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In this thesis, we introduced a new method which is called the GMN (Gamze, Mu-

rat, Neslişah) algorithm. GMN algorithm determines the pre-exponential and activation

energy of the curing process. This algorithm include tanh fitting for the measured con-

version values via least squares minimization technique and linear fitting for the kinetic

parameters. Experimentally determined differential scanning calorimetry (DSC) data sets

for an epoxy resin functionalized by single wall carbon nanotubes are used for the verifi-

cation of the proposed method. In computational part, in order to denote the effectiveness

of the new proposed method, the results are also compared with the methods reported in

the literature [21]. To sum up, we have shown that the GMN algorithm provides a good

match with the experimental data for all kinetic parameters.
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ABSTRACT

A NUMERICAL APPROACH FOR OPTIMIZATION OF CURING

KINETICS OF COMPOSITE MATERIAL



ÖZET

Bu tezde, kürleme işleminin ön üstel ve aktivasyon enerjisini belirlemek için yeni

bir algoritma GMN (Gamze, Murat, Neslişah)sunduk. Bu metod ölçülen dönüşüm değer-

leri için tanh eğri uydurma yöntemi ile en küçük kareler minimizasyon yöntemlerinin

kombinasyonun içerir ve kinetik parametre için liner eğri uydurma yöntemi kullanır.

Sunulan yöntemin do˘

bir epoksi reçinesi için deneysel olarak belirlenmiş diferansiyel taramalı kalorimetri (DSC)

veri setleri kullanılmıştır. Hesaplama kısmında, önerilen yeni yöntemin etkinliğini be-

lirtmek için sonuçlar literatürde bildirilen yöntemlerle de karşılaştırılmıştır. Son olarak,

GMN algoritması, kinetik parametrelerin hesaplanması için deneysel verilerle iyi bir tu-

tarlılık içerinde olduğu elde edilmiştir.

iv

¸grulanması için tek duvarlı karbon nanotüpler tarafından islenmemi

˙ ˙ ˙ İ ˘ ˙ ˙
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KOMPOZ ININ KÜRELTME KINET GIN
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CHAPTER 1

INTRODUCTION

1.1. Introduction

The aim of this thesis is the thermal characterization of laboratory-scale inno-

vative carbon fiber/epoxy-based prepregs by incorporating single-wall carbon nanotubes

(SWCNTs). Investigation of the cure behavior of a prepreg system is crucial for the

characterization and optimization of the fiber reinforced polymeric (FRP) composite de-

velopment. We will obtain a numerical solution for optimization of curing kinetics of

composite material. We will mainly focus on curing kinetic modelling and optimization

of reaction models.

We will deal with firstly the history of composite material and cure kinetic mod-

elling. Over the past years, fiber reinforced polymeric (FRP) composites have been widely

used for developing and manufacturing functional materials [4]. Prepreg based fiber re-

inforced composites include a combination of fiber and the polymeric matrix. For high

performance and quality FRP composite manufacturing prepregs provide unique features

such as being ready to use without any further processing, ease of use, high fiber volume

fraction, uniform fiber alignment, accurate control of resin content, and very low void

content [28, 17]. The demand for carbon fiber (CF) has shown an enormous increase

and enabled the manufacturing of laminates with low density, low thermal expansivity,

chemical inertness, high specific modulus, and specific strength [24]. CF-based prepregs

have been produced using either hot melt process or solvent dip (solution impregnation)

process which involves dissolving the resin in a solvent bath and dipping the reinforcing

fabric in the resin solution.

Hybrid composites (also known as multiscale or hierarchical or nanostructured

composites) consist of at least two reinforcements of different size scales. These rein-
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forcements are generally applied as micro-scale continuous fibers and nano-scale fillers.

An important feature of hybrid composites is that they take advantage of both the advan-

tages of conventional fiber reinforced composites and the gain of feature and functionality

by incorporating nanofillers into the matrix. Epoxy resins are the most preferred ther-

mosetting polymers used as matrix bases in fiber reinforced composites due to their good

thermal, electrical and mechanical properties [23]. One of the most notable considera-

tions with the use of epoxy resin systems is their tendency to be brittle. [5]. The curing of

epoxy matrices with these advantageous properties has been the subject of many studies

such as high glass transition temperatures (Tg), high modulus and weight ratios [13, 14].

