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Abstract: One of the key factors for flood modeling and control is the flood hydrograph, which is not always available due to lack of flood
discharge observations. In reverse flow routing, hydraulic or hydrological calculations are performed from the downstream end to the up-
stream end. In the present study, a reverse flood routing approach is developed based on the Muskingum model. The storage function is
conceptualized as linear and five different nonlinear forms. The Euler and the fourth-order Runge–Kutta numerical methods are used for
solving the storage models. The shuffled complex evolution (SCE) algorithm is used for optimization of the flood routing parameters. The
models are calibrated and validated with theoretical and actual hydrographs. The results indicate that the proposed methodology could
substantially (up to almost 82%) improve comparison with observed inflows. The practical applicability of the proposed methodology
is also validated in real river systems. DOI: 10.1061/(ASCE)HE.1943-5584.0002088. © 2021 American Society of Civil Engineers.
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Introduction

Flood routing is a mathematical process for the temporal prediction
of volume change, velocity, flow rates, and shape of a flood wave in
a river reach. It is important for the river engineering, flood control,
river conservation, and modeling of flow in reservoirs and over
spillways (Chow et al. 1988; Brutsaert 2005; Sivapragasam et al.
2008; Szymkiewicz 2010; Battjes and Labeur 2017). Two general
approaches can be considered for the classification of flood routing
modeling. The first approach utilizes hydrologic, hydraulic, and
black box models. Hydrologic models are based on the storage-
continuity equation; hydraulic models are based on the numerical
solution of Saint-Venant equations; and black box models use
historical data for developing and training the models. The second
approach utilizes flood routing techniques as distributed models
(e.g., Akbari et al. 2012), semidistributed models (e.g., Perumal and
Sahoo 2007), and lumped models (e.g., Koussis 2009). Lumped
models can only predict a hydrograph at one section of a river
reach, while distributed models can predict hydrographs for differ-
ent sections along a river reach.

Forward (direct) flood routing predicts a hydrograph at a
downstream hydrometric station, whereas reverse flood routing

is performed from downstream to the top of the river reach. Reverse
flow routing provides the necessary information for the design of
hydraulic structures.

There have been several applications of implicit and explicit fi-
nite difference schemes for reverse flood routing based on solving
Saint-Venant equations under different hydraulic conditions (Eli
et al. 1974; Szymkiewicz 1993; Zoppou 1999; Dooge and Bruen
2005; Price et al. 2006; Bruen and Dooge 2007; Artichowicz and
Szymkiewicz 2009; Abdulwahid and Kadhim 2013; Spada et al.
2017). On the other hand, there have been some applications of
simple approaches for reverse flood routing including: (1) level
pool routing (Zoppou 1999; Artichowicz and Szymkiewicz 2009;
D’Oria et al. 2012), (2) Bayesian geostatistical approach (D’Oria
and Tanda 2012; D’Oria et al. 2014), and (3) hybrid approaches of a
routing model and a optimization algorithm (Saghafian et al. 2015;
Zucco et al. 2015). Low accuracy and sensitivity of the results to
calibrated parameters are the main drawbacks of these approaches.
However, these approaches can perform inverse hydrograph rout-
ing with numerical stability.

Although there are studies using the Muskingum model for
forward flood routing (e.g., Barati 2011, 2013; Niazkar and Afzali
2017; Kang et al. 2017; Ayvaz and Gurarslan 2017; Vatankhah
2014; Ehteram et al. 2018), the application of this model for reverse
flood routing is few. Das (2009) studied the performance of the
Muskingum model for reverse flood routing. He used the Lagrange
multipliers for parameter optimization. The results revealed the
need of the Muskingum model calibration for reverse flood routing.
Sadeghi and Singh (2010) developed an analytical procedure
through which the outflow hydrographs could be calculated for
each subwatershed/area using the Muskingum hydrologic routing
model and the Area-curve number (CN) factor. Koussis et al.
(2012) compared the reverse Muskingum routing model against
a reverse-solution method of the Saint-Venant equations of the
flood wave motion and they found that the Muskingum model per-
formed equally well at a fraction of the computing effort. Existing
reverse flood routing studies based on the Muskingum model have
been mostly focused on the linear model for prediction of single-
peak hydrographs and tested against artificial hydrographs. These
studies, as with the optimization model, used the genetic algorithm
(GA) or variants of GA algorithms that have local minima problem.
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Also, these studies mostly used the simple Euler or modified Euler
methods for solving the Muskingum storage models.

