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a b s t r a c t

In recent years Unmanned Aerial Vehicles (UAVs) have progressively been utilized for wildfire
management, and are especially in prevalent in forest fire monitoring missions. To ensure the fast
detection and accurate area estimation of forest fires, a two-step search and survey algorithm for
multi-UAV system is proposed to address these fire scenarios. Initially, a grid-based partition method
is applied to divide the area-of-interest into several search areas. Then, an archetype search pattern
is used to provide timely UAV exploration within those sub-areas. Once the fire zones are detected, a
novel survey strategy is employed for UAVs to discover the boundary points of the fire zones, so that
the area of the fire zones can be estimated using the sampled boundary points. In addition, the effect
of wind is accounted for improving fire zone boundary estimates. The proposed search-and-survey
procedure is validated on multiple simulated scenarios using the U.S. Air Force’s mission-realistic
Aerospace Multi-Agent Simulation Environment (AMASE) software. Simulation results showcase that
the proposed search pattern can effectively discover the seeded fire zones within 40 min of the mission.
This is relatively faster than the other two well-known search patterns. Moreover, the proposed survey
technique provides a coverage estimate with at least 85% accuracy for the area of interest within
90 min of the mission.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Wildfires cause significant economic loss and destructive im-
act in the natural environment. As a result there is increasing
nterest in research pertaining to forest fire monitoring. The in-
reased number of wildfires has significantly decreased the world
orest footprint and harmed the ecosystem, resulting in many
ther natural disasters like floods, sandstorms, and landslides [1–
]. Indisputably, the catastrophic damage caused by wildfires
ose a severe threat to human life and the natural environment.
With recent developments in the science of autonomy and

obotics, Unmanned Aerial Vehicles (UAVs) are able to be de-
loyed in diverse monitoring missions including fire detection,
rea estimation, and fire fighting [6]. Different wildfire moni-
oring systems based on a singleton UAV with advanced sensor
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technologies are proposed in [7–13] to address this technolog-
ical challenge. However, the reliability of single-UAV systems
are highly limited because of the unforeseen contingencies and
demanding conditions that take place during wildfires. Because a
single UAV takes a longer time to explore the region-of-interest, a
team of UAVs with high-performance sensors are generally more
preferred in performing the fire search mission collaboratively.

Recently, a team of UAVs was utilized to reduce the risks of
human operators in the detection and area estimation of forest
fires [1,14–19]. In [14,16] a combination of UAVs and Unmanned
Ground Vehicles (UGVs) worked collaboratively to perform fire
detection and firefighting tasks. Considering the power constraint
of UAVs, the UGVs serve as ground stations to continuously
supply the UAV units with power and coordinate the search
trajectory of the UAVs. Instead of using a team of UGVs and UAVs,
the systems proposed in [17] and [18] carry out the forest fire
monitoring with multiple cooperative UAVs. In [17] a three-stage
procedure that consists of search, confirmation, and observation
is proposed. A fault-tolerant cooperative control strategy for mul-
tiple UAVs is introduced in [18] to handle potential faults of
individual, or multiple UAVs, in fire detection and area estimation
missions. Furthermore, a fire spread model has been introduced
to generate the trajectories of UAVs to survey the boundary of
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ire zones. In [19] the authors approached the fire search problem
ia the Travel Salesman Problem (TSP) and utilized a Genetic
lgorithm to generate an optimal search trajectory, which comes
ith high computational complexities.
As mentioned above, most existing studies in wildfire moni-

oring using unmanned systems either rely on a single UAV, or
combination of UAVs and UGVs. Although some works have
een conducted on the application of multiple UAVs in forest fire
onitoring, there are still several open and critical challenges:

• The time to discover a fire zone is proportional to the size
of the region of interest and inversely proportional to the
number of available UAVs. Hence, it takes longer operational
time to discover fire zones in the large forest with limited
number of UAVs.

• The elliptical/circular fire spread model widely used in liter-
ature generates a path for UAVs to survey the boundary of
fire zones. However, forest fires usually have arbitrary and
irregular footprints, making it difficult to obtain an accurate
estimate of the fire zones.

• The irregular shapes of fire zones potentially increase the
operating time of UAVs inside those fire zones during the
boundary surveying procedure. This may result in the loss
of UAVs with a higher probability.

• The boundaries of the fire zones are expanding and shift-
ing with the change of wind direction. This phenomenol-
ogy makes the accurate area estimation of fire zones more
difficult to pinpoint.

In order to solve these challenges, we introduced a search and
urvey procedure for the detection and area estimation of wild-
ires using a team of heterogeneous UAVs. The major characteris-
ics of the proposed search and survey technique are highlighted
s follows:

• A novel search pattern is proposed to conduct the search of
fire zones by dividing the area-of-interest into smaller grid
cells. Compared with existing exhaustive search patterns
this manages to achieve faster detection of fires zones when
the number of UAVs is limited.

• A new survey strategy of UAVs is proposed here to effec-
tively identify the boundaries of the fire zones without the
oversimplified assumption that the fire zones follow some
regular geometrical shapes.

• A clustering algorithm is used to combine the sampled
boundary points from different UAVs to estimate the area
of a fire zone.

• The effect of the wind speed and its direction are considered
in capturing the movement of fire zones over time thus
improving the area estimation of the fire zones.

The remainder of this paper is organized to illustrate the
ollowing: a mathematical formulation of the problem which is
escribed in Section 2, and a literature review of several well-
nown search patterns for multiple UAVs highlighted in Section 3.
ection 4 discusses the details of the proposed search frame-
ork and introduces an innovative survey strategy to identify the
oundary of fire zones. Several simulation scenarios are described
n Section 5, and the performance of the proposed method is
resented in Section 6. Concluding remarks and future works are
iscussed in Section 7.

. Problem description

In this section, the basic definitions and problem description
re provided to elucidate the scope of this work.
According to the specifications in the AMASE simulation in-

erface [20], four basic definitions about the characteristics of the
enchmark UAVs are described below.
2

Fig. 1. Illustration of the fire detection sensor.

Fire detection sensor: A binary detection sensor is used to gen-
erate an interrupt signal when the fire appears in the field of view
of the sensor. The footprint of the sensor is a square with a b× b
area (m2) and its range is R (m) as shown in Fig. 1.
Sprint UAVs: A fixed-wing UAV with a maximum speed of Vsp
(m/s) and a fire detection sensor range of Rsp (m).
Survey UAVs: A second type of slower, fixed-wing UAVs with a
maximum speed of Vsu (m/s) and a fire detection sensor range of
Rsu (m).
Fire Zone: A set of 2D points (latitude and longitude) in space,
consisting of the corner points of an irregular polygon.

Let A be the area-of-interest in a forest. The map of A, ref-
erenced with respect to the Geodetic coordinate system, pro-
vides relevant terrain (altitude for a given latitude and longi-
tude) information. The area A has a set of n discrete fire zones
{fz1, fz2, . . . , fzn} with respective areas {a1, a2, . . . , an}, where
ai ⊂ A, ∀ i ∈ {1, 2, . . . , n}; fzi ∩ fzj = ∅ for every i, j ∈

{1, 2, . . . , n} with i ̸= j; and
∑n

i=1 ∪ai ⊂ A. The n fire zones
are randomly distributed in the area-of-interest A at unknown
locations. It is assumed that there are p sprint and q survey UAVs
denoted as UAVi, where i ∈ {1, 2, . . . , p + q} with p > q,
randomly placed inside the area A. To seek a low-cost, efficient,
and fast-responsive system to perform fire search and track
missions, a group of heterogeneous UAVs [21] are considered for
use in the fire monitoring missions. In real-world scenarios, high-
performance UAVs are expensive, and the overall operational
cost will increase. Therefore, it is preferred to use a group of
heterogeneous UAVs with varying capabilities to perform forest
fire monitoring missions. Since the area-of-interest is large, UAVs
are divided into groups, and these groups of UAVs are placed
in different locations so that UAVs can perform a more effective
exploration even with limited fuel and sensor capabilities. In this
study, three principal problems are considered:

1. How the p sprint UAVs and q survey UAVs will search the
area A for those n fire zones within the time interval of
duration T?

