
Event Oriented vs Object Oriented Analysis for
Microservice Architecture: An Exploratory Case

Study

Huseyin Unlu
Computer Engineering

Department
Izmir Institute of Technology

Izmir, Turkey
huseyinunlu@iyte.edu.tr

Samet Tenekeci
Computer Engineering

Department
Izmir Institute of Technology

Izmir, Turkey
samettenekeci@iyte.edu.tr

Ali Yıldız
Computer Engineering

Department
Izmir Institute of Technology

Bilgi Grubu
Izmir, Turkey

ali.yildiz@bg.com.tr

Onur Demirors
Computer Engineering

Department
Izmir Institute of Technology

Izmir, Turkey
onurdemirors@iyte.edu.tr

Abstract—The rapidly developing internet infrastructure
together with the advances in software technology has enabled the
development of cloud-based modern web applications that are
much more responsive, flexible, and reliable compared to
traditional monolithic applications. Such modern applications
require new software design paradigms and architectures.
Microservice-based architecture (MSbA), which aims to create
small, isolated, loosely-coupled applications that work in cohesion,
becoming widespread as one of these approaches. MSbA allows
the developed applications to be deployed and maintained
separately, as well as scaled on demand. However, there is no de
facto method for the analysis and design of systems for these
architectures. In this paper, we compared the usefulness of the
object-oriented (OO) and event-oriented (EO) approaches for
analyzing and designing MS-based systems. More specifically, we
performed an exploratory case study to analyze, design, and
implement a software application dealing with the ‘application
and evaluation process of graduate students at IzTech’. This paper
discusses the results of this case study. We observe that the EO
approaches have significant advantages with respect to the OO
approaches.

Keywords— microservices, event-driven process chains,
eEPC, event-oriented analysis, cloud

I. INTRODUCTION
The growing capabilities of the cloud, the need for

continuous digital transformation together with the recent
developments in software architectures, and enabling
technologies enabled the development of modern applications
that are much more responsive, flexible, and reliable. New
software design paradigms and architectures that focus on
creating cloud-compatible applications are required to meet
these new demands. MSbA (Microservice-based Architecture)
is becoming widespread in leading software design companies
as one of these approaches [1].

An MS-based system consists of multiple microservices that
are highly cohesive and loosely coupled [2]. The degree of
functional dependence among the elements within each
microservice is high, while the degree of interdependence
among microservices is as low as possible. In such a system,
each microservice is designed as an isolated, autonomous
application with a small bounded context and a single
responsibility [3]. On the other hand, they can cooperate and
coordinate with other microservices (i.e. they are composable)
through asynchronous communication channels in order to
perform more complicated tasks. This granular structure
provided by MSbA enables the applications to be deployed,
scaled, and tested independently, and thus it increases the
scalability and fault-tolerance of the system.

Designing a single microservice might be relatively
straightforward but does not mean a lot. On the other hand, the
design of MS-based systems is a great challenge for software
companies as there is a lack of well-defined methods proposed
for the analysis and design of MSbAs. Analysis and design for
MS-based systems are frequently being performed by ad-hoc
methods [4] and if a method is used, it is usually based on
Object-Oriented Analysis and Design (OOAD). However, the
structural decompositions required by microservices are quite
different from those of OOAD methods. Alternative approaches
such as Event Storming [5], [6] lack the elements of a typical
method, such as systematic implementation process, modeling
notations to be used in different phases, and software tools to
support the process.

In this study, we explore a novel approach for MS-based
analysis and design (MSbAD). We applied Event-Oriented (EO)
and Object-Oriented (OO) methods to analyze a problem to
develop an MSbA solution. In accord with the methodologies
used, we used Extended Event-Driven Process Chains (eEPC)
for EO methods and traditional UML notations including use
case, class, sequence, and activity diagrams, for comparison.
The exploratory case study included analysis, design, and

244

2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)

978-1-6654-2705-0/21/$31.00 ©2021 IEEE
DOI 10.1109/SEAA53835.2021.00038

20
21

 4
7t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

A
dv

an
ce

d
A

pp
lic

at
io

ns
 (S

EA
A

) |
 9

78
-1

-6
65

4-
27

05
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
A

A
53

83
5.