In previous studies, many researchers tested the shuffled com-
plex evolution (SCE) algorithm on a variety of models with positive
results. Examples include the calibration of parameters of the
rainfall-runoff models (Duan et al. 1992; Sorooshian et al. 1993;
Yapo et al. 1996); the finite-element groundwater flow model
(Contractor and Jenson 2000); the Soil and Water Assessment Tool
(SWAT) (Eckhardt and Arnold 2001); the hydrologic and water
quality model (van Griensven and Bauwens 2003); the linear res-
ervoir flood model (Cheng andWang 2002); the MIKE SHE hydro-
logical modeling system (Mertens et al. 2004); and the groundwater
flow modeling tools (Eusuff and Lansey 2004). To summarize, the
SCE algorithm is able to cope very well with highly nonsmooth
objective function surfaces.

Vatankhah (2014) used different explicit numerical solution
methods for the forward (direct) flood routing. In the present re-
search, the fourth-order Runge–Kutta method, which is known
as the most accurate and widely used numerical method for solving
the initial value problems, is used for solving the linear and non-
linear storage models. Furthermore, the SCE algorithm, which has
no local minimum problem, is adopted for optimization of the re-
verse flood routing parameters. Six storage equations [Eqs. (2)–(7)]
are applied for routing a triangular, a single-peak, a double-peak,
and multipeak flood hydrographs. Moreover, the proposed method-
ology was used for calibrating and validating a real case event. As
will be shown, the proposed methodology substantially improved
the fit to observed inflows considered from previous studies.

The subsequent sections include descriptions of the Muskingum
routing models, the proposed reverse flood routing procedure, the
details of the SCE algorithm, and a discussion of the models’ results
and conclusions.

Muskingum Routing Models

The Muskingum model is a lumped-hydrologic flood routing model
that uses the following hydrologic budget equation (McCarthy
1938):

ds
dt

¼ I −O ð1Þ

where O = outflow discharge; I = inflow discharge; t = time; and
S = storage.

Channel storage is commonly modeled by using either a linear
storage equation or nonlinear equations that relates the storage to
the inflow and outflow with some model parameters. In the linear
Muskingum model (LN), the following storage equation is used:

S ¼ K½XI þ ð1 − XÞO� ð2Þ

where K = storage-time constant for the river reach (T); and X =
dimensionless weighting factor.

It is not uncommon to observe a nonlinear relationship between
weighted flow and storage volume (Tung 1985). For this purpose,
several nonlinear Muskingum models were suggested, as follows:

First nonlinear model (NL1; Chow 1959):

S ¼ K½XIþ ð1 − XÞO�m1 ð3Þ

Second nonlinear model (NL2; Gill 1978):

S ¼ K½XIm1 þ ð1 − XÞOm1 � ð4Þ

Third nonlinear model (NL3; Gavilan and Houck 1985):

S ¼ K½XIm1 þ ð1 − XÞOm2 � ð5Þ
Fourth nonlinear model (NL4; Easa 2014):

S ¼ K½XIm1 þ ð1 − XÞOm1 �m2 ð6Þ
Fifth nonlinear model (NL5; Easa et al. 2014; Vatankhah 2015):

S ¼ K½XIm1 þ ð1 − XÞOm2 �C ð7Þ
In Eqs. (3)–(7), m1, m2, and C are exponential parameters that

were considered as the routing parameters. The exponential param-
eters were added to the linear model to provide additional degree(s)
of freedom and to better model the relationship between storage
volume and weighted flow.

