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  ABSTRACT 

 

EFFECTS OF CHANNEL ERRORS ON CODED SPEECH 

COMMUNICATION IN SOFTWARE DEFINED RADIO  

 

This thesis investigates the performance of software defined radio in 

reconstruction of a coded speech signal in presence of channel errors, taking into account 

end to end communication. At the transmitter, the recorded author’s voice is encoded 

using linear predictive coding algorithm, where speech parameters such as linear 

predicted coefficients, pitch, voicing and gain parameters, are extracted from the speech 

signal. These parameters are sent to linear predictive decoder to model the speech signal 

from its parameters. The output from source encoder is sent to channel encoder such that, 

the digital encoded speech data is protected using linear block codes algorithm to provide 

error protection to bit stream before transmission to the communication channel. 

Receiver’s blocks or algorithms to curb multipath interference, intersymbol interference, 

timing offset and carrier offset are based on adaptation. Steepest descent adaptive 

algorithm is used to design the entire algorithms to run the software receiver. Therefore, 

steepest descent algorithm is implemented in down conversion, carrier recovery, clock 

recovery, equalization and correlation. All algorithms running the software receiver are 

theoretically discussed and implemented in MATLAB software. The results obtained 

after simulating the whole receiver block in terms of symbol error rate, mean square error 

and bit error rate are recorded and analysed to investigate how channel errors affect 

software receiver while reconstructing a coded speech signal.  
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ÖZET 

 

YAZILIM TANIMLI RADYODA KANAL HATALARININ 

KODLU KONUŞMA İLETİŞİMİNE ETKİLERİ 

                                                   

Bu tezde uçtan uca iletişim dikkate alınarak kanal hatalarının varlığında 

kodlanmış bir konuşma sinyalinin yeniden oluşturulmasında yazılım tanımlı radyonun 

performansı araştırılmaktadır. Vericide kaydedilen ses doğrusal tahmini katsayılar, perde, 

seslendirme ve kazanç parametreleri gibi konuşma parametrelerinin konuşma sinyalinden 

çıkarıldığı doğrusal tahmine dayalı kodlama algoritması kullanılarak kodlanmaktadır. Bu 

parametreler, konuşma sinyalini parametrelerinden modellemek için doğrusal kestirimci 

kod çözücüye gönderilir. Kaynak kodlayıcıdan gelen çıkış, dijital kodlanmış konuşma 

verileri, iletişim kanalına iletilmeden önce bit akışında hata koruması sağlamak için 

doğrusal blok kod algoritması kullanılarak korunacak şekilde kanal kodlayıcıya 

gönderilir. Alıcının çok yollu karışması, semboller arası karışması, zamanlama ofseti ve 

taşıyıcı ofsetini frenlemek için adaptasyona dayalı en dik iniş uyarlamalı algoritmalar 

kullanılmıştır. Yazılım alıcısını çalıştıran tüm algoritmalar teorik olarak tartışılarak 

MATLAB yazılımında uygulanmaktadır. Sembol hata oranı, ortalama kare hatası ve bit 

hata oranı açısından tüm alıcı bloğu simüle edildikten sonra elde edilen sonuçlar 

kaydedilerek kodlanmış bir konuşma sinyalini yeniden oluştururken kanal hatalarının 

yazılım alıcısını nasıl etkilediği analiz edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

Most software receivers or radios have a programmable processing unit onto 

which the received analog signal is processed before reconstruction. More specifically, 

the received signal from antenna is connected to programmable processing unit which 

processes the received signal. Receiver’s operations such as demodulation, carrier 

recovery, time recovery, sampling, correlation and equalization run on the same hardware 

component. In turn, software receiver reduces hardware components since only a 

processing unit like FPGA onto which software can run is needed [1]. Therefore, software 

receiver should be designed and implemented in a sense to model all the incoming radio 

frequency signals, and also in position to sample the incoming signal and processes it 

without degrading its strength.  

Since technology is evolving at a high speed for example from 2G,3G, 4G and 

5G. All these technological changes call for replacement of some hardware components 

at the receivers’ ends. Introduction of software receiver solutions provides full control of 

all receiver operations, in order to ease work for designers, engineers and researchers in 

testing and implement their algorithms, without permanently replacing hardware 

components in case of any change in technology. Finally, software receivers should be 

flexible, upgradable and configurable without entirely changing their hardware 

components for any change in technology or communication standards [1]. 

1.1 Background  

Over the last few years, the existence of new processors with high computation 

power made it easy for software receivers to be invented whose performance is better 

than that of fully hardware based in line with flexibility, configurability, upgradability 

and versatility. In conjunction with software receivers, the main challenge is how a signal 

in presence of channel errors can be reconstructed perfectly without degrading its strength 
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[2]. This is because, as a signal propagates from a transmitter to a receiver, it undergoes 

a lot of channel impairments which may include, flat fading, multipath interferences and 

additive noise which can be contributed by both narrow and wide band noises. 

Receivers based on field-programmable gate arrays (FPGAs) have been 

developed in the recent years, and such solution provides a good trade-off between the 

flexibility of the software receivers [2].  

In GNSS environment, the design and implementation of a software receiver 

architecture was studied [3]. Here the incoming analog signals were directly sampled by 

separate analog to digital converter device. Digital signal processing was implemented on 

FPGA which was connected to PC board to perform other software requirements. 

Successfully a simple software-based receiver was designed and implemented to provide 

an over view on GNSS evolution. It was concluded that, there was a need to design high 

performance software receivers for specific applications due to rapid technological 

changes and these software receivers will be playing a vital role in technological 

advancements. 

In software receivers environment, a digital receiver implementation using FPGA 

was studied [4]. The received signal was directly sampled by a separate ADC with 

sampling frequency of 60Mbps, the sampled signal was down converted using digital 

mixer, digital local oscillator and then decimation low pass filter. Then, ADC board was 

connected to FPGA board for digital signal processing, or all software processes of the 

received signal were running on the same board. The computer simulations were obtained 

during each stage and hardware implementation was done using FPGA board. Due to time 

varying channel and other related interferences a signal encounters as it propagates from 

transmitter to receiver, there should be algorithms to synchronize the transmitter and the 

receiver for proper sampling and demodulation of the signal.  

The operation, challenges and possible solutions of software defined radio were 

studied in [5]. Here signal processing, channel selection, modulation and demodulation 

were all done digitally through software. The received signal was first down converted 

by analog circuitry of mixers and local oscillators to obtain a lower intermediate 

frequency signal which was then sampled using analog to digital converter. The digital 

signal processing software was running on a hardware device, i.e, FPGA. It was also 

ascertained that, even though FPGA are very computationally powerful and very efficient, 
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but they are not flexible. However due to high level of flexibility and reconfiguration 

requirements while implementing software receivers, GPP is a better solution as 

compared to FPGA. This study concluded that, for processing a received signal, there 

should be a hardware device onto which software is running, and this software should be 

upgradable in case of any change in technology without prior replacement of a hardware 

device.  

In GPS environment, the applicability and implementation of software receiver 

was studied in [6]. The GPS signal was received by antenna which then down converted 

using analog circuitry to obtain a lower version of frequency signal. This work mainly 

focused on the components that should be applied while implementing the software 

receiver to process satellite signals. The signal was sampled using analog digital converter 

and then the samples were processed using Matlab. In conclusion, GPS software receiver 

should be implemented to allow re-programmability and flexibility such that the receiver 

can be able to process more navigation signals. 

Software receivers are of great importance due to the fact that they are flexible, 

and their flexibility justifies the fact that they are used in many applications which include 

military, satellite, radar and also modern cellular technology. Some of the advantages are 

studied in [5][1]. 

 Interoperability. A software receiver can be configured to accommodate all 

wireless communication standards. Software receivers can also be configured to 

receive signals at different frequencies. 

 Numerous functions. The flexibility of software receiver architecture allows 

multiple communications standards. Therefore, it can be easy to introduce in other 

applications which can be handled by receivers which include blue tooth, GPS 

application and other applications. 

 Software receivers are easy to be manufactured. Since software receivers can be 

upgraded by only code updating without necessary replacement of hardware 

components, it reduces the complexity in designing.  

 Software receivers support cognitive radio technology. In case of un-utilized or 

under-utilized spectrum, cognitive radios sense the presence of that spectrum 

which can be used by a secondary user for transmission due to the absence of 

primary users. Therefore, if the primary user is not currently using the spectrum, 
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software receiver can utilize it until when the primary user needs it again, this 

improves on the optimality of the available inadequate spectrum. 

 High level of upgradability. In case of new technology or any change in standards, 

software receivers can be configured by coding updating to suit the ongoing 

technology without permanently replacing the hardware components. 

 Since software receivers typically have less analog components, this translates 

into a reduction in cost of materials, size, power consumption, design time and 

weight.  

However, there are some challenges or limitations to applications of software 

receiver which include; 

 Security problems. A signal undergoes a lot of interferences and security concerns 

as propagates from transmitter to receiver. Since software is only configured to 

upgrade receiver, this software may have security threats which can corrupt the 

whole receiver’s architecture.  

 Complexity in writing the software for certain systems. This may come up with 

code writing which may consume a lot of time to finally come with a genuine and 

secure code.  

 High level of sampling or high-speed ADCs. Since direct sampling of incoming 

RF signal can be fundamental with some software receiver, sampling may be very 

difficult to implement if very high frequency signals are directly sampled. 

In conclusion, it can be conceived from the previous review that tremendous work has 

been done on software defined radios, but most studies are based on non-real signals with 

an assumption that these signals are already sampled and readily available at the receiver. 

In this thesis therefore, the focus is directed towards investigating the effects of 

channel errors in reconstruction of a coded speech signal putting into account end to end 

communication. The attention is put on encoding and decoding human voice using linear 

predictive coding algorithm, and also designing and simulating the software receiver, 

where some of its algorithms are derived using steepest descent adaptive algorithm. 

Hence, the main algorithms that run the software receiver are based on adaption and 

implemented in Matlab software. The results obtained after simulating transmitter-

receiver block are analyzed to assert how channel errors affect the reconstruction of a 

speech signal from its parameters in software defined radio environment. 
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1.2 Significance of the research  

This research can be a source of literature to the overall research that is being 

undertaken today, due to the continuous need for new technologies with greater capacity, 

reduced cost and size as well as improved reliability that is needed to be employed in 

communication systems and networks like 5G, in order to facilitate reliable 

communications. This is so because the research gives; 

 An in-depth study of different algorithms used software receiver radio. 

 Theory, simulation, and implementation of software defined receiver. 

 A comprehensive study on how Software defined radio can be affected by channel 

errors while reconstructing a speech signal from its parameters.  

 Nonetheless, it will also widen and enrich the researcher’s knowledge as far as 

end to end software receiver’s communication is concerned thereby promoting the 

feel for innovativeness and creativity. 

1.3 Objectives of the research  

The main objective of this thesis was to investigate the effects of channel errors 

on coded speech signal communication in software defined radio. Moreover, the specific 

objectives of this thesis include the following. 

• To study designing approach of software defined radio. 

• To determine algorithms in encoding and also in synchronization. 

• To model and simulate software defined radio architecture. 

• To evaluate effects of errors on performance of SDR in speech reconstruction. 

1.4 Thesis Structure 

The thesis is structured in six chapters as explained below;                                       
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Chapter 1: It gives an introduction, background information, significance of this study 

as well as research objectives are given in this chapter. Nonetheless, previous research 

done on software receivers was also reviewed.  

Chapter 2: It expounds on linear predictive coding and how different modules of the 

algorithm can implemented in Matlab software.  

Chapter 3: It expounds on end to end communication in software defined radio 

environment.  

Chapter 4: It gives a detailed account on the system simulation of software defined radio 

using Matlab software. 

Chapter 5: It discusses findings and analyzes results 

Chapter 6: It gives the concluding remarks about this study and also recommendation 

for future study 
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CHAPTER 2 

LINEAR PREDICTIVE CODING  

In this chapter, linear predictive coding algorithm was discussed, taking into 

account the theoretical and Matlab implementation of its algorithms. The MATLAB 

software program was used to practically implement and illustrate the main components 

of the algorithm. 

2.1 Human Speech Production 

All over the world people are speaking different languages, interestingly you may 

find in a single country people are speaking different languages. However the way how 

sound is produced in humans is the same irrespective of their differences in languages. 

For sound production in humans, air is pushed out of the lungs, passes through the vocal 

tract and finally pushed out of mouth to produce sound as explained in [7]. Therefore, 

lungs is where sound originates from, in other words it is the source of sound.  

2.2 Speech Coding System 

Speech coding is the way of representing speech (audio) signal with fewer number 

of bits without degrading its quality [8]. From Figure 2.1, the analog speech signal is 

filtered by a filter, which is then converted into a discrete signal by a sampler, after 

uniform quantization, the discrete signal is converted into a digital signal by analog digital 

converter. The output signal from analog to converter is called a digital speech signal [7].  

Most of speech coding algorithms were designed to operate within the frequency 

range between 300 Hz and 3400 Hz [7]. According to Nyquist sampling theorem, 

“sampling frequency should be greater than or equal to twice the maximum frequency to 

avoid aliasing” [7]. This explains why, a sampling rate of 8 kHz is usually chosen for 

speech signals. For example, let us consider a speech signal being sampled at a rate of 
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8000 Hz, if each sample has got 8 bits, the bit-rate at the input of source encoder will be 

equalling to 64 kbps. This bit-rate of 64 kbps is reduced by the source encoder (speech 

coding algorithm), hence the speech signal at the output of source encoder is represented 

by a fewer number of bits [10]. 

 
Figure 2.1: Speech coded communication system [7] 

 Speech coding algorithms effectively compress speech signals into a fewer number of 

bits at a reasonable quality [7]. There are a number of algorithms upon which speech 

coding can be done. These algorithms are like computational methods that take in input 

speech signals at a high bit rate, and produce output signals at a lower bit rate level. Some 

of speech coding algorithms include [8][13]; 

 Linear predictive coding  

 Waveform coding 

 Code excited linear predictive coding. 

Speech coding algorithms are classified as lossy and lossless coding algorithms 

depending on the quality of a produced signal at the output of the decoder. For lossless 

speech coding algorithms, the processed speech signal at the output of the decoder has 

the quality which is almost the same as the original input speech signal. However, for 

lossy coding techniques, the quality of compressed speech signal reduces at the out of the 

decoder. For this thesis, linear predictive coding algorithm was taken into account. 
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2.3 Linear predictive coding algorithm 

Linear predictive coding is one of the earliest coding algorithms which operates 

at a very low bit rate and is widely used in audio signal processing. It was first developed 

to ensure security in communication for military applications by the United States 

Department of Defence in federal standard 1015, published in 1984 [7][10][11].  

Linear predictive coding is used as a compression algorithm at a source encoder, 

the output of the encoder has a bit rate of 2.4 kbps [7][9]. The output of linear predictive 

encoder has an output rate of 2.4 kbps which is approximately 27 times less than the input 

bit rate of 64 kbps with an assumption that the bit rate at the encoder’s input is 64 kbps. 

The quality of reconstructed speech is reduced at the output decoder hence linear 

predictive coding is a lossy compression technique. Linear predictive coding algorithm is 

influenced by a model shown in Figure 2.2, to produce speech signals [7]. This model 

represents basic properties of speech signals and also represents a mechanism of sound 

production in humans. 

 
Figure 2.2: Model of speech generation mechanism [7][22]. 

From Figure 2.2, a synthesis filter represents the role played by the vocal tract, glottal 

flow and radiation of the lips in human sound production. The input (excitation signal) to 

this filter can be taken as random noise (white noise) or pulse train. Since a speech signal 

can be voiced or unvoiced, the type of excitation depends on which type of speech signal 

needed. For voiced speech signal, periodic sequence of impulses at frequency 𝑓 can be 

used as a model for excitation. Note that, the inverse of frequency 𝑓 is called pitch period. 

For unvoiced speech signal, white noise or random noise can be used as a model for 
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excitation as explained in [13][22]. Therefore, the purpose of the switch is to select the 

desired input depending on the voiced and unvoiced nature of the signal. Finally, the goal 

of the gain parameter is to control the energy level of the output.  

Speech signals constantly change over time, hence it is necessary to be divided 

into frames using a small time duration. If a small time duration is chosen, speech signal 

parameters during that duration essentially remain constant [7]. In each and every frame, 

parameters of the model are specified from the speech samples. These LPC parameters 

extracted from the signal frame(s) consists of, gain, filter coefficients, voicing and pitch 

period parameters. The gain parameters detail the energy level of the frame, filter 

coefficients are related with the response of synthesis filter, voicing (voicing detector) 

indicate if the speech signal is voiced or unvoiced and finally pitch period is related with 

time length between consecutive periodic sequence of impulses [7]. These parameters are 

explained as follows; 

2.3.1 Filter coefficients 

A vocal tract model shown in Figure 2.2, can be modelled as an all pole filter 

having a difference equation shown in Eq. (2.1) [22]. 