20
21

.0
00

38

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

implementation of the system for the ‘application and evaluation
process of graduate students at IzTech’
(https://lee.iyte.edu.tr/en/graduate-application/application-to-
masters-programs/). First, we performed Event-Oriented
Analysis and Design (EOAD) and implemented an MSb
solution for the case. Secondly, we performed OOAD to
decompose the problem into microservices. To prevent possible
bias, an independent group also performed OOAD for MSb
decomposition. We then compared the advantages and
difficulties of each approach with respect to the commonsense
MSbA principles.

II. RELATED WORK
The concept of service represents an independent business

function with a clear purpose. Services should provide
functionality and be enabled through a common interface
protocol. The behavior of the service is clearly defined to its
user, but the development details are hidden. Thus, only the
purpose and result of the service call are visible [7].

Service-Oriented Architecture (SOA) is an architectural
approach based on the principle of separation of concerns that
has been widely used in software projects since the early 2000s.
The evolution of cloud architectures, serverless systems,
applications based on large data processing, and the demands
that transform scalability and availability to the most basic
requirements, stipulated the rapid change of classical SOA
architectures [8].

MSbA is a new approach to create distributed software
systems. It focuses on the design and development of
maintainable, easily scalable, and highly available systems [9].
Services in MSbA are loosely coupled independent parts that
communicate with each other over the network to achieve a goal.
These microservices can communicate with technology-
independent protocols so that the choice of development
languages or platforms becomes the only issue of the service.
They can be changed independently and interruptions in their
operation do not cause interruption of the entire system.

Although microservice is frequently thought of as a small
service, it has fundamental differences. The most obvious
difference is to eliminate coupling on objects, stop using the
database for coordination and enable communication between
services asynchronously. Microservices use lightweight
protocols for communication such as HTTP, REST. Each
microservice should be changeable without impacting the
operation and performance of the other and independently
deployable. Application servers are usually not used. It is
common to use cloud platforms. These basic needs require
changing the analysis and design approach of software and data
handling.

MSbAD approaches in the literature can be classified into
two; transition to microservices from a monolithic application
[10]–[12] and developing a new set of applications as a system
of microservices [13]–[15].

Li et al. [10] proposed a dataflow-driven semi-automatic
decomposition approach to identifying microservices from
monolithic applications. In this approach four-step
decomposition procedure is introduced and the method heavily

relies on detailed DFDs at different levels. The quality of DFDs
is critical for the decomposition results.

Kamimura et al. [11] proposed a method that identifies the
candidates of microservices from the source code by using the
software clustering algorithm SArF with the relation of
‘program groups and ‘data’ which it is defined.

Al-Debagy et al. [12] proposed a new decomposition method
for designing microservices. They modify monolithic
application to a microservice application by analyzing the
application programming interface by using word embedding
models to obtain word representations using operation names, as
well as, using a hierarchical clustering algorithm to group
similar operation names together in order to get suitable
microservices.

Ma et al. [13] proposed a graph-based and scenario-driven
approach to the development of MS-based systems, referred to
as GSMART (Graph-based and Scenario-driven Microservice
Analysis, Retrieval, and Testing). It enables the automatic
generation of a ‘Service Dependency Graph (SDG)’. Users are
expected to follow defined guidelines to allow GSMART to
retrieve required information for producing and analyzing
SDGs.

Santos et al. [14] proposed a model-based approach for
designing a logical view of a microservice architecture (MSA),
called 4SRS-MSLA. The approach is based on modeling a
business domain in UML use cases, thus deriving a UML
component diagram for the domain, and finally grouping the
components into microservices.

Baresi et al. [15] used interface analysis for microservice
identification. Their solution is based on the semantic similarity
of foreseen or available functionality described through
OpenAPI specifications. This approach relies on well-defined
and described interfaces that provide meaningful names, and
follow programming naming conventions.

The Event Storming Method was introduced by Brandolini
[5]. It is a workshop format in which participants from different
areas work together. It enables the exploration of business
domains by focusing on domain events that are essential for
MSbA, generated in the context of a business process. The Event
Storming workshop requires physical space with sticky notes, a
pen, and huge whiteboards. While local teams can work well in
this physical space, it can be difficult for remote teams. Besides,
documenting all knowledge put on the whiteboard can be
difficult. The involvement of all domain experts is desired but
more participation becomes coordination more difficult.

