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Abstract
This study aims to propose a reliable, accurate, and efficient numerical approximation for a general compelling partial

differential equation including nonlinearity ud ou
ox

� �
, dissipation o2u

ox2

� �
, and dispersion o3u

ox3

� �
which arises in many fields of

engineering as well as applied sciences. The novel proposed method has been developed combining a kind of mesh-free

method called the Taylor wavelet method with the Euler method. The convergence result of the method has been presented

theoretically. Moreover, the validation and applicability of the method have been also confirmed computationally on

benchmark problems such as KdV–Burgers’ equation and modified-KdV equation. The numerical results have been

compared both to the exact solution and to those in the existing literature. All presented figures and tables guarantee that

the proposed method is highly accurate, efficient, and compatible with the nature of the specified equation physically.

Furthermore, the recorded errors are evidence that the proposed method is the best approximation compared to those in the

existing methods.

Keywords KdV–Burgers’ equation � Modified-KdV equation � Taylor wavelet � Nonlinearity

1 Introduction

Due to the nonlinearity of nature, many natural processes

arising in several fields of sciences, such as wave propa-

gation phenomena, fluid mechanics, plasma physics,

quantum mechanics, nonlinear optics, chemical kinematics,

possessing a complex phenomenon are modeled by non-

linear partial differential equations. To understand the

existing truth behind these processes and to make infer-

ences for future estimation, the model is required to solve

numerically or analytically. However, these models can

contain combinations of dissipation and dispersion as well

as nonlinearity. This makes a numerical scheme more

challenging to catch the physical behavior and, therefore,

developing a numerical method more attractive.

In this study, we mainly focus on the following partial

differential equation which contains dissipation o2u
ox2

� �
,

dispersion o3u
ox3

� �
and nonlinearity ud ou

ox

� �
such that

ou

ot
þ aud

ou

ox
� b

o2u

ox2
þ c

o3u

ox3
¼ 0; x 2 X ¼ ða; bÞ; t[ 0

subject to the following boundary conditions for

a; b; and c 2 R

uðx ¼ a; tÞ ¼ g0 tð Þ;
uðx ¼ b; tÞ ¼ g1 tð Þ;
ou

ox
ðx ¼ a; tÞ ¼ f tð Þ;

ð1Þ

where the initial condition is

uðx; 0Þ ¼ u0ðxÞ; x 2 X: ð2Þ

The specified equation is called Kortweg-de Vries–Burger

type for d ¼ 1: It reduces to the Burgers’ equation for the

case of d ¼ 1 and c ¼ 0:Moreover, for the choice of d ¼ 1;

and b ¼ 0 the equation returns to Kortweg-de Vries (KdV)

equation. One can, further, obtain the modified Kortweg-de
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silaovgu@gmail.com

1 Department of Engineering Sciences, Izmir Katip Celebi

University, Izmir, Turkey

2 Department of Mathematics, Izmir Institute of Technology,

Izmir, Turkey

123

Iran J Sci Technol Trans Sci
https://doi.org/10.1007/s40995-021-01235-9(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4784-2013
http://orcid.org/0000-0002-3306-8656
http://crossmark.crossref.org/dialog/?doi=10.1007/s40995-021-01235-9&amp;domain=pdf
https://doi.org/10.1007/s40995-021-01235-9


Vries (mKdV) when the parameters are taken as d ¼ 2; and

b ¼ 0:

A lot of effort has been invested into construct to

approximate the solution of such equations in the literature.

Some of these valuable studies can be summarized as

follows: in Shi et al. (2015) a hybrid scheme based on

higher compact order compact scheme and classical con-

straint interpolation profile has been proposed. Aydın has

applied an unconventional splitting method for solving the

Korteweg de Vries–Burgers equation in Aydin (2015). The

Crank–Nicolson method combined with a mesh-free

method based on radial basis functions has been suggested

in Haq et al. (2009) and with the Galerkin finite element

method by using quintic B-splines has been given in Irk

(2017). For the KdV–Burgers equation, Darvishi et al. have

proposed an approximate solution based on spectral col-

location points and the 4th-order Runge–Kutta method

(RK4) in Darvishi et al. (2007). Motsa et al. have sug-

gested a new method which combines quasilinearization,

the Chebyshev spectral collocation method, and bivariate

Lagrange interpolation to solve nonlinear partial differen-

tial equation including both modified KdV–Burgers equa-

tion and modified KdV equation in Motsa et al. (2014).

Moreover, semi-analytical methods including homotopy

analysis method, homotopy perturbation method, Adomian

decomposition method, and variational iteration method

have been discussed for both KdV and modified KdV

equation in Kaya (2009). A Haar wavelet approach has

been studied for the numerical solution of modified KdV

and modified Burgers’ equation in Ray and Gupta (2015).