2. When a fire nest is detected, how the UAVs will estimate
the area of the detected fire zone areas?

3. How the p sprint UAVs and q survey UAVs will coordinate
during the search and estimation mission?

While carrying out the search and survey missions, it is as-
sumed that the UAVs (both types) crash to the ground if the
following conditions are met:

1. Flying outside of area A for a ∆t time interval.
2. Flying on top of any fire zone fzi for a ∆t time interval.
3. Flying without considering the topography of the area A

(e.g., flying in low altitude, colliding with mountains or
trees).
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. Literature review

This section provides a review of several existing and well-
nown search patterns for fire search missions using multi-agent
utonomous systems. Also, several well established survey strate-
ies for the boundary tracking of fire zones are discussed.

.1. UAV search patterns for fire detection

As one of the most popular search strategies, Random walkwas
irst proposed to describe a series of random steps in the search-
pace [22], and has been commonly adopted for teams of UAVs to
earch for targets in large areas. Fig. 2(a) provides an illustration
f the random search procedure with a group of UAVs. As shown
n Fig. 2(a), the Random walk simply generates the trajectory for
AVs to move in arbitrary directions, and it does not require
ny prior information about the locations of targets. Because of
his property, the Random walk is easy to implement for UAVs to
earch fires in an unknown area. In [23–27] a number of Random
alk-based search approaches are developed for the search of
argets with a swarm of UAVs. However, the performance of the
andom walk becomes less desirable if targets are distributed

sparsely in a large search region.
As an alternative to the random search pattern, determin-

stic search strategies [27,28] are studied to explore the area-
f-interest by following several common search patterns [29].
n [30] the Creeping Line, or Lawn Mowing, pattern was first used
or aircraft performing emergency search and rescue missions.
everal recent variations of Creeping Line have been investigated
n [31–33] for cooperative search missions using multi-agent
utonomous systems. The Creeping Line search pattern has been
idely used for coverage path planning problems; comprehensive

iterature for this pattern is well documented in [34]. An illustra-
ion of the Creeping Line search pattern is shown in Fig. 2(b). In
ig. 2(b), the search region is decomposed into a number of line
egments, and the Creeping Line search pattern scans the whole
earch region by following those lines. Unlike the Random Walk
earch, the Creeping Line conducts an exhaustive search and, thus,
t is more likely to comprehensively cover the entire search space.
learly, the width between the consecutive scanning corridors
as a direct effect on the search performance. It causes a slow
xploration of the entire search area and requires more energy
onsumption because of its exhaustive path.
Expanding Squares search is another type of deterministic

earch patterns that is widely used in the search and rescue tasks
or teams of UAVs [35]. Unlike the Creeping Line strategy, the
ntire search region is divided into a set of square layers with
ncreasing sizes. An example of the Expanding Squares search for
ulti-UAVs system is shown in Fig. 2(c). From Fig. 2(c) multiple
AVs are assigned to follow different layers of the expanding
quares simultaneously so that the overall time cost for exploring
he region-of-interest is minimized. As a variation of the Expand-
ng Squares search pattern, the Expanding Spirals search strategy
as proposed in [36] to provide a more effective search with
shorter searching path. An energy-aware Expanding Squares

earch pattern is proposed to overcome the power constraint by
ptimizing the speed of each UAV while following the generated
ath in [37]. Again, the width between circles or squares is a
ritical factor for the final search result and is highly dependent
n the sensor range of UAVs. Above all, the Expanding Squares or
pirals patterns are an exhaustive search, consistently resulting in
high exploration duration.
The Grid-based search pattern was proposed in [38] for a single

AV performing a target search mission. Later, it was extended
o the cooperative search and rescue mission with a team of
AVs in [37,39]. The suggested method partitions the map into
3

rid cells with equal size and then conducts the search of the
arget within each individual grid cell respectively, as shown in
ig. 2(d). The local search is performed by utilizing two of the
forementioned regular search patterns (Creeping Line search and
xpanding Squares search) within each grid cell. From this aspect,
t is also an exhaustive search procedure with high time costs and
nergy consumption. Besides, as discussed previously, the sensor
apability of UAVs significantly affects the performance of local
earch within each grid cell. Some extensions have been made
n [40–42] to reduce the search time by incorporating probability
heory to eliminate the unnecessary search of less important grid
ells. In [43], the power constraint is considered to enhance the
fficiency of Grid-based search methods by introducing an energy-
ware cost function. Whereas, the determination of the size of
he grid cell requires a sound prior understanding of the search
rea. This constraint therefore, strongly limits the application of
raditional Grid-based search in multi-UAV fire search missions
n an unknown area. Our proposed search and survey technique
odified the traditional Grid-based search method by reducing

he dependency of prior information about the search area and
AVs’ sensor capability from the perspective of grid partitioning.
ore importantly, we introduced a simple, yet effective local
earch pattern to conduct the exploration inside each grid cell.

.2. UAV survey strategies for area estimation

The estimation for the area of fire zones is the second most
mportant aspect of forest fire monitoring. Formation control has
een used for multiple UAVs to discover the boundary of fire
ones collaboratively in [14,17,27]. In [14,17] a simple ellipse
as used to model the actual shape of the fire, and a group
f UAVs were assigned to identify the boundary of the fire by
ollowing the perimeter of the ellipse. Another strategy proposed
as for multiple UAVs to survey the border of the fire zone by
ynamically changing the heading angle of UAVs [27]. Unlike [14,
7], a circular fire model is used as the representation of the
ctual fire zone. Both of these two survey strategies utilized the
eader-and-follower formation to identify the boundary of the fire
hrough dynamic formation control (DFC). In [44], the footprint
f the fire zones is assumed to be circular, and a distributed
ramework is proposed for multiple UAVs to survey the perimeter
f the fire zone collaboratively. Fire zones normally have arbitrary
hapes, and the assumption of an elliptical or circular fire model
s ill-suited for most real-life scenarios.

. Proposed methodology

In this section, a two-step search and survey procedure is
roposed for a team of heterogeneous UAVs to perform the search
nd area estimation for forest fires. For clarity, we deconstruct
ur proposed multi-UAV system into two principal components:
i) the fire search procedure, and (ii) the fire boundary survey
rocedure. The details of each procedure are discussed below.

.1. Search for fire zones

As mentioned in Section 3, grid-based search strategies have
een widely used in many search and rescue missions for UAVs.
n this paper, the proposed method utilizes a grid map for the
earch of potential fire zones. With p available sprint UAVs, the
earch area A is divided into p equal square grid cells with area
c =

A
p . Then, all p sprint UAVs are preplanned to conduct the

search of the fire zones, and each sprint UAV is assigned with a
specific grid cell, as shown in Fig. 3. At the same time, q survey
UAVs are send to the center of the grid cells for loitering so that
they can be quickly switched to the boundary surveying operation
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Fig. 2. Graphical description of several common search patterns.
Fig. 3. Proposed search pattern. The dotted line shows the boundary of each
grid cell.

for any neighboring detected fire zones. However, unlike other
existing search paths, the proposed approach adopts a new search
pattern for the local search within each grid cell. The shape of
the proposed search pattern is similar to the 2D projection of a
4

sand clock. It is because of this that is referred to as the Sandclock
search pattern. As shown in Fig. 3, the Sandclock search pattern is
rotated by π

2 radian in the neighboring grid cell to avoid repeating
the search for fires in the boundary regions, improving the over-
all search efficiency. The generated trajectory of the Sandclock
search pattern is a set of way-points (latitudes, longitudes, and
altitudes). The altitude of a way-point has been calculated by
adding a safe height (100 m in our implementation) according
to the terrain information. The calculated safe altitude reduces
the chance of potential collision of the UAVs within the terrain.
Assuming that all the UAVs have a robust low-level controller
capable of following the given way-points reliably.