Considering the available literature, the suggested
approaches are usually based on OOAD and identify
microservices using a clustering algorithm, graph-based
analysis, and interface analysis from a monolithic application.
Microservices have distinct properties such as the bounded
context in relation to events, asynchronous communication, and
event-based logging. OOAD produces class-based
decomposition and it is difficult to find events and define
bounded context based on events. Identifying microservices
from monolithic application-based methods requires completely
different viewpoints that are not produced during the design
representation.

245

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

III. RESEARCH METHODOLOGY
The analysis of a problem for designing a solution to an

MSbA is a challenging process. In this study, our goal is to
observe the needs of microservice analysis and design
approaches. The literature review showed that there is no de
facto method for MSbAD and most of the ad-hoc approaches
lack the elements of a methodology. Thus, we aim to answer if
the OO or EO analysis approaches provide a good strategy for
developing an MS-based solution.

An MS-based solution is required to have 10 important
characteristics: loose coupling, cohesion, isolation, autonomy,
composability, small bounded context, single responsibility,
scalability, fault tolerance, and asynchronous communication
[2], [3], [9], [16]. We evaluate two approaches in this context.
Thus, our research question is as follows: “How successful are
OOAD and EOAD in meeting the important characteristics
required by an MSbA?”. To answer our research question, we
apply our research methodology which includes 5 phases: the
selection of the case, performing EOAD, performing OOAD,
performing OOAD by an independent group, and comparison of
the approaches for our case (Fig. 1).

Fig. 1. Research Methodology

The selected case must meet a number of criteria. Firstly, it
must include processes that can be automated. Secondly, there
must be specific events that will trigger each process. Thirdly,
the case should be large enough to implement at least two
microservices but should be small enough to be implemented as
a whole in a reasonable time. Finally, we should be familiar with
all the steps of the process so that we can work on the case
without struggling with problem domain details.

IV. CASE STUDY
As the first phase, we selected “the graduate student

application and evaluation process at IzTech” as a case that
satisfies all four criteria mentioned in the previous section: (1)
the process is suitable for distributed execution and automation
since it consists of relatively small and isolated subprocesses
such as application, verification, evaluation, and notification, (2)
all subprocesses can be triggered through predefined events and
executed in cohesion, (3) the scope can be narrowed or enlarged
depending on time and resource limitations, and (4) the whole
process can be easily modeled by using the explicit instructions
on university's web page (https://lee.iyte.edu.tr/en/graduate-
application/application-to-masters-programs/).

A. Event-Oriented Analysis and Design (EOAD)
The second phase of our research methodology is to perform

EOAD for the case. The methodology called EOAD is defined
as part of a graduate course in IZTECH: “CENG 555 Analysis
and Design of Microservice Based Systems'“
(https://ceng.iyte.edu.tr/courses/ceng-555/)’. The methodology
includes 4 iterative steps (Fig. 2). First, an EO problem analysis
is performed. The current business processes (AS-IS) are
modeled using eEPC notation. eEPC mainly consists of events,
functions, and connectors [17]. Each process starts and ends

with an event. In the flow, each function is triggered by an event.
After the high-level process is modeled, the detailed
subprocesses are presented in low-level eEPC diagrams. eEPC
diagram of the AS-IS process for our case is presented in Fig. 3.
The process starts with an application announcement and is
followed by the application of the student, verification of the
application, interview with the applicant, assessment of the
interview, sending the assessment result to the graduate school,
and announcement of the results on graduate school’s web page,
sequentially. The low-level subprocesses are hidden in the AS-
IS diagram to increase clarity. Processes with detailed eEPC
diagrams are indicated with a ‘(+)’ sign and listed at
https://bit.ly/3iplq6u.

F

Fig. 2. EOAD Methodology

The second step is to identify the bounded context of the
microservices. This step is performed by drawing the TO-BE
model where the process becomes automated. The
responsibilities of the software are specified. Similar to the AS-
IS model, the details can be presented at different levels to
provide simplicity in the diagram. In this step, events are shown
in eEPC where they are located inside boundaries. TO-BE
model for our case is presented in Fig. 4. The graduate school's
announcement of application acceptance and the application of
the prospective applicants are performed as same as the AS-IS
model. Differently, the initial application process is managed by
the application microservice and the applicant is informed about
the status of his/her application through notification
microservice. Additionally, the application requirements and
documents are verified automatically by verification
microservice as well as manually by the graduate school. After
the two-step verification, the interview and exam lists are
generated. The department is responsible for holding and
assessment of the examinations and entering the results into the
system. The entered assessment results need to be confirmed by
the graduate school. The assessment and confirmation processes
are handled by an evaluation microservice. The last step is the
announcement of the application results via the system. When it
is performed by the graduate school, the applicants are
automatically informed through the notification microservice.
Similar to the AS-IS model, the low-level subprocesses are
hidden in the TO-BE diagram to increase clarity. Processes with
detailed eEPC diagrams are indicated with a ‘(+)’ sign and listed
at https://bit.ly/3iplq6u.