Reverse Flood Routing Procedure

From the continuity equation [Eq. (1)], the rate of change of the
storage volume with respect to time is stated by an ordinary first-
order differential equation. There is no analytical solution for this
equation, and thus, is solved by numerical solution techniques.
In the present study, for reverse flood routing, two explicit numeri-
cal solution methods are described (Badfar 2015).

Euler Method

The solution of the reverse flood routing model using the Euler
method (EM) for Eq. (3) is summarized as follows:

Step 1: Assume values for the three hydrologic parameters
(K, X, and m1).

Step 2: Calculate the storage value by Eq. (3). It should be noted
that the initial calculated inflow is considered to be the same as the
initial observed outflow.

Step 3: Calculate the rate of change of storage volume as:

ds
dt

¼ 1

X

�
Si
K

� 1
m1 − 1

X
Oi ð8Þ

Step 4: Calculate the storage at previous time step as:

Si ¼ Siþ1 −ΔSiþ1 ð9Þ
Step 5: Calculate the inflow at previous time step as:

Ii ¼
1

X

�
Si
K

� 1
m1 − 1 − X

X
Oi ð10Þ

Step 6: Steps 3–5 are repeated for all N time steps.
A similar procedure is used for other storage equations [Eqs. (2)

and (4)–(7)] of the Muskingum model.

Fourth-Order Runge–Kutta Method

The solution of the reverse flood routing model using the fourth-
order Runge–Kutta (FORK) method for Eq. (3) is summarized as
follows:

Step 1: Assume values for the three hydrologic parameters
(K, X, and m1).

Step 2: Calculate the storage value by Eq. (3). It should be noted
that the initial calculated inflow is considered to be the same as the
initial observed outflow.

Step 3: Calculate the rate of change of storage volume, after
obtaining FORK coefficients, as follows:

© ASCE 04021018-2 J. Hydrol. Eng.
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K1ðiÞ ¼
1

X

�
Si
K

� 1
m1 − 1

X
Oi ð11Þ

K2ðiÞ ¼
1

X

�
Si þ 1

2
K1ðiÞdt
K

� 1
m1 − 1

X

�
Oi þOi−1

2

�
ð12Þ

K3ðiÞ ¼
1

X

�
Si þ 1

2
K2ðiÞdt
K

� 1
m1 − 1

X

�
Oi þOi−1

2

�
ð13Þ

K4ðiÞ ¼
1

X

�
Si þ K3ðiÞdt

K

� 1
m1 − 1

X
ðOi−1Þ ð14Þ

ds
dt

ðiÞ ¼ 1

6
ðK1ðiÞ þ 2K2ðiÞ þ 2K3ðiÞ þ K4ðiÞÞ ð15Þ

ds
dt

¼ 1

X

�
Si
K

� 1
m1 − 1

X
Oi ð16Þ

Step 4: Calculate the storage at previous time step using Eq. (9).
Step 5: Calculate the inflow for at previous time step as:

Ii ¼
1

X

�
Si
K

� 1
m1 − 1 − X

X
Oi ð17Þ

Step 6: Steps 3–5 are repeated for all N time steps.
A similar procedure is used for other storage equations [Eqs. (2)

and (4)–(7)] of the Muskingum model.

Shuffled Complex Evolution Algorithm

The SCE algorithm incorporates the best features from several
deterministic and stochastic methods, wherein a global search al-
gorithm is used to minimize a single function using only functional
values (Duan et al. 1992). The SCE algorithm is extensively used in
watershed model calibration and other areas of hydrology such as
soil erosion, subsurface hydrology, remote sensing, and land sur-
face modeling. It has been found to be generally robust and effec-
tive, and also utilizes a flexible and efficient search algorithm for a
broad class of problems (Duan 2003).