An approach based on a lumped Galerkin method via cubic

B-spline interpolation has been proposed for the modified

KdV equation in Ak et al. (2017). Furthermore, more

recently, a mesh-free method combined with the expo-

nential Rosenbrock method has been suggested in Koçak

(2021) for solving the KdV–Burgers equation. The speci-

fied equation is also solved numerically by an extended

B-spline collocation method combined with the RK4 in

Hepson et al. (2019). A higher-order Haar wavelet method

via ODE45 solver in MATLAB has been applied to both

Burgers’ equation and KdV equation in Ratas and Salupere

(2020). The Haar wavelet method has been used to solve

KdV-type partial differential equations of order seven in

Saleem et al. (2021).

As presented above, various valuable studies have

already been worked for the specified equations. However,

it, of course, continues to be an area of interest of the

researchers for whom to enrich a deep understanding of

such attractive equations. The focus point of this study is to

develop a numerical scheme based on the Taylor wavelet

collocation method presented in Keshavarz et al. (2018) for

solving both the KdV–Burgers’ and modified KdV equa-

tions. The wavelet methods which have become more

popular in recent years have been used for solving various

kinds of differential equations, (Dehestani et al.

2019, 2021a, b, c; Kumar and Priyadarshi 2018; Priya-

darshi and Kumar 2020). However, to the authors’ best

knowledge, the current study is the first time that the

Taylor wavelet collocation method has been proposed to

solve both modified KdV and KdV–Burgers’ equations.

Moreover, the other originality of the current study is that

unlike the aforementioned studies based on the wavelet

approximation considering for the general domain instead

of (0, 1). Furthermore, the current work has also aimed to

be the first study to present the CPU time for the considered

KdV–Burgers’ type equation.

Motivated by these aims, the rest of the paper has the

following structure. Section 2 aims to describe the

numerical scheme as well as the Taylor wavelet method.

This section is followed by a more theoretical section,

Sect. 3, which analyzes the convergence of the proposed

scheme. The validity, efficiency, and applicability of the

proposed method are discussed in Sect. 4 by presenting

evidence with tables and figures. The study is concluded by

emphasizing some important comments and discussions in

Sect. 5.

2 Numerical Method

The main objective of this section is to share the method in

a brief and understandable way with the readers. That’s

why the section is divided into two subsections. The

upcoming section presents an introduction to the Taylor

wavelet method and its integral forms. It is followed by the

construction of the proposed numerical scheme.

2.1 Taylor Wavelet Method

One of the important classes of wavelet methods is the

Taylor wavelet which is defined by Keshavarz et al.

Keshavarz et al. (2018). Let n ¼ 1; 2; . . .; 2k�1 for k 2 Zþ

and m be a non-negative integer, then the Taylor wavelets

on the interval [0, 1) are defined as follows:

wnmðxÞ ¼
2

k�1
2 T̂m 2k�1x� nþ 1

� �
; if

n� 1

2k�1
� x\

n

2k�1
;

0; otherwise;

8
<

:

ð3Þ

where T̂m for m ¼ 0; 1; 2; . . .;M � 1 denotes the normal-

ized Taylor polynomial of degree m such that T̂m xð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p
xm: Thus, any function f ðxÞ 2 L2½0; 1� can be

expanded in terms of the Taylor wavelets as follows:

Iran J Sci Technol Trans Sci

123



f ðxÞ ¼
X1

n¼1

X1

m¼0

cnmwnmðxÞ: ð4Þ

Here cnm stands for the Taylor wavelet coefficients and are

determined by

cnm ¼ hf ðxÞ;wnmðxÞi;

where h�; �i the inner product. It is crucial to remind that by

the orthonormality property hwnmðxÞ;wnmðxÞi ¼ 1: By uti-

lizing the truncated form of the infinite series in Eq. (4), the

approximation of f(x) can be expressed by

f ðxÞ ’
X2k�1

n¼1

XM�1

m¼0

cnmwnmðxÞ ¼ CWðxÞ; ð5Þ

where

C ¼ c10; c11; . . .; c1ðM�1Þ; c20; c21. . .; c2ðM�1Þ;
�

. . .c2k�10; c2k�11; . . .; c2k�1ðM�1Þ
�
;

ð6Þ

and

where M � 1 is the highest degree of the polynomial. On

the other hand, the general integral form of the Taylor

wavelets can be defined as follows:

where p represents the positive integer and it is taken

specifically as p ¼ 1; 2; 3 in the current study. Moreover,

AðxÞ ¼
Xm

j¼0

m

j

	 

2 jþ1

2ð Þðk�1Þj!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p

ðjþ pÞ! x� n

2k�1

� �jþp

:

ð9Þ

Our general references on Taylor wavelets and their inte-

gral forms are (Vichitkunakorn et al. 2020; Keshavarz

et al. 2018; Keshavarz and Ordokhani 2019).