Considering that real-world forest fires usually spread quickly
and have a large impacted area after a short period of time, UAVs
have a higher chance to detect the fire zone by following the
Sandclock search pattern. Using elemental geometry arguments,
from Fig. 3 it is seen that the Sandclock pattern guarantees the
detection of an occurring fire zone if afirezone > Ac

4 , where afirezone ∈

{a1, a2, . . . , an}. This condition indicates that the proposed search
pattern will go through the fire zone area when the fire zone
covers a quarter of the grid cell. Although the initial area of the
fire zones may not satisfy this condition, fire zones are constantly
expanding (over time) and their area increases accordingly, which
will result in rapidly meet this condition.

To show the benefits of the proposed search pattern, we
compare it with two standard search patterns, specifically, the
Creeping Line search and the Expanding Squares search. Let L be the
length of the entire search area and Ls be the length of each grid
cell such that L =

√
A and L =

√
A where we have assumed a
s c
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quare search area. Below, we compare the path lengths of three
earch patterns.
Creeping Line search (CL-search): As shown in Fig. 4(a), let WC

e the width between two consecutive line segments; it is easy to
how that there are ⌊

Ls
WC

⌋ + 1 horizontal lines and ⌊
Ls
WC

⌋ vertical
segments of lengthWC within each grid cell. Thus, the total length
LTC of the Creeping Line search pattern is calculated as:

LTC = Ls ×

(⌊ Ls
WC

⌋
+ 1

)
+

⌊ Ls
WC

⌋
× WC =

L2s
WC

+ 2Ls. (1)

Expanding Squares search (ES-search): In Fig. 4(b), letWE be the
fixed width by which each square increases; then, ⌊ Ls

WE
⌋ squares

are generated within a grid cell. The length of the outermost
square can be expressed as 3Ls. The next inner square has a
of length 2 (Ls − WE) and the length of the innermost square is

2
(
Ls − WE ×

(⌊
Ls
WE

⌋
− 1

))
. Therefore, the overall length LTE of

he Expanding Square search is written as below:

TE = 3Ls + 2

⌊
Ls
WE

⌋
−1∑

i=1

(Ls − WE × i)

= 3Ls + 2

⌊
Ls
WE

⌋
−1∑

i=1

Ls − 2WE ×

⌊
Ls
WE

⌋
−1∑

i=1

i

= 3Ls + 2Ls ×

(⌊ Ls
WE

⌋
− 1

)
− 2WE ×

(⌊
Ls
WE

⌋
− 1

)
×

⌊
Ls
WE

⌋
2

= 3Ls + 2
L2s
WE

− 2Ls −
L2s
WE

+ Ls

=
L2s
WE

+ 2Ls. (2)

Sandclock search: In Fig. 4(c), the proposed search pattern does
not perform any further decomposition inside the grid cell, and
it searches the space by following a path similar to the shape
of a Sandclock. Thus, the total length LTP of the proposed search
pattern becomes:

LTP = Ls +
√
2Ls + Ls +

√
2Ls =

(
2 + 2

√
2
)

× Ls. (3)

From Eq. (3), the size of the grid cell Ls can be derived as
Ls =

LTP
2+2

√
2
. By substituting Ls in Eqs. (1) and (2) we get the

ollowing equations:

TC =
L2TP

(2 +
√
2)2WC

+
2LTP

2 + 2
√
2
, (4)

and

LTE =
L2TP
√ +

2LTP
√ . (5)
(2 + 2)2WE 2 + 2 2
5

From Eq. (4), there is a quadratic relationship between LTC and LTP
hen WC is fixed. With a fixed value of WE , Eq. (5) shows that
he overall length of the ES-search increases quadratically as the
ength of the proposed search pattern increases. From this aspect,
he total travel distance of the proposed search pattern is smaller
han the CL-search and ES-search patterns. To further compare
he overall travel distances among these three search patterns,
he following equations are obtained:

TP > LTC , if,
Ls
WC

< 2
√
2, (6)

LTP > LTE , if,
Ls
WE

< 2
√
2. (7)

In Eqs. (6) and (7), the proposed search pattern shows longer
travel distance when the ratio between the size of the grid cell
and the width between lines or squares falls below 2

√
2. This con-

dition means that the number of lines or squares needs to be less
than three (3), and a small grid cell is required. Accordingly, the
total number of grid cells increases and more UAVs are required
to complete the search task, significantly increasing the search
cost. Therefore, the proposed search pattern is more efficient than
the other two search patterns (CL-search and ES-search).

The search coverage area for three search patterns has been
calculated using the specification of fire detection sensors. The
entire search area A is partitioned into smaller grid cells of area
b × b (area of the fire detection sensor’s footprint). The central
node assigns a value to each cell according to Eq. (8). If n is the
number of all captured cells by the sensor, then at the end of the
mission the total coverage area will be Acov = n × b × b. The
impact of the size of the covered area is discussed in Section 6.

celli,j =

{
1, if a UAV is inside the cell;
0, otherwise.

(8)

4.2. Fire boundary survey strategy

After locating the fire zone, the next task for the UAVs is to
survey the fire zone and estimate its area. Multiple UAVs are used
to survey one fire zone. The UAV which found the fire zone will
share its location with the rest of the UAVs in the system. A sub-
group of m (m < q) closest UAVs will fly to the location of the
source and loiter around until the fire zone is identified, due to
its increasing size and perceptual shift in location. If this sub-
group of UAVs detect the existence of fire around that location,
they begin the survey phase of the monitoring process. Once the
group of surveying units is informed about the location of a fire
zone heading towards it, they may then discover another one.
The detected fire boundary points are stored in a central database
as a unified list, irrespective of which point belongs to which
fire zone. To this end, a clustering algorithm is applied before
estimating the area of a fire zone, as discussed in Section 4.3.
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Fig. 5. Survey procedure.

The value of m depends on the availability of the UAVs. In the
simulation, we called only from the q survey UAVs while the
print UAVs will continue to explore the other areas in the search
egion. To survey the fire boundary, we developed a new strategy
s shown in Fig. 5. Besides, there is the risk of losing a UAV
hen it hovers more than ∆t seconds on top of the fire zone.

This constraint is considered in the proposed survey strategy. In
Fig. 5, we denote by ∆Θ the change of heading angle when the
UAV identifies the existence of a fire boundary point from the fire
detection sensor. The UAV may enter into the fire zone because of
its inertial motion. The angle ∆Θ can be tuned to reduce the time
f stay on top of a fire zone. Smaller ∆Θ will increase the time of
tay and larger ∆Θ reduces the time of stay. Because the shape
f the fire zone is an irregular polygon, there is not a closed-form
xpression of the time of stay as a function of ∆Θ .
The blue dot in Fig. 5 is the detected boundary point by

he UAV. Since multiple UAVs survey the same fire zone, two
onsecutive UAVs follow the circle in two different directions. The
irst UAV surveys the fire zone by following the circular trajectory
lockwise, while the second UAV will follow the circular trajec-
ory counterclockwise (if it gets the fire source location from
he first UAV) as illustrated in Fig. 6. This directional approach
estricts two consecutive UAVs to explore same boundary points
f they are surveying the same fire zone. In the proposed survey
rocedure, D is considered as a safe distance, and it is included as
design parameter. If D is large, then the sampled points from the
ire boundary will be far from each other, whereby for a smaller D
the sampled points will be closer to each other. As such, the safe
distance, D, will affect the final estimation of the fire zones’ shape.
As shown in Fig. 6, a UAV could successfully survey the whole fire
zone by following these cycles. Algorithm 1 summarizes UAV’s
survey procedure.