𝑠[𝑛] =∑𝑎𝑖𝑠[𝑛 − 𝑖] + 𝐺𝑥[𝑛],                                   (2.1)

𝑀

𝑖=1

 

given that 𝑥[𝑛] is excitation (white noise or impulse), 𝐺 is the gain parameter, {𝑎𝑖} are 

filter coefficients and 𝑀 is the number of poles of the filter.  

Between pitch pulses, 𝐺𝑥[𝑛] is zero [7]. Therefore, from Eq. (2.1), 𝑠[𝑛] can be anticipated 

as linear combination of previous samples hence linear prediction. However, if 𝐺𝑥[𝑛] is 

included, then 𝑠[𝑛] can be predicted approximately [7]. Linear prediction is used to 

determine filter coefficients {𝑎𝑖} at the encoder. The filter coefficients can also be taken 

as linear predicted coefficients (LPCs). LPCs determination is also very important since 

they are used to reconstruct a synthesis filter [12]. 
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2.3.1.1 Linear prediction  

          In most cases, speech coding algorithms rely on linear prediction while analysing 

speech signals [13]. The most important point to note about linear prediction is that, a 

current speech sample can be obtained as a linear combination of the past speech samples, 

i.e, the incoming sample can be predicted by the previous obtained samples hence the 

name predictive [14]. Linear prediction can also be seen as a procedure of removing 

redundancy from the speech signal where repeated information in a signal is removed. By 

removing redundancy from the information signal, the number of bits to carry the signal 

is reduced hence compression attained [7].  

Linear prediction can be taken as a system identification problem by estimating 

parameters of Auto Regressive (AR) model from the signal itself which is shown in the 

Figure 2.3. 

 
Figure 2.3: Linear prediction system identification [7]. 

The signal 𝑥[𝑛] also known as white noise is filtered by AR process synthesizer to give 

AR signal 𝑠[𝑛]. The linear predictor predicts signal 𝑠[𝑛] based on past 𝑀 samples and 

predicted signal �̂�[𝑛] is achieved as shown in Eq. (2.2) [7]. 

�̂�[𝑛] = −∑𝑎𝑖𝑠[𝑛 − 𝑖],

𝑀

𝑖=1

                                                  (2.2)   

where 𝑀 is a constant which is well known as prediction order and 𝑎𝑖 are linear predicted 

coefficients which are estimated by AR parameters. Therefore, a current predicted signal 

is approximated as a linear combination of the past signal samples hence the linear 

prediction. The difference between the actual and predicted signal sample gives 

prediction error 𝑒[𝑛] as shown in Eq. (2.3). 
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𝑒[𝑛] = 𝑠[𝑛] − �̂�[𝑛]                                            (2.3)     

The mean square error gives a good approximation of AR parameters �̂�𝑖 from signal 

𝑠[𝑛] and the approximated coefficients are known as linear predicted coefficients. 

Minimizing the mean square error Eq. (2.4) over a short time provides a way of 

determining LPCs [7]. 

𝐽 = 𝐸{𝑒2[𝑛]} = 𝐸 {(𝑠[𝑛] +∑𝑎𝑖𝑠[𝑛 − 𝑖]

𝑀

𝑖=1

)

2

}                    (2.4) 

One way of obtaining optimal values of LPCs is to find the derivative of Eq. (2.4), and 

equate it to zero [15].  Therefore, the derivative of 𝐽 with respect to 𝑎𝑖 is shown in                

Eq. (2.5), and the end result is equalling to zero.  

𝜕𝐽

𝜕𝑎𝑘
= 2𝐸 {(𝑠[𝑛] +∑𝑎𝑖𝑠[𝑛 − 𝑖]

𝑀

𝑖=1

) 𝑠[𝑛 − 𝑘]} = 0,               (2.5) 

for 𝑘 = 1,2, …… . .𝑀. If Eq. (2.5) is satisfied, then 𝑎𝑖 = �̂�𝑖, which means that AR 

parameters �̂�𝑖 are equivalent to LPCs 𝑎𝑖. 

Eq. (2.5) is re-arranged to give 

𝐸{𝑠[𝑛]𝑠[𝑛 − 𝑘]} +∑𝑎𝑖𝐸{𝑠[𝑛 − 𝑖]𝑠[𝑛 − 𝑘]}

𝑀

𝑖=1

= 0              (2.6) 

∑𝑎𝑖𝑅𝑠[𝑖 − 𝑘] = −𝑅𝑠[𝑘],

𝑀

𝑖=1

                                                         (2.7) 

for 𝑘 = 1,2,3…… .𝑀, where, 

𝑅𝑠[𝑖 − 𝑘] = 𝐸{𝑠[𝑛 − 𝑖]𝑠[𝑛 − 𝑘]},                                               (2.8) 

𝑅𝑠[𝑘] = 𝐸{𝑠[𝑛]𝑠[𝑛 − 𝑘]}.                                                             (2.9) 

The linear predicted coefficients 𝑎𝑖 defined in Eq. (2.7) are defined in terms of 

autocorrelation sequences  Rs[𝑙] of the signal 𝑠[𝑛]. In addition, Eq. (2.7) can be expressed 

as, 

𝑅𝑠𝑎 = −𝑟𝑠,                                                                          (2.10) 

given that, 

𝑅𝑠 = [
𝑅𝑠[0]       ⋯ 𝑅𝑠[𝑀 − 1]

⋮ ⋱ ⋮
𝑅𝑠[𝑀 − 1] ⋯     𝑅𝑠[0]

] ,                            (2.11) 

𝑎 = [𝑎1  𝑎2  𝑎3…… . 𝑎𝑀]
𝑇 ,                                               (2.12) 
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𝑟𝑠 = [𝑅𝑠[1]  𝑅𝑠[2]  𝑅𝑠[3]……𝑅𝑠[𝑀]]
𝑇
.                           (2.13) 

The linear predictive coefficients in column matrix (𝑎) can be obtained by obtaining the 

inverse of matrix 𝑅𝑠 as shown in Eq. (2.14). 

𝑎 = −𝑅𝑠
−1𝑟𝑠                                                                                                            (2.14) 

Assuming the autocorrelation values of signal 𝑠[𝑛] are given from 𝑙 = 0  to 𝑀, then LPCs 

can be found from Eq. (2.14). 

2.3.1.2 The Levinson–Durbin Algorithm 

The Levinson Durbin algorithm’s importance lies in its computational efficiency 

to overcome the computational complexity of calculating LPCs using inverse of matrix 

𝑅𝑠. However, from Eq. (2.14), LPCs in column matrix 𝑎 can be obtained by matrix 

inversion even though it has a high computational complexity. Therefore, autocorrelation 

sequences are the inputs to Levinson Durbin algorithm, thereby computing LPCs 

effectively and efficiently  [7].  

This algorithm defines the solution up to 𝑀𝑡ℎ prediction order from that of 

(𝑀 − 1)𝑡ℎ prediction order and it is an iterative method. Therefore, the solution of first 

prediction is first found which can be used to compute the first order predictor and the 

iteration continues until the final solution is determined. The autocorrelation sequences 

𝑅𝑠[𝑙] are used as input to Levinson Durbin algorithm and output being reflection 

coefficients (RCs) and linear predictive coefficients (LPCs).  

The Levinson Durbin algorithm is described as follows [7]. 

 Initialize 𝑙 = 0, and set  𝐽0 = 𝑅[0], where 𝐽 is the minimum mean squared 

prediction error. 

 It is a repetitive procedure for 𝑙 = 1,2, …… . . 𝑀. 

1. The 𝑙𝑡ℎ reflection coefficients (RCs) are computed as 

𝑘𝑙 =
1

𝐽𝑙−1
(𝑅[𝑙] +∑a𝑖

(𝑙−1) 𝑅[𝑙 − 𝑖]

𝑙−1

𝑖=1

).                       (2.15) 

2. The 𝑙𝑡ℎ prediction order LPCs 𝑎𝑖 are calculated 

𝑎𝑙
(𝑙) = −𝑘𝑙,                                                                            (2.16)  

𝑎𝑖
(𝑙) = 𝑎𝑖

(𝑙−1) − 𝑘𝑙𝑎𝑙−𝑖
(𝑙−1);   𝑖 = 1,2, … . 𝑙 − 1.                     (2.17) 
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The iteration ends when 𝑙 = 𝑀  where 𝑀 is the prediction order. 

3. The minimum mean squared prediction error associated with 𝑙𝑡ℎ prediction order 

is computed as  

𝐽𝑙 = 𝐽𝑙−1(1 − 𝑘𝑙
2).                                                  (2.18) 

Set 𝑙 ← 𝑙 + 1; then return to 1 

Then the final LPCs are  

𝑎𝑖 = 𝑎𝑖
(𝑀)
; 𝑖 = 1,2,3, …… .𝑀.                                   (2.19) 

        In Matlab software, LPCs (filter coefficients) were extracted from a speech signal 

following the block diagram shown in Figure 2.4 below. 

 
Figure 2.4: Block diagram of filter coefficient implementation 

2.3.2 Input signal 

The input signal was the author’s voice which was recorded by calling Matlab 

built in function 𝑎𝑢𝑑𝑖𝑜𝑟𝑒𝑐𝑜𝑑𝑒𝑟 and passed three arguments which included sampling 

rate (frequency), sample size, and number of channels. As explained in [7], speech coding 

algorithm are mostly designed to operate within the range of 300 Hz and 3400 Hz. 

Therefore, following Nyquist sampling criteria, a sampling rate of 8000 Hz was chosen 

to avoid aliasing. The choice for the number of bits per sample depends on the installed 

hardware, a Matlab default value of 8 bits per sample was used and finally the number of 

channels chosen was one since mono sound signal was considered for this case. The 

duration taken for recording was 10 seconds which was implemented in Matlab by calling 

a Matlab built in function 𝑟𝑒𝑐𝑜𝑟𝑑𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔, in which the created object and the duration 

of 10 seconds were passed. To have the recorded data in terms of numerical array, a 
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Matlab built-in function 𝑔𝑒𝑡𝑎𝑢𝑑𝑖𝑜𝑑𝑎𝑡𝑎 was used which passed the recorded data and the 

data type (𝑢𝑖𝑛𝑡8).  Once the numerical array is obtained, the audio signal was saved for 

further processing by calling a Matlab built-in function 𝑎𝑢𝑑𝑖𝑜𝑤𝑟𝑖𝑡𝑒 which passed the 

name representing the recorded audio signal, the recorded object and the sampling rate 

used. Since the time taken to record the voice was 10 seconds at the sampling frequency 

of 8000 Hz, a total of 80000 samples were obtained each having 8 bits. The time plot and 

magnitude spectrum of the recorded audio signal is shown in Figure 2.5 and Figure 2.6 

respectively. 

 
Figure 2.5: Time plot of original speech signal 

 
Figure 2.6: Frequency spectrum of original speech signal 

2.3.3 Signal Framing 

  Speech signals constantly change over time, hence it is necessary to be divided 

into frames using a small time duration. If a small time duration is chosen, speech signal 

parameters during that duration are assumed to be stationary (constant) [7]. Using 30 ms 

frame duration, an original speech signal was segmented into frames each having 

approximately 240 samples.  
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2.3.4 Pre-emphasis and De-emphasis Filtering 

High frequency components at a very low amplitudes impose themselves in 

speech signals. However, these components contain information which is vital in 

understanding the speech signal. The pre-emphasis filter passes high frequency 

components, thereby boosting their amplitudes.  

Let us assume a signal being filtered by a filter of impulse response; 

ℎ[𝑛] = 𝛿[𝑛] − 𝑎𝛿[𝑛 − 1],                                       (2.20) 

given that its frequency response is 

𝐻(𝑒𝑗𝑤) = 1 − 𝑎𝑒−𝑗𝑤,                                              (2.21) 

and its magnitude response is 

|𝐻(𝑒𝑗𝑤)| = √1 + 𝑎2 − 2acos𝑤,                            (2.22) 

given that 

𝑒−𝑗𝑤 = cos𝑤 − 𝑗sin𝑤.                                              (2.23) 

Eq. (2.22) is then further expressed in decibels (dB) as shown in Eq. (2.24) and the value 

of filter coefficient 𝑎 is in the range of 0.9 ≤ 𝑎 ≤ 1 [7][16]. 

|𝐻(𝑒𝑗𝑤)|
dB
= 20 log10√1 + 𝑎2 − 2𝑎cos𝑤.               (2.24) 

The magnitude response of a pre-emphasis filter was plotted in Matlab software at 

different values of filter coefficients as shown in Figure 2.7. However, the magnitude 

response could also be obtained in Matlab software by calling a Matlab built-in command 

𝑓𝑟𝑒𝑞𝑧.   

 
Figure 2.7: Frequency response of filter at difference filter coefficients 
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The value of 0.97 is taken as the pre-emphasis filter coefficient 𝑎. The speech signal is 

pre-emphasis filtered and a boost in high frequency components is seen as shown in 

Figure 2.8 below. 

 
Figure 2.8: Frequency spectrum of speech signal after pre-emphasis filtering 

The high frequency components are boosted during pre-emphasis filtering. Therefore, de-

emphasis filtering which is the opposite with respect to pre-emphasis is done at the 

decoder to attenuate these components. De-emphasis is mainly done to maintain the 

spectral shape of the reconstructed speech as that of original speech [7]. The frequency 

response 𝐻(𝑒𝑗𝑤) of de-emphasis filter is expressed in Eq. (2.25). Therefore, the value of 

the filter coefficient (0.97) used at the encoder should be the same value used when 

implementing de-emphasis filtering at the decoder [7]. 

𝐻(𝑒𝑗𝑤) =
1

1 − a𝑒−𝑗𝑤
                                      (2.25) 

2.3.5 Windowing  

Dividing the original speech signal into frames, caused the borders of the frames 

have some discontinuities. Hamming window was applied in time domain to reduce this 

effect such that, speech signal statistical parameters are not negatively affected [13].         

Figure 2.9 shows the time plot of a signal frame before and after applying Hamming 

window. Hamming windowing is implemented in Matlab software by calling a Matlab 

built-in function ℎ𝑎𝑚𝑚𝑖𝑛𝑔.  After applying a Hamming window (time plot is shown in 

Figure 2.11) to the signal frame, the middle portion was the same but amplitudes at the 

ends shrunk in larger amounts and no sharp changes at the ends of the signal frame, and 

also the signal frame after windowing was seen to be smooth for further analysis.  



  

   18 

 

However, when Hamming window was applied in frequency domain, there were also 

changes in spectral domain.  Figure 2.10 shows magnitude spectrum of a signal before 

and after applying a Hamming window. The red plot shows the spectrum after applying 

the window and the blue plot indicates the spectrum of a signal frame without windowing. 

The frequency components with higher frequency components goes down due to sharp 

truncation of hamming window. Therefore it seems like high frequency components are 

present in the signal frame but in real are not, hence by applying Hamming window, this 

effect was reduced. The Hamming window is defined in Eq. (2.26) as explained in [7]. 

𝑤[𝑛] = { 0.56 − 0.46cos (
2𝜋𝑛

𝑀 − 1
) ,            0 ≤ 𝑛 ≤ 𝑀 − 1

0 ,                                                            otherwise        
} ,                (2.26) 

where 𝑀 is the length of the window. 

 
Figure 2.9: Time plot of original and windowed frame 

 
Figure 2.10: Magnitude spectrum of original and windowed frame 
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Figure 2.11: Hamming window time plot 

2.3.6 Autocorrelation Analysis 

Calculation of autocorrelation is a crucial step while estimating linear predictive 

coefficients (LPCs). For each frame, the prediction order (𝑀 = 10) was selected and 

autocorrelation sequences 𝑅𝑠[1], ……… . , 𝑅𝑠[10] were required for each and every frame 

[7] [17]. A total of 10 autocorrelation sequences were extracted from a single signal frame 

by calling a Matlab built-in function 𝑥𝑐𝑜𝑟𝑟 which takes in a signal frame as its input 

argument and returned auto correlation sequences as its output. The values of 

autocorrelation sequences obtained were compared with those obtained when expression 

in Eq. (2.7) was implemented in Matlab software. The same values of autocorrelation 

sequences were obtained in both cases.  