The third step is to design and develop the microservices
considering design patterns. We designed four microservices to
implement our case study based on our EO TO-BE model:
application, verification, evaluation, and notification (Fig. 4).
The context of these microservices is explained in the following
section. The last step of EOAD is to manage the microservices.
The operation of microservices is different from traditional
development approaches. In this step, different methods such as
DevOps should be evaluated. In this study, we do not focus on
this step.

246

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. eEPC diagram for the AS-IS model

In EOAD, bounded context is identified by the events. An
event triggers the microservice and upon the completion of it
generates another event. The event draws the boundaries of the
context. As the automated process is based on events and each
bounded context generates an event and is triggered by an event,
asynchronous communication is implemented. The details of the
communication based on message queues are described in the
following section.

Fig. 4. eEPC diagram for the TO-BE model
System Architecture. We developed four microservices for

the system using the eEPC diagram of the TO-BE model. A
general overview of our MSbA is presented in Fig. 5. The
context of each microservice is defined as follow:

 Application Microservice: The applicant applies to the
graduate programs by this microservice. The related
information is entered through a web user interface.
After the applicant confirms the application, four

247

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

operations are performed respectively: (1) application
microservice creates a data object that consists of all
application data and other fields (such as verification
status, assessment status, and confirmation status) which
will be filled by verification and evaluation
microservices, later on, (2) the data object is converted
to a JSON object and saved in the database, (3) a new
message is generated, its headers and properties are set,
and the JSON object obtained in the previous step is
attached to its payload, (4) the message including the
type and payload is added to the queue.

 Verification Microservice: The verification MS is
subscribed to the message queue through a JMS Listener.
Thus, it continuously listens to the messages sent by the
application microservice. Each message enqueued by
application microservice is dequeued by verification
microservice. When a message is fetched and parsed,
four operations are performed: (1) the JSON payload of
the message is mapped to a data object, (2) the
verification is performed on the data object and the
verification status is set accordingly, (3) the updated data
object is converted to a JSON object and saved in the
database, (4) a new message containing the JSON object
in its payload is created and added to the queue.

 Evaluation Microservice: Evaluation microservice is
used by two actors: (1) the relevant department members
who perform assessments for the applications, (2) the
graduate school officers who confirm the assessments.
Each message enqueued by verification microservice is
dequeued by evaluation microservice. It is automatically
parsed and stored in the database. The relevant
department member or graduate school officer accesses
the evaluation microservice through the web user
interface. Thus, he/she views and updates the
applications stored in the database. As soon as the
assessment status or confirmation status of a selected
application is updated four operations are performed
respectively: (1) a new data object including the updated
information is created, (2) the new data object is
converted to a JSON object, (3) the corresponding JSON
object in the database is updated, and (4) a new message
containing the new JSON object in its payload is created
and added to the queue.

 Notification Microservice: The notification microservice
continuously listens to the messaging queue for any type
of messages published by application, verification, and
evaluation microservices. It makes an API call to the
external mailing service to send notifications to
applicants about the status of their applications. The
notification content is structured according to the
message type, which was previously set by the trigger
microservice (application, verification, or evaluation).

Implementation Details. While implementing an MSbA,
we have to choose either a multi-queue or a single-queue model
to enable communication between the microservices. The multi-
queue model is based on splitting a monolithic queue into single-
purpose queues that pass a specific type of message between
microservices. In such an architecture, no tagging or other

additional control structure is needed while receiving messages,
since any two microservices communicate through their own
queue. The multi-queue model has its own advantages such as
providing less complicated queues and simple message
payloads. However, it has significant drawbacks such as
potentially alternated data models, hardness in flow-control, and
forming the queue explosion anti-pattern which causes
multiplying the load and increasing the latency on message
brokers. Thus, we have used a single-queue model that passes
different types of messages through a singular queue. In such an
architecture, all related microservices are subscribed to a generic
queue but listens only for the specific events tagged for
themselves. Here, the tag is a simple header field such as
JMSType and is set by the microservice that publishes the
message. The message payload contains a generic, unified data
object which can be manipulated by different microservices. The
single-queue-based architecture provides many advantages
including unified object modeling, easy flow-control, decreased
load, and latency on message brokers. However, it has some
disadvantages such as overloaded message payloads and
potential single point of failures arising out of the monolithic
queue.