The mechanical and thermal properties of prepreg systems are linked to cross-

linking reactions that occur during the epoxy curing process [27]. Epoxy resin is a ther-

mosetting material that can form a three-dimensional network when it reacts with the

hardener. Since it is an exothermic process, the heat of the reaction is released during the

curing reaction. The curing mechanism is quite complicated as epoxy resin is subjected

to many physical and chemical reactions during crosslinking [12, 8]. These chemical re-

actions play an important role in resin morphology, which determines the properties of

cured thermoset resin and its composites. Since crosslinking continues after production,

prepregs should be stored in a cold environment. In this way, it may be possible to extend

the shelf life. The problem is the quality of end-product can be caused by using material

that is over-cured or prepared with an unfavorable curing cycle. Therefore, one of the

most important steps in the process of these incremental novel systems is the mechanism

and kinetics involved in curing reactions. Cross-linking during the curing process can be

monitored by Differential Scanning Calorimetry (DSC). The thermal analysis of partially

cured prepreg samples by DSC provides generating a series of time-temperature-degree

of cure diagrams. DSC can measure the heat during the exothermic or endothermic pro-

cesses, providing information on cure and degradation reactions. Therefore, thermograms

may be used to achieve high quality parts by optimizing kinetic parameters and curing cy-

cles. There are two methods of thermal analysis kinetics, isothermal and non-isothermal

methods. Non-isothermal methods have become the main method of thermal analysis ki-

netics due to their advantages.

In recent years, interest in the modeling of epoxy-based nanocomposite process-

2



ing has increased to obtain high quality parts by optimizing curing cycles and parame-

ters [35, 3]. Thus, experimental studies for the cure cycles can be reduced to a mini-

mum. Using nanofillers in the resin system may have a considerable impact on the heat

of reaction, δH, degree of cure (α), and curing kinetics parameters, such as activation

energy (Eα). Borchardt and Daniels [1] have obtained the kinetic parameters using a sin-

gle DSC measurement. Moreover, Kissinger [16], Ozawa [22], Flynn–Wall–Ozawa [31]

and Kissinger–Akahira–Sunose (KAS) [32] models have been used for multiple dynamic

scans with more precision. Isoconversional (model-free) models are the types of kinetic

models and provide information about kinetic analysis of solid-state reactions without an

explicit kinetic model. It is very difficult to define the complete curing reaction of the

epoxy resin system simply because many reactive processes take place at the same time.

These models are useful for the study of complex curing processes. However, there are

not many studies yet on how the material affects the curing mechanism as a result of the

use of nanomaterials in hybrid prepreg systems. Siddiqui et al [29] studied the effect of

multi-walled carbon nanotubes (MWCNTs) on the cure behavior of prepregs of carbon

fiber-reinforced polymer (CFRP). The degree of the cure is lower for the prepregs contain-

ing 0.5–1.0 wt.% MWCNTs than neat prepregs. Costa et al [6] focused on understanding

the cure behavior of the Carbon/epoxy 8552 thermoplastic toughened prepreg using DSC,

DMA and rheometer. Dynamic DSC scans were performed to obtain kinetic parameters

incorporating with nth order reaction model. The results showed that the heating rate more

reliable to fabricate the polymeric composite is 2.5 ◦C.min-1. Wu et. al. [37] analyzed

that the high-temperature curing epoxy resin prepreg in fiber metal laminates using DSC.

The kinetic event is related to the autocatalytic reaction patterns. The activation energy

of the epoxy resin was 62.178kJ/mol and the reaction orders were 0.314 and 1.2157, the

total reaction order was 1.5297. Kumar et al [18] studied cure cycle optimization of resin

transfer molding type epoxy resin system containing MWCNTs for the manufacture of

composite structures. Dynamic Mechanical Analysis (DMA) was performed to optimize

the viscosity profile of the modified resin system.

The study of the curing behavior of a composite system is crucial for the me-

chanical characterization and optimization of fiber-reinforced polymeric (FRP) compos-

ite structure. Fiber reinforced composites, which have high strength properties from their

3



layered structure, pass many tests until the correct curing cycle is achieved. Therefore,

one of the most important steps in the development of new composite systems is the

mechanism and kinetics involved in curing reactions. In this thesis, an algorithm will be

developed to approximate the parameters of the curing kinetics of the reaction model used

according to certain parameters of the material. With successful modeling, experimental

studies to calculate cure cycles will be minimized.

In this thesis will also be written using a hybrid Matlab algorithm using curve

fitting and approximate solutions of differential equations of numerical analysis. The ex-

perimental results obtained by the mechanical engineering composite Laboratory in the

doctoral study of doctoral student Yusuf Can Uz will be used to confirm this algorithm.
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CHAPTER 2

Firstly, the idea of cure kinetic model is given. Then, we define Differential Scanning

Calorimetry (DSC) to understanding of the cure process. Finally, numeric solution of

model is defined in chapter 3.