2.3.7 The Levinson–Durbin Algorithm analysis 

The autocorrelation analysis was done on a signal frame and linear predictive 

coefficients (𝑎𝑖) were computed with prediction order (𝑀 = 10) using Levinson Durbin 

recursive algorithm and Matlab built-in commands. Linear predicted coefficients were 

obtained in Matlab software for a single frame in two ways. The first way was completed 

by calling a built-in Matlab function 𝑙𝑝𝑐 which takes in a signal frame and prediction 

order and finds the coefficients. A total of 10 linear predicted 

coefficients (𝑎1, 𝑎2……… . 𝑎10) were extracted to represent a signal frame, and these 



  

   20 

 

coefficients were the filter coefficients used to come up with the estimated signal. Finally 

LPCs were also computed using Levinson Durbin recursive algorithm which takes in 

autocorrelation sequences as its inputs. Expressions explained from Eq. (2.15) up to Eq. 

(2.19) are implemented in Matlab software to obtain LPCs. Therefore, instead of 

transmitting the whole signal samples, the linear predictive coefficients were transmitted 

to the decoder which act as input to synthesis filter block.  

2.3.8 Pitch estimation 

Fundamental frequency or pitch period of the voiced speech signal is a very vital 

parameter in speech analysis and synthesis. Voicing originates from lungs when 

movements of vocal cords periodically interrupt airflow. Note that, fundamental period 

or pitch period refers to the time between consecutive vocal cord openings. Theoretically, 

fundamental frequency for male is the range of 50 and 250 Hz while for that of female is 

between the range of 120 and 500 Hz [7]. However, the pitch period for men is between 

4 to 20 ms and that for women is between 2 to 8 ms. For linear prediction, a current 

sample is obtained as a linear combination of previous speech samples. Therefore, it can 

be possible to determine the pitch period in which the signal repeats itself. However, 

meaningful pitch estimation results are obtained from voiced speech signals otherwise 

meaningless [7]. There are various methods or algorithms that can be used to estimate 

pitch period. Autocorrelation technique as a method of estimating pitch period is 

discussed as follows; 

2.3.8.1 Autocorrelation Method of Pitch Estimation 

Consider a signal 𝑠[𝑛], where 𝑛 is the time index. Let us also consider a frame 

that ends at time instant 𝑥 and the length of the frame taken as 𝑁. The autocorrelation 

value can be obtained as shown in Eq. (2.27) [7]. 

𝑅[𝑙, 𝑥] = ∑ 𝑠[𝑛]𝑠[𝑛 − 𝑙]

𝑥

𝑛=𝑥−𝑁+1

                                      (2.27) 

Therefore, the autocorrelation values shows the relationship between the frame 𝑠[𝑛],                      

 𝑛 = 𝑥 − 𝑁 + 1 to 𝑥 with respect to a time shifted frame 𝑠[𝑛 − 𝑙], given that 𝑙 is the time 
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lag. The lag range should be chosen such that it covers a wide range of pitch period values. 

For example, for 𝑙=20 to 147 (2.5 to 18.3 ms) the possible frequency range values are in 

range between 54.4 to 400 Hz at a sampling rate of 8000 Hz [7]. Note that, while 

calculating autocorrelation values for entire lag, a lag associated with highest 

autocorrelation can be found. The highest autocorrelation is an estimate for pitch period. 

In otherwise, at a point when autocorrelation is maximum, its lag is equivalent to pitch 

period [7]. 

 In Matlab software [9], pitch period of a signal frame was estimated considering 

a man’s voice recorded at a sampling frequency 𝑓𝑠 = 8000 Hz. As illustrated in [7], the 

pitch period for a man’s voice frame is between 4 ms to 20 ms. The points in 

4 ms and 20 ms were estimated as (𝑝𝑚𝑖𝑛 = 4 × 8000) and (𝑝𝑚𝑎𝑥 = 20 × 8000) 

respectively. A Matlab built-in function 𝑥𝑐𝑜𝑟𝑟 was called and passed a signal frame as 

its input and returned autocorrelation sequences 𝑅. A Matlab function 𝑚𝑎𝑥  was called 

and passed 𝑅 and returned the maximum peak of 𝑅 and its midpoint 𝑅𝑚𝑖𝑑 . The pitch 

period range 𝑝𝑟𝑎𝑛𝑔𝑒 between (𝑝𝑚𝑖𝑛 + 𝑅𝑚𝑖𝑑) to (𝑝𝑚𝑎𝑥 + 𝑅𝑚𝑖𝑑) was chosen to cover a 

wide range of pitch period values. A Matlab built in function 𝑚𝑎𝑥 was called which 

passed 𝑝𝑟𝑎𝑛𝑔𝑒 and its output was added to 𝑝𝑚𝑖𝑛 to end up with pitch period which was 

sent to the decoder.  

              However, pitch period estimated values were also used to classify if the signal 

was voiced or unvoiced depending on the value of threshold taken. A threshold value was 

computed from the pitch period values estimated and the frame below it was taken to be 

unvoiced otherwise voiced as shown in Figure 2.12, where voiced frames are of higher 

magnitudes as compared to unvoiced ones. 
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Figure 2.12: Voicing estimation based on pitch period 

2.3.9 Voicing detector 

Speech frames can either be voiced or unvoiced. This process is completed by a 

voicing detector. Classifying a speech frame as being voiced or unvoiced is very 

important in implementing linear predictive coding algorithm. This is because, if the 

signal is misclassified, the quality of synthetic speech can be negatively affected. The 

voicing detector depends on some measurements to accomplish this task. These 

measurements include pitch period, energy (magnitude sum function), zero crossing rate 

and prediction gain as explained in [7]. In Matlab software [9], magnitude sum function, 

pitch period and zero crossing rate, were implemented and used as measurements by a 

voicing detector to classify the frames. As shown below in Figure 2.13, if the fame is 

equal to one, it is taken as voiced otherwise unvoiced and this voicing is sent to the 

decoder.  

 
Figure 2.13: Classifying voiced and unvoiced frame 
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2.3.9.1 Energy 

Energy is one of most simple indicator of voiced and unvoiced speech signal. This 

is because, voiced speech signals are having higher energy than unvoiced ones. Consider 

a frame of length 𝑁 ending at time instant 𝑥, the energy is given by Eq. (2.28) [7]. 

𝐸[𝑥] = ∑ 𝑠2[𝑛]

𝑥

𝑛=𝑥−𝑁+1

                                         (2.28) 

Precisely, magnitude sum function can be taken as shown in Eq. (2.29) and it serves the 

same function as Eq. (2.28) [7]. 

𝑀𝑆𝐹[𝑥] = ∑ |𝑠[𝑛]|                                  

𝑥

𝑛=𝑥−𝑁+1

(2.29) 

The voiced speech signal relatively has a low pitch frequency values, hence its energy is 

higher in low frequency region [7]. Therefore, a voiced signal can be distinguished from 

unvoiced by lowpass filter a speech signal prior to calculated energy. Thereby taking the 

energy of low frequency components into consideration. In Matlab implementation, since 

energy of a voiced signal is concentrated in low frequency components. This was 

completed by called a Matlab built in function 𝑏𝑢𝑡𝑡𝑒𝑟 which passed a normalised value 

of cut-off frequency, filter order and filter type (𝑙𝑜𝑤) and the returned transfer function 

coefficients of a low pass Butterworth filter. The outputs of 𝑏𝑢𝑡𝑡𝑒𝑟 command and a signal 

frame were used as input to 𝑓𝑖𝑙𝑡𝑒𝑟 command such that a filtered signal 𝑦 was obtained. 

Finally, magnitude sum function was obtained by calling Matlab commands 𝑠𝑢𝑚 and 

𝑎𝑏𝑠 which took 𝑦 as its input. From magnitude sum function obtained, a threshold value 

was computed in Matlab software and any frame below it was taken to be unvoiced 

otherwise voiced as shown Figure 2.14, where the voiced frames are of higher magnitude 

values. 
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Figure 2.14: Voicing estimation based on MSF 

2.3.9.2 Zero Crossing Rate 

Consider a frame ending at time instant 𝑥, the zeros crossing rate is completed 

by Eq. (2.30) [7]. 

𝑍[𝑥] =
1

2
∑ |sgn(𝑠[𝑛]) − sgn(𝑠[𝑛 − 1])|,                 (2.30)

𝑥

𝑛=𝑥−𝑁+1

 

where sgn(.) is a sign function which returns ±1 depending on the sign of the operand. In 

situations where consecutive samples are having signs changes, zeros crossing occurs. 

The presence of pitch frequency component (low frequency nature) in voiced speech 

makes it to have a lower zero crossing rate in comparison to unvoiced signal.  The noise 

like appearance of unvoiced signal makes it to have a higher zero crossing rate since large 

portion of its energy is located in high frequency region [7]. In Matlab software [9], Eq. 

(2.30) was implemented by calling Matlab built-in function 𝑠𝑖𝑔𝑛 and 𝑎𝑏𝑠 which passed 

signal frame and was computed over a range from one up to length of input signal frame. 

A threshold value is set from computed zero crossing values, and a frame which is below 

it is classified as voiced otherwise unvoiced. 

2.3.9.3 Prediction Gain 

The ratio of energy in the signal to energy in prediction error signal is referred to 

as prediction gain as shown in Eq. (2.31) [7]. 

𝑃𝐺[𝑥] = 10 log10 (
∑ 𝑠2[𝑛]𝑥
𝑛=𝑥−𝑁+1

∑ 𝑒2[𝑛]𝑥
𝑛=𝑥−𝑁+1

)                        (2.31) 
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Voiced frames attain more prediction gain than the unvoiced due to high correlation 

between or among samples hence they are more predictable. Due to random nature of 

unvoiced signal, they are less predictable. However, if the frames are of very low 

amplitudes, prediction gain is not considered to classify the speech signal as voiced or 

unvoiced. This is done to avoid numerical errors or problems, thus a speech signal can be 

classified as unvoiced by considering the energy level [7].  

Prediction gain is also a very important tool in determining the optimal value of 

prediction order which should be used while estimating LPCs for a signal frame. In 

Matlab software, LPCs were extracted from a speech frame using different values of 

prediction order 𝑀 in the range between 1 to 100. The extracted LPCs were used to model 

prediction error filter which filters the signal frame to end up with estimated frame. The 

difference between signal frame and estimated frame gives prediction error signal which 

is illustrated in Figure 2.15. Finally, Eq. (2.31) was implemented in Matlab software and 

a plot of prediction gain against prediction order was obtained as shown in Figure 2.16 

[9].  

 
Figure 2.15: Prediction error signal 

From Figure 2.16, prediction gain increases from one up to ten, and after ten there is no 

any further increase. Therefore, the optimal value of prediction order is ten for estimating 

this signal frame. 

 
Figure 2.16: A graph of prediction gain against prediction order 
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2.3.10    Structure of Linear Predictive Coding Algorithm 

The linear predictive coding algorithm that was used as an algorithm in speech 

production is shown below in Figure 2.17 and Figure 2.18 as illustrated in [7]. The role 

of an encoder was to extract parameters from the speech signal which were then sent to 

the decoder’s input. The decoder used these parameters sent by encoder in speech 

production model to synthesize speech.  

2.3.10.1 LPC Encoder 

The LPC encoder is shown in Figure 2.17, where human voice or speech is used 

at the input. Therefore, instead of transmitting the whole speech samples, speech 

parameters are extracted from speech signal and then transmitted to the decoder. For 

linear predictive analysis, speech signals constantly change over time, hence it is 

necessary to be segmented into frames using a small time duration, i.e, 

between 20 ms to 30 ms [7]. A segmented frame can also be windowed to smoothen 

discontinuous changes caused by signal framing [13]. A pre-emphasis filter is used to 

pass high frequency components thereby adjusting the spectrum of input signal. Extracted 

LPCs from the speech frame are used to model prediction error filter which filters the pre-

emphasized speech resulting into a prediction error signal. If the frame is voiced, 

prediction error signal is used to estimate pitch period. Therefore, by using a prediction 

error signal as the input to pitch estimation algorithm (autocorrelation method explained 

above), it results into a more accurate estimate of pitch period [7]. The LPC index, power 

index, pitch period index and voicing, are joined or packed together to form one bit stream 

and then sent to the decoder.  

Consider a prediction error signal 𝑒[𝑛], given that it is in the range of 0 and  𝑁 − 1, where 

𝑁 is the length of the frame. The power of unvoiced frame is given by Eq. (2.32) [7]. 

𝑃 =
1

𝑁
∑ 𝑒2[𝑛].                                                      (2.32)

𝑁−1

𝑛=0

 

However, the power of voiced frame is obtained from integer number of pitch periods as 

shown in Eq. (2.33) [7]. 
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𝑃 =
1

⌊𝑁/𝑇⌋𝑇
∑ 𝑒2[𝑛],                                    (2.33)

⌊𝑁/𝑇⌋𝑇−1

𝑛=0

 

where, ⌊. ⌋ is a floor function and an assumption is made that 𝑁 > 𝑇 given that 𝑇 is pitch 

period.  

 
Figure 2.17: LPC encoder block diagram [7][13] 

In Matlab software, linear predictive coefficients, pitch period, voicing and gain 

parameters were extracted from an audio signal recorded and transmitted to the decoder. 

2.3.10.2 LPC Decoder 

The bit-stream sent from the LPC encoder is used as input to LPC decoder. The 

LPC decoder is basically a speech production model which uses parameters sent by LPC 

encoder to produce a synthetic speech. At the decoder, the gain 𝐺 of unvoiced and voiced 
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frame is computed. The gain of unvoiced and voiced speech is shown in Eq. (2.34) and 

Eq. (2.35) respectively [7]. 

𝐺 = √𝑃 ,                                                       (2.34) 

where 𝑃 is the computed as shown in Eq. (2.32). 

𝐺 = √𝑇𝑃,                                                     (2.35) 

given that 𝑃 is the power computed in Eq. (2.33). 

However to estimate gain parameters as shown in Eq. (2.34) and Eq. (2.35) for unvoiced 

and voiced signal respectively, prediction error signal should be determined. In Matlab 

software [9], the extracted LPCs were used to model prediction error filter which filters 

the signal frame to end up with estimated frame. The difference between signal frame and 

estimated frame gave prediction error signal which was used to compute power for the 

unvoiced and voiced frame as shown in Eq. (2.32) and Eq. (2.33) respectively. However, 

for voiced frames as shown in Eq. (2.33) and Eq. (2.35), the value 𝑇 should be known. 

Therefore, 𝑇 was considered as pitch period values which had been already computed in 

Matlab. Finally, the output of synthesis filter (from the speech production model shown 

in Figure 2.19) was de-emphasis filtered to counteract the effect of pre-emphasis filter 

hence a synthetic speech was produced. A diagram of LPC decoder is shown in Figure 

2.18. 

 
Figure 2.18: LPC decoder block diagram [7] 
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At the decoder, the excitation signals are generated. For voiced, the excitation is a pulse 

train which is given by expression shown below as illustrated in [7]. 

∑ 𝛿[𝑛 − 𝑖𝑇],

∞

𝑖=−∞

 

with  

𝛿[𝑛] = {
1, if 𝑛 = 0,
0, otherwise 

}, 

given that 𝑇 is the pitch period. For unvoiced, the excitation is implemented in Matlab 

software as random noise implemented by calling a Matlab built-in function 𝑟𝑎𝑛𝑑𝑛.  

At the decoder, LPC parameters in terms filter coefficients, gain, voicing and pitch 

period parameters were received which were then used to produce a synthetic speech. The 

output of synthesis was de-emphasis filtered to end up with a synthetic speech [13]. Since 

de-emphasis filter is inverse of a pre-emphasis filter, the same value of filter coefficient 

was used. Since linear predictive coding algorithm is a lossy compression technique, the 

quality in the synthetic speech signal reduced. This can be confirmed by either listening 

to both the original signal and synthetic speech signal or by looking at their time plots as 

shown in Figure 2.19. 

 
Figure 2.19: Time plot of original and compressed speech signal 

 

 

 



  

   30 

 

CHAPTER 3 

END TO END COMMUNICATION 

This chapter describes several modules and algorithms in details which are used 

in end to end communication. These modules or algorithms include channel and channel 

coding, modulation and demodulation, pulse shaping and receive filtering, carrier 

recovery, equalization and finally correlation. 

Engineering challenges or problems are taken to be optimization problems by 

most of engineers or researchers as explained in [19]. In order to overcome such 

challenges, the following aims should be met; 

 A goal which consists of selecting a performance or an objective function is set. 