2.2 Method of Solution

The current section aims to present the proposed method in

an understandable language. To adapt the Taylor wavelet

method for solving the equation given in Eqs. (1), (2), the

physical domain is required to transform from ½a; b� into
½0; 1�: To do this, define X ¼ x�a

�h where �h ¼ b� a; then

Eq. (1) returns to

WðxÞ ¼

w10ðx0Þ w10ðx1Þ � � � w10 x2k�1ðM�1Þ
� �

w10 x2k�1ðMÞ
� �

w11ðx0Þ w11ðx1Þ � � � w11 x2k�1ðM�1Þ
� �

w11 x2k�1ðMÞ
� �

..

.
� � � ..

.

w2k�1ðM�1Þ x0ð Þ w2k�1ðM�1Þ x1ð Þ � � � w2k�1ðM�1Þ x2k�1ðM�1Þ
� �

w2k�1ðM�1Þ x2k�1ðMÞ
� �

2

666664

3

777775
ð7Þ

IpwnmðxÞ ¼

0; if0� x\
n� 1

2k�1
;

2 mþ1
2ð Þðk�1Þm!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p

ðmþ pÞ! x� n� 1

2k�1

	 
mþp

; if
n� 1

2k�1
� x\

n

2k�1
;

2 mþ1
2ð Þðk�1Þm!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

p

ðmþ pÞ! x� n� 1

2k�1

	 
mþp

�AðxÞ; if
n

2k�1
� x� 1;

8
>>>>>>>><

>>>>>>>>:

ð8Þ
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ow

ot
þ a
�h
wd ow

oX
� b

�h2
o2w

oX2
þ c

�h3
o3w

oX3
¼ 0; X 2 ð0; 1Þ; t[ 0;

wð0; tÞ ¼ g0 tð Þ;
wð1; tÞ ¼ g1 tð Þ;
ow

oX
ð0; tÞ ¼ f�h tð Þ;

wðX; 0Þ ¼ w0ðXÞ; X 2 ð0; 1Þ:
ð10Þ

where wðX; tÞ ¼ uðx; tÞ: Notice that f�hðtÞ ¼ �hf ðtÞ:
Consider Eq. (10), the numerical solution can be

obtained with the help of the Taylor wavelet method as

follows:

o4w

otoX3
X; tð Þ ’

X2k�1

n¼1

XM�1

m¼0

cnmðtÞwn;mðXÞ ¼ CðtÞWðXÞ: ð11Þ

Define tr ¼ rDt such that Dt ¼ tfinal
N where N is the number

of divisions of the time interval. To describe the numerical

solution, we first, integrate Eq. (11) over the interval ½tr; t�
with respect to t. Then, we have

Z t

tr

o4w

osoX3
x; sð Þ ds ’

Z t

tr

CðsÞWðxÞds; t 2 ½tr; trþ1�:

ð12Þ

Let W(x, t) denote the approximate solution. Due to the

non-availability of CðsÞ we write the integral given in

Eq. (12) using the left-hand point approximately.

Therefore,

o3W

oX3
x; tð Þ ¼ t � trð ÞCrWðXÞ þ o3W

oX3
X; trð Þ; t 2 ½tr; trþ1�;

ð13Þ

where Cr and WðXÞ are defined in Eqs. (6) and (8),

respectively. Notice that, for the sake of simplicity of

notations Cr stands for CðtrÞ throughout the section. Notice
that Eq. (13) is independent of the time variable. To

describe the numerical solution, we integrate Eq. (13) with

respect to X over the interval [0, X],

o2W

oX2
X; tð Þ ¼ t � trð ÞCrI

1W Xð Þ þ o2W

oX2
X; trð Þ

þ WXX 0; tð Þ �WXX 0; trð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�I

;
ð14Þ

oW

oX
X; tð Þ ¼ oW

oX
X; trð Þ þ t � trð ÞCrI

2W Xð Þ

þ oW

oX
0; tð Þ � oW

oX
0; trð Þ

	 


þ X
o2W

oX2
0; tð Þ � o2W

oX2
0; trð Þ

	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�I

;

ð15Þ

W X; tð Þ ¼ W X; trð Þ þW 0; tð Þ �W 0; trð Þ
þ t � trð ÞCrI

3W Xð Þ

þ X
oW

oX
0; tð Þ � oW

oX
0; trð Þ

	 


þ X2

2

o2W

oX2
0; tð Þ � o2W

oX2
0; trð Þ

	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�I

;

ð16Þ

where IpW Xð Þ for p ¼ 1; 2; 3 stands for the integral form of

the Taylor method given in Eq. (8). Before proceeding to

detailed calculations, it is worth noting that

WðX; 0Þ ¼ w0ðXÞ;
o2W

oX2
ðX; 0Þ ¼ �h2w00

0ðXÞ;
ð17Þ

Moreover, for the sake of simplicity of the exposition, we

use f�hð Þtr; g1ð Þtr; and g0ð Þtr to abbreviate f�hðtÞ �
f�h trð Þ; g1ðtÞ � g1 trð Þ; and g0ðtÞ � g0 trð Þ; respectively.