The SCE algorithm works on the basis of four concepts (Duan
et al. 1992, 1993; Gupta et al. 1999): (1) blend of deterministic and
stochastic approaches, (2) systematic evolution of a complex of
points, (3) competitive evolution, and (4) complex shuffling. The
procedure of the SCE algorithm was presented in Duan et al. (1992)
and Duan et al. (1993) and the flowchart is presented here for com-
pleteness (Fig. 1).

Four stopping criteria are used in the SCE algorithm at each
generation:
• Difference between best and worst function evaluation in pop-

ulation is smaller than the tolerance (e.g., 0.001);
• Maximum difference between the coordinates of the vertices in

simplex is less than the tolerance (e.g., 0.001);
• Maximum number of function evaluations or iterations are

reached (e.g., 2,500); and
• Maximum duration of optimization is reached (e.g., 30 s).

The SCE algorithm is controlled by some algorithmic parame-
ters including:
• The number of points in a complex, m (m ≥ 2);
• The number of points in a subcomplex, q (2 ≤ q ≤ m);
• The number of complexes, p (p ≥ 1);

Fig. 1. Flowchart of the SCE algorithm. Note: m = number of points in each complex; p = number of complexes; n = number of decision variables;
S = sample size; q = number of points in a subcomplex; α = number of consecutive offspring generated by a subcomplex; and β = number of evolution
steps taken by each complex. (Data from Duan et al. 1992.)

© ASCE 04021018-3 J. Hydrol. Eng.
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• The number of consecutive offspring generated by each sub-
complex, α (α ≥ 1); and

• The number of evolution steps taken by each complex,
βðβ ≥ 1Þ.
The suitable values for these parameters as a function of the

number of parameters to be optimized are: m ¼ ð2nþ 1Þ; q ¼
ðnþ 1Þ; α ¼ 1; and β ¼ ð2nþ 1Þ (Duan et al. 1994).

Routing Scenarios and Performance Evaluation
Criteria

By considering the described methodology, three main objectives
will be achieved: (1) evaluation of the performance of EM and
FORK, (2) comparison of the performance of the six proposed
Muskingum storage equations, and (3) an assessment of the effi-
ciency of the SCE algorithm. In order to achieve these objectives,
four different flood events (represented by a triangular flood hy-
drograph, a single-peak flood hydrograph, a two-peak flood hy-
drograph, and a multipeak flood hydrograph) are used. Various
relationships between storage volume and weighted flows are
considered in the calibration step and two flood events in a river
reach are used for model calibration and validation. The EM and
FORK were compared using the results of the LN storage equa-
tion and NL1. As will be shown, the FORK has a better perfor-
mance than the EM, and therefore, other four nonlinear models
(NL2–NL5) are only simulated using the FORK as the numerical
simulation scheme.

The objective function for the optimal estimation of flood rout-
ing parameters of the Muskingum storage equations is to minimize
the sum of square error (SSE) between computed bIι and observed
Ii inflows as follows:

minSSE ¼
XN
i¼1

fIi − bIιg2 ð18Þ

To evaluate and compare the performances of the models, three
performance evaluation criteria are used, as follows:
1. The sum of absolute difference (SAD) between observed and

computed values of inflow:

SAD ¼
XN
i¼1

jIi − bIιj ð19Þ

2. The difference between the peak (DBP) discharges of the com-
puted and observed inflows:

DBP ¼ jIpi − cIpcj ð20Þ

3. The difference between the time to the peak (DBTP) of the cal-
culated and observed inflows:

DBTP ¼ jTpi − Tpcj
Δt

ð21Þ

In Eqs. (18)–(21), Ii, Îι respectively are the observed and cal-
culated inflow rates at the ith time, N is the number of data, Ipi is
the peak flow of the observed upstream hydrograph, Ipc is the peak
flow of the calculated upstream hydrograph, Tpi is the time of the
peak flow of the observed upstream hydrograph, Tpc is the time of
the peak flow of the calculated upstream hydrograph, and Δt is the
time s t ep. All described criteria are the measures of the accuracy of
a routing model with the optimum value at 0.