4.3. Estimation of the fire zone area

In this research, multiple UAVs are used to conduct the search
and survey tasks for fire zones and one fire zone can be surveyed
by more than one UAV. From the survey procedure, a collection
of 2D sampled points are obtained and these sampled points are
used to conduct the area estimation for fire zones. In Fig. 7, fz1 is
being surveyed by UAV1 and UAV3. The blue dots are the sampled
boundary points of the fire zone from the corresponding UAVs
in Fig. 7. We stored all the sampled points in a central database
and a grouping algorithm is required for selecting the boundary
points of a particular fire zone. For grouping the corresponding
fire zone boundary points, we used the Mean-Shift Clustering
algorithm. Unlike most of the existing clustering approaches, the
mean-shift clustering method introduces the multivariate kernel
6

Fig. 6. Continuation of the survey procedure for two UAVs. The red lines are
the trajectories of the two UAVs during the survey procedure.

Algorithm 1: Survey algorithm
Input: D, ∆θ, direction
γ = reading from the fire detection sensor;
while Simulation running do

Change the heading angle of the UAV by ∆θ ;
C = Currently detected fire boundary point;
/* This is the position of the UAV while fire detection sensor
detects fire and γ is True. */
if direction == clockwise then

τ =

A CW circular trajectory with center at C and radius D;
else

τ =

A CCW circular trajectory with center at C and radius D;
end
Send trajectory τ to the UAV;
/* The UAV is assumed to follow the trajectory unless new
command is sent to it. */
while γ ==False do

Wait;
end

end
/* A CW circular trajectory indicates that the UAV will follow
the circle in a clockwise direction and for CCW, the UAV will
follow the circle in a counter clockwise direction as shown in
Fig. 6. The terrain of area A is used to calculate the way-points
of all the trajectories as described in Section 4.1. */

density estimator to approximate the density distribution of the
data and then extracts the cluster structure using the estimated
density distribution. An overview of the Mean-Shift Clustering
algorithm is summarized in algorithm 2 and details can be found
in [45,46].

Algorithm 2: Mean-Shift clustering algorithm
Select the kernel function;
Estimate the bandwidth of the kernel function;
while The estimated density distribution is not converged do

Compute the mean-shift vector using gradient descent;
Update the kernel function using the mean-shift vector;
Estimate the density distribution with the kernel function;

end
Identify the mode of the estimated density distributions as the
clusters;
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Compared with the state-of-the-art clustering approaches, the
Mean-Shift Clustering algorithm is able to group the input data
points without knowing the true number of clusters. Since the
number of fire zones is unknown, the Mean-Shift Clustering algo-
rithm is a suitable choice for the problem presented. Moreover,
the Mean-Shift Clustering showed a strong robustness to the
noises, or outliers, which may address potential data corruption
in multi-UAVs fire search and survey missions. More importantly,
the mean-shift clustering has been recently used for informa-
tion processing in UAV-based sensing missions and has shown
promisingly good performance [47]. The latitude, X , and longi-
tude, Y , of the sampled points are used as the primary feature
representation for the subsequent data clustering analysis. Let
P = {X, Y } be the coordinates of a sampled point i; the set of
all sampled points is denoted as Ps = {Pi|i = 1, 2, . . . , |Ps|}. The
Mean-Shift Clustering algorithm takes the set Ps as the input to
perform the cluster analysis. With the clustering procedure, all
sampled points are grouped into a set of clusters C = {Ci|i =

, 2, . . . , |C |}, where Ci = {PCi
j , j = 1, 2, . . . , |Ci|}. Each cluster of

ample points captures the shape of the fire zones’ boundary and
he area of the fire zone is estimated by connecting the boundary
oints sequentially within each cluster. Every two consecutive
oundary points from cluster Ci can be connected with different

types of curves. In our implementation we used a straight line
to connect them. The area of the fire zone is calculated using
fundamental image processing techniques. Specifically, a polygon
with the sampled boundary points is drawn inside a black back-
ground image with height h and width w. Then, the polygon is
filled with white pixels. The area is calculated by counting the
number of white pixels in the image. Using the same width and
height, another image is created for the true polygon. A bitwise
AND operation is conducted on the two images to calculate the
intersection area of the estimated fire zone and true fire zone.
To measure the efficacy of the survey algorithm, we calculate the
Intersection Over Union (IOU) using the true polygon area and
the estimated polygon area. Let A1 be the true area of a fire zone,
A2 the estimated area, and A3 the intersection area of A1 and A2.
Then, the IOU can be calculated as IOU =

|A1∩A2|

|A1∪A2|
=

|A3|

|A1|+|A2|−|A3|
.

The IOU value is between zero and one, where a value of one
indicates perfect estimation of the fire zone area and zero means
the estimated area is completely outside of the true area.

The fire zone can expand, shrink, and translate over time in
space due to the wind impact. Therefore, we adjust the estimated
area of the fire zone based on wind speed and direction in
each time stamp. The wind speed and direction can be directly
obtained from the on-board sensor of the UAV. All the sampled
fire boundary points are updated by wind speed and direction
according to

Xnew = Xold + vw cos θw,

Ynew = Yold + vw sin θw,
(9)

where X and Y are the temporal coordinate of the fire boundary
point, vw is the wind speed, and θw is the wind direction with
espect to the Geodetic coordinate system.

. Experimental setting

In this section, we describe the simulation software and the
imulation scenarios that have been used to develop our method
nd test its performance. We also discuss the selection criteria of

he various user-defined parameters of our approach.

7

5.1. Simulation software

The AMASE [20] was developed by the Air Force Research
Laboratory (AFRL); it is a simulation platform for the analysis
of multi-agent unmanned aerial systems. It is written in Java
programming language and has a graphical user interface, which
allows the users to keep track of the simultaneous behavior
of multiple UAVs. The simulation data can be directly saved
and exported for post-analysis from the simulation software.
In addition, a playback tool is developed to retrieve the sce-
nario events after finishing a simulation in AMASE. The search
and survey algorithm can be implemented using Java, C++, or
Python programming language, which works as a client to the
AMASE simulator. Specifically, the AMASE simulator creates a
server which can be accessed through a client software. The data
among the AMASE server and other clients are exchanged using
the User Datagram Protocol (UDP). Different simulation scenarios
are developed using simple Extensible Markup Language (XML).
Events such as the fire zone boundary, the UAV configuration,
the search boundary and the UAV states can be described using
appropriate tags in the XML file.

5.2. UAVs’ navigation, coordination and control in AMASE

The common mission automation services interface (CMASI)
is used to develop the navigation, coordination and control sys-
tem of the UAVs in AMASE [48]. The autonomous capabilities
and payloads of the UAV can be described using CMASI data
structure. The AirVehicleConfiguration structure is defined in
CMASI to include information regarding the kinematic capabili-
ties of the UAV, and contains a list of objects that describe the
individual payload items that are on the UAV. A list of Flight-
rofile structures is defined to describe the kinematic capabili-
ies of a UAV. Each FlightProfile contains information regarding
peed, maximum bank angle, fuel consumption, and climb (or
escent) rate for a given condition. An AirVehicleConfiguration

can have more than one FlightProfile to execute different ac-
tions such as cruise, dash, loiter, climb or descent. CMASI defines
three payload types named as CameraConfiguration, Gimbal-
Configuration, and VideoStreamConfiguration. CMASI includes
an AirVehicleState structure that is updated periodically dur-
ing the simulation. The AirVehicleState contains the position,
orientation, and velocity data of the UAV, as well as the energy re-
maining. To control each UAV, two types of action commands can
be sent to the UAVs in AMASE, categorized as Navigational and
Payload action. CMASI provides two data structure for issuing one
of these action commands. One of them is VehicleActionCom-
mand and the other is MissionCommand. The VehicleAction-
Command is used to execute basically a payload command such
as steering a gimbal. The MissionCommand is used to execute
waypoint navigation. The waypoints are formed as a linked list.
Each waypoint contains the speed, climb rate, turn type (fly-past,
or turn-short) as well as a contingency point that may be used
by the UAV in the case of an emergency (e.g. lost communica-
tions). In our implementation, we employ the MissionCommand
structure. The Central node generates appropriate waypoints for
each UAV in the system and sends them to the UAV. In a repeated
feedback loop, the central node observes whether each UAV has
finished the mission or not and takes actions accordingly, for
instance the generation of the next set of waypoints as described
in Sections 4.1 and 4.2.
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Fig. 7. A sample scenario while multiple UAVs are surveying multiple fire zones.
.3. Scenarios description