The microservices, discovery server, API gateway, and load
balancer have been implemented using Spring Cloud Tools,
which are part of the Spring Boot Framework
(https://www.spring.io/projects/spring-boot). Spring Cloud
includes Eureka Discovery Server for service registration and
discovery, API gateway for dynamic routing of direct API calls
from users or other services, the Load Balancer for automatic
load balancing, and many other out-of-box tools for developers
to build applications running on the cloud. The remaining part
of the system consists of a web user interface, Google Mail API
(https://developers.google.com/gmail/api/guides/) as an
external mailing service, mongoDB database
(https://www.mongodb.com) to store JSON-formatted data for
each microservice, and Apache ActiveMQ Message Broker
(https://activemq.apache.org/) as the message queue to establish
asynchronous communication between microservices through a
message queue. All of the source codes are available at
https://github.com/smtnkc/ceng555.

Fig. 5. System overview for the microservice-based architecture

B. Object-Oriented Analysis and Design (OOAD)
The third phase is to perform OOAD for the selected case.

This phase aims to see how OOAD can be applied in MSbAs.
We performed OOAD for the selected case. However, the
activities of the second phase (EOAD) could have given some
insights that changed how the third phase (OOAD) was
performed. Thus, it can create an experimental bias. To prevent

248

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

potential bias, OOAD for the selected case was also performed
by an independent group as the fourth phase. We performed
OOAD at a high level. On the other hand, the independent group
performed OOAD in finer granularity. This section includes the
analysis and design of both groups.

OOAD performed by authors. First, we identified the use
cases (Fig. 6). Although the use case diagram is successful in
defining most of the main user activities, it is insufficient in
showing external-actor and system events such as notification.
Then, we identified the classes (Fig. 7). The class diagram
provides a detailed representation of the main elements and the
relations between them. Although this is very useful to build a
well-organized data model, it does not provide any information
about system behaviors. On the other hand, the system behaviors
can be tracked on the activity diagram (Fig. 8). Although the
activity diagram explicitly visualizes the general workflow, it
does not cover the external actors together with their respective
functions as well as the resources and information used by each
function. In summary, OOAD could not provide us a natural
decomposition strategy for developing an MS-based solution.
We could not identify the microservices for the case based on
the diagrams. Indeed, OOAD provided a class-based
decomposition strategy which does not help to identify the
boundaries of the microservices. We have to identify
microservices by using a different viewpoint not produced in
OOAD naturally.

OOAD performed by the independent group. We asked
the third-year students who are taking a Software Engineering
Course to analyze and design the selected case applying a
traditional object-oriented approach and then implement a
solution for the case. For this purpose, they prepared two
different documents based on IEEE standards: IEEE Software
Requirements Specification (SRS) and Software Design
Description (SDD). The documents are available at
https://bit.ly/2C9VBro.

During the course, 10 different groups performed OOAD for
the selected case. We selected this group (consists of six junior
(third-year) computer engineering students) as the members
have experience in the sector, are familiar with microservices
and their documents had the highest grades.

For the analysis, they used use-cases to depict the functional
requirements. First, they designed a use-case diagram. Then,
they created use-case descriptions including use-case scenarios.
For the design, they utilized a class diagram for the logical
viewpoint, sequence diagrams for the sequential viewpoint, and
a component diagram for the interface viewpoint. They also
designed a tree diagram to show the relational database. All
diagrams were designed as low level and represent the design in
detail.

The group members easily conducted the analysis process.
However, they had some difficulties during the design process
when they followed a traditional OO approach to implement an
MS-based solution. They found OO design not helping to break
the problem into microservices. When they consulted us, we
recommended they use a component diagram to show the
internal and external interfaces of the system. Using the
component diagram, they identified the external interfaces
which show the communication between external systems and

Fig. 6. Use case diagram for graduate application

Fig. 7. Class diagram for graduate application

Fig. 8. Activity diagram for graduate application

their solution. However, they were confused about identifying
internal interfaces. They could not decompose the system into
microservices and thus, they could not show the communication
between microservices. A common question from group
members was “How can we decompose the system to
microservices based on our class diagram?”. Also, they asked
how to show the extracted classes in the component diagram.