Notice that all terms in Eqs. (13)–(16) can be expressed in

terms of initial and boundary conditions except �I . By

substituting x ¼ 1 one can be obtained from Eq. (15) that

�I ¼ oW

oX
1; tð Þ � oW

oX
1; trð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�II

�f�h
t
r � t � trð ÞCrI

2W 1ð Þ:

ð18Þ

By putting Eq. (18) into Eq. (16), one can express

W X; tð Þ ¼ W X; trð Þ þ g0ð Þtr þ t � trð ÞCrI
3W Xð Þ þ X f�hð Þtr

� �

þ X2

2

	
oW

oX
1; tð Þ � oW

oX
1; trð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�II

�f�h
t
r � t � trð ÞCrI

2W 1ð Þ


:

ð19Þ

After substituting x ¼ 1 in the above-mentioned equation,

and doing the required calculations, we have

�II ¼ 2 g1ð Þtr � g0ð Þtr � f�hð Þtr � t � trð ÞCrI
3W 1ð Þ

� �

þ f�hð Þtr þ CrI
2W 1ð Þ:

ð20Þ

Furthermore, to construct the final form of the numerical

scheme one more expression, oW
ot ; is required to define. For
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this purpose, Eq. (16) is derived with respect to t as

follows:

oW

ot
X; tð Þ ¼ CrI

3W Xð Þ þ X
o

ot

oW

oX

	 


0;tð Þ

 !

þ X2

2

o

ot

o2W

oX2

	 


0;tð Þ

 !

þ oW

ot
0; tð Þ: ð21Þ

To avoid derivatives on the boundary conditions, we utilize

the definition of the derivative. That is, o
ot

o2W
oX2

� �
0; tð Þ �

o2W

oX2
ð0;tÞ�o2W

oX2
0;trð Þ

t�tr
: Likewise, oW

ot 0; tð Þ and o
ot

oW
oX

� �
0; tð Þ can be

also obtained. Then, Eq. (21) can be expressed by assum-

ing t ! trþ1 as follows:

oW

ot
X; trþ1ð Þ ¼ CrI

3W Xð Þ þ X
f�hð Þrþ1

r

Dt

 !

þ X2

2
2

g1ð Þrþ1
r � g0ð Þrþ1

r � f�hð Þrþ1
r �DtCrI

3W 1ð Þ
Dt

 !

:

ð22Þ

Here f�hð Þrþ1
r ¼ f�h trþ1ð Þ � f�h trð Þ; g1ð Þrþ1

r ¼ g1 trþ1ð Þ � g1 trð Þ;
and g0ð Þrþ1

r ¼ g0 trþ1ð Þ � g0 trð Þ: The wavelet coefficients Cr

at each time step can be attained by solving the following

equation:

Cr

	
I3W Xð Þ � X2 � I3W 1ð Þ




¼ �X
f�hð Þrþ1

r

Dt
� X2 g1ð Þrþ1

r � g0ð Þrþ1
r � f�hð Þrþ1

r

Dt

" #

þ g0ð Þtr
Dt

� a
�h
WðX; trÞd

oW

oX
ðX; trÞ

þ b

�h2
o2W

oX2
ðX; trÞ �

c

�h3
o3W

oX3
ðX; trÞ; ð23Þ

where � stands for the Kronocker product. After substi-

tuting the collocation points Xj; j ¼ 1; 2; . . .; 2k�1M;

Eq. (23) returns to an algebraic equation which will be

solved successively. However, due to the singularity of the

obtained matrix on the left-side matrix, an augmented

matrix has been solved by elimination to perform the

solutions. The numerical solutions are given in Eqs. (13)–

(16) are renewed by taking trþ1 instead of t.