This can either be to maximize or minimize the set performance function. 

 The method to achieve the set goal is selected.  

 The chosen method is tested on the objective function to investigate if the intended 

purpose is obtained. 

Setting a goal usually consists of finding a function that can be minimized or maximized. 

This involves locating a minimum or maximum value, which provides useful information 

about the problem at hand. 

There are many methods or algorithms which can be used to determine a minimum 

or maximum point of a given function. For instance, if a problem is to find a point at 

which a polynomial function achieves its minimum value, this can be solved directly by 

finding the derivative and equate it to zero [15]. However, it is very difficult to get such 

direct solution when considering a noisy signal. The recursive adaptive algorithm 

considered in this thesis is steepest descent algorithm and forms a basis of very many 

adaptive algorithms in communication systems [19]. 

3.1 Steepest Descent Algorithm 

Steepest descent algorithm starts with initializing (guessing) the location of a 

minimum. Then, assesses which direction from an initial guess is the steepest as going 
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down the hill, and then a new guess is made along the same direction. In the same sense, 

ascending a hill also starts with an initial estimate or guess of a maximum location, 

assesses which direction climbs very fast and then a new guess is made along that 

direction. In most cases, a new guess is better than the old one and so on. The process 

repeats, ideally getting closer to an optimal location at each step. The most important 

point to note here is, a direction of a current location is assessed by a gradient. The uphill 

direction is determined by a positive gradient and a negative gradient is for downhill 

direction [15][20]. 

Consider a polynomial shown in Eq. (3.1), 

𝑓(𝑦) = 𝑦2 + 𝑏𝑦 + 𝑐,                                                        (3.1) 

steepest descent algorithm can be implemented to minimize it. Let 𝑦 be the initial estimate 

at time 𝑘, which can then be   represented by 𝑦[𝑘]. A new estimate of 𝑦 at time 𝑘 + 1 can 

be obtained by steepest descent algorithm shown in Eq. (3.2) [15][21]. 

𝑦[𝑘 + 1] = 𝑦[𝑘] − 𝜇
𝜕𝑓(𝑦)

𝜕𝑦
,                                            (3.2) 

where 𝜇 is a step size, 𝑓(𝑦) is the objective function which is to be  optimised at a current 

estimate 𝑦[𝑘].  

As long as the step size is reasonably small, the new estimate 𝑦[𝑘 + 1] is very close 

(closer) to the minimum as compared to the old estimate 𝑦[𝑘] [21]. 

For simplicity, polynomial Eq. (3.1) is modified into; 

𝑓(𝑦) = 𝑦2 + 10𝑦 + 25.                                                          (3.3) 

Steepest descent algorithm is used to minimize the polynomial 𝑓(𝑦), such that, 

𝑦[𝑘 + 1] = 𝑦[𝑘] − 𝜇(2𝑦[𝑘] + 10), 

𝑦[𝑘 + 1] = (1 − 2𝜇)𝑦[𝑘] − 10𝜇.                                         (3.4) 

By choosing a suitable value of step size 𝜇, an estimate 𝑦[𝑘 + 1] shown in Eq. (3.4) is 

determined which minimizes the objective function illustrated in Eq. (3.3). The suitable 

value of step size can be chosen by using a number of iterative methods which include, 

Golden section search method, Fibonacci method, bisection method and many others as 

explained in [15]. 
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In order to effectively evaluate how steepest descent algorithm behaves, a graph 

of objective function against a parameter being optimized is plotted. The graph plotted is 

called error surface as shown in Figure 3.1 and Figure 3.2. 

Figure 3.1 clearly shows a minimum of Eq. (3.3) which occurs at negative five. This can 

be understood by even some one slopping downhill to the bottom of the valley and finally 

reaches the minimum point irrespective of his or her starting point. Objective function 

showed in Eq. (3.3) has got only one minimum. However, there are those with more than 

one minimum like that one shown in Eq. (3.5) [19]. 

𝑓(𝑦) = 𝑒−0.2|𝑦| sin(𝑦) − 0.2 sin(𝑦) 𝑠ign(𝑦)                       (3.5) 

As shown in Figure 3.2 where objective function showed in Eq. (3.5) has got many 

minima, and this happens in practice where a valley or a hill may have more than one 

minimum.  

 
Figure 3.1: Error surface for objective function shown in Eq. (3.3) 

 
Figure 3.2: Error surface for objective function shown in Eq. (3.5) 

However, the true descent algorithm once falls in a minimum even though it’s not the 

lowest one, cannot climb to the peak and then falls to true lowest minimum. Therefore, it 

is necessary to initialize steepest descent algorithm at the point close to the true minimum 

[15]. 
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3.2 End to End Communication 

The signal propagates from the transmitter to the receiver through the 

communication channel. From the source encoder (explained in chapter 2), the 

compressed signal is sent to channel encoder to add redundancy bits, the information bits 

or symbols are converted into analog signal by a pulse shaping filter. This signal is up 

converted, propagates through the channel up to the receiver. As the signal propagates 

through the channel, it undergoes a lot of impairments or interferences before reaching 

the receiver. To perfectly decode the transmitted signal, the receiver has got blocks or 

algorithms to complete this task. The main components of transmitter-receiver blocks 

(algorithms) are explained as follows. 

3.3 Channel Coding 

 The main aim of channel encoding is to reduce the number of errors which 

may corrupt the signal as it propagates from the transmitter to the receiver. By channel 

coding, the redundancy is added to reduce the probability of error in the transmission. In 

communication system, if the signal at the input of the receiver is not the same as that one 

at the transmitter’s output, it means that the errors occurred while the signal was 

propagating through the channel. At channel encoder, structured redundant bits are added 

to the transmitted bits in order to; 

 detect errors caused by the noisy channel. 

 correct errors and reconstruct the original transmitted bits. 

Error detection and correction techniques can either be systematic or non-systematic. In 

systematic coding, the message bits appear unaltered in the code word with the check bits 

(parity bits). For non-systematic coding scheme, the message bits are mixed with the 

check bits. 

At the transmitter, channel encoder adds some redundancy to the input signal 

before transmission over a communication channel. At the receiver, channel decoder 

recovers the transmitted signal and also corrects some errors which might have occurred 

as the signal propagates over the channel [22]. There are a number of error correcting 
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schemes or algorithms which are being implemented to reduce the percentage of error as 

the signal propagates over a communication channel, without experiencing a heavy 

penalty.  

3.3.1 Linear Block Codes Algorithm 

The (𝑛, 𝑘) notation classifies the linear block coding algorithm, where 𝑘 is the 

length of information bits and 𝑛  is the length of code word.  For n > 𝑘, linear block codes 

operate on 𝑘 bits to be transmitted and the length of code word 𝑛.  Generator matrix (𝐺) 

of dimension 𝑘 × 𝑛 maps information bits (𝑥) of length 𝑘 to their corresponding code 

words (𝐶) of length 𝑛 as shown in Eq. (3.6) [22][23]. 

𝐶 = 𝑥𝐺                                                                          (3.6) 

Consider a generator matrix of the structure, 

𝐺 = [𝐼𝑘|𝑃],                                                                     (3.7) 

where 𝐼𝑘 is 𝑘 × 𝑘 identity matrix and 𝑃 is  a 𝑘 × (𝑛 − 𝑘) parity check matrix. If the 

generator matrix is of the structure shown in Eq. (3.7), then linear block code is considered 

as systematic code where the first 𝑘 bits in the code word are called information bits and 

the 𝑛 − 𝑘 are known as parity check bits. And also parity check matrix 𝐻 can be taken as 

[22], 

𝐻 = [𝑃𝑇|𝐼𝑛−𝑘]                                                                 (3.8) 

Linear block code algorithm can be implemented following the procedures below [19]. 

 The message bits to be transmitted are arranged into code vector                                 

 𝑥 = [𝑥1, 𝑥2, ……𝑥𝑘] 

 Then the code word 𝑐 of length 𝑛 is transmitted, i.e, Eq. (3.6).  

 The received vector 𝑦 is multiplied with the parity check matrix, i.e, 𝑦𝐻𝑇 

 If 𝑦𝐻𝑇 = 0, there is no error in the received vector otherwise errors have occurred. 

 If 𝑦𝐻𝑇 ≠ 0, the mapping table is generated consisting of syndrome (𝑒𝐻𝑇) and 

error column 𝑒. To obtain the code word, error vector 𝑒 corresponding to 𝑒𝐻𝑇 are 

added together to generate a transmitted code word. 

 Reconstruct the transmitted information bits 𝑥 from the code words received. 



  

   35 

 

3.3.2 Hamming Codes Algorithm  

Hamming codes are classified as linear block codes of forward error correcting 

codes which were discovered by Richard Hamming in 1940’s. Hamming codes are widely 

used in computing, telecommunications and other applications as error detection and 

correcting codes [24]. Table 3.1 shows code words for all the 16 possible messages of the 

(7,4) hamming coding scheme. 

Table 3.1: (7, 4) Hamming coding system 

Number Message Code words 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

0000000 

0001011 

0010110 

0011101 

0100101 

0101110 

0110011 

0111000 

1000111 

1001100 

1010001 

1011010 

1100010 

1101001 

1110100 

1111111 

Hamming distance can be taken as the difference between the number of bit positions in 

which the code words. For example from the Table 3.1, Hamming distance between code 

word one and two is 3, and the Hamming distance between code word two and three is 4. 

In conclusion, the Hamming distance for this coding scheme, is between the range of 3 

and 7. Minimum Hamming distance (𝑑𝑚𝑖𝑛) is the smallest Hamming distance in the set 
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of code words and can be used to determine how many errors a Hamming coding scheme 

can detect and correct.  

The maximum number of errors that can be detected is 𝑑𝑚𝑖𝑛 − 1, and the maximum 

number of error that can be corrected is {
𝑑𝑚𝑖𝑛−1

2
} as explained in [25]. In this (7,4) 

Hamming coding scheme, 4 data bits are transmitted and the length of each code word is 

7. The minimum hamming distance is 3, hence the maximum number of errors to be 

detected are 2 and only one error can be corrected.  

For simplicity, consider a (7,4) Hamming code with the generator matrix 𝐺 [22], 

 𝐺 = [

1 
0
0
0

 

0
1
0
0

  

0
0
1
0

  

0
0
0
1

  

1
1
1
0

  

1
0
1
1 

 

1
1
0
1  

] ,  

and the parity check matrix 𝐻 obtained from Eq. (3.8) is given as, 

𝐻 = [
1
1
1
  
1
0
1
  
1
1
0
  
0
1
1
  
1
0
0
  
0
1
0
  
0
0
1
], 

𝐻𝑇 =

[
 
 
 
 
 
 
1
1
1
0
1
0
0

  

1
0
1
1
0
1
0

  

1
1
0
1
0
0
1]
 
 
 
 
 
 

. 

For decoding, let’s multiply a code word say  [1 0 1 1 0 1 0] with the parity check 

matrix 𝐻𝑇, the syndrome [0 0 0] all zero vector is obtained, which shows that the received 

code word had no error. To determine how this coding scheme can detect and correct 

errors, let’s change the fourth bit from 1 to 0 in the code word [1 0 1 1 0 1 0], and assume 

it was instead received at the decoder. Multiplying the code word [1 0 1 0 0 1 0] with 𝐻𝑇, 

the syndrome vector [0 1 1] is obtained, which indicates that the received code word has 

got error(s). If the syndrome is not all zeros vector, compare the syndrome with the rows 

of parity check matrix 𝐻𝑇 and detect the row number of 𝐻𝑇 that matches with the 

syndrome. The row that matches with the syndrome, denotes the bit position that has an 

error. Therefore, the syndrome [0 1 1] obtained matches with row 4 in the parity check 

matrix 𝐻𝑇. This indicates that, the fourth bit in the received code word [1 0 1 0 0 1 0] has 
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got an error. The error in the received code word can be corrected by looking at the look 

up table shown in Table 3.2. To correct the error, take the error vector 𝑒 = [0 0  0 1 0 0 0] 

corresponding to the calculated syndrome vector 𝑠 = [0 1 1] and then add it to the 

received code word [1 0 1 0 0 1 0] while considering modulo 2 addition. By doing so, the 

error in fourth bit position is corrected from 0 to 1. 

Table 3.2: Look up table for (7, 4) Hamming code 

Syndrome 𝒔 Error vector 𝒆 

1 1 1 1 0  0 0 0 0 0 

1 0 1 0 1 0 0 0 0 0 

1 1 0 0 0  1 0 0 0 0 

0 1 1 0 0  0 1 0 0 0 

1 0 0 0 0  0 0 1 0 0 

0 1 0 0 0  0 0 0 1 0 

0 0 1 0 0  0 0 0 0 1 

3.4 Channel 

A signal is transmitted from the transmitter, propagates through a communication 

channel up to the receiver.  For a wireless communication channel, there is no guiding 

medium between the transmitter and the receiver. Therefore, a signal can propagate in 

straight line from a transmitter to a receiver, or it can take different paths and then 

reflected by multiple reflector components arising from objects such as trees and 

buildings up to the receiver. Hence at the receiver, there are multiple signal components. 

The straight line components are called line of sight and those arising from scattering 

actions are called non line of sight components. Since different signal components are 

received from different paths, hence this is called a multipath propagation channel [22]. 

Precisely, the signal reaches the receiver as a delayed copy of a transmitted signal. The 

delay depends on the distance between the transmitting and the receiving antenna, while 

the strength of reflection is determined by the reflecting (scattering) objects [26][22]. Let 

us assume that there are 𝑙 delays represented by 𝜏1, 𝜏2, … . , 𝜏𝑙, transmitted signal 𝑠(𝑡) and 
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the strength reflecting objects as 𝛼1, 𝛼2, …… . , 𝛼𝑙 ,  then the received signal 𝑟(𝑡) is given 

by Eq. (3.9)  as illustrated in [19].  

𝑟(𝑡) = 𝑎1𝑠(𝑡 − 𝜏1) + 𝑎2𝑠(𝑡 − 𝜏2) + − − − + 𝑎𝑙𝑠(𝑡 − 𝜏𝑙) + 𝜂(𝑡),               (3.9) 

where 𝜂(𝑡) are additive interferences.  The transmission model in Eq. (3.10) has the form 

of linear filter, and the total length of time over which the impulse response is non zero is 

called the delay spread of physical medium. Assuming a fixed sampling period 𝑇, a 

transmission channel in Eq. (3.9) can be digitally modelled as Eq. (3.10)  [19]. 

𝑟(𝑘𝑇) = 𝑎0𝑠(𝑘𝑇) + 𝑎1𝑠((𝑘 − 1)𝑇) + − − +𝛼𝑙𝑠((𝑘 − 𝑙)𝑇) + 𝜂(𝑘𝑇).         (3.10) 

In order to make the model shown in Eq. (3.9) to be relatively close to model shown in 

Eq. (3.10), the maximum delay 𝜏𝑙 must be at least less than the total time over which the 

impulse response is non zero ( the time 𝑙𝑇) [19]. 

3.5 Pulse Shaping and Receive Filtering 

Pulse shaping does the conversion of digital signals (symbols) to analog signal for 

transmission over a transmission channel such as space. Therefore, pulse shaping changes 

each and every digital symbol to its corresponding analog pulse which are retrieved back 

to digital symbols by receive filter at the receiver. The digital symbols can be taken from 

finite set of values such as binary values (±1), or they may be taken from higher four 

level alphabet (±1,±3) [19]. Pulse shaping and receive filtering is illustrated in Figure 

3.3 as explained in [19]. 

 
Figure 3.3: Pulse shaping and Receive filtering block [19] 

Every symbol is represented by an analog pulse which is a scaled copy of the transmitted 

signal, the analog pulses propagates over a transmission channel up to the receiver, and 

if all goes well, the output message is the same as input message [22]. Therefore, these 

pulses should be chosen and be able to minimize intersymbol interference and maximize 

signal to noise ratio. These pulses are called Nyquist pulses [22], and dictate the spectrum 

of the whole signal transmission. A pulse shape which satisfies a Nyquist intersymbol 
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interference (ISI) criteria is called a Nyquist pulse [22]. The Nyquist ISI criteria is given 

by Eq. (3.11) as explained in [22]. 

ℎ(𝑡 = 𝑘𝑇) = ℎ𝑘 = {
1      𝑘 = 0
0       𝑘 ≠ 0

},                                                   (3.11) 

where ℎ(𝑡) is the pulse. 

Raised cosine pulse or raised filter is one of the most used pulses in communication 

system because [19]; 

 it has suitable zero crossing at desirable instants. 

 its band edges are easy to approximate and they are not severe like with sinc pulse 

 it has also characteristic of decaying very fast in time domain and being narrow 

in frequency domain. 