In this case study, students initially used a class diagram to
design the system. Then, they attempted to design a component
diagram that is compatible with the class diagram. In other
words, they tried to utilize both diagrams to design the system.
However, this approach resulted in three problems: (1) the initial
class diagram could not describe the organization and wiring of
the internal system components, (2) class diagrams caused
confusion for the microservice communication, (3) eventually
the class diagram became meaningless when the component
diagram viewpoint is used. If the sequence had been changed,
they would have been more successful to design a component
diagram and show the internal interfaces. Class-based
decomposition caused more confusion than usage.

As a result, OO design was not able to provide a strategy for
developing an MS-based solution for the given case. The group
tended to develop a model-based decomposition strategy and the
design has followed the Model-View-Controller (MVC) pattern.
As a result, the group implemented the project based on the
MVC design pattern. They deployed their solution to the cloud
and managed to communicate with external services. However,
their solution became a monolithic system.

249

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION
In this study, we aimed to answer if OO or EO analysis

approaches provide a better strategy for developing an MS-
based solution. Accordingly, we will compare and evaluate both
approaches for their success in meeting the important
characteristics of an MSbA as follow:

Loose coupling: In MSbA, the degree of interdependence
between the modules (i.e., the subdomains) is expected to be as
low as possible. Thus, the application as a domain should be
decomposed in a way that each business process is handled by a
different service. OOAD provided loose coupling at the class
level. However, it did not guarantee the separation of
subdomains or business capabilities. On the other hand, EOAD
addressed this issue and ensured the separation of different sub-
processes, such as application, verification, evaluation, and
notification. Thus, we easily managed to identify loosely
coupled microservices after applying EOAD.

Cohesion: Similarly, OOAD focuses on the cohesion
between classes to adhere to object-oriented data modeling.
Although the functionally related elements have related
attributes and methods, the class-based decomposition does not
help to keep all functionally related processes together. On the
other hand, since the separation is based on the business
processes and bounded context, the EOAD helps identify highly
cohesive microservices by keeping the functionally relevant
elements and flows together. As an example, the application
microservice manages all application-related events and
activities.

Isolation: An MSbA requires proper isolation to be able to
test, maintain, and deploy each microservice without affecting
any others. Isolation is also a prerequisite for fault tolerance and
autonomy. However, it is not possible to create a fully isolated
class structure based on the class decomposition of OOAD
methods because it typically points to a shared data structure.
On the other hand, EOAD promotes a distributed database
system (including event logs) where each microservice has its
own data collection. In this way, the dependency on shared data
is resolved.

Autonomy: In addition to having an isolated database, each
microservice is expected to be able to operate as an autonomous
service that takes full responsibility for a single business
capacity. Here, full responsibility includes presentation, API,
and business logic in addition to data storage. In EOAD, since
each microservice is designed as an independent application, it
can be discovered and run by users or other microservices,
individually. On the other hand, OOAD requires all systems to
be up and running even if only one presentation, API request, or
business logic is needed.

Composability: The existing microservices should be
decomposable to perform more complex or new business
processes. In our example, application, verification, evaluation,
and notification are sub-processes that each is handled by an
individual microservice. However, they cooperate and
coordinate with each other to manage the whole process of the
graduate student application. Similarly, they are designed in a
way that they can be integrated with external microservices to
perform other possible use-cases. These compositions do not

require additional changes on the existing microservices because
they all have a uniform interface complying with SOA principles
and REST architectural style. Here, the key difference between
EOAD and OOAD is that EOAD adopts SOA which requires
stateless services, while OOAD adopts OO which fits well in a
stateful environment, by its nature.

Small bounded context: In EOAD, the bounded context is
identified by the events. The event draws the boundaries of the
context. On the other hand, in OOAD, class diagrams are a way
to decompose the bounded context. The boundaries are
decomposed as classes such as applicant, application, document,
and notification. In our use case, both approaches were
successful in determining a well-bounded context for business
logic and data. However, as EOAD defines boundaries based on
events it naturally corresponds to Microservices to be
developed.

Asynchronous communication: In EOAD, an event triggers
a microservice and upon the completion of it generates another
event. Since the automated process is based on events and each
bounded context generates an event and is triggered by an event,
asynchronous communication is implemented. We could easily
implement asynchronous communication using message
queues. On the other hand, in OOAD, communication is
between the methods of classes that could not provide a strategy
for asynchronous communication.