In order to evaluate the efficacy of the proposed two-step
earch and survey strategy, forty-five scenarios from the Swarm
earch AI Competition: Fire Hack 20191 [49] are used in the simu-
ation. Each scenario has a one-hour default simulation duration
hich we extend to ninety minutes in the experiments. It starts
ith the simplest scenario and gradually increases the complex-

ty of the simulation scenarios. These simulation scenarios are
esigned based on real-world constraints [49], determined by
xperts from AFRL. The details are summarized below:

• Multiple fire zones exist in different locations simultane-
ously and the fire zones move, expand and shrink over
time.

• Two different types of UAVs, defined as the Sprint UAVs and
the Survey UAVs, are used in the simulation.

• The topography of the search area is considered in each
scenario and UAVs flyly safe over the landscape of area A.

• Sprint UAVs have limited power for searching.
• UAVs will crash and be lost if they stay more than 10

seconds over fire zones, or out of the search region.

We categorize the forty-five scenarios into three primary types,
Type-I, Type-II, and Type-III scenarios. The specifications of these
three types of scenarios are summarized in Table 1. The differ-
ence among different scenarios of a particular type is the initial
location of the UAVs, the initial location of the fire zones, and
the shape of the fire zones. All these parameters, including the
initial locations of UAVs as well as fire zones, and the shape of fire
zones, are drawn from a uniform distribution. The UAVs and fire
zones are placed inside the search area randomly, while UAVs or
fire zones are not allowed to be placed in the same geographical
location inside A. The random placement of UAVs and fire zones
ensures that the scenarios are not biased to any particular search
pattern.

5.4. Parameter setting

As described in Section 4.2, several parameters need to be
specified for the survey operation. According to the default setting

1 The proposed approach has been applied in real-time to the competition
cenarios and the authors secured 2nd place in the Final showcase held in
ayton, OH, 2019.
8

in [20] and predefined parameters from [49]; the overall simula-
tion duration, size of the search region, maximum hovering time
for UAV above fires, and the characteristics of the UAV types are
summarized in Table 2. The values of the safe distance and change
in heading angles are specified in Table 2 as well. Considering the
maximum speed of the survey UAVs, the safe distance is set to be
500 meters giving UAVs a flying time of twenty seconds away
from the fires. The change in heading angle is set as 2.827 rad
to guarantee a small probability of crash for the UAV. During the
search operation the sprint UAVs are flying at a constant velocity
of 35 m/s, and during the survey operation both types of UAVs
are flying at 20 m/s. For all scenarios, the same parameter setting
is used for the UAVs at the survey mode.

6. Experiments and result discussions

In this section, the proposed search and survey technique is
implemented on the AMASE simulator and its efficacy is eval-
uated based on two metrics: (a) search performance, and (b)
survey performance. The simulation results are discussed in the
following subsections.

6.1. Search performance

In order to justify the search efficacy of the proposed search
pattern, all three search patterns – CL-search, ES-search, and
Sandclock-search – are simulated herein, and a comparison study
is conducted. According to Tables 1 and 2, we can calculate the
total travel distance required for the three search patterns using
Eq. (1), (2), and (3). The total travel distances are listed in Table 3.
From Table 3, it is clear that the proposed search pattern required
comparably less travel distance than the other two patterns.
Further, to show the efficacy of the proposed search pattern,
we used all forty-five scenarios for all three types defined and
took the average search performance for comparison. For each
search pattern, the overall detection time of all fire zones and
the search coverage area in the same scenario are obtained. The
average of the overall detection time and the search coverage area
are computed across each scenario type. With the averaged fire
detection time and search coverage area, the comparison results
are presented in Table 4. For CL-search and ES-search, the value

of WC or WE is set to be 2628.02 m, 5256.03 m, and 13140.09 m,
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Table 1
The summary of all forty-five scenarios in terms of the number of fire zones, power constraints, sudden crash of UAVs, and number
of sprint and survey UAVs.
Scenario type Scenario specifications No. of scenarios

Type-I Two fire zones; No power constraint; 15Scenarios: Two fire zones; No power constraint; 6 sprint + 2 survey UAVs; No sudden crash of UAVs

Type-II Three fire zones; Power constraint; 15Scenarios: 6 sprint + 3 survey UAVs; No sudden crash of UAVs

Type-III Three fire zones; Power constraint; 15Scenarios: 6 sprint + 4 survey UAVs; Sudden crash of UAVs
Table 2
Parameters setting.
The Overall Simulation Duration (T ) 5400 s
Change of Heading Angle (∆Θ) 2.827 rad
Safe surveying distance for UAVs (D) 500 m
The Entire Search Area (A) 64373 × 64373 m2

Length/Width of the Entire Search Area (L) 64373 m
Max. hovering time of a UAV above a fire zone or out of search boundary (∆t) 10 s
Footprint of the fire detection sensor (b × b) 10 × 10 m2

Max. speed of the sprint UAVs (vsp) 35 m/s
Max. sensor detection range of the sprint UAVs (Rsp) 500 m
Max. speed of the survey UAVs (vsu) 25 m/s
Max. sensor detection distance of the survey UAVs (Rsp) 1000 m
Table 3
Total travel distance for the three search patterns. Here, L = 64373 m, p = 6, Ls =

L
√
p =

26280.17 m and WC = WE = 2628.02 m.
CL-search (LTC ) ES-search (LTE ) Sandclock search (LTP )

Total travel distance 315.36 km 315.36 km 126.89 km
Table 4
Comparison of Creeping line and Expanding square search patterns with the proposed Sandclock search pattern for three types of
scenarios. The results are averaged over fifteen scenarios of each type.

Type-I Type-II Type-III

Acov (km2) Time (s) Acov (km2) Time (s) Acov (km2) Time (s)

CL-search 446.23 1912.7 428.73 1868.37 498.6 2088.89WC = 2628.02

CL-search 427.64 1488.32 431.36 1677.25 465.92 1990.27WC = 5256.03

CL-search 387.17 1780.36 396.55 2147.49 474.47 2492.73WC = 13140.09

ES-search 420.78 1751.67 398.6 1909.26 492.74 2189.07WE = 2628.02

ES-search 389.72 2253.1 423.17 1995.15 479.52 2349.2WE = 5256.03

ES-search 389.92 2187.69 430.73 1854.21 469.84 2216.58WE = 13140.09

Sandclock search 374.37 930.04 437.37 1264.13 499.56 1896.04
f
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respectively. Fig. 8 shows the implementation of all three search
patterns in the AMASE simulator.