The raised cosine pulse filter frequency response is given by Eq. (3.12) [22]. 

ℎ𝑟𝑐(𝑓) =

{
  
 

  
  𝑇                                                                                  0 ≤ |𝑓| ≤

1 − 𝛽

2𝑇
  

𝑇

2
{1 + cos [

𝜋𝑇

𝛽
(|𝑓| −

1 − 𝛽

2𝑇
)]}                 

1 − 𝛽

2𝑇
≤ |𝑓| ≤

1 + 𝛽

2𝑇
 

   

0                                                                             |𝑓|  >
1 + 𝛽

2𝑇
              }

  
 

  
 

,   (3.12) 

where 𝛽 is known as a roll off factor in the range 0 ≤ 𝛽 ≤ 1 and 𝑇 is sampling period. 

In end to end communication, it should be noted that it is not only the pulse shape which 

should be Nyquist but the convolution of both the pulse shape and the receive filter. When 

an ideal channel is considered, the transmitted signal should not have ISI after receive 

filtering. In this case, the pulse shape and the receive filter are matched together in order 

to; 

 maximize the signal to noise ratio. 

 have zero ISI at the receiver. 

Even though raised cosine pulse is a preferred pulse, the convolution with itself 

does not result into a Nyquist pulse, but it is liked because of its ability to conserve the 

bandwidth and also its impulse response decays quickly. Taking the square root of raised 

cosine pulse in frequency domain results into square-root raised cosine filter (SRRC), and 

its multiplication with itself gives a Nyquist pulse which is highly desired pulse in end to 

end communication. The time domain 𝑥(𝑡) representation of SRRC is shown in Eq. (3.13) 

as illustrated in [19][22]. 
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𝑥(𝑡) =

{
 
 
 
 

 
 
 
 (1 − 𝛽 +

4𝛽
𝜋 )

√𝑇
                                                                         𝑡 = 0

𝛽(𝜋 + 2)

√2𝑇𝜋
𝑠𝑖𝑛 (

𝜋

4𝛽
) +

𝛽(𝜋 − 2)

√2𝑇𝜋
𝑐𝑜𝑠 (

𝜋

4𝛽
)                    𝑡 = ±

𝑇

4𝛽
   

sin (
𝜋(1 − 𝛽)𝑡

𝑇 ) + (
4𝛽𝑡
𝑇 ) 𝑐𝑜𝑠 (

𝜋(1 + 𝛽)𝑡
𝑇 )

√𝑇 (
𝜋𝑡
𝑇 )(1 − (

4𝛽𝑡
𝑇 )

2

)

                otherwise

}
 
 
 
 

 
 
 
 

          (3.13) 

3.6 Quadrature Amplitude Modulation (QAM) 

QAM is quadrature modulation scheme which carries more information than non-

quadrature modulation scheme like amplitude modulation (AM), thus enabling efficient 

utilisation of bandwidth. This saves bandwidth by reducing redundancy in the transmitted 

message. A block diagram for QAM modulation and demodulation is shown in Figure 

3.4. 

 
Figure 3.4: QAM Transmitter-Receiver block [19]. 

In quadrature modulation, two signals can be sent using cosine and sine orthogonal 

carriers on the same bandwidth while using the same carrier frequency [22][19]. Consider 

two message signal 𝑚1(𝑡) and 𝑚2(𝑡) as a function of time 𝑡, 

𝑟(𝑡) = 𝑚1(𝑡)cos(𝑤𝑐𝑡 + ∅) − 𝑚2(𝑡)sin(𝑤𝑐𝑡 + ∅),                                     (3.14)     

where ∅ is carrier phase offset and 𝑓𝑐 is carrier frequency given that 𝑤𝑐 = 2𝜋𝑓𝑐.            

Eq. (3.14), is real valued but considering a complex valued message being mixed with 

complex sinusoid 𝑒𝑗(2𝜋𝑓𝑐𝑡+∅).  Then, 
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𝑚(𝑡) = 𝑚1(𝑡) + 𝑗𝑚2(𝑡).                                                 (3.15) 

From Euler’s formula shown below, 

𝑒±𝑗𝑥 = cos(𝑥) ± 𝑗sin(𝑥), 

the complex valued message can be obtained as shown Eq. (3.17). 

𝑚(𝑡)𝑒𝑗(𝑤𝑐𝑡+∅) = 𝐴 + 𝑗𝐵,                                              (3.16) 

given that, 

𝐴 = 𝑚1(𝑡)cos(𝑤𝑐𝑡 + ∅) − 𝑚2(𝑡)sin(𝑤𝑐𝑡 + ∅) 

𝐵 = 𝑚2(𝑡)cos(𝑤𝑐𝑡 + ∅) +𝑚1(𝑡)sin(𝑤𝑐𝑡 + ∅) 

Equation 3.18 takes real part into account as shown in below, 

𝑟(𝑡) = Re(𝑚(𝑡)𝑒𝑗(𝑤𝑐𝑡+∅))                                                (3.17) 

Messages 𝑚𝑖(𝑡)  can be represented by,  

𝑚𝑖(𝑡) =∑𝑠𝑖[𝑘]𝑝(𝑡 − 𝑘𝑇),                                           (3.18)

𝑘

 

where 𝑠𝑖[𝑘] is the 𝑖𝑡ℎ message symbols taken from finite alphabet at time 𝑘, 𝑝(𝑡) is pulse 

shaping filter and 𝑇 is adjacent symbol interval. The modulated signal 𝑟(𝑡) is shown in 

Eq. (3.20). 

𝑟(𝑡) =∑𝑝(𝑡 − 𝑘𝑇)

𝑘

[𝑠1[𝑘]cos(2𝜋𝑓𝑐𝑡 + ∅) − 𝑠2[𝑘]sin(2𝜋𝑓𝑐𝑡 + ∅)],                  (3.19)

= Re [∑𝑝(𝑡 − 𝑘𝑇)𝑠[𝑘]𝑒𝑗(2𝜋𝑓𝑐𝑡+∅)

𝑘

]                                                     (3.20) 

where, 𝑠[𝑘] = 𝑠1[𝑘] + 𝑗𝑠2[𝑘]. 

3.6.1 Demodulation of QAM Signal 

Consider a complex valued carrier expression 𝑒−𝑗𝑤𝑡+𝜃 mixed with a modulated 

signal shown in Eq. (3.20), where 𝜃 is the phase at the receiver and 𝑓 is frequency at the 

receiver, given that 𝑤 = 2𝜋𝑓.  
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Figure 3.5: Signal demodulation block [19] 

From the Figure 3.5, QAM demodulation can be done mathematically [19]; 

   𝑦(𝑡) =  𝑒−𝑗(2𝜋𝑓𝑡+𝜃)𝑟(𝑡)                                                                                      (3.21) 

𝑦(𝑡) =  𝑒−𝑗(2𝜋𝑓𝑡+𝜃)Re{𝑚(𝑡)𝑒(𝑗2𝜋𝑓𝑐𝑡+∅)}                                                                       

                𝑦(𝑡) = 𝑒−𝑗(2𝜋𝑓𝑡+𝜃)(𝑚1(𝑡)cos(2𝜋𝑓𝑐𝑡 + ∅) − 𝑚2(𝑡)sin (2𝜋𝑓𝑐𝑡 + ∅)) 

                 𝑦(𝑡) =  
𝑒𝑗(∅−𝜃)

2
(𝑚1(𝑡)𝑒

−𝑗2𝜋(𝑓+𝑓𝑐)𝑡 +𝑚1(𝑡)𝑒
−𝑗2𝜋(𝑓−𝑓𝑐)𝑡)              

+ 𝑗
𝑒𝑗(∅−𝜃)

2
(𝑚2(𝑡)𝑒

−𝑗2𝜋(𝑓+𝑓𝑐)𝑡 +𝑚2(𝑡)𝑒
−𝑗2𝜋(𝑓−𝑓𝑐)𝑡)                      (3.22)  

The signal 𝑦(𝑡) is passed through a low pass filter (LPF) to do away with high frequency 

components. Let us assume 𝑓 ≈ 𝑓𝑐 and also that lowpass filter be of cut-off frequency 𝑓𝑙, 

that is to say 𝑓𝑐 < 𝑓𝑙 < 2𝑓𝑐. This indicates that all frequency components in signal 𝑦(𝑡) 

lying between 𝑓𝑐 and 2𝑓𝑐  pass through a low pass filter otherwise eliminated. Then the 

demodulated signal 𝑠(𝑡) is given by, 

𝑠(𝑡) = LPF{𝑦(𝑡)},                            

𝑠(𝑡) =
1

2
𝑚(𝑡)𝑒−𝑗2𝜋(𝑓−𝑓𝑐)𝑡+𝑗(𝜃−∅) ,                                    (3.23)            

where 𝑚(𝑡) = 𝑚1(𝑡) + 𝑗𝑚2(𝑡).                                                       

If the frequency at receiver is the same as the frequency at the transmitter, i.e,  𝑓 = 𝑓𝑐 and 

also if the phase at the receiver is the same that one at the transmitter, i.e, ∅ = 𝜃, the 

demodulated signal 𝑠(𝑡) will be attenuated copy of transmitted signal 𝑚(𝑡) by a factor of 

1

2
  as shown in Eq. (3.24) 

𝑠(𝑡) =
1

2
𝑚(𝑡)                                                                (3.24) 

Therefore, for successful demodulation of QAM signal, both frequencies and phases at 

transmitter and receiver should be aligned.  
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When modulating frequency is not aligned with or identical to demodulating 

frequency, i.e, 𝑓 ≠ 𝑓𝑐, the constellation points twist at a rate proportional to the difference 

between receiver and transmitter frequency (𝑓−𝑓𝑐) . Also, when phase shift at receiver is 

not the same as phase shift at transmitter, the constellation points become rotated hence 

causing inter symbol interference. Therefore, it is equally important to reverse the rotation 

of constellation points in order to recover the transmitted symbol sequences [19]. 

In practical scenarios as signal propagates from a transmitter to receiver, it 

undergoes a lot of impairments which may include multipath interference, broad and 

narrow band noise, intersymbol interferences and many others. These interferences cause 

both frequencies and phases at the receiver and transmitter to diverge from each other. 

This makes it difficult to demodulate a received signal if frequency and phase at the 

transmitter is not known at the receiver. However, there exists a number of algorithms 

which can be used to estimate this unknown parameters. These algorithms include, Costas 

loop, phase locked loop and decision directed methods. In this study, Costas loop 

algorithm is considered. 

3.6.2 Carrier Recovery for QAM Signal 

Estimating the phase and frequency used at the transmitter is important while 

reconstructing QAM modulated signal at the receiver, hence the name carrier recovery. 

As shown in Eq. (3.23), for proper demodulation of the signal, phase and frequency at 

transmitter should be the same as those at receiver in order to recover the transmitted 

signal. Therefore, there should be a way in which phase 𝜃 and frequency 𝑓 at the receiver 

are varied to the required values to align with those at the transmitter. 

3.6.2.1 Costas Loop Algorithm 

In this study, analog front end was considered, where the incoming analog signal 

is first down converted such that sampling takes place at a lower sampling rate [19]. In 

order to accurately demodulate a received analog signal as shown in Eq. (3.23), both the 

phase and the frequency at the transmitter and receiver should be synchronised [19]. From 

Eq. (3.21), the received signal 𝑟(𝑡) is mixed with a complex sinusoid. In ideal setting, the 
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transmitter and receiver are assumed to be synchronised. This means that both the phase 

and frequency offsets at the transmitter and receiver are the same. However, if the signal 

propagates over a noisy channel, the phase and frequency at the transmitter and at the 

receiver differ from each other. Therefore, the phase and frequency offsets can be 

determined by adaptive Costas loop algorithm which continuously estimates and also 

eliminates the unknown phase and frequency offsets as explained in [19]. 

 The 4-QAM Costas loop algorithm is derived from that of pulse phase modulation 

[19]. Let us assume a pulse modulated signal 𝑟(𝑡) received at the receiver, which is first 

demodulated, lowpass filtered and then squared or averaged to come up with Costas loop 

algorithm invented by J.P Costas shown in Eq. (3.25) as explained in [19][28]. 

𝐽𝑝(𝜃) = avg {(LPF(𝑟(𝑡)cos (2𝜋𝑓𝑡 + 𝜃))
2
}.                             (3.25) 

Let us assume that  𝑓 = 𝑓𝑐 and also 𝑟(𝑡) = 𝑠(𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅) then, 

𝐽𝑝(𝜃) = avg {(LPF(𝑠(𝑡)cos (2𝜋𝑓𝑡 + ∅)cos(2𝜋𝑓𝑡 + 𝜃))
2
}          (3.26) 

From trigonometry identity 
1

2
(cos𝐴 + cos𝐵) = cos (

𝐴+𝐵

2
) cos (

𝐴−𝐵

2
) then, 

𝐽𝑝(𝜃) = avg {LPF(𝑠(𝑡)
1

2
(cos(4𝜋𝑓𝑡 + ∅ + 𝜃) + cos(∅ − 𝜃)))

2

},         (3.27) 

where high frequency components are suppressed by a low pass filter to end with                   

Eq. (3.28) as explained in [19]. 

𝐽𝑝(𝜃) =
1

4
avg{𝑠2(𝑡) cos2(∅ − 𝜃)} ≈

1

4
𝑠avg
2 cos2(∅ − 𝜃),                 (3.28) 

where  𝑠avg
2  is the data values which are fixed, therefore, 𝐽𝑝(𝜃) is directly proportional to 

cos2(∅ − 𝜃) which forms a basis for the objective function of pulse phase modulation, 

and cos2(∅ − 𝜃) has a maxima at 𝜃 = ∅ + 𝜋𝑥 at integers of 𝑥. For pulse phase 

modulation, the algorithm is implemented such that the phase 𝜃 converges to an offset 

value of an integer multiple of 1800. This observation is analysed to determine a 

performance function for 4-QAM which makes a carrier recovery phase to converge to 

900 [19]. 

Firstly, let’s consider an objective function 𝐽𝑝 as shown in Eq. (3.29) [19]. 

𝐽𝑝 = cos
2(2∅ − 2𝜃).                                                     (3.29) 

From a trigonometry identity shown below, 
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cos4A = cos2 2𝐴 − sin2 2𝐴,    

cos2 2𝐴 =
1

2
(1 + cos4𝐴),    

the objective function 𝐽𝑝  can be written as  

𝐽𝑝 =
1

2
(1 + cos (4∅ − 4𝜃)).                                  (3.30) 

From cosine curve shown in Figure 3.6, expression cos(4∅ − 4𝜃) attains its maximum 

values whenever it is equalling to one, i.e, 

cos (4∅ − 4𝜃) = 1 

4(∅ − 𝜃) = 0,2𝜋, 4𝜋,………… .. 

(∅ − 𝜃) = 0,
𝜋

2
, 𝜋, …………… .. 

In simplicity, expression cos(4∅ − 4𝜃) has its maximum values at integer multiples of 

900. Precisely, ∅ = 𝜃 + (
𝜋

2
) 𝑥 at integer of 𝑥. 

 
Figure 3.6: Cosine curve 

Using steepest descent algorithm shown in Eq. (3.31),  

𝜃[𝑘 + 1] = 𝜃[𝑘] + 𝜇
𝜕𝐽𝑝

𝜕𝜃
,                                           (3.31) 

where  
𝜕𝐽𝑝

𝜕𝜃
  can be defined further as shown in Eq. (3.32). A change of sign in Eq. (3.2) 

from negative to positive is considered since the goal is to maximise Costas loop objective 

function 𝐽𝑝 [19]. 

𝜕𝐽𝑝

𝜕𝜃
=

𝜕 (
1
2
(1 + cos (4∅ − 4𝜃))

𝜕𝜃
= 2sin(4∅ − 4𝜃).                      (3.32) 
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The next task is to determine an expression which is proportional to sin(4∅ − 4𝜃). Let’s 

consider a received signal 𝑟(𝑡) at the receiver, the signal is first demodulated, lowpass 

filtered to come up LPF{𝑟(𝑡)cos(2𝜋𝑓𝑡 + 𝜃)} and also LPF{𝑟(𝑡)sin(2𝜋𝑓𝑡 + 𝜃)}, their 

product gives rise to analogous derivative for PAM Costas loop algorithm [19], where 

LPF is low pass filtering operation. The demodulated signal components are at the same 

frequency 𝑓 but 1800 out of phase. In the same sense, QAM can be solved by low passing 

the received signal 𝑟(𝑡) four times but for this case each 900 out of phase from each other 

and then take product of these four terms [19]. The product of these four terms is taken 

in order to determine if it can result into signal which is proportional to the derivative 

obtained in Eq. (3.32). 