Results and Discussion

First Case Study: Triangular Flood Hydrograph

Saghafian et al. (2015) used a triangular inflow hydrograph in a
rectangular channel with length of 4,500 m, a bed width of 60 m,
a bed slope of 0.01, and a Manning roughness coefficient of 0.035.
They applied the kinematic wave approach using a time step of 3 min
for simulation of the upstream hydrograph. This flood event has
a linear relationship between storage volume and weighted flow
(Saghafian et al. 2015).

The results of the optimized flood routing parameters using the
Muskingum models (LN, NL1–NL5) are summarized in Table 1.
Comparison of routed upstream hydrographs of the present study,
Saghafian et al. (2015), and observed recorded inflow data are de-
picted in Fig. 2. The simulated inflow hydrographs are performed
fairly well by the reverse flood routing as shown in this figure.

The values of the evaluation criteria for different Muskingum
models together with those of Saghafian et al. (2015) are also sum-
marized in Table 1. As it is clear, all Muskingum models have a
better performance than the result of Saghafian et al. (2015) in
terms of SSE, SAD, DBP, and DBTP. The improvement of the
performance of the Muskingum models is at least 48% (i.e., 91%
decreasing SSE value) for the linear model, and the most improve-
ment of the accuracy is 82% (i.e., 456% decreasing SSE value) for
the NL5 in term of SSE value. Moreover, the simulated inflow
hydrograph by Saghafian et al. (2015) was a nonsmooth curve
(e.g., fluctuations of discharge values in rising and/or falling limbs

Table 1. Estimated parameters and evaluation criteria values of Muskingum models for triangular flood data

Routing parameters
or criteria

Storage model

Saghafian et al.
(2015)

LN NL1

NL2 NL3 NL4 NL5EM FORK EM FORK

K 15.8077 26.3223 166.5695 118.8873 96.8812 391.7746 124.2356 2,677.78 —
X 0.3526 0.2646 0.3297 0.2403 0.2487 0.0362 0.2451 0.0004 —
m1 — — 0.5979 0.7437 0.7760 0.8625 0.9014 0.7521 —
m2 — — — — — 0.5077 0.8123 0.0270 —
C — — — — — — — 8.5204 —
SSE (m3 · s−1) 280 280 146 134 143 106 125 96 534
SAD (m3 · s−1) 89 89 60 57 60 50 55 48 864
DBP (m3 · s−1) 3.0 3.0 3.6 4.1 4.3 4.9 4.2 5.6 8.9
DBTP 0 0 0 0 0 0 0 0 3

Note: Bold values indicate the minimum value (better performance) among different approaches.

© ASCE 04021018-4 J. Hydrol. Eng.
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of the flood hydrograph), as opposed to the hydrographs obtained
in this study (Fig. 2).

The comparisons of the results of the EM and FORK for linear
and first nonlinear Muskingum models (Table 1) indicate that both
numerical scheme have the same performance for the linear model,
while FORK has slightly better results in terms of SSE and SAD
and EM has slightly better results in terms of DBP for the nonlinear
model. The comparison of the results of the various Muskingum
models indicates that all nonlinear models have better performance
than the linear model in terms of SSE and SAD. The improve-
ment of the performance of the nonlinear models is at least 48%
(i.e., 92% decreasing SSE value). Between nonlinear models, the
NL5 has the best results in terms of SSE and SAD, while DBP of
the NL1 has the lowest value. However, there is no significant dif-
ference between the performance of the NL3 and the NL5.

Second Case Study: Single-Peak Flood Hydrograph

Wilson (1974) flood data has extensively been used for the evalu-
ation of the lumped flood routing procedures, especially for direct
routing (e.g., Easa 2014). Moreover, Das (2009) used this flood
data for reverse flood routing by minimizing the normalized
differences between observed and calculated inflows subject to
satisfaction of the Muskingum routing equations. The relationship

between storage volume and weighted flow is highly nonlinear as
well-known in the previous studies (Vatankhah 2014). The opti-
mal values of estimated parameters of proposed models and the
corresponding evaluation criteria values are listed in Table 2. As it
can be seen, the exponential parameter of the NL1 is 1.8551,
which illustrates the nonlinearity of the relationship between stor-
age volume and weighted flow.