In terms of the average detection time, Table 4 demonstrates
hat the proposed search pattern is always faster than the other
wo compared search patterns in all three groups of scenarios. In
he Type-I and Type-III scenarios, the CL-search takes the longest
verage time to detect all fire zones and the ES-search pattern
as the second shortest average detection time. However, the
L-search achieves a faster detection of fires than the ES-search
n the Type-II scenarios. The average detection time of the CL-
earch and ES-search patterns directly depends on the value of
E and WC . For the average search coverage area, it is observed

hat the Sandclock search covers less area in Type-I scenarios
ue to the unlimited power. Conversely, the Sandclock shows
igher search coverage area than the other two compared search
atterns in Type-II and Type-III scenarios. Since these two types of
cenarios assume UAVs have limited power, the Sandclock search
 t

9

inishes the search of a grid cell with shorter travel path and it is
ore likely to explore more cells with limited power during the
earch procedure. In contrast, the other two search patterns take
onger travel distance to scan the cell with less chance to visit
ther cells. As the complexity of the scenario increases, Table 4
eveals that the proposed search pattern always shows the fastest
verage detection time of fire zones while the performance of
he CL-search and ES-search change dramatically. Therefore, it is
lear that the proposed search pattern consistently shows better
erformance in the detection of fire zones than the other two
earch patterns as the scenarios change.

.2. Survey performance

As discussed above, the proposed search procedure shows
etter performance than the other two well-known search pat-
erns. To show the survey performance of the proposed approach,
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Table 5
The summary of simulation results on all forty-five scenarios in terms of the number of the detected fire zones, average IOU of the
estimated fire zones, and number of crashes (topography, fires, or insufficient fuel level).
Scenario Performance 60 min 90 min

Type-I
Scenarios:

No. of fires: 2 2
IOU: (0.79, 0.88) (0.95, 0.99)
No. of crashes: 0 0

Type-II
Scenarios:

No. of fires: 3 3
IOU: (0.75, 0.90, 0.96) (0.94, 0.96, 0.98)
No. of crashes: 1 1

Type-III
Scenarios:

No. of fires: 3 3
IOU: (0.63, 0.86, 0.90) (0.86, 0.95, 0.98)
No. of crashes: 1 1
m
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Fig. 8. Implementation of different search patterns in simulation (one of
forty-five scenarios).

experiments are conducted on all three types of scenarios. In each
scenario, the IOU estimation of each fire zone are reported at
t = 60 mins and t = 90 mins, serving as the evaluation measure
for the survey performance. Based on the IOU estimation, we
provide a detailed discussion on the Type-I Scenarios. A summary
or the results of the remaining scenarios is presented in Table 5.

From Table 5, it is observed that the proposed search and
urvey method successfully discovers all fire zones and performs
good area estimation for the Type-I scenario. The estimated IOUs
or fire zones are 0.7904 and 0.9410 within sixty minutes, respec-
ively. After ninety minutes, the estimated IOU values are close
o one, which indicates that the proposed technique accurately
stimates the area of all fire zones. Similar to the Type-I scenarios,
he proposed technique also captures all fire zones and achieves
n accurate area estimation for fire zones for the remaining two
roups of scenarios, which is shown in Table 5. Specifically, all
ire zones are discovered within sixty minutes and the estimated
OUs are above 0.8, which implies the efficacy of the proposed
earch and survey technique. The overall ninety-minutes IOU es-
imation further implies that the proposed technique guarantees
o effectively identify the boundary of fire zones and provide a
ore accurate area estimation if sufficient time is given. Further,
10
Table 5 reveals that the proposed technique leads to a small
number of crashes for UAVs when the complexity of scenarios
increases.

6.3. Summary of discussions

Based on the search and survey performance, the following
observations can be summarized:

1. The proposed search pattern could always provide a faster
search of fire zones than other two search patterns as the
complexity of the simulation scenario increases.

2. The proposed survey strategy effectively discovers the
boundary of fire zones and provides an accurate coverage
estimation of fire zones. It also reduces the chance for the
loss of UAVs by avoiding the long time stay over fires while
surveying the boundary of fire zones.

3. The proposed search and survey technique improves the
accuracy of the area estimation for fire zones by consid-
ering the effect of the wind and utilizing the mean-shift
clustering technique.

Therefore, we can conclude that the proposed two-step search
and survey technique not only achieves the earliest detection of
fire zones, but also provides an accurate estimation for the area
of fire zones.

7. Conclusion

In this paper, a two-step search and survey procedure is pre-
sented for a group of UAVs to discover possible wildfires and pro-
vide accurate area estimations of fire zones. In the search stage
of fire zones, an original search pattern, namely the Sandclock
pattern, is developed to perform a fast scan within each individual
grid cell. Compared with the CL-search and ES-search patterns,
the sandclock search pattern has a relatively shorter path, which is
ore realistic for application to real-world systems. A theoretical
omparison and related explanations are provided to support the
fficiency of the proposed search pattern. In the survey proce-
ure, an effective strategy is introduced for multiple UAVs to
ffectively identify the boundary of the fire zone, and provided an
ccurate estimation of its area. The proposed survey technique is
ble to reduce the possibility for UAVs to stay in the fire zone for
long time and it could successfully alleviate the crash of UAVs

n the fire zones. The mean-shift clustering technique is used to
erge highly overlapped small fire zones in the data analysis
rocedure and deliver an accurate estimation for the overall areas
f fire zones.
Based on the comparison results with the other two popular

earch patterns, the sandclock search shows a better performance
n the search procedure and it is less sensitive to rapid environ-
ental changes in the scenarios. In the survey stage, simulation

esults reveals that the proposed survey technique leads to a
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igh-quality survey performance. The simulation results demon-
trate that the proposed search and survey technique could suc-
essfully discover the fire zones within a short time and provide
n accurate area estimation for the fire zones. Additionally, the
resented search and survey technique is not limited to wild-
ires detection. It can be easily extended to monitor other nat-
ral disasters and border security applications such as flooding,
arthquakes, border patrol and epidemic spread of diseases.
In the future, the extension of the proposed search and sur-

ey technique will be conducted to enhance the performance of
ulti-agent systems in other search and rescue events.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The authors would like to thank TECHLAV, United States of
merica for the financial support under the agreement number
A8750-15-2-0116 and the U.S. Air Force Research Laboratory for
llowing to use their AMASE software before, during and after
he ‘‘Swarm and Search AI Challenge: 2019 Fire Hack" event,
hich was hosted by the Wright Brothers Institute and Uni-
ersity of Dayton Research Institute. Also, this work is partially
unded through the National Institute of Aerospace’s Langley
istinguished Professor Program, United States of America under
rant number C16-2B00-NCAT. The authors would also like to
hank the NASA Langley Research Center, United States of Amer-
ca and the NASA University Leadership Initiative (ULI), United
tates of America under agreement number 2 CFR 200.514.

ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.robot.2021.103848.

eferences

[1] M. Kumar, K. Cohen, B. HomChaudhuri, Cooperative control of multiple
uninhabited aerial vehicles for monitoring and fighting wildfires, J. Aerosp.
Comput. Inf. Commun. 8 (1) (2011) 1–16.

[2] D. Jergler, Carr fire losses may reach $1.5B in likely another destructive
season for California, Insur. J. (2018).

[3] C. Nugent, Camp fire death toll lowered after human remains were
mistakenly sorted into separate bags, Time (2018).

[4] K. Mendes, BrazilIan Amazon fires scientifically linked to 2019
deforestation: report, Mongabay Ser. (2019).

[5] British Broadcasting Corporation News, Australia Fires: A visual guide to
the bushfire crisis, 2020.

[6] V.G. Ambrosia, S.S. Wegener, D.V. Sullivan, S.W. Buechel, S.E. Dunagan, J.A.
Brass, J. Stoneburner, S.M. Schoenung, Demonstrating UAV-acquired real-
time thermal data over fires, Photogramm. Eng. Remote Sens. 69 (4) (2003)
391–402.

[7] V.G. Ambrosia, S. Wegener, T. Zajkowski, D. Sullivan, S. Buechel, F.
Enomoto, B. Lobitz, S. Johan, J. Brass, E. Hinkley, The Ikhana unmanned
airborne system (UAS) western states fire imaging missions: from concept
to reality (2006–2010), Geocarto Int. 26 (2) (2011) 85–101.