The received QAM signal is  𝑟(𝑡), then the four signals are defined as, 

𝑥1(𝑡) = LPF{𝑟(𝑡) cos(2𝜋𝑓𝑡 + 𝜃)}, 

𝑥2(𝑡) = LPF {𝑟(𝑡) cos (2𝜋𝑓𝑡 + 𝜃 +
𝜋

4
)}, 

 𝑥3(𝑡) = LPF {𝑟(𝑡) cos (2𝜋𝑓𝑡 + 𝜃 +
𝜋

2
)}, 

 𝑥4(𝑡) = LPF {𝑟(𝑡)𝑟(𝑡) cos (2𝜋𝑓𝑡 + 𝜃 +
3𝜋

4
)} 

where 𝑟(𝑡) = 𝑚1(𝑡) cos(2𝜋𝑓𝑐𝑡 + ∅) − 𝑚2(𝑡) sin(2𝜋𝑓𝑐𝑡 + ∅). 

𝑥1(𝑡) can be expressed as follow assuming 𝑓 = 𝑓𝑐; 

𝑥1(𝑡) = LPF {
1

2
[𝑚1(𝑡)(cos (2𝜋𝑓𝑐𝑡 + ∅) cos(2𝜋𝑓𝑡 + 𝜃))

− 𝑚2(𝑡)(cos (2𝜋𝑓𝑐𝑡 + ∅) cos(2𝜋𝑓𝑡 + 𝜃))]},                                       (3.33) 

from cosine-sine product identities shown below,  

cos(𝐴) + cos(𝐵) = 2𝑐𝑜𝑠 (
𝐴 + 𝐵

2
) 𝑐𝑜𝑠 (

𝐴 − 𝐵

2
), 

and  

sin(𝐴) + sin(𝐵) = 𝑠𝑖𝑛 (
𝐴 + 𝐵

2
) 𝑐𝑜𝑠 (

𝐴 − 𝐵

2
). 
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𝑥1(𝑡) = LPF {
1

2
[𝑚1(𝑡)(cos(∅ − 𝜃) + cos(4𝜋𝑓𝑡 + ∅ + 𝜃))

− 𝑚2(𝑡)(sin(∅ − 𝜃)

+ cos(4𝜋𝑓𝑡 + ∅ + 𝜃))]},                                    (3.34) 

then high frequency components in Eq. (3.34) are suppressed by a low pass filter resulting 

into, 

𝑥1(𝑡) =
1

2
{𝑚1(𝑡)cos(∅ − 𝜃) − 𝑚2(𝑡)sin(∅ − 𝜃)}. 

where, 𝑚1(𝑡) and 𝑚2(𝑡) are transmitted symbols from the transmitter. In the same sense 

𝑥2(𝑡), 𝑥3(𝑡) and 𝑥4(𝑡) can be obtained as; 

𝑥2(𝑡) =
1

2
{𝑚1(𝑡)cos (∅ − 𝜃 −

𝜋

4
) − 𝑚2(𝑡)sin (∅ − 𝜃 −

𝜋

4
)},  

𝑥3(𝑡) =
1

2
{𝑚1(𝑡)sin(∅ − 𝜃) − 𝑚2(𝑡)cos(∅ − 𝜃)},   

𝑥4(𝑡) =
1

2
{𝑚1(𝑡)cos (∅ − 𝜃 −

3𝜋

4
) − 𝑚2(𝑡)sin (∅ − 𝜃 −

3𝜋

4
)}. 

The product of the above expressions reduce to a sine term as explained in [19], i.e, 

𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡)𝑥4(𝑡) = 4𝜖
2(𝑡)sin(4∅ − 4𝜃),                                (3.35) 

where 𝜖2(𝑡) = 𝑚1
2(𝑡)𝑚2

2(𝑡) as explained in [19]. 

The product shown in Eq. (3.35) produces an expression which proportional to the desired 

derivative in Eq. (3.32), thus adaptive Costas loop algorithm can be obtained as shown 

Eq. (3.36) [19]. 

𝜃[𝑘 + 1] = 𝜃[𝑘] + 𝜇𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡)𝑥4(𝑡), where  𝑡 = 𝑘𝑇𝑠, 𝜃 = 𝜃[𝑘],            (3.36) 

where 𝑇𝑠 is the time between consecutive algorithm updates. 

Carrier recovery for QAM does not possess a single convergence since its performance 

function 𝐽𝑝 shown in Eq. (3.30) has maxima at 𝜃 = ∅ + 𝑥
𝜋

2
  at any given integer 𝑥, thus 

it may lead to phase uncertainties. These phase ambiguities can be rectified by [19]; 

 the message sequence at the transmitter should be differentially encoded in order 

for the transmitted message to be carried in successive changes in symbol values 

instead of being carried in symbol values themselves. 
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 correlation of down sampled message sequences with a known training signal at 

the receiver.       

3.6.2.2 Timing Recovery Algorithm 

A QAM signal is sent from transmitter, propagates through a transmission 

medium like space and received as an analog signal. In order to extract message sent, 

analog signal is demodulated and sampled at correct sampling times. To specify the 

correct instants upon which sampling should take place, time recovery is done.   

From Eq. (3.24), two message symbols 𝑚1  and 𝑚2  are received, therefore two 

differently adaptive timing parameters 𝜏1 and 𝜏2 are used to obtain optimal times upon 

which sampling should take place. However, these two messages are related and need to 

be sampled at the same time. Therefore, one adaptive parameter 𝜏 is opted for to estimate 

the exact time when to sample 𝑠1  and 𝑠2  at the same time. The main goal is to determine 

adaptive parameter 𝜏 that optimizes the objective function Eq. (3.37). Consider averaging 

of fourth power of received signals to formulate an objective function as explained in 

[19]. 

𝐽𝑇(𝜏) = avg{𝑠1
4 + 𝑠2

4}, 

where 𝑠1 = 𝑚1(𝑘𝑇 + 𝜏) and 𝑠2 = 𝑚2(𝑘𝑇 + 𝜏). Thus, 

𝐽𝑇(𝜏) = avg{𝑚1
4(𝑘𝑇 + 𝜏) + 𝑚2

4(𝑘𝑇 + 𝜏)}.                    (3.37) 

From steepest decent algorithm,  

𝜏[𝑘 + 1] = 𝜏[𝑘] − 𝜇
𝜕𝐽𝑇(𝜏)

𝜕𝜏
,                                                                        

               𝜏[𝑘 + 1] = 𝜏[𝑘] − �̿�  
𝜕(𝑚1

4(𝑘𝑇 + 𝜏) + 𝑚2
4(𝑘𝑇 + 𝜏))

𝜕𝜏
,where 𝜏 = 𝜏[𝑘] 

  = 𝜏[𝑘] − �̅� [(𝑚1
3(𝑘𝑇 + 𝜏) + 𝑚2

3(𝑘𝑇 + 𝜏)) ×
𝜕(𝑚1(𝑘𝑇 + 𝜏) + 𝑚2(𝑘𝑇 + 𝜏))

𝜕𝜏
]        

The above expression can be numerically expressed as, 

𝜏[𝑘 + 1] = 𝜏[𝑘] − 𝜇(𝑚1
3(𝑘𝑇 + 𝜏[𝑘]) + 𝑚2

3(𝑘𝑇 + 𝜏[𝑘]))   

× [𝑚1(𝑘𝑇 + 𝜏 + 𝜀) −𝑚1(𝑘𝑇 + 𝜏 − 𝜀) + 𝑚2(𝑘𝑇 + 𝜏 + 𝜀) 

− 𝑚2(𝑘𝑇 + 𝜏 − 𝜀)],  

given that, 
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𝜇 =
�̅�

𝜀
, where 𝜀  a small positive integer. By oversampling 𝑚𝑖, the timing offsets 𝜏[𝑘] 

and  𝜏[𝑘] ± 𝜀 can be interpolated from the oversampled 𝑚𝑖 as explained in [19]. 

3.6.2.3 Equalization for QAM 

As a signal propagates through a transmission medium, it undergoes a lot of 

impairments which cause symbols to interact with one another. The interaction of 

symbols leads to ISI which can be caused by nonlinearity of the channel, multipath 

interferences and also interaction or overlapping of pulse shapes at the receiver. For 

simplicity, the equalizer mitigates the effect of the channel or can be taken as a filter 

designed at the receiver to undo the channel effects. The main goal is to determine 

adaptive parameter of equalizer coefficient 𝑔 that optimizes the objective function. 

Consider a known training sequence 𝑝[𝑘] at receiver, 𝑔𝑖 as equalizer or filter coefficients, 

𝑟[𝑘 − 𝑖] as received signals at the receiver and also 𝑑[𝑘] is obtained by subtracting a 

received signal from the training sequence. 

Expressing equalizer output as the inner product of equalizer coefficients and with a 

vector of received signal as shown in Eq. (3.38) [19]. 

𝑦[𝑘] =∑𝑔𝑖𝑟[𝑘 − 𝑖]

𝑚

𝑖=1

, 

𝑦[𝑘] = (𝑟[𝑘], 𝑟[𝑘 − 1], 𝑟[𝑘 − 2], ……… , 𝑟[𝑘 − 𝑚])

(

 
 

𝑔1
𝑔2
.
.
𝑔𝑚)

 
 
       (3.38) 

Therefore the output of equalizer can be shortened as shown in Eq. (3.39). 

𝑦[𝑘] = 𝐹𝑇[𝑘]𝑔,                                                          (3.39) 

given that, 

𝐹𝑇[𝑘] = ((𝑟[𝑘], 𝑟[𝑘 − 1], 𝑟[𝑘 − 2], ……… , 𝑟[𝑘 − 𝑚])).  

Eq. (3.40), shows the difference between the output of equalizer 𝑦[𝑘] and a known 

training sequence 

𝑑[𝑘] =  𝑝[𝑘] − 𝑦[𝑘]  

𝑑[𝑘] =  𝑝[𝑘] − 𝐹𝑇[𝑘]𝑔.                                             (3.40)      
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Least mean square algorithm (LMS) is adaptive filtering method used to optimize the 

filter coefficient that relate with the difference between desired and actual signal. The 

filter or equalizer coefficients 𝑔 are optimized by minimizing the LMS algorithm  

𝐽𝐿𝑀𝑆(𝑔). The least mean square objective function is shown in Eq. (3.41) [19], 

𝐽𝐿𝑀𝑆(𝑔) =
1

2
avg(𝑑[𝑘]𝑑∗[𝑘]),                                    (3.41) 

where avg is averaging operation and 𝑑∗[𝑘] is complex conjugate. 

However these terms are complex valued which can be can be taken real and imaginary 

parts. This is because QAM is modelled as two signals of real and imaginary parts of a 

single complex valued signal [19]. Therefore, 

𝑑[𝑘] = 𝑑𝑅[𝑘] + 𝑗𝑑𝐼[𝑘], 

𝑝[𝑘] = 𝑝𝑅[𝑘] + 𝑗𝑝𝐼[𝑘], 

𝐹[𝑘] = 𝐹𝑅[𝑘] + 𝑗𝐹𝐼[𝑘], 

𝑔[𝑘] = 𝑔𝑅[𝑘] + 𝑗𝑔𝐼[𝑘]. 

Adaptive element 𝑔 as a filter coefficient can be optimized by minimizing the objective 

function Eq. (3.41) completed by steepest descent algorithm. 

𝑔[𝑘 + 1] = 𝑔[𝑘] − �̅� {
𝜕

𝑔𝑅
(𝑑[𝑘]𝑑∗[𝑘]) + 𝑗

𝜕

𝑔𝐼
(𝑑[𝑘]𝑑∗[𝑘])},         (3.42)  

where 𝑔𝑅 = 𝑔𝑅[𝑘],  𝑔𝐼 = 𝑔𝐼[𝑘] and sign ∗ represents a complex conjugate. 

From Eq. (3.41), the output of the equalizer 𝑦[𝑘] = 𝐹𝑇[𝑘]𝑔 can be expanded since 

𝐹𝑇[𝑘] = 𝐹𝑅
𝑇[𝑘] + 𝑗𝐹𝐼

𝑇[𝑘] and 𝑔 = 𝑔𝑅 + 𝑗𝑔𝐼. Thus, 

𝐹𝑇[𝑘]𝑔 = (𝐹𝑅
𝑇[𝑘] + 𝑗𝐹𝐼

𝑇[𝑘])(𝑔𝑅 + 𝑗𝑔𝐼) 

= 𝐹𝑅
𝑇[𝑘]𝑔𝑅 + 𝑗𝐹𝑅

𝑇[𝑘]𝑔𝐼 + 𝑗𝐹𝐼
𝑇[𝑘]𝑔𝑅 − 𝐹𝐼

𝑇[𝑘]𝑔𝐼 

= (𝐹𝑅
𝑇[𝑘]𝑔𝑅 − 𝐹𝐼

𝑇[𝑘]𝑔𝐼) + 𝑗(𝐹𝑅
𝑇[𝑘]𝑔𝐼 + 𝐹𝐼

𝑇[𝑘]𝑔𝑅),                       (3.43) 

the conjugate of Eq. (3.43) is shown below in Eq. (3.46), 

(𝐹𝑇[𝑘]𝑔)∗ = (𝐹𝑇[𝑘]𝑔𝑅 − 𝐹𝐼
𝑇[𝑘]𝑔𝐼) − 𝑗(𝐹𝑅

𝑇[𝑘]𝑔𝐼 + 𝐹𝐼
𝑇[𝑘]𝑔𝑅)           (3.44) 

Note that, 𝑧 = 𝑥 + 𝑗𝑦 and 𝑧∗ = 𝑥 − 𝑗𝑦, then 𝑧𝑧∗ = 𝑥2 + 𝑦2. 

Therefore, 𝑑[𝑘]𝑑∗[𝑘] = 𝑑𝑅
2[𝑘] + 𝑑𝐼

2[𝑘]. 

𝜕𝑑[𝑘]𝑑∗[𝑘]

𝑔𝑅
=
𝜕𝑑𝑅

2[𝑘] + 𝑑𝐼
2[𝑘]

𝜕𝑔𝑅
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=
𝜕𝑑𝑅

2[𝑘]

𝜕𝑑𝑅[𝑘]

𝜕𝑑𝑅[𝑘]

𝜕𝑔𝑅
+
𝜕𝑑𝐼

2[𝑘]

𝜕𝑑𝐼[𝑘]

𝜕𝑑𝐼[𝑘]

𝜕𝑔𝑅
 

−2𝑑𝑅[𝑘]𝐹𝑅[𝑘] − 2𝑑𝐼[𝑘]𝐹𝐼[𝑘], 

where, 

𝜕𝑑𝑅[𝑘]

𝑔𝑅
= −𝐹𝑅[𝑘]  and 

𝜕𝑑𝐼[𝑘]

𝑔𝑅
= −𝐹𝐼[𝑘]. 

This is true due to the fact that, training sequence 𝑝 does not necessary depend on 

equalizer coefficient 𝑔. Therefore, 
𝜕𝑝

𝜕𝑔
= 0. 

In the same sense,  

𝜕𝑑[𝑘]𝑑∗[𝑘]

𝑔𝐼
= 2𝑑𝑅[𝑘]𝐹𝐼[𝑘] − 2𝑑𝐼[𝑘]𝐹𝑅[𝑘] 

Therefore, the update in Eq. (3.42) results into Eq. (3.45) as explained in [19]. 

𝑔[𝑘 + 1] = 𝑔[𝑘] + �̅�(𝑑𝑅[𝑘]𝐹𝑅[𝑘] + 𝑒𝐼[𝑘]𝐹𝐼[𝑘] + 𝑗(−𝑑𝑅[𝑘]𝐹𝐼[𝑘] + 𝑑𝐼[𝑘]𝐹𝑅[𝑘])) 

𝑔[𝑘 + 1] = 𝑔[𝑘] + 𝜇𝑑[𝑘]𝐹∗[𝑘]                                      (3.45) 

Let’s consider a scenario where an equalizer has done its job and the eye of 

channel is opened. This indicates that, all the decisions are perfect but it does not 

necessary mean that the equalizer parameters are at optimal values. In that situation, the 

output of equalizer decision device is nothing but an exact copy of delayed source [19].  

Consider a sign operator taken as equalizer decision device while taking into account a 

binary source ±1. Hence, the recovery error 𝑑[𝑘] is computed as shown in Eq. (3.46) 

[19]. 