For the comparison purpose, the results of Das (2009) are con-
sidered. The routed upstream hydrographs of the LN and the NL1
together with the observed values are shown in Fig. 3. The results
of Das (2009) for the LN are SSE ¼ 3; 624, SAD ¼ 212, DBP ¼
19.5, and DBTP ¼ 2with X ¼ 0.3396 andK ¼ 22.001, and for the
NL1 were SSE ¼ 330, SAD ¼ 55, DPO ¼ 4.2, and DBTP ¼ 1
with X ¼ 0.2917, K ¼ 0.0852, and m1 ¼ 2.2626. It can be con-
cluded that the result of the LN of the present methodology is better
than the result of the LN by Das (2009) and the performance of the
NL1 is better than the result of the NL1 by Das (2009) in terms of
the evaluation criteria. The improvement of the performances of the
LN and the NL1 are 38% (i.e., 62% decreasing SSE value) and 31%
(i.e., 45% decreasing SSE value). Such improvement was achieved
against the proposed methodology of Das (2009), which solves a
system of equations with the implicit numerical method, whereas
the present methodology uses an explicit method without any sys-
tem of equations.

40
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Time (min)
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Linear FORK Nonlinear EM Nonlinear FORK

Fig. 2. Comparison of routed upstream hydrographs of the present study and Saghafian et al. (2015) for triangular flood data.

Table 2. Estimated optimal parameter and evaluation criteria values of Muskingum models for single-peak flood data

Routing parameters
or criteria

Storage model Das (2009)

LN NL1

NL2 NL3 NL4 NL5 LN NL1EM FORK EM FORK

K 29.4896 27.8557 0.1565 0.9139 120.0604 122.9940 0.5271 0.9136 22.001 0.0852
X 0.3877 0.4463 0.3564 0.2872 0.4701 0.5000 0.3488 0.1794 0.3396 0.2917
m1 — — 2.1368 1.8551 0.7804 0.7605 0.6703 0.6502 — 2.2626
m2 — — — — — 0.7834 2.9291 0.4940 — —
C — — — — — — — 3.4681 — —
SSE (m3 · s−1) 2,311 2,237 313 228 3,669 3,576 470 463 3,624 330
SAD (m3 · s−1) 190 184 62 56 209 208 82 81 212 55
DBP (m3 · s−1) 12.5 12.4 3.1 1.7 25.2 24.4 7.2 7.2 19.5 4.2
DBTP 1 1 1 1 2 2 0 0 2 1

Note: Bold values indicate the minimum value (better performance) among different approaches.
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The EM and FORK have almost similar performances for LN,
while FORK has 27% better results than EM in term of SSE value
for the NL1. The comparison among used storage equations indi-
cates that the NL1, NL4, and NL5 have better accuracy than the LN
by at least 79% improvement in term of SSE value while the LN has
better performance than the NL2 and NL3. Between nonlinear
models, the NL1 has the best results in terms of SSE, SAD, and
DBP. However, the accuracy of the NL4 and NL5 are an acceptable
level.

Third Case Study: Double-Peak Flood Hydrograph

Saghafian et al. (2015) used a double-peak flood hydrograph in a
rectangular channel with length of 4,500 m, a bed width of 50 m,
a bed slope of 0.01, and a Manning roughness coefficient of
0.025. They used the kinematic wave approach using a time step
of 3 min for numerical simulation. The relationship between stor-
age volume and weighted flow is relatively linear (Saghafian et al.
2015).