[8] C.C. Wilson, J.B. Davis, Forest Fire Laboratory at Riverside and Fire Research
in California: Past, Present, and Future, Gen. Tech. Rep. PSW-105, Pacific
Southwest Research Station, Forest Service, US Department of Agriculture.
22, Berkeley, Calif., 1988, p. 105.

[9] V.G. Ambrosia, T. Zajkowski, Selection of appropriate class UAS/sensors
to support fire monitoring: experiences in the United States, Handb.
Unmanned Aer. Veh. (2015) 2723–2754.

[10] M. Tranchitella, S. Fujikawa, T.L. Ng, D. Yoel, D. Tatum, P. Roy, C. Mazel,
S. Herwitz, E. Hinkley, Using tactical unmanned aerial systems to monitor
and map wildfires, in: AIAA Infotech@ Aerospace 2007 Conference and
Exhibit, 2006, p. 2749.
11
[11] A. Restas, Wildfire management supported by uav based air reconnais-
sance: Experiments and results at the szendro fire department, Hungary,
in: First International Workshop on Fire Management, 2006.

[12] R. Charvat, R. Ozburn, S. Bushong, K. Cohen, M. Kumar, SIERRA Team
flight of Zephyr UAS at West Virginia Wild Land fire burn, in: Infotech@
Aerospace 2012, 2012, p. 2544.

[13] G.P.J. IV, L.G. Pearlstine, H.F. Percival, An assessment of small unmanned
aerial vehicles for wildlife research, Wildl. Soc. Bull. 34 (3) (2006) 750–758.

[14] K.A. Ghamry, M.A. Kamel, Y. Zhang, Cooperative forest monitoring and fire
detection using a team of UAVs-UGVs, in: 2016 International Conference
on Unmanned Aircraft Systems (ICUAS), IEEE, 2016, pp. 1206–1211.

[15] C. Yuan, Y. Zhang, Z. Liu, A survey on technologies for automatic forest
fire monitoring, detection, and fighting using unmanned aerial vehicles
and remote sensing techniques, Can. J. Forest Res. 45 (7) (2015) 783–792.

[16] C. Phan, H.H. Liu, A cooperative UAV/UGV platform for wildfire detection
and fighting, in: 2008 Asia Simulation Conference-7th International Con-
ference on System Simulation and Scientific Computing, IEEE, 2008, pp.
494–498.

[17] K.A. Ghamry, Y. Zhang, Cooperative control of multiple UAVs for forest
fire monitoring and detection, in: 2016 12th IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications
(MESA), IEEE, 2016, pp. 1–6.

[18] K.A. Ghamry, Y. Zhang, Fault-tolerant cooperative control of multiple UAVs
for forest fire detection and tracking mission, in: 2016 3rd Conference on
Control and Fault-Tolerant Systems (SysTol), IEEE, 2016, pp. 133–138.

[19] Y. Zhang, Y. Zhang, Z. Yu, A solution for searching and monitoring
forest fires based on multiple UAVs, in: 2019 International Conference on
Unmanned Aircraft Systems (ICUAS), IEEE, 2019, pp. 661–666.

[20] The U.S. Air Force Research Laboratory, AMASE Tutorial session, 2010,
https://github.com/afrl-rq/OpenAMASE.

[21] R. Luo, H. Zheng, J. Guo, Solving the multi-functional heterogeneous
UAV cooperative mission planning problem using multi-swarm fruit fly
optimization algorithm, Sensors 20 (18) (2020) 5026.

[22] A. Flenner, J. Flenner, J. Bobinchak, D. Mercier, A. Le, K. Estabridis, G.
Hewer, Levy walks for autonomous search, in: Ground/Air Multisensor
Interoperability, Integration, and Networking for Persistent ISR III, vol.
8389, International Society for Optics and Photonics, 2012, p. 83890Z.

[23] A. Dirafzoon, E. Lobaton, Topological mapping of unknown environments
using an unlocalized robotic swarm, in: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 5545–5551.

[24] V. Fioriti, F. Fratichini, S. Chiesa, C. Moriconi, Levy foraging in a dynamic
environment–extending the levy search, Int. J. Adv. Robot. Syst. 12 (7)
(2015) 98.

[25] C. Garcia-Saura, E. Serrano, F.B. Rodriguez, P. Varona, Effects of locomo-
tive drift in scale-invariant robotic search strategies, in: Conference on
Biomimetic and Biohybrid Systems, Springer, 2017, pp. 161–169.

[26] D. Albani, D. Nardi, V. Trianni, Field coverage and weed mapping by UAV
swarms, in: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2017, pp. 4319–4325.

[27] K. Harikumar, J. Senthilnath, S. Sundaram, Multi-uav oxyrrhis marina-
inspired search and dynamic formation control for forest firefighting, IEEE
Trans. Autom. Sci. Eng. 16 (2) (2018) 863–873.

[28] P. Vincent, I. Rubin, A framework and analysis for cooperative search using
UAV swarms, in: Proceedings of the 2004 ACM Symposium on Applied
Computing, ACM, 2004, pp. 79–86.

[29] H. Wollan, Incorporating Heuristically Generated Search Patterns in Search
and Rescue, University of Edinburgh, 2004.

[30] P. LaValla, R. Stoffel, Search Is an Emergency: A Text for Managing Search
Operations, Emergency Response Institute, 1990.

[31] O. Artemenko, O.J. Dominic, O. Andryeyev, A. Mitschele-Thiel, Energy-
aware trajectory planning for the localization of mobile devices using
an unmanned aerial vehicle, in: 2016 25th International Conference on
Computer Communication and Networks (ICCCN), IEEE, 2016, pp. 1–9.

[32] M. Sulaiman, H. Liu, M. Binalhaj, W.W. Liou, O. Abudayyeh, GIS-Based
automatic flight planning of camera-equipped UAVs for fire emergency
response, in: 2020 IEEE International Conference on Electro Information
Technology (EIT), IEEE, 2020, pp. 139–144.

[33] A. Chakrabarty, C.A. Ippolito, Wildfire monitoring using unmanned aerial
vehicles operating under UTM (STEReO), in: AIAA Scitech 2021 Forum,
2021, p. 1472.

[34] E. Galceran, M. Carreras, A survey on coverage path planning for robotics,
Robot. Auton. Syst. 61 (12) (2013) 1258–1276.

[35] G. York, D.J. Pack, Ground target detection using cooperative unmanned
aerial systems, J. Intell. Robot. Syst. 65 (1–4) (2012) 473–478.

[36] H. Al-Helal, J. Sprinkle, UAV search: Maximizing target acquisition, in:
2010 17th IEEE International Conference and Workshops on Engineering
of Computer Based Systems, IEEE, 2010, pp. 9–18.

[37] T.M. Cabreira, C. Di Franco, P.R. Ferreira, G.C. Buttazzo, Energy-aware spiral
coverage path planning for uav photogrammetric applications, IEEE Robot.
Autom. Lett. 3 (4) (2018) 3662–3668.

https://doi.org/10.1016/j.robot.2021.103848
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb1
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb1
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb1
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb1
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb1
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb2
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb3
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb3
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb3
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb4
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb4
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb4
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb5
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb6
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb7
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb8
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb9
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb12
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb13
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb13
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb13
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb14
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb14
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb14
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb14
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb14
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb15
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb15
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb15
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb15
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb15
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb16
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb17
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb18
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb19
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb19
https://github.com/afrl-rq/OpenAMASE
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb21
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb21
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb21
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb21
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb21
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb22
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb23
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb24
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb25
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb25
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb25
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb25
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb25
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb26
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb27
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb28
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb28
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb28
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb28
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb28
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb29
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb29
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb29
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb30
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb30
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb30
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb31
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb32
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb33
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb34
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb35
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb37
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb37


M. Sarkar, X. Yan, B.A. Erol et al. Robotics and Autonomous Systems 145 (2021) 103848

c
a
r

A
c
o
a
a
C
S

[38] F. Bourgault, T. Furukawa, H.F. Durrant-Whyte, Optimal search for a lost
target in a bayesian world, in: Field and Service Robotics, Springer, 2003,
pp. 209–222.