 𝑑[𝑘] = sign(𝑦[𝑘]) − 𝑦[𝑘],                                     (3.46) 

where 𝑦[𝑘] is the output of the equalizer and sign{𝑦[𝑘]} is delayed source  𝑠[𝑘 − 𝛿] as 

illustrated in [19]. Therefore, adaptive LMS equalization algorithm explained in Eq. 

(3.46), is replaced by adaptive decision directed LMS equalization whose update is 

illustrated in Eq. (3.47) [19], which is implemented in Matlab software to complete 

equalization block. 

𝑔[𝑘 + 1] = 𝑔[𝑘] + 𝜇(𝑠ign(𝑦[𝑘]) − 𝑦[𝑘])𝐹∗[𝑘].         (3.47) 
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3.6.3 Correlation 

A correlator is a very important tool in communication systems because it aligns 

two signals, where it shifts one of the signal in time domain and determines how easily it 

can match with the other at each and every shift. This task of correlation is completed by 

a correlator by doing point to point multiplication and then add them together. After 

adding them together, if their summation is small, it indicates that they are not so much 

similar, and if their summation is big or large, it indicates that most of their terms are 

alike. This knowledge of correlation can also be used in finding the appropriate times to 

sample the transmitted symbols and also to find the start of the message as explained in 

[19]. Consider two discrete time sequences 𝑥[𝑘] and 𝑦[𝑘 + 𝑖], cross correlation is a 

function of time shift 𝑖 between those two signals as shown in Eq. (3.48) [19].  

𝑅𝑥𝑦(𝑖) = lim
𝑇→∞

1

𝑇
∑𝑥[𝑘]𝑦[𝑘 + 𝑖],

𝑇
2

−
𝑇
2

                                        (3.48) 

where  
1

𝑇
 is a normalization factor which can be ignored as the case with Matlab software 

that ignores it while computing cross correlation. 
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CHAPTER 4  

METHODOLOGY 

There are different modules and algorithms used in software defined radio 

environment in transmission and reconstruction of a signal. This chapter details Matlab 

implementation of those algorithms explained in Chapter 3. The real signal of interest to 

be reconstructed by a receiver, was a human voice speech signal recorded for 10 seconds. 

The whole speech signal was not transmitted but rather, a compressed version of it (linear 

predicted parameters) was (were) transmitted as explained in Chapter 2, and the speech 

signal was reconstructed at the receiver.  

4.1 Channel Impairments and Disturbances 

The software defined radio to reconstruct the speech signal from its parameters 

was assumed to be mitigating impairments like; difference in carrier signal frequency and 

phase at transmitter and receiver, timing offset, intersymbol and multipath interference, 

timing and phase noise. The disturbances or impairments were implemented in Matlab as 

follows. 

Timing and frequency offset. The frequency and timing offset were assumed to be a 

decimal number falling in the range between 0 and 1 while carrying out Matlab 

simulations. In other words, frequency offset was specified as zero and timing offset was 

specified as 0.25. 

Timing noise. Timing noise was modelled as random walk for Matlab simulation. 

However, it was equally important to have a simple insight about random walk. A random 

walk can be briefly explained as a process where a current value of the variable 𝑥𝑡 consists 

of a past value of the variable 𝑥𝑡−1 plus an error 𝜀𝑡, as illustrated in Eq. (4.1) [29]. 

𝑥𝑡 = 𝑥𝑡−1 + 𝜀𝑡,                                                  (4.1) 

where 𝜀𝑡 is independent and identically distributed variable with zero mean and variance 

𝜎2. Consider a random walk with a stochastic sequence {𝑥𝑛}  shown in Eq. (4.2) [30], 
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𝑥𝑛 =∑𝑦𝑘,                                                           

𝑛

𝑘=1

(4.2) 

given that 𝑥0 = 0. 

The random walk is a simple random walk if and only if  𝑦𝑘 = ±1 given that, the 

probability 𝑝(𝑦𝑘 = −1) = 𝑛 and the probability 𝑝(𝑦𝑘 = 1) = 1 − 𝑛, provided that 

𝑝(𝑦𝑘 = −1) + 𝑝(𝑦𝑘 = 1) = 1. 

In Matlab software, the error 𝜀𝑡 was implemented in Matlab software as white noise by 

calling a Matlab software built-in function 𝑟𝑎𝑛𝑑𝑛 which passed a one and length of the 

message, and then multiplied it with the square root of specified value of timing jitter 

noise variance 𝜎𝑡
2. Then, a Matlab function 𝑓𝑖𝑙𝑡𝑒𝑟 was called and passed the generated 

white noise, filter numerator coefficient as 1 and filter denominator coefficients as 

[1 − 1].  The output of 𝑓𝑖𝑙𝑡𝑒𝑟 command was taken as timing jitter [19].  A time plot of 

timing jitter modelled when the value of noise variance was specified as 1 × 10−3, is 

shown below in Figure 4.1.     

 
Figure 4.1: Time plot of random walk. 

Phase offset. The value of phase offset was specified as 
𝜋

6
  and it was constant per 

communication session (for entire time of simulation). 

Phase noise. Phase noise was also modelled as random walk for Matlab simulation. Phase 

noise has to do with random phase fluctuations of periodic signal. An ideal oscillator 

would produce a pure periodic wave. In frequency domain, this can be characterised by a 

single a pair of Dirac delta function at oscillator frequency. In other words, all signal 

power is at single frequency. However, if phase noise is present within the signal, phase 

noise spread the power of the signal to adjacent frequencies, resulting into noise side 
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bands [31]. For Matlab simulation, phase noise, phase and frequency offset, were added 

to carrier expression exp(𝑗(2𝜋𝑓𝑐(1 − 𝑓𝑜𝑓𝑓)𝑇𝑠 + (𝑝𝑜𝑓𝑓 + 𝑝𝑛𝑜𝑖𝑠𝑒) ). Note that, 𝑓𝑜𝑓𝑓 is 

frequency offset and was specified as zero, 𝑝𝑜𝑓𝑓 is the phase offset specified as 
𝜋

6
, 𝑝𝑛𝑜𝑖𝑠𝑒 

is phase noise and was modelled as random walk and 𝑓𝑐 is carrier frequency which was 

specified as 250 Hz [19]. 

Intersymbol interference (ISI). Intersymbol interference was modelled in Matlab 

software as additive white Gaussian noise process. Additive white Gaussian noise is a 

simple noise model which is used in communication systems to imitate the random 

processes or random noise interferences that occur in practice.  However, the model is; 

 Additive, since it is added to the transmitted signal. Neglecting all imperfections 

as the signal propagates from the transmitted to the receiver except noise, the 

received signal 𝑟(𝑡) is equivalent to the transmitted signal 𝑠(𝑡) plus the noise 𝑛(𝑡) 

as illustrated below, 

𝑟(𝑡) = 𝑠(𝑡) + 𝑛(𝑡). 

 White, since it has a constant power throughout the whole frequency band. 

 Gaussian, since it has a Gaussian (normal) probability distribution function 𝑓(𝑥) 

with zero mean and standard deviation 𝜎 as shown below [22], 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥
𝜎
)
2

. 

Additive white Gaussian was implemented in Matlab software by calling a Matlab built-

in function 𝑟𝑎𝑛𝑑𝑛 which passed a one and the length of transmitted signal as its input 

arguments, and then multiplied with the square root of noise variance 𝜎2, completed by 

calling a Matlab built-in function 𝑠𝑞𝑟𝑡 which computed the square root of noise variance 

𝜎2. The average energy 𝐸𝑠 of 4-QAM constellation with a minimum distance of 2 was 

computed, and then divided by the assumed SNR, i.e, (
𝐸𝑆

𝑆𝑁𝑅
), to come up with the noise 

variance 𝜎2. However, additive white Gaussian noise can also be implemented in Matlab 

software by calling a Matlab built-in function 𝑎𝑤𝑔𝑛 which passes a transmitted signal 

and specified SNR value per sample in dB as its input arguments. The magnitude 

spectrum of AWGN implemented in Matlab is shown in Figure 4.2. 



  

   56 

 

 
Figure 4.2: Magnitude spectrum of ISI 

Multipath interference. The multipath channel was modelled as a fixed multipath 

channel at a given time. In other words, the multipath channel was assumed to be having 

the same channel gains and delays for the entire time of simulation. For example, the 

receiver was tested on different channels such a one tap unity channel [1], a two tap 

channel or a unit delay channel [0,1] and finally, a three tap channel [−0.3,1,0.7]. This 

was done to assert how each channel affects the receiver in reconstruction of a speech 

signal.  

4.2 Source Coding Block 

The real signal of interest to be transmitted was speech signal (recorded human 

voice), but instead of transmitting the whole speech samples of original signal, the 

extracted linear predicted parameters from the recorded speech signal, were instead 

transmitted. Linear predictive coding algorithm (as explained in Chapter 2) accomplished 

source coding block. For source coding, a recorded human voice was used as input to 

LPC encoder (as shown in Figure 2.18). The LPC encoder extracted out LPC parameters 

which include, LPCs (filter coefficients), gain, voicing and finally pitch period 

parameters. These parameters were then sent to LPC decoder (shown in Figure 2.19) to 

model a speech from its parameters. Linear predictive coding algorithm is a lossy 

compression technique, therefore, at the out of LPC decoder, a synthetic speech signal 

was produced. However, it was at a lower quality as compared to original signal. This 

was demonstrated by looking at its time plot or by listening to both original and 
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compressed audio sound signal. The time plot for both original and compressed signal is 

shown in Figure 4.3. 

 
Figure 4.3: Time plot of Original and Compressed speech signal 

The output from the source encoder (compressed speech signal) was fed to the channel 

encoder to protect the bit stream before transmission to the channel. The block diagram 

shown in Figure4.4, completed end to end communication which was implemented in 

Matlab software to reconstruct a speech signal at the output of the receiver. The simulator 

block implemented in this thesis is shown in Figure 4.4. 
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Figure 4.4: Simulator block 

4.3 Channel Coding  

Channel coding adds redundancy to the transmitted bit stream before transmission 

to channel. Binary mapping of input signal was done and coded at the transmitter using 

linear block code algorithm to accomplish channel coding block [19]. The bit stream was 

then converted into analog signal by using square root raised cosine filter (SRRC) pulse 

with 0.25 as the roll-off factor. The value of 0.25 was taken as the value of the roll-off 

factor for SRRC pulse, this is because when implementing adaptive algorithms explained 

in Chapter 3, it contributed to their optimization such as fourth power adaptive algorithm 

[19]. However, the value of roll-factor falls in the range between zero and one [22].  

A random sequence of length 25 was used to reinstate signal whiteness (in order 

to make the spectrum flatter by decorrelating the message), since channel coding at the 

transmitter correlates the intended transmitted message [19]. Scrambling of the coded 

message was done by “exclusive-or”ing the message with length of 25 random sequence. 

The receiver had to be synchronized with scrambled message used at the transmitter, for 

perfect descrambling of the transmitted message, and this was assisted by equalizer 
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training sequence. Descrambling was also completed at the receiver by “exclusive-or”ing 

the message with the same length of 25 random sequence used at the transmitter [19]. 

4.4 Modulation 

The analog signal was up converted or modulated with a carrier frequency of 

250 Hz. From the output of a pulse shaping filter, its real part is multiplied with the 

expression exp(𝑗(2𝜋𝑓𝑐(1 − 𝑓𝑜𝑓𝑓)𝑇𝑠 + (𝑝𝑜𝑓𝑓 + 𝑝𝑛𝑜𝑖𝑠𝑒) ) [19], thus accomplishing 

modulation as illustrated in Eq. (3.20). Note that, 𝑓𝑜𝑓𝑓 is equalling to zero, 𝑝𝑜𝑓𝑓 is 

equalling to 
𝜋

6
,  𝑝𝑛𝑜𝑖𝑠𝑒 was modelled as random walk whose noise variance was specified 

as 0.005,  𝑇𝑠 is the sampling period was equalling to 400 seconds and 𝑓𝑐 is equalling to 

250 Hz. The transmitted signal spectrum was distorted by a phase noise of variance 0.005 

as shown            Figure 4.5. 

 
Figure 4.5: Magnitude spectrum of up converted and original signal 

4.5 Channel 

The modulated signal was passed through different channels, i.e, [1], [0, 1], and            

[−0.3, 1, 0.7] in addition to other noise impairments such as ISI, phase and timing noise 
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with different assumed variances. This was done to investigate how each channel affects 

the reconstruction of speech signal from its parameters, since the assumed channels are 

having different channel gains hence attenuating the transmitted signal differently. 

4.6 Carrier Recovery and Demodulation 

The up converted signal propagated over the channel and received at the receiver 

as a noisy signal. For proper demodulation, both phase and frequency used at the 

transmitter should be known at the receiver. Therefore, this synchronization process was 

completed by adaptive Costas loop algorithm. The incoming signal entered the carrier 

recovery block, the phase and frequency estimates were completed by adaptive Costas 

loop algorithm, and then the signal was down converted by multiplying the transmitted 

signal with expression exp(−𝑗(2𝜋𝑓𝑒𝑠𝑡𝑇𝑠 + 𝑝𝑒𝑠𝑡) ) [19], thereby accomplishing 

demodulation as illustrated in Eq. (3.21).  Note that,  𝑓𝑒𝑠𝑡 is the frequency and 𝑝𝑒𝑠𝑡 is the 

phase estimated at the receiver. However, for proper demodulation, one of the replica had 

to be centred at zero frequency [19][22]. 

4.7 Lowpass filtering  

The signal of interest is centred at zero frequency. After demodulation, one of the 

replica is centred at zero as shown in Figure 4.6. Therefore to remain with only this 

replica, a low pass filter was implemented by calling a Matlab function f𝑖𝑙𝑡𝑒𝑟 that passed 

the normalized cut off frequency values [19]. Since the signal of interest was assumed to 

be contained within a frequency range of approximately ±100 Hz. The signal was low 

passed to remain with only the signal in the band of interest. Note that, to illustrate 

lowpass filtering operation, the noise variance (phase noise and timing jitter) were varied 

to zero, to investigate if smooth convergence of adaptive Costas loop algorithm can be 

achieved, hence proper demodulation of transmitted signal. The magnitude spectrum of 

low passed signal is shown in Figure 4.6, which is centred at zero frequency, when the 

channel was specified as a unity channel. 
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Figure 4.6:  Magnitude spectrum of demodulated and low passed signal 

4.8 Matched filtering and Timing Recovery 

Time recovery block was implemented by fourth-power maximization algorithm 

as explained in Chapter 3 and implemented in Matlab software [19]. The signal was sent 

to timing recovery block and interpolated it  using SRRC pulse shaping without any 

timing offset since timing offset was adaptively estimated, then received pulses were 

matched with transmitted pulse shapes. The over sampled signal was down sampled to 

reconstruct the transmitted symbols.  

4.9 Correlation 

Correlation was done to train the equalizer, this was done by finding the training 

segment which trains the equalizer hence the correlator relates the signal with a pre-

defined training sequence. As soon as the training sequence (segment) was found, the 

starting position of training segment was sent to the equalizer and went along with the 

training sequence [19]. 
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4.10 Equalization Block 

Equalization was accomplished by both trained LMS and decision directed LMS 

adaptive algorithm, and implemented in Matlab software [19]. The signal to be equalized 

was first passed through trained adaptive LMS algorithm block and when the training 

sequence finished, the decision directed adaptive algorithm accomplished equalization to 

mitigate channel effects.  

4.11 Decoding  

As soon as descrambling of a message signal from the output of decision directed 

equalization finished, channel decoding was done by multiplying the received codeword 

with the parity check matrix to generate the transmitted signal (compressed speech 

signal). The block diagram shown in Figure 2.18, completed the conversion of LPC coded 

signal to an original speech signal as explained in Chapter 2. 

For comparison, the block diagram shown in Figure 4.7, was used for performance 

evaluation, using measurement parameters in terms of mean square error (MSE), symbol 

error rate (SER) and bit error rate (BER). From Figure 4.7, the output of the equalizer 

(decision directed equalizer) was compared with the original transmitted parameters (at 

the input of channel encoder) to estimate the mean square error of the equalizer. 

Therefore, the mean square difference between the outputs of decision directed equalizer 

and the input of channel encoder, gave the value of MSE. Numerically, mean square error 

of output data can be expressed as shown in Eq. (4.3) [29]. 