Single responsibility: Both EOAD and OOAD aim to
decompose the system in a way that each component (class or
subdomain) performs a single business process. EOAD
decomposes the system based on event boundaries where each
event represents a single business process such as application,
verification, evaluation, and notification. On the other hand,
OOAD depicts the decomposition of the system with respect to
classes. Similarly, each class performs a single business process
of a class. To illustrate, the applicant class performs business
processes related to an applicant. However, the single
responsibility of the class does not naturally correspond to
Microservices to be developed.

Scalability: Each business process should be scalable in
MSbAs. For example, in our case, the application service is
scaled up on load (i.e., during the application period). However,
when the application period is over, it can be scaled down.
EOAD provides high scalability since microservices for each
business process are deployed independently. On the other hand,
OOAD decomposes the problem based on classes. Thus, OOAD
does not provide a viewpoint for high scalability for each
business process. For example, only the classes relevant to the
application process need to be scaled up during the application
period. However, OOAD cannot provide such a decomposition
that allows partial scaling.

Fault tolerance: Loose coupling, isolation, and autonomy of
microservices provide fault tolerance in comparison to a
monolith application. Each microservice should continue to
operate without the existence of any other microservice. To
illustrate, the application microservice should continue to
operate even if the notification microservice fails. Each
application should be stored in a structure such as a queue so that
the notification service can manage these applications without
any loss. The nature of EOAD provides fault-tolerant

250

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

microservices. Each microservice is designed to manage a sub-
process. If any microservice fails, other sub-processes will
continue to operate. On the other hand, if a system is designed
on a class-based decomposition which is less tolerant of system
failures as the classes used by multiple sub-processes cause an
inter-process dependency over the shared methods and data
attributes.

One of the validity threads of our study is that third-year
students participated in OOAD. Although we chose the best
group and they have some experience with microservices, one
can think that they are relatively inexperienced. This might be
true but they are not the only group that applied OOAD with
MSbAs. We involved them as a second group in OOAD to
prevent potential bias of the authors. The second validity thread
can be that our study is based on one case study and real-life
industrial cases can be more complicated with many business
processes and parallel activities. In this study, we aimed to show
that the applicability of EOAD in MSbAs, and this approach can
be validated in more complicated industrial cases.

VI. CONCLUSION
The traditional monolithic applications are changing to

small, isolated, loosely-coupled applications that work in
cohesion. These applications are called microservices and they
can be deployed, scaled, and tested independently. MSbA has
become a popular and efficient way for the development of
software. However, the design and analysis of microservices
may not be clear for the companies as there is not a de facto
model proposed for the analysis and design of microservices.

The industry is still using the traditional approaches [4],
[18]–[20] for the analysis and design of MS-based systems but
these approaches do not cope with the demands of the new
generation of systems. In this study, we explored a novel
approach for the analysis and design of microservices: Event-
Oriented analysis and design (EOAD). We have observed that
an event-based modeling approach is highly useful for analyzing
and designing MS-based solutions.

We applied EO and OO analysis methods to analyze a
problem to develop a microservice architecture-based solution.
We tried to answer the research question: “How successful are
OOAD and EOAD in meeting the important characteristics
required by an MSbA?” and conducted a case study to compare
the approaches.

MSbA differs from traditional monolithic applications in
many ways. The structural decompositions required by
microservices are quite different from those of OOAD
viewpoints. Thus, we discussed the success of EOAD and
OOAD in terms of meeting these characteristics. Overall, we
observed that OOAD, by its nature, does not have useful
viewpoints to analyze and design an MS-based solution that
meets the important characteristics of an MSbA. On the other
hand, we observe that EOAD can be useful for this task.

This research presents the applicability of EOAD for
MSbAs. However, there is still a need to develop alternative
approaches to be used in modeling MS-based systems.

ACKNOWLEDGMENT
We thank Baran Ates, Efe Can Cevher, Kaan Algan, Kemal

Selcuk Kaplan Zekihan Azman for contributing the case study.

REFERENCES
[1] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study

in Microservice Architecture,” in 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications (SOCA),
Nov. 2016, pp. 44–51. doi: 10.1109/SOCA.2016.15.

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, Art. no. 1,
Jan. 2015, doi: 10.1109/MS.2015.11.