2.1.1. Materials

In this study, single-wall carbon nanotubes (SWCNTs) were supplied from Pinhas

Inc., Turkey. SWCNTs were manufactured by TUBALL™, Luxembourg. The outer mean

diameter of SWCNTs is below 2 nm, and their length is higher than 1μm. It contains high

quality of SWCNT (G/D ratio > 90) with an iron content of less than 15%. The resin

system used consisted of solvent-type epoxy F- RES21. The viscosity of the resin is 400-

650 mPa.s at 25 ◦C. 800 tex carbon fiber (A-49 filaments) were provided from DowAksa

Inc., Turkey, and used as reinforcing constituent.

2.1.2. Sample Preparation

The forming defects on sidewalls of SWCNTs was performed by an oxidative

process with strong acids (HNO3, H2SO4 1v:3v). As a result of the oxidation process,

bonds with carboxylic acid (–COOH) were observed on the sidewalls of SWCNTs by

FTIR spectroscopy. Single wall carbon nanotubes (SWCNTs) were called as F-SWCNTs

after the covalent functionalization process. Multi-step dispersion technique was applied

5
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for dispersing F-SWCNTs within the epoxy resin system. Firstly, F-SWCNTs were son-

icated in the solvent (F-Prepreg) of the resin system for 15 minutes. Then, the solu-

tion was poured into epoxy resin (RES-21) and mixed by ultrasonication technique for

90 minutes. After the addition of the hardener, all the components of the resin system

were mixed mechanically at 2000 rpm for 15 minutes. The resin system contained epoxy

(RES 21), hardener (21 wt.% of epoxy), and its solvent (10 wt.% of whole resin sys-

tem) and F-SWCNT. Finally, a modified resin system containing F-SWCNTs was ready

for nano-engineered prepreg fabrication. Drum-type winding was applied by utilizing a

solvent dip (solution impregnation) method using modified F-SWCNTs dispersed within

the epoxy resin system and carbon filaments to produce laboratory-scale unidirectional

(UD) prepregs with/without F-SWCNTs. The desired pattern per circuit was applied on

the mandrel while impregnated in a bath with modified/unmodified resin. The hoop pat-

tern, in which the winding angle is 90°, creates UD products. After the mandrel was

completely wrapped to the desired thickness, the resin curing stage was reached. Approx-

imately 750-850 grams of resin systems (resin, hardener, and its solvent) were used per

production. After completion of the winding of the UD prepreg, the solvent was evapo-

rated from the prepreg, and the resin reached B-stage using a drying oven according to the

resin formulation. Prepregs had two different sides as dry and resin-rich side. Dimensions

of the manufactured prepreg were 600 mm x 1000 mm.

Differential scanning calorimetry (DSC) include thermal analysisy which mea-

sures the transformation of energy from a sample a physical or chemical change. [10]

Temperature changes during curing determine the degree of cure of the system. The de-

gree of hardening depends on the reaction temperature. The degree of curing process is

changes the heat of reaction. The main idea of this technique is that when the sample

undergoes a physical change as a result of chemical reaction, keeping the temperature of

the sample may take more and less temperature values for the temperature as reference.

These parameters are obtained using (DSC) and can be used to monitor the quality of

6
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the final material. These parameters are obtained using differential scanning calorimetry

(DSC) and can be used to monitor the quality of the final material. Samples we can define

with the Shimadzu series which is consist of aluminum pans.

2.2. Kinetic Model

In the Differential scanning calorimetry measurements, the degree of cure α varies

between 0 and 1 and is defined as follows [11]

α =
Ht

ΔH
(2.1)

where Ht implies the amount of heat released in time t and ΔH implies the total heat of

reaction. The area under the exothermic peak gives the amount of heat.