In Table 3, flood routing parameters of different models are
presented. The evaluation criteria values of used models and
the corresponding results of Saghafian et al. (2015) are also pre-
sented in Table 3. As seen, the performance of all Muskingum
models are much better than the result of the kinematic wave
(KW) model coupled with a GA of Saghafian et al. (2015) in
terms of all performance evaluation criteria. The improvement
of the performance of the Muskingum models is at least 29%

(i.e., 41% decreasing SSE value) for the linear model, and the
most improvement of the accuracy is 37% (i.e., 58% decreasing
SSE value) for the NL5 in term of SSE value. Moreover, the draw-
back of the simulation result of the triangular flood data of
Saghafian et al. (2015) (i.e., simulating a nonsmooth hydrograph)
can also be observed for the results of the double-peak flood data
using KW-GA methodology, while smooth curves are generated
using all the Muskingum models in this study (Fig. 4).

The comparison of the results of the EM and FORK for the LN
and NL1 indicates that both numerical schemes have the same per-
formance for the linear model, while the EM has slightly better
accuracy than the FORK for the nonlinear model. The comparison
among used storage equations indicates that the accuracy of the LN
is almost similar to nonlinear models, and for the best results of the
nonlinear models, the improvement of the accuracy of the NL5 is
about 10% than the LN. It can be said that there is no significant
difference between the performances of different Muskingum mod-
els for this particular flood data.

Fourth Case Study: Multipeak Flood Hydrograph

Barati et al. (2012) used a multipeak flood event of Karoon River,
located in Ahvaz, Iran, for the direct flood routing. The considered
reach has a length of 61 km, a bed width of 277 m, an average bed
slop of 0.00011, and Manning’s roughness coefficient of 0.025.
The estimated optimal flood routing parameters of different models
are summarized in Table 4. It is notable that the result of the LN
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Fig. 3. Comparison of routed upstream hydrographs of the present study and the Das (2009) for single-peak flood data.

Table 3. Estimated optimal parameter and evaluation criteria values of Muskingum models for double-peak flood hydrograph

Routing parameters
or criteria

Storage model

Saghafian et al.
(2015)

LN NL1

NL2 NL3 NL4 NL5EM FORK EM FORK

K 12.9757 26.7943 1.0039 10.7288 29.9110 60.5555 11.2458 200.00 —
X 0.3006 0.1961 0.3107 0.2040 0.1952 0.1013 0.2094 0.0042 —
m1 — — 1.4145 1.1429 0.9832 0.9739 0.9741 0.9104 —
m2 — — — — — 0.8524 1.1613 0.3307 —
C — — — — — — — 1.9433 —
SSE (m3 · s−1) 967 967 896 943 966 963 938 866 1,368
SAD (m3 · s−1) 124 124 122 127 125 122 127 117 858
DBP (m3 · s−1) 7.6 7.6 8.3 8.5 7.5 7.0 8.4 7.2 45.6
DBTP 0 0 0 0 0 0 0 0 4

Note: Bold values indicate the minimum value (better performance) among different approaches.
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model is not acceptable for such data and therefore it is not pre-
sented herein.

Inflow hydrographs of the different models using the FORK
numerical scheme are compared with observed values in Fig. 5.

It can be concluded that the results of developed models fairly
followed the observed inflow hydrograph values. The different
nonlinear Muskingum models can capture most of the peak
flows.

Table 4. Estimated optimal parameter and evaluation criteria values of Muskingum models for multipeak flood event

Routing parameters
or criteria

Storage model

LN NL1 NL2 NL3 NL4 NL5

X — 0.5000 0.5000 0.5000 0.4992 0.4996
K — 93.2129 20.0000 399.9780 169.7692 387.3628
m1 — 0.4888 0.6785 0.3209 1.1130 5.4892
m2 — — — 5.0146 0.3720 4.9393
C — — — — — 0.0491
SSE (m3 · s−1) — 124,539 135,765 120,724 138,466 108,153
SAD (m3 · s−1) — 1,891 1,948 1,806 2,060 1,710

Note: Bold values indicate the minimum value (better performance) among different approaches.
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Fig. 5. Observed and simulated upstream flood hydrographs for the multipeak flood event.
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In Table 4, the values of SSE and SAD are also presented. It
can be seen that the NL5 has the best results in terms of both
SSE and SAD. The improvement of the performance of the
NL5 is in the range of 10%–21% in terms of SSE. Nevertheless,
all the nonlinear Muskingum models have acceptable accuracy
and promising results for the simulation of the multipeak
hydrographs.