[39] S. Waharte, N. Trigoni, S. Julier, Coordinated search with a swarm of UAVs,
in: 2009 6th Ieee Annual Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks Workshops, IEEE, 2009,
pp. 1–3.

[40] S. Waharte, N. Trigoni, Supporting search and rescue operations with UAVs,
in: 2010 International Conference on Emerging Security Technologies, IEEE,
2010, pp. 142–147.

[41] B. Grocholsky, J. Keller, V. Kumar, G. Pappas, Cooperative air and ground
surveillance, IEEE Robot. Autom. Mag. 13 (3) (2006) 16–25.

[42] S. Waharte, A. Symington, N. Trigoni, Probabilistic search with agile UAVs,
in: 2010 IEEE International Conference on Robotics and Automation, IEEE,
2010, pp. 2840–2845.

[43] T.a.M. Cabreira, P.R. Ferreira, C. Di Franco, G.C. Buttazzo, Grid-based cover-
age path planning with minimum energy over irregular-shaped areas with
UAVs, in: 2019 International Conference on Unmanned Aircraft Systems
(ICUAS), IEEE, 2019, pp. 758–767.

[44] D.W. Casbeer, D.B. Kingston, R.W. Beard, T.W. McLain, Cooperative forest
fire surveillance using a team of small unmanned air vehicles, Internat. J.
Systems Sci. 37 (6) (2006) 351–360.

[45] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (8) (1995) 790–799.

[46] D. Comaniciu, P. Meer, Mean shift: A robust approach toward feature space
analysis, IEEE Trans. Pattern Anal. Mach. Intell. 24 (5) (2002) 603–619.

[47] G. De Luca, J.a.M. N Silva, S. Cerasoli, J.a. Araújo, J. Campos, S. Di Fazio,
G. Modica, Object-based land cover classification of cork oak woodlands
using uav imagery and orfeo toolbox, Remote Sens. 11 (10) (2019) 1238.

[48] M. Duquette, The common mission automation services interface, in:
Infotech@ Aerospace 2011, 2011, p. 1542.

[49] The swarm and search AI challenge: 2019 fire hack, 2019, https://fire-
hack.devpost.com/.

Mrinmoy Sarkar received his B.S. degree in Electrical
and Electronic Engineering from Bangladesh University
of Engineering and Technology in 2016. He is currently
pursuing his Ph.D. degree in Electrical and Computer
Engineering at North Carolina A&T State University.
He worked as a software engineer at Samsung R&D
Institute Bangladesh Ltd. from July 2016–July 2017.
His research interests include testing and evaluation
of autonomous behavior of UAV agents using machine
learning technique, developing different complex sce-
narios for testing UAVs and a heterogeneous system

onsisting of UAVs as well as UGVs, analyzing the behavior of large-scale
utonomous systems and the application of machine learning techniques in
obotics. He is a member of IEEE and Golden Key International Honour Society.

Xuyang Yan received his B.S. degree in Electrical Engi-
neering from North Carolina Agricultural and Technical
State University (NC A&T) and Henan Polytechnic Uni-
versity in 2016. In 2018, he earned his M.S. degree in
electrical engineering at NC A&T. He is currently pursu-
ing his Ph.D. degree in electrical engineering at NC A&T.
His research interests include extracting knowledge
from streaming data, analyzing the emergent behaviors
of large-scale autonomous systems and the application
of machine learning techniques in robotics.
12
Berat Alper Erol earned his B.S. degree in mathematics
from Kocaeli University, his M.S. degree in software
engineering from St. Mary’s University, and his Ph.D.
degree in electrical engineering from The University
of Texas at San Antonio (UTSA), in 2007, 2012, and
2018, respectively. His doctoral research at UTSA Au-
tonomous Control Engineering Laboratories has been
sponsored by the U.S. Department of Defense (DoD),
Air Force Research Laboratory (AFRL), Bank of Amer-
ica and 80|20 Foundation. After his doctoral program,
he worked as a post-doctoral research associate in

TECHLAV DoD Center of Excellence in Autonomy at North Carolina A&T State
University, Greensboro, USA. During his post-doctoral assignment, Dr. Erol was
a member of the team which delivered a DoD contract and worked in a
few multi-institutional research grants including AFRL, Georgia Tech Research
Institute, Lockheed Martin Corporation and NASA Langley Research Center.
Currently, he is with the Computer Engineering department at the Izmir Institute
of Technology, Izmir, Turkey. His current research interests include manned–
unmanned teaming, intelligent robotics, testing and evaluation, human robot
interactions, and Internet of Robotic Things. He is a Member of the IEEE,
American Institute of Aeronautics and Astronautics, and IEEE Eta Kappa Nu honor
society.

Ioannis Raptis joined the faculty of Electrical and
Computer Engineering at North Carolina Agricultural
and Technical State University as an Assistant Professor
in Fall 2019. He is the director of the Autonomous
Robotic Systems Laboratory (ARSL). Dr. Raptis received
his Dipl-Ing. in Electrical and Computer Engineering
from the Aristotle University of Thessaloniki, Greece,
and his Master of Science in Electrical and Computer
Engineering from The Ohio State University in 2003
and 2006, respectively. In 2010 he received his Ph.D.
degree in the department of Electrical Engineering at

the University of South Florida. Before joining NC A&T State University, Dr.
Raptis held a Postdoctoral Fellow position at Georgia Institute of Technology,
with a joint appointment in ECE and AE, and an Assistant Professor position in
Mechanical Engineering at the University of Massachusetts Lowell.

Abdollah Homaifar received his B.S. and M.S. degrees
from the State University of New York at Stony Brook
in 1979 and 1980, respectively, and his Ph.D. degree
from the University of Alabama in 1987, all in Electrical
Engineering. He is the NASA Langley Distinguished
Professor and the Duke Energy Eminent professor in
the Department of Electrical and Computer Engineering
at North Carolina A&T State University (NCA&TSU). He
is the director of the Autonomous Control and Informa-
tion Technology Institute and the Testing, Evaluation,
and Control of Heterogeneous Large-scale Systems of

utonomous Vehicles (TECHLAV) Center at NCA&TSU. His research interests in-
lude machine learning, unmanned aerial vehicles (UAVs), testing and evaluation
f autonomous vehicles, optimization, and signal processing. He also serves as
n associate editor of the Journal of Intelligent Automation and Soft Computing
nd is a reviewer for IEEE Transactions on Fuzzy Systems, Man Machines and
ybernetics, and Neural Networks. He is a member of the IEEE Control Society,
igma Xi, Tau Beta Pi, and Eta Kapa Nu.

http://refhub.elsevier.com/S0921-8890(21)00133-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb38
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb40
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb40
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb40
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb40
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb40
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb41
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb42
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb43
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb44
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb44
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb44
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb44
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb44
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb45
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb45
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb45
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb46
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb46
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb46
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb47
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb47
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb47
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb47
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb47
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb48
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb48
http://refhub.elsevier.com/S0921-8890(21)00133-0/sb48
https://fire-hack.devpost.com/
https://fire-hack.devpost.com/
https://fire-hack.devpost.com/

	A novel search and survey technique for unmanned aerial systems in detecting and estimating the area for wildfires
	Introduction
	Problem description
	Literature review
	UAV search patterns for fire detection
	UAV survey strategies for area estimation

	Proposed methodology
	Search for fire zones
	Fire boundary survey strategy
	Estimation of the fire zone area

	Experimental setting
	Simulation software
	UAVs' navigation, coordination and control in AMASE
	Scenarios description
	Parameter setting

	Experiments and result discussions
	Search performance
	Survey performance
	Summary of discussions

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