3 Convergence Analysis

This section is devoted to showing the validation of the

proposed method, theoretically. To do this, the conver-

gence issue of the proposed method has been discussed. By

taking into account equivalency of the norms in finite

spaces, see (Kreyszig 1989 [Theorem 2.4-5]), all theoreti-

cal results are presented in L2�norm. However, before

giving the convergence results of the proposed method we

first state an important auxiliary lemma such that:

Lemma 1 (Vichitkunakorn et al. 2020 [Theorem 1]) Let

wðXÞ 2 L2 0; 1½ � such that w is M times differentiable. Let

CrWðxÞ be the best approximation of w in H ¼
wnm : 1� n� 2k�1; 0�m�M � 1
� 

: Then,

wðX; trÞ � CrWðXÞk k2 �
2k maxf2½0;1� w

MðfÞ
M!2Mðkþ1Þ : ð24Þ

Additionally, due to (Vichitkunakorn et al. 2020

[Theorem 2])

IpwðX; trÞ � CrI
pWðxÞk k2

�
2k maxf2½0;1� w

MðfÞ
ðp� 1Þ!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 2p� 1ð Þ

p
M!2Mðkþ1Þ

:
ð25Þ

Proof The proofs follow the lines of the proofs in

Vichitkunakorn et al. (2020) in the case of h ¼ 1:

One can be concluded from Lemma 1 that in both cases

the right-hand side converges to 0 as k and M increases.

Under the lights of Lemma 1, Theorem 1 states the con-

vergence result of the proposed method.

Theorem 1 Suppose that w X; tð Þ : ½0; 1� 	 ½0; tfinal� !
L2½0; 1� \ C1½0; tfinal� is the exact solution and W(X, t) de-

notes the approximate solution of the transformed equa-

tion, Eq. (10). The proposed method described in Sect. 2.1

is convergent in the sense that

w X; trð Þ �WðX; trÞk k2 � w X; 0ð Þ �WðX; 0Þk k

as k, M, and N increase. Here k denotes the division of the

spatial domain, M denotes the degree of Taylor wavelet

polynomial, and N denotes the number of divisions of the

time interval.

Proof The convergence result of the proposed method

follows employing the standard technique. To do so, we

first, recall the numerical solution and the exact solution as

follows:

W X; trþ1ð Þ ¼ Dt
X2k�1

n¼1

XM�1

m¼0

CrI
3W Xð Þ

þW X; trð Þ þ g0ð Þrþ1
r þXð fcð Þrþ1

r Þ

þX2 g1ð Þrþ1
r � g0ð Þrþ1

r � fcð Þrþ1
r �Dt

X2k�1

n¼1

XM�1

m¼0

CrI
3W 1ð Þ

 !

ð26Þ

and
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w X; trþ1ð Þ ¼ Dt
X1

n¼1

X1

m¼0

CrI
3W Xð Þ þ w X; trð Þ

þ g0ð Þrþ1
r þXð fcð Þrþ1

r Þ

þX2 g1ð Þrþ1
r � g0ð Þrþ1

r � fcð Þrþ1
r �Dt

X1

n¼1

X1

m¼0

CrI
3W 1ð Þ

!

;

 

ð27Þ

where Dt ¼ trþ1 � tr: Suppose that erþ1 denote the error

bound at t ¼ trþ1; that is kerþ1k2 ¼
w X; trþ1ð Þ �WðX; trþ1Þk k2: By subtracting Eq. (26) from

Eq. (27), taking norm of both sides and applying the tri-

angle inequality we have

erþ1k k2 �Dt
X1

n¼1

X1

m¼0

CrI
3W Xð Þ

�����

�
X2k�1

n¼1

XM�1

m¼0

CrI
3W Xð Þ

�����
2

þ w X; trð Þ �WðX; trÞk k2

þ X2Dt
X1

n¼1

X1

m¼0

Cr I3Wð1Þ
� �

�����

�
X2k�1

n¼1

XM�1

m¼0

Cr I3Wð1Þ
� �

�����
2

: ð28Þ

Notice that the boundary conditions are extracted from the

exact solution at each time step; thus, the error given in

Eq. (28) does not contain any extra terms. With the help of

the results of Lemma 1, one can write that

erþ1k k2 �Dt
2k maxf2½0;1� w

MðfÞ
2
ffiffiffiffiffi
30

p
M!2Mðkþ1Þ

þ erk k2þX2Dt
2kwMð1Þ

2
ffiffiffiffiffi
30

p
M!2Mðkþ1Þ

: ð29Þ

More precisely,

erþ1k k2 � erk k2

þ Dt
2k maxf2½0;1� w

MðfÞ
2
ffiffiffiffiffi
30

p
M!2Mðkþ1Þ

þ X2 2kwMð1Þ
2
ffiffiffiffiffi
30

p
M!2Mðkþ1Þ

	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k

:

ð30Þ

Using the relation in Eq. (30) inductively we obtain

e1k k2 � e0k k2þDtk;

e2k k2 � e1k k2þDtk� e0k k2þ2Dtk;

..