[3] J. Bonér, Reactive Microservices Architecture. O’Reilly Media, Inc.,
2016.

[4] B. Bilgin, H. Unlu, and O. Demirörs, “Analysis and Design of
Microservices: Results from Turkey,” in 2020 Turkish National
Software Engineering Symposium (UYMS), Oct. 2020, pp. 1–6. doi:
10.1109/UYMS50627.2020.9247022.

[5] A. Brandolini, Event Storming. Leanpub, 2019. [Online]. Available:
https://leanpub.com/introducing_eventstorming

[6] “EventStorming,” EventStorming, Mar. 18, 2020.
https://www.eventstorming.com/ (accessed Mar. 18, 2020).

[7] Z. Stojanovic, A. Dahanayake, and H. Sol, “Modeling and design of
service-oriented architecture,” in 2004 IEEE International Conference
on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), Oct.
2004, vol. 5, pp. 4147–4152 vol.5. doi:
10.1109/ICSMC.2004.1401181.

[8] S. J. Andriole, “The death of big software,” Commun. ACM, vol. 60,
no. 12, Art. no. 12, Nov. 2017, doi: 10.1145/3152722.

[9] N. Dragoni et al., “Microservices: Yesterday, Today, and Tomorrow,”
in Present and Ulterior Software Engineering, M. Mazzara and B.
Meyer, Eds. Cham: Springer International Publishing, 2017, pp. 195–
216. doi: 10.1007/978-3-319-67425-4_12.

[10] S. Li et al., “A dataflow-driven approach to identifying microservices
from monolithic applications,” Journal of Systems and Software, vol.
157, p. 110380, Nov. 2019, doi: 10.1016/j.jss.2019.07.008.

[11] M. Kamimura, K. Yano, T. Hatano, and A. Matsuo, “Extracting
Candidates of Microservices from Monolithic Application Code,” in
2018 25th Asia-Pacific Software Engineering Conference (APSEC),
Dec. 2018, pp. 571–580. doi: 10.1109/APSEC.2018.00072.

[12] O. Al-Debagy and P. Martinek, “A New Decomposition Method for
Designing Microservices,” Periodica Polytechnica Electrical
Engineering and Computer Science, vol. 63, no. 4, Art. no. 4, Jun. 2019,
doi: 10.3311/PPee.13925.

[13] S.-P. Ma, C.-Y. Fan, Y. Chuang, I.-H. Liu, and C.-W. Lan, “Graph-
based and scenario-driven microservice analysis, retrieval, and testing,”
Future Generation Computer Systems, vol. 100, pp. 724–735, Nov.
2019, doi: 10.1016/j.future.2019.05.048.

[14] N. Santos et al., “A logical architecture design method for
microservices architectures,” in Proceedings of the 13th European
Conference on Software Architecture - Volume 2, Paris, France, Sep.
2019, pp. 145–151. doi: 10.1145/3344948.3344991.

[15] L. Baresi, M. Garriga, and A. De Renzis, “Microservices Identification
Through Interface Analysis,” in Service-Oriented and Cloud
Computing, Cham, 2017, pp. 19–33. doi: 10.1007/978-3-319-67262-
5_2.

[16] J. Bonér, Reactive Microsystems. O’Reilly Media, Inc., 2017.
[17] A.-W. Scheer, O. Thomas, and O. Adam, “Process Modeling Using

Event-Driven Process Chains,” Process-aware information systems,
no. 119, Art. no. 119, 2005.

[18] D. Cooke, A. Gates, E. Demirörs, O. Demirörs, M. M. Tanik, and B.
Krämer, “Languages for the specification of software,” Journal of
Systems and Software, vol. 32, no. 3, Art. no. 3, Mar. 1996, doi:
10.1016/0164-1212(95)00071-2.

[19] D. Akdur, B. Say, and O. Demirörs, “Modeling cultures of the
embedded software industry: feedback from the field,” Softw Syst
Model, Jun. 2020, doi: 10.1007/s10270-020-00810-9.

[20] D. Akdur, V. Garousi, and O. Demirörs, “A survey on modeling and
model-driven engineering practices in the embedded software
industry,” Journal of Systems Architecture, vol. 91, pp. 62–82, Nov.
2018, doi: 10.1016/j.sysarc.2018.09.007.

251

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 29,2021 at 11:48:37 UTC from IEEE Xplore. Restrictions apply.