MSE =
1

𝑀
∑[𝑦(𝑥) − �̂�(𝑥)]2,                                   (4.3)

𝑀

𝑥=1

 

where 𝑀 is the total number of samples, 𝑦(𝑥) and �̂�(𝑥) are outputs data at the output of 

source encoder and output decision directed equalizer respectively. 

Furthermore, the pre-decoded symbol message (at the output of equalizer) was compared 

with the original transmitted coded symbols to estimate the symbol error rate. Bit error 

rate was estimated by comparing the transmitted data (at output of the source encoder) 

with the decoded data (at output of channel decoder) at the receiver. To evaluate the effect 
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of channel errors in reconstruction of a coded speech signal, the performance parameters 

obtained in reconstruction of speech signal such as bit error rate, symbol error rate, and 

mean square error were obtained for different channel taps and noise variances [4]. 

Finally, the performance evaluation plots regarding these comparisons were plotted, to 

investigate how they vary with SNR in the channel  [19]. 

 
Figure 4.7: Performance evaluation 
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   CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter discusses the research findings while analysing the results. The 

results and discussions are following the specific objectives of this thesis as outlined in 

Chapter 1 and implemented in Matlab software in Chapter 2 and 4, which includes;  

 determining algorithms in encoding and also in synchronization.  

 modelling and simulating software defined radio architecture.  

 evaluating the effects of channel errors on performance of software receiver in 

reconstruction of a compressed speech signal. 

5.1 Source Encoder and Decoding Results Analysis 

Source encoding and decoding were accomplished by linear predictive coding 

algorithm as explained and implemented in Chapter 2. By implementing LPC encoder 

(shown in Figure 2.17) in Matlab software, LPC parameters were extracted from the 

speech signal. The purpose of LPC algorithm implemented, was to compress the input 

speech signal such that it could be represented with less redundancy. For example, an 

original speech signal had 80000 samples, however, when compressed by LPC algorithm, 

its samples reduced to 79920 samples. Therefore, a redundancy of 80 samples was 

removed. However, the only cost paid was the reduction in quality of a compressed speech 

signal. The extracted LPC parameters from an original signal included, LPCs (filter 

coefficients), gain, voicing and pitch period parameters. These parameters were used by 

LPC decoder (shown in Figure 2.18) to synthesis the speech signal (to convert LPC coded 

signal to original speech signal). At the output LPC decoder, a synthetic speech was 

produced even though, it was of lower quality in comparison with an original signal. This 

is explained by the fact that, LPC algorithm is a lossy compression technique, thus it 

produces a signal which is at a lower quality than its original version [23]. 

At the LPC encoder, white noise was used as excitation signal when it comes to 

unvoiced signal frames. Therefore, the output wave forms may seem different from the 
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original signal. This is because, white noise is random even though the same LPC 

parameters were used to synthesis speech signal at the decoder. However, the most 

important thing is that, the power spectrum density of original speech signal is very close 

to that of synthetic speech signal, (as shown in Figure 5.1) due to flat spectrum of white 

noise. The power spectrum density of original and synthetic speech is shown in Figure 

5.1. 

 
Figure 5.1: Magnitude spectrum of both original and synthetic speech signal 

Even though magnitude spectrum of original is very close to that of synthetic speech 

signal, all phase information of original speech signal is lost, preserving only the 

magnitude spectrum of the original speech signal [7]. However, the synthetic speech 

sounded almost the same as original speech signal. This was evidenced by listening to 

both original and compressed audio sound signal, and the compression can be illustrated 

by looking at their time plots. The time plot for both original and compressed signal is 

shown in Figure 5.2. 
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Figure 5.2: Time plot for original and synthetic speech signal 

The coded speech signal was sent to channel encoder to add structured redundancy such 

that a bit stream is protected against errors before transmission over a communication 

channel. Finally, the end to end communication was completed by a block shown in 

Figure 4.4.  

5.2 Carrier synchronization results analysis 

The up converted signal from the transmitter propagated over a channel as analog 

signal and received at the receiver with high frequency components. This thesis 

considered a software receiver with analog front end, the incoming analog signal was first 

down converted (demodulated), such that sampling could take place at a lower sampling 

rate [22]. In order for accurate demodulation to take place as illustrated in Eq. (3.23), both 

phase and frequency at the transmitter should be the same as those at the receiver. In ideal 

situations, the transmitter and receiver are assumed to be synchronized, which means that, 

both frequency and phase are the same at the transmitter and at the receiver [19]. 

However, if the signal propagates over a noisy channel like for the case of this thesis, both 

frequency and phase at the transmitter differ greatly (or may differ slightly) from those at 

the receiver [22]. Adaptive Costas loop algorithm as illustrated in Eq. (3.36), was 

implemented in Matlab software [19]. Adaptive Costas loop algorithm continuously 

estimated and also eliminated the unknown phase and frequency offsets at the transmitter 
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and the receiver, provided that, a good choice of algorithm step size was made [19]. The 

phase offset value was assumed to be  
𝜋

6
,  and tested on a unity channel [1], assuming that 

both phase noise and timing jitter variance were equalling to zero. The adaptive Costas 

loop converged to a correct value as shown below in Figure 5.3. When a channel was 

modified with a unit delay [0, 1], and with the same step size of 0.5, again the algorithm 

converged to correct value as shown in Figure 5.3. This is so because, the algorithm 

continuously or adaptively estimated the offset over time, until it determined the correct 

value.  

 
Figure 5.3:  Phase offset estimation 

Steepest descent algorithm shown in Eq. (3.2), was used as an adaptive algorithm to 

implement adaptive Costas loop algorithm. For smooth convergence, a small step size is 

used even though it takes long to achieve the desired convergence, and the long 

processing time is reduced by increasing the step size. However, for practical 

implementation like in the case of this thesis which takes into account a noisy channel, 

large step size leads to divergence. And once the phase and the frequency used at the 

transmitter diverge from those at the receiver, the transmitted analog signal cannot be 

properly demodulated, which leads to errors at sampling instants [19]. 

When a signal was made to pass through a three tap channel [−0.3, 1, 0.7], using 

the same step size as the case of unit delay and unit channel, the algorithm diverged to a 

wrong value.  This complicated demodulation and also resulted into a symbol error rate 

of 0. 42, hence the symbol error is approximately 42% which is too big for an acceptable 

communication system [22]. Due to wrong choice of step size, adaptive Costas loop 
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algorithm diverged and the analog signal was not properly demodulated which also 

complicated sampling while recovering the transmitted symbols. Due to high symbol 

error rate, the transmitted symbols are not recovered, resulting into a bit error of 37% and 

the transmitted speech signal was not reconstructed by the receiver. Reducing the step 

size to 1 × 10−3 in order to allow smooth convergence, when adaptive Costas loop was 

again subjected to the same three tap channel, the bit rate reduced to 1.5 × 10−2. Even 

though the decoded speech signal is a bit noisier.  Therefore, it gives an insight that the 

choice of step is very important for adaptive Costas loop implementation. In other words, 

it should not be too be big, neither should it be very small [15]. 

5.3 Clock Synchronization Results Analysis 

A speech signal was sent from transmitter, propagated through a transmission 

medium, which was modelled as a noisy channel, and received at receiver as an analog 

signal. In order to extract message sent, analog signal had to be sampled at correct 

sampling times [19]. To specify the correct instants upon which sampling should take 

place, time recovery was done. Time recovery was completed by fourth power 

maximization algorithm (as shown in Eq. (3.8)), and implemented in Matlab software 

[19]. Fourth power adaptive maximization algorithm was tested on three different 

channels to assert its effectiveness in estimating the timing offset, in other words the best 

times to sample. 

When the timing offset value was set to be 0.25, and timing offset noise modelled 

as random walk and specifying its variance as zero. Then, the algorithm was tested on a 

unity channel, in addition of other noise interferences like phase noise and ISI, fourth 

power maximization algorithm converged to the correct value of 0.25 as shown in 

Figure5.4. Modifying the channel as a unity delay [0, 1], the algorithm converged to -0.8. 

However, when the channel is [−0.3, 1, 0.7], the algorithm converged to -1.5, which 

deviated from the true value of timing offset.  
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Figure 5.4: Timing offset estimation 

The presence of too much noise in the channel, such as ISI, changes the convergent value 

of the fourth power maximisation algorithm [19]. For example, for a unit delay, the 

algorithm changes the estimates of the timing offset, to a value that maximises the power 

output as the algorithm suggests. This power is maximised to account for the added delay 

[19]. When a channel is more complicated, for example [−0.3, 1, 0.7],  the algorithm 

again moves the estimate to that value that maximises the output power. However, the 

divergence from the correct value of timing offset also leads to change in channel ISI, 

which is fixed by equalization block to enable smooth decoding of a transmitted symbols,  

provided that the noise is not too immense [19]. This explains why, the compressed 

speech signal was reconstructed at the receiver, even though in two cases the correct value 

of timing offset was not attained. However, the quality of reconstructed signal was a bit 

low. 

5.4 Simulation results of software receiver 

As explained in Chapter 4, the software radio was implemented in Matlab 

software to assert its effectiveness while reconstructing a compressed speech signal, in 

presence of channel errors. The parameters for each and every block are specified 

(assumed if applicable). Finally, they are passed through Matlab functions as arguments. 

Fixed channels taps that is to say [1], [0, 1] and [−0.3, 1, 0.7], were used for simulation 

of software receiver and they were constant for entire time of simulation. However, as 

explained in Chapter 4, all other noise interferences such that timing jitter, phase noise 

and ISI are added to the signal, and their variances varied to assert how channel errors 

affect software receiver in reconstruction of a compressed speech signal. The adaptive 
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LMS agorithm (shown in Eq. (3.45)) was implemented  in Matlab softare, and its output 

is fed to decision directed equalizer (shown in Eq. (3.47)) to complete equalization [19].  

 The simulation results in terms of BER, MSE and SER (as explained in Figure 

4.7) are shown in Table 5.1 below. For the results obtained in Table 5.1, it was assumed 

that, the variances of phase noise and timing jitter were assumed to be equivalent to zero. 

However, the variance of ISI was kept constant, specified as 2 × 10−8. 

Table 5.1: Table of results one 

Channel Description Results 

[1] BER 1.2 × 10−9 

 SER 1.9 × 10−5 

 MSE 4.3 × 10−4 

[0,1] BER 1.5 × 10−8 

 SER 1.9 × 10−4 

 MSE 3.4 × 10−3 

[−0.3, 1,0.7] BER 1.2 × 10−6 

 SER 1.9 × 10−3 

 MSE 1.7 × 10−2 

In the three cases, the compressed speech signal was reconstructed, and its quality when 

listening to it, was almost the same as the original transmitted signal. This is explained 

by the fact that, channel errors were not too immense, in additional to adaptive nature of 

the receiver’s algorithms, they iteratively estimated all the offsets and the equalizers (both 

trained LMS and decision directed) were able to un do the channel effects perfectly, such 

that, the reconstructed symbols were correctly decoded at the output of the software 

receiver. The values of variances for phase noise and timing jitter were adjusted to            

1 × 10−3, while still making the variance of ISI constant. The values obtained in terms 

of BER, SER and MSE are shown in Table 5.2. 
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Table 5.2: Table of results two 

Channel Description Results 

[1] BER 3.685 × 10−1 

 SER 7.049 × 10−1 

 MSE 1.601 × 100 

[0,1] BER 3.688 × 10−1 

 SER 6.433 × 10−1 

 MSE 1.328 × 100 

[−0.3, 1,0.7] BER 5.303 × 10−1 

 SER 9.784 × 10−1 

 MSE 1.691 × 100 

In the three cases, the compressed speech signal was not perfectly reconstructed by the 

software receiver. This is illustrated by the values BER, SER and MSE, which are too big 

for acceptable communication system. This is because, for practical telecommunication 

systems, the acceptable minimum BER is 10−9, meaning that the value beyond indicates 

that, the channel is almost ideal which is not the case for practical communication world. 

However, the maximum value of BER for data transmission is 10−3, hence the value 

below indicates occurrence of too much errors [22].  Bit error rate is used as a tool in 

communication systems to show how successfully a receiver has decoded the transmitted 

data [22]. The receiver was unable to perfectly reconstruct a compressed speech, since 

the noise was too immense for the adaptive algorithm to estimate all the offset values 

thereby decoding the symbols perfectly. In other words, when listening to the speech 

signal at the out of receiver, the quality was very poor and not understandable. The 

variance values for phase noise and timing jitter were continuously varied, in order, to 

estimate the range upon which the software receiver could be able to perfectly reconstruct 

a compressed speech in presence of channel errors. When the values of noise variances 

adjusted to 1 × 10−4, the results obtained are shown in Table 5.3. 
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Table 5.3: Table of results three 

Channel Description Results 

[1] BER 1.12 × 10−8 

 SER 5.99 × 10−4 

 MSE 4.83 × 10−2 

[0,1] BER 1.24 × 10−7 

 SER 3.40 × 10−3 

 MSE 5.76 × 10−2 

[−0.3, 1,0.7] BER 1.43 × 10−1 

 SER 2.63 × 10−1 

 MSE 5.02 × 10−1 

As illustrated from Table 5.3, the receiver perfectly reconstructed a compressed speech 

signal for a unity channel [1] and a unit delay channel [0,1]. Therefore, an insight was 

given for range of noise variance, which should be chosen for a receiver implemented in 

Matlab software to reconstruct the speech signal. For the receiver to perfectly reconstruct 

a compressed (coded) speech signal, the value of noise variance for phase noise and 

timing jitter, should be in the range between 0 and 𝑦 × 10−4, where 𝑦 is an integer, 

provided that a unity channel and a unit delay channel have been used. However, for a 

three tap channel [−0.3,1,0.7],  the range of noise variance should between 0 and 𝑦 ×

10−5.  From Table 5.1, the values of MSE (4.3 × 10−4 and 3.4 × 10−3)  for a unity 

channel and unit delay channel are very small. Since mean square error was the square 

difference between the original signal and the output of an equalizer, this indicated that, 

equalization was perfectly done in mitigating channel errors. Looking at SER from Table 

5.2 for all channels, they indicate that, a noisy channel affects compressed speech signal 

more and hence care must be taken for proper reconstruction of the compressed speech 

signal.  

The investigation was also made to assert how the signal to noise ratio varies with 

the symbol error rate and bit error rate. For implementing signal to noise in Matlab 

software, its value was specified to be constant for entire simulation in the range between 

5 and 20. From Figure 5.5, SER and BER have an inverse relationship with SNR.  In other 

words, as SNR increases, the SER or BER reduces.  
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Figure 5.5: Symbol error rate and bit error rate against signal to noise ratio 

From the results obtained, they indicate that, a highly compressed speech signal is very 

much affected by channel errors as it propagates through it.  This is evidenced by a very 

small range of noise variance used, such that a receiver could reconstruct a compressed 

speech signal. Therefore, if the channel errors are so immense, the compressed speech 

signal cannot effectively be reconstructed at the receiver, and its quality will be very poor. 

This explains why the whole of receiver’s implementation was based adaption using 

steepest descent algorithm, to counteract the adverse effects of the channel. If the channel 

is noisy like for the case of this thesis, adaptive algorithm continuously updates the 

algorithm until the offset values as a result of channel errors are determined [19]. This in 

turns lowers or even suppresses the would be errors in the speech signal before 

reconstruction at the receiver.  In some instants where adaptive algorithms delivers than 

what is expected, it could be as a result of poor choice of the step size value. Steepest 

descent algorithm is a good adaptive algorithm if the choice of step size has been chosen 

very well otherwise, it may lead to divergence hence wrong results [15] 
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CHAPTER 6  

CONCLUSION 

A comprehensive study was successfully done investigating on how channel 

errors affect software receivers while reconstructing a highly compressed speech signal. 

In this work, linear predicted parameters where extracted from the author’s voice, which 

were transmitted through a noisy channel, and the speech signal was produced at the linear 

predictive decoder. Additionally, the main components of end to end communication 

were theoretically discussed and implemented in Matlab software. Investigations were 

done to assert the effects of channel errors in reconstruction of a speech signal, using 

measurement parameters such as, symbol error rate, bit error rate and mean square error. 

From this thesis, the following inferences are drawn: 

 The quality of speech signal encoded by linear predictive algorithm reduces, at 

the output of the decoder. 

 Linear predicted parameters are highly affected by channel errors. 

 For perfect decoding of a transmitted signal by a receiver, it has to be synchronised 

with a transmitter. 

 The choice of step size affects the adaptive algorithm derived from steepest 

descent algorithm. In other words, the step should not be too big neither should it 

be very small. 

An experimental study based on Matlab implemented results is proposed to any 

researcher who would wish to undertake a similar study.  
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