.

eNk k2 � e0k k2þNDtk;

ð31Þ

Notice that as N increases Dt ! 0: Moreover, as k and M

increase k ! 0: Thus, one can conclude that

eNk k2 � e0k k2¼ w X; 0ð Þ �WðX; 0Þk k2: ð32Þ

It is crucial to remind that w(X, t) is the exact solution of

the transformed equation in Eq. (10), whereas uðx; tÞ :
½a; b� 	 ½0; tfinal� ! L2½a; b� \ C1½0; tfinal� stands for the

exact solution of the main equation in Eqs. (1), (2). Using

the fact that wðX; tÞ ¼ uðx; tÞ one can be said WðX; tÞ ¼
Uðx; tÞ where W(X, t) and U(x, t) denotes the approximate

solutions of the transformed equation and the main equa-

tion, respectively. Thus, one can be concluded by the result

in Eq. (31) the proposed method tends to converge to the

exact solution, that is Uðx; tÞ ! uðx; tÞ when k; M; and

N increases.

4 Numerical Examples and Simulations

In numerical analysis, even though the theoretical analysis

has shown that the proposed method converges to the exact

solution, there can occur some problems in computation

due to the compelling structures. Therefore, the theoretical

results are required to confirm computationally. The

objective of this section is to check the validity and effi-

ciency of the proposed method for the KdV–Burgers

equation and modified KdV equation.

All numerical results have been recorded by applying

the proposed method to the transformed equation with

appropriate choices of parameters. Moreover, the results

have been produced by collocating a suitable number of

Newton–Cotes nodes

Xj ¼
2j� 1

2kM
; j ¼ 1; 2; . . .; 2k�1M: ð33Þ

Additionally, the accuracy of the method is tested at the

final time, tfinal; with the L1 and L2 norms:

ku� UkL1 ¼ max
i

ju xi; tfinalð Þ � U xi; tfinalð Þj;

ku� UkL2 ¼ ðDx
XN

i¼0

ðu xi; tfinalð Þ � U xi; tfinalð ÞÞ2Þ1=2;

where u(x, t) and U(x, t) represent the exact solution and

numerical solution, respectively. Furthermore, all compu-

tations have been executed on Intel Core, i7-6700HQ

2.60Ghz and 16GB of RAM and implemented via the

MATLAB-2018b programming language.

Example 1 As a first example, Eq. (1) is considered over

the domain x 2 X ¼ ½�20; 20� and t 2 ½0; tfinal�: The exact

solution of the equation is

uðx; tÞ ¼ �6b2

25ca
1þ tanh

b
10c

xþ 6b2

25c
t

	 
	 
�

� 1

2
sech2

b
10c

xþ 6b2

25c
t

	 
	 
�
:
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The initial and boundary conditions are taken from the

exact solution.

The proposed method has been tested on the specified

equation. The results of Table 1 have been computed by

taking the parameters a ¼ 1; d ¼ 1; b ¼ 0:004; and c ¼
0:1 over different final times where Dt ¼ 0:001: The

recorded results are compared to exponential Rosenbrock

integrator combined with meshfree method (EXP-MQ) in

Koçak (2021), extended B-spline collocation method (B-

spline) in Hepson et al. (2019), and a mesh-free method

combined by the Crank-Nicolson method (MQ) in Haq

et al. (2009). For a reliable comparison, the accuracy of the

proposed method in L1� norm is listed in Table 1.

The elapsed time of obtaining the numerical solution by

the proposed method is 2.03 s for tfinal ¼ 1 and 20.68 s for

tfinal ¼ 10: Besides Table 1, Table 2 also promotes how

well the proposed method fit the exact solution in both L1
and L2 errors. The listed errors of Table 2 are obtained by

considering a ¼ 1; d ¼ 1; and c ¼ 0:1 for different values

of b:
The maximum elapsed time for performing the data in

Table 1 has been recorded for almost 23 s for b ¼ 0:1 and

tfinal ¼ 10.

Tables 1 and 2 guarantee that the proposed method has

achieved better results than the existing literature. The

compared studies have used the 4th-order Runge–Kutta

which is a higher-order method, the Crank–Nicolson

method which is a semi-implicit solver, and the exponen-

tial Rosenbrock method which is a kind of stiff solver on

their temporal domain. It is crucial to highlight that even

though the proposed method has used a fewer rate of

convergence without possessing any property, by virtue of

the success of the Taylor wavelet method, the proposed

method has recorded better results than those in the

literature.