Validation of the Model

Two single-peak flood events of Karoon River (Barati et al. 2012)
were considered to calibrate and validate the proposed models. The
study reach adopted for this exercise is the reach between two

gauging stations along the Karoon River (Molasani is the upstream
gauging station and Ahwaz is the downstream gauging station).
The length, width, and bed slope of Karoon River are 61 km,
277 m, and 0.11 m=km, respectively. The relationships between
storage volumes and weighted flows for the two events are shown
in Figs. 6 and 7.

The optimal parameters adopted for calibration and performance
evaluation criteria values for the different Muskingum models are
presented in Table 5. The corresponding results in terms of hydro-
graphs are presented in Fig. 8. As presented in Table 5, the NL4
model has the best accuracy in terms of SSE; the NL4 and NL5
models have the best accuracy in terms of SAD, and the NL5
has the best result in term of DBP.
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Fig. 6. Relationship between storage volume and weighted flow for single-peak flood event 1 of the Karoon River (used in calibration step).

600

700

800

900

1000

1100

1200

1300

1400

1500

6500 7500 8500 9500 10500 11500 12500 13500

X
I+

(1
-X

)O
 (

m
3 /

s)

Storage (m3)

Fig. 7. Relationship between storage volume and weighted flow for single-peak flood event 2 of the Karoon River (used in validation step).
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The parameters adopted for validation are similar to those pre-
sented in Table 5 in conjunction with Fig. 7. The corresponding
results in terms of hydrographs and differences between observed
and routed flows are presented in Figs. 9 and 10, respectively.

As presented in Table 6, the NL1 model in terms of SSE and
SAD criteria, followed by the LN model in terms of DBP. It should
be noted that, in the present study, only one flood event was used
for calibration of the routing parameters. If more flood events are

Table 5. Estimated parameters and evaluation criteria values of Muskingum models for the Karoon River in the calibration step

Routing parameters
or criteria

Storage model

LN NL1 NL2 NL3 NL4 NL5

X 0.3414348 0.3389439 0.4000 0.0002 0.3176 0.4815
K 20.15775 28.35551 0.2060 150.0000 5.8325 2.3402
m1 — 0.956129 1.6000 1.6982 1.9265 1.7613
m2 — — — 0.6993 0.6015 1.8687
C — — — — — 0.7037
SSE (m3 · s−1) 41,226 41,191 36,354 25,176 15,414 18,008
SAD (m3 · s−1) 620 620 581 484 399 399
DBP (m3 · s−1) 51.0 51.0 58.1 25.9 22.5 12.8
DBTP 0 1 0 0 1 1

Note: Bold values indicate the minimum value (better performance) among different approaches.
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Fig. 8. Comparison of results of reverse flood routing for the Karoon River in the calibration step.
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Fig. 9. Comparison of results of reverse flood routing for the Karoon River in the validation step.
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available for the calibration process, more accurate results can be
achieved in the validation step.

Conclusions

In this study, reverse flood routing is implemented by application of
the EM and FORK numerical solution methods in connection with
the SCE optimization algorithm for all six storage equations of the
Muskingum flood routing model. The EM and FORK numerical
schemes are advantageous in that these models are explicit and
numerically stable. The advantages of the SCE optimization
algorithm are such that it does not need an initial guess, it has
low sensitivity to the parameter change, and is highly convergent.
A triangular, a single-peak, a double-peak, and multipeak flood
hydrographs were used for model calibration, and a real case event
was used for model validation. The application of the proposed
methodology for the triangular, the single-peak, and the two-peak
flood hydrographs improved 82%, 31%, and 30%, respectively,
than the best existing results. The practical applicability of the
proposed approach is also demonstrated in real river systems for
both calibration and validation steps.
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