9, 10

4 7, 8, 9, 10
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in Figure 14B. In this context, the selected bandwidths span closely spaced modes at 0.26–0.30 and 1.10 Hz, which cor-
respond to the first and second modes in the EW and NS directions, respectively.

The first six modal frequencies and damping ratios identified by using MFSDD and MFSDD* are presented in
Table 4. For comparison purposes, BFFTA is also performed for the same problem. Here, BFFTA comprises two
different algorithms for well separated and closely spaced modes.54 The effectiveness of BFFTA algorithms has been

TABLE 3 Identified modal parameters and reference values

f (Hz) ξ (%)

Mode number Hızal et al.46 MFSDD MFSDD* Hızal et al.46 MFSDD MFSDD*

1 2.59 2.61 2.62 0.34 0.17 0.22

2 7.32 7.38 7.37 0.26 0.21 0.19

3 11.65 11.70 11.69 0.23 0.23 0.15

4 16.96 17.02 17.02 0.16 0.27 0.21

5 20.65 20.71 20.71 0.14 0.25 0.15

6 24.69 24.73 24.73 0.16 0.62 0.20

7 26.94 27.03 27.04 0.18 0.67 0.19

8 29.85 29.69 29.74 0.16 0.36 0.16

9 33.19 32.72 33.36 0.16 0.93 0.18

10 37.47 38.01 37.66 0.18 0.48 0.14

FIGURE 13 Identified and reference mode shapes
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well-established in the literature.54–56 Therefore, the results by BFFTA can be considered as reference values in this
example. All the algorithms have been performed by using MATLAB57 m-files developed by the first author. The
presented results indicate that the considered algorithms provide rather similar solutions. This result also indicates that
MFSDD and MFSDD* gives efficient solutions for closely spaced modes in case of those appearing in the perpendicular
directions (e.g., in case one is NS and the other one is EW mode).

MAC values for the mode shapes identified by MFDD and MFSDD* with respect to those identified by BFFTA are
calculated as {0,999, 1,000, 0.993, 1.000, 0.989} and {1.000, 1.000, 0.997, 1.000, 0.999}, respectively. In addition, 3D views
of the mode shapes identified by MFSDD are shown in Figure 15.

Modal parameters of the 58-story building are investigated by using the acceleration response data recorded during
the South Napa earthquake motion (24 August 2014, Mw = 6.0) as well.51 The SV spectra of the recorded data are pres-
ented in Figure 14C. From the presented figure, it can be apparently observed that weakly excited modes appear in the

(a)

(b)

(c)

FIGURE 14 (A) Elevation view and sensor locations of the 58-story building (reproduced from Çelebi51). (B) SV spectrum for ambient

data. (C) SV spectrum for South Napa earthquake data

TABLE 4 Identified modal

parameters using ambient vibration

data

f (Hz) ξ (%)

Mode number MFSDD MFSDD* BFFTA MFSDD MFSDD* BFFTA

1 (EW) 0.26 0.26 0.26 2.01 1.75 1.91

2 (NS) 0.30 0.30 0.30 1.45 1.20 1.43

3 (Tors.) 0.43 0.43 0.43 0.79 0.79 0.47

4 (EW) 1.13 1.13 1.12 1.89 1.84 1.80

5 (NS) 1.13 1.13 1.13 1.13 1.03 1.05

6 (Tors.) 1.34 1.34 1.35 0.54 0.54 0.55
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FIGURE 15 Identified 3D mode shapes

TABLE 5 Identified modal parameters using South Napa earthquake response data

f (Hz) ξ (%)

Mode number MFSDD MFSDD* BFFTA Çelebi51 MFSDD MFSDD* BFFTA Çelebi51

1 (EW) 0.25 0.25 0.25 0.25 0.88 0.88 0.89 0.38

2 (NS) 0.29 0.29 0.29 0.28 1.68 1.67 1.62 0.35

3 (Tors.) 0.43 0.43 0.43 0.40 1.83 1.83 1.43 1.47

4 (NS) 1.07 1.07 1.07 1.06 1.99 1.97 0.97 0.46

5 (EW) 1.10 1.10 1.11 1.11 1.55 1.55 2.79 1.71

6 (Tors.) 1.33 1.33 1.35 1.31 1.99 1.97 2.35 0.62

20 of 24 HIZAL AND AKTAŞ



torsional directions. The selected bandwidths are also highlighted in the presented spectra. Similarly, the selected bands
comprise closely spaced modes in the NS and EW directions.

Identified modal parameters including natural frequencies and damping ratios are presented in Table 5. For com-
parison purposes, the results reported by Çelebi51 are also given. Here, Çelebi51 utilizes MATLAB System Identification
which implements numerical algorithms for Subspace State Space System Identification (N4SID). The presented results
indicate that MFSDD and BFFTA show fine agreement for modal frequencies and damping ratios. Although the modal
frequencies reported by Çelebi51 are quite similar with those obtained by MFSDD and BFFTA, a relatively large differ-
ence (about 400%) is observed in modal damping ratios. In addition, 2D mode shape vectors identified by MFSDD,
MFSDD* and BFFTA are shown in Figure 16.

7 | CONCLUSIONS

To investigate the propagation of identification errors in FDD implementations, an extended probabilistic model is pres-
ented in this study. In this context, the prediction error term is included in the theoretical output PSD. Then, the theo-
retical expected value of the output PSD is updated by a maximum likelihood estimation using central complex Wishart
distribution. The theoretical background of the applied methodology regarding the adaptation of Wishart distribution is
discussed in detail. Finally, a comprehensive investigation is conducted considering several challenges such as channel
noise, heavy modal damping, earthquake input and closely spaced modes, respectively. The fundamental results of the
conducted study are summarized below.

FIGURE 16 2D mode shapes identified by using South Napa earthquake response data
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• So far, the SHM applications regarding the central complex Wishart distributions, such as BSDA, requires multiple
measurement sets due to preserve the mathematical stability of the considered pdf. Otherwise, the normalizing con-
stant becomes a non-definite number which makes it impossible to incorporate the corresponding pdf in Bayesian
applications. To do so, either multiple measurement sets are used, or a single set is separated to multiple segments.
Both implementations comprise some drawbacks such as increase in the instrumentation/measurement effort and
significant decrease in the identification quality due to the leakage effect. In this study however, it is mathematically
shown that the central complex Wishart distribution can be used in case of a single measurement set without loss of
identification quality.

• In the presence of channel noise, compared to MFSDD, the extended version, MFSDD*, provides significant improve-
ment in the modal damping identification quality. For natural frequencies, modal shape vectors and prediction error
terms, both MFSDD and MFSDD* show good performance especially in the case of snr > 10. Therefore, in case of
noisy data, MFSDD* can be preferred to improve the identification quality in modal damping.

• According to the numerical analysis, no significant difference is observed between MFSDD and MFSDD* in case of
the presence of model errors due to the heavy damping and earthquake input. A good performance is observed espe-
cially at the lower modes in the analysis conducted for pure heavy damping and earthquake input effects. However,
a significant decrease is observed at the higher modes in case of the combined heavy modal damping and earthquake
input effects. This indicates that the applied methodology is less successful in modeling error identification compared
to channel noise. Since the identification of modeling errors is a rather difficult task in SHM application, the
observed results make this conclusion reasonable.

• The conducted laboratory and real data examples indicate that MFSDD* show good performance in the presence of
very poorly excited or closely spaced modes. Similar to numerical example, no significant difference is observed in
identified modal parameters in case of earthquake input for real data application.
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