Table 1 Comparison of errors of Example 1 in L1 norm

tfinal Proposed method EXP-MQ (Koçak 2021) B-spline (Hepson et al. 2019) MQ (Haq et al. 2009)

1 9.690e-19 4.404e-11 7.271e-11 6.822e-09

10 1.011e-17 1.995e-08 9.509e-11 2.479e-08

The recorded results are computed by taking a ¼ 1; d ¼ 1; b ¼ 0:004 and c ¼ 0:1 for different choices of tfinal values. The domain x 2
½�20; 20� is collocated by 16 number of points by taking k ¼ 3; M ¼ 4

Table 2 Comparison of errors of Example 1 in L1 and L2 norms where k ¼ 3 and M ¼ 4

b tfinal Proposed method EXP-MQ (Koçak 2021) MQ (Haq et al. 2009)

L1 L2 L1 L2 L1 L2

b ¼ 0:04 1 7.912e-14 2.685e-13 2.234e-07 2.781e-07 2.936e-06 3.727e-07

10 2.829e-11 5.321e-11 2.950e-06 5.833e-06 5.800e-06 1.297e-05

b ¼ 0:1 1 8.444e-09 2.302e-08 6.605e-06 6.269e-06 1.540e-05 1.004e-05

10 2.906e-06 5.402e-06 2.955e-05 3.762e-05 1.498e-04 1.342e-04

The recorded results are computed by taking a ¼ 1; d ¼ 1; and c ¼ 0:1 for different choices of b and tfinal values where x 2 ½�20; 20� and
Dt ¼ 0:001:

Table 3 Errors of conserved quantities of Example 1 in L1 norm

where k ¼ 3 and M ¼ 4

b tfinal kC1 � ~C1k kC2 � ~C2k kC3 � ~C3k

0.004 1 6.346e-09 7.326e-13 4.517e-10

3 6.346e-09 7.326e-13 4.517e-10

10 6.346e-09 7.326e-13 4.517e-10

0.04 1 2.971e-05 3.927e-07 3.614e-04

3 2.969e-05 3.927e-07 3.615e-04

10 2.963e-05 3.925e-07 3.617e-04

0.1 1 8.422e-05 7.948e-06 4.408e-02

3 8.310e-05 7.854e-06 4.408e-02

10 7.161e-05 6.893e-06 4.409e-02

The recorded results are computed by taking a ¼ 1; d ¼ 1; and c ¼
0:1 for different choices of b and tfinal values where x 2 ½�20; 20� and
Dt ¼ 0:001
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Moreover, it is known that the KdV–Burgers equation

preserves various dynamical quantities such as mass,

momentum, and energy conservations. To examine the

validity of the proposed method, the following conserva-

tive values have also been confirmed:

C1 ¼
Z 20

�20

u x; tfinalð Þ dx; ð34Þ

C2 ¼
Z 20

�20

u2 x; tfinalð Þ dx; ð35Þ

C3 ¼
Z 20

�20

½u3 x; tfinalð Þ � 3
c
a
ðuxÞ2 x; tfinalð Þ�dx ð36Þ

where C1 corresponds to mass, C2 corresponds to

momentum and C3 corresponds to energy. In discrete

space, conserved quantities are computed as follows:

~C1 ¼ Dx
XN

i¼1

Uðxi; tfinalÞ; ð37Þ

~C2 ¼ Dx
XN

i¼1

ðUðxi; tfinalÞÞ2; ð38Þ

~C3 ¼ Dx
XN

i¼1

ðUðxi; tfinalÞÞ3 � 3
c
a
ðUxðxi; tfinalÞÞ2: ð39Þ

Table 3 demonstrates the maximal errors of mass,

momentum, and energy of the proposed method. For

obtaining errors, the parameters of the specified equation
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(a) α = 1, δ = 1, γ = 0.1 and β = 0.03.
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(b) α = 1, δ = 1, γ = 0.1 and β = 0.1.
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(c) α = 1, δ = 1, γ = 0.1 and β = 0.3.

Fig. 1 The physical behaviors of the numerical solution and the exact solution of Example 1 at tfinal ¼ 1 for various choices of b: The results are
recorded for k ¼ 3 and M ¼ 4
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are chosen as a ¼ 1; d ¼ 1; and c ¼ 0:1 for various values

of b: The physical domain is fixed, that is x 2 ½�20; 20�;
whereas the time interval has been varied by taking dif-

ferent final time values.

The values in Table 3 are evidence that the proposed

method preserves the important dynamical quantities.

Furthermore, to check the applicability of the proposed

method on the structural behavior Fig. 1 is depicted. For

the exhibited figure, Example 1 has been studied in

accordance with the previous works in Haq et al. (2009),

Hepson et al. (2019), Koçak (2021), that is, the parameters

are chosen as a ¼ 1 and c ¼ 0:1 for different choices of b
values.

Figure 1 shows that the proposed method preserves the

structural behavior. With the help of Fig. 1 and Table 3,

one can conclude that the proposed method has provided

Table 4 Comparison of errors of Example 2 in L1 norm where k ¼ 3 and M ¼ 3

x c ¼ �0:001 c ¼ �0:1

Proposed method HWM (Ray and Gupta 2015) Proposed method HWM (Ray and Gupta 2015)

0.03125 1.90656e-13 1.72895e-07 9.74922e-10 1.27575e-05

0.09375 2.21456e-13 1.55692e-06 8.59581e-09 1.16031e-04

0.15625 8.59904e-13 4.33497e-06 2.37119e-08 3.33334e-04

0.21825 3.50268e-12 8.53102e-06 4.59690e-08 6.90107e-04

0.28125 9.79544e-12 1.41814e-05 7.45945e-08 1.22625e-04

0.34375 7.59551e-12 2.13321e-05 9.79432e-08 1.99484e-03

0.40625 2.17469e-12 3.00363e-05 1.17568e-07 3.00363e-03

0.46875 2.83105e-12 4.03506e-05 1.33316e-07 4.49462e-03

0.53125 3.37478e-12 5.23326e-05 1.47358e-07 6.37673e-03

0.59375 3.82871e-12 6.60379e-05 1.49658e-07 8.78725e-03

0.65625 4.67586e-12 8.15183e-05 1.41185e-07 1.18068e-02

0.71875 6.05539e-12 9.88196e-05 1.23554e-07 1.55134e-02

0.78125 8.56088e-12 1.17981e-04 9.92058e-08 1.99805e-02

0.84375 7.96186e-12 1.39034e-04 7.20468e-08 2.52756e-02

0.90625 5.62666e-12 1.62005e-04 4.31693e-08 3.14593e-02

0.96875 1.90895e-12 1.86910e-04 1.44035e-08 3.85831e-02

The recorded results are computed by taking a ¼ 6; d ¼ 2; and b ¼ 0 for different choices of c values where x 2 ½0; 1�, tfinal ¼ 1 and

Dt ¼ 0:0001
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(a)Comparison of numerical solution and ex-
act solution at tfinal = 1 where γ = −0.001
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(b) Comparison of numerical solution and ex-
act solution at tfinal = 1 where γ = −0.1

Fig. 2 The physical behaviors of the numerical solution and the exact solution of Example 2 at tfinal ¼ 1 for different choices c where a ¼ 6: The
results are exhibited for k ¼ 3 and M ¼ 8
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physical compatibility by preserving all nature of

Example 1.

Example 2 To compare the proposed method to the

existing wavelet literature, the modified-KdV equation is

studied as our next problem. This means that Eq. (1) is

studied on x 2 X ¼ ð0; 1Þ by fixing d ¼ 2 and b ¼ 0: The

exact solution of the specified equation is defined as

follows:

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi
�6c
a

r

tanhðxþ 2ctÞ:

It is noted that all required conditions are chosen from the

exact solution.

The main reference to compare the results obtained by

the proposed method is Ray and Gupta (2015). Table 4

presents the comparison of the recorded L1 errors of the

proposed method and the Haar wavelet method in Ray and

Gupta (2015).

Table 4 emphasizes that the proposed method has

recorded better solution than those in Ray and Gupta

(2015). Moreover, the CPU time of the proposed method is

discussed. The maximum elapsed times of the proposed

method for t 2 ½0; 1� are 29.67 and 27.55 in s for c ¼
�0:001 and c ¼ �0:1, respectively. In addition to Table 4,

the applicability has been confirmed on the physical

behavior which is illustrated in Fig. 2. To do so, Example 2

is solved by taking a ¼ 6; Dt ¼ 0:0001 and collocating 16

points.

Figure 2 guarantees the physical compatibility of the

proposed method with the exact solution.

5 Conclusion

The presented study has focused on proposing a reliable,

accurate, and efficient numerical solution for both KdV–

Burgers’ and modified-KdV equations which are kind of

challenging problems in applied sciences. The proposed

method has essentially based on the combination of the

Taylor wavelet collocation method in the spatial domain

and the explicit Euler method in the temporal domain.

After ensuring the convergence of the proposed method

theoretically, the computational work has been efforted.

The numerical section of the study has been enriched by

testing the proposed method on benchmark problems. The

outcomes of the study can be underlined as follows: not

only the proposed method has obtained highly accurate

results when compared to the exact solution but also the

recorded errors have achieved the best records when

compared to those reported in the literature. Besides its

accuracy, unlike the other studies, the computational cost

of the proposed method to return a numerical solution has

been performed. Additionally, the exhibited figures are also

evident that the proposed method is compatible with the

exact solution, physically. Furthermore, the proposed

method has also been validated via the qualitative prop-

erties of the equations. All presented results have been

shown that the proposed method has solved the specified

equations by preserving the nature of the problem.
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