Usually, a kinetic model relates the rate of reaction dα
dt to some function of c and T . It is

commonly accepted in the kinetic analysis of chemical reactions by thermal analysis that

any chemical process of reaction will obey a rate law of the form

dα
dt
= k(T ) f (α) (2.2)

where the functional dependence upon α is separated from the dependence upon T [30,

19]. Here dα
dt implies the rate of reaction, k(T ) is the dependent of temperature rate and

is a constant, and f (α) defines our reaction model. The temperature dependence of the

reaction rate is generally defined by an Arrhenius expression :

k(T ) = Aexp(− E
RT

) (2.3)

in the equation, A is the pre-exponential factor and is a constant. E implies the activa-

tion energy, R refers to the universal gas constant and is a constant. T match up with

to the absolute temperature.Thus, for a reaction sample using multiple linear regression,

7



it becomes possible to define the kinetic parameters obtained from isothermal and non-

isothermal DSC exothermic measurements. When the process is isothermal, the temper-

ature remains constant, but in non-isothermal conditions, the temperature usually rises

relative to a constant heating rate

β =
dT
dt

(2.4)

where β is the heating rate. Although the isothermal velocity expression obtained in

isothermal measurements is more precise than the non-isothermal velocity expression, the

DSC measurement is accurate. in general, less time consuming and thus more attractive

than isothermal measurement. Combining the Eq. (2.2), (2.3) and (2.4) yields a resulting

equation for non-isothermal conditions:

dα
dT
=

A
β

exp(− E
RT

) f (α) (2.5)

Therefore, if the reaction model describing the data is known, we can predict the trans-

formations obtained at a given temperature or heating rate by using the above equations.

[21].

The activation energy of the curing reaction can be calculated by the isoconversional

methods as Kissinger-Akahira-Sunose (KAS), and Kissinger which are the most cited

algorithms in literature. Kissinger–Akahira–Sunose (KAS) Method [34]

ln

⎛⎜⎜⎜⎜⎝ βi

T 2
α,i

⎞⎟⎟⎟⎟⎠ = Const − Eα
RTα

(2.6)

Kissinger Method:

ln

(
βi

T 2
p

)
= Const − E

RTp
(2.7)
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Different approaches can be found in the literature to explain the reaction pro-

cesses of thermoset materials. Most can be divided into model-fit and model-less ap-

proaches. The latter are also called isoconversional methods. Using the model fitting

approach to explain the reaction kinetics, a reaction model f (α) which is a conversion-

dependent function is used. g(α) is a integral form of f (α). Some of these kinetic models

are listed in Table 2.1. These methods are widely used in different fields. Predicting the

degree of cure as the reaction progresses is very important for isothermal cure measure-

ments.The first formula can be modified to calculate the degree of cure as follows:

α =
ΔHT − ΔHR

ΔHR
(2.8)

where ΔHT equals the total enthalpy of reaction measured at a certain heating rate for an

unreacted sample, and ΔHR is the residual heat of the reaction for the isothermally cured

sample for a certain period of time. This formula will allow us to calculate the degree

of improvement as treatment progresses. It is also important to develop a relationship

between α and T , as T provides a better value for observing treatment progress.

9

Figure 2.1. Chosen kinetic models to describe activated processes.
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Table 2.1. Experimental data from Sample 1



CHAPTER 3

NUMERICAL SOLUTION OF MODELS

In this chapter, we take a look how to solution of Cure Kinetic Model and we will

concentre their solution method. Cure kinetic model has no analytical solution, therefore

we have to define approximations and numerical methods to solve model [33]. First of

all, we explain numerical differential equation which is used to find numerical approxi-

mations to the solutions of differential equations. Then we define curve fitting method is

theoretically describe experimental data to find the parameters associated with this model.

3.1. Numerical Differential Equation

In this section, we will give the brief description about what a numeric differential

equation look like.

An ordinary differential equation is an equation that specifies the derivative of a

function y : IR −→ IR as

y′(x) = f (x, y(x)), (3.1)

where

y′ =
dy

dx
(3.2)

we generally use x to denote the ’independent’ or ’time’ variable and y to de-

note the ’dependent variable’. More generally, an nth order ordinary differential equation

11



specifies the nth derivative of a function as

yn(x) = f (x, y(x), . . . , yn−1(x)) (3.3)

We will analyze for a solution to (3.2) for x > x0 as

y(x0) = b (3.4)

where x0 < x < b, x0 and b are two real numbers. The fist order differential equation (3.2)

with the initial condition described in (3.4) is called the Initial Value Problem. Analytical

solution is defined by y(x), and approximate solution is represented by yn [2].

3.1.1. Runge-Kutta Method

The Runge-Kutta method is known to be a common method to solve the initial

value problem, and it provides very important accuracy compared to other methods, so

it is of great importance. Additionally requires only a single assessment of f (xn, yn) to

get yn+1 from yn. The Runge-Kutta method has a considerably higher accuracy than other

methods and has faster convergence rates.

3.1.1.1. Definition of Runge-Kutta Method

Consider the first-order ODE of the form given by

dy
dx
= f (x, y), (3.5)

12



with initial condition y(x0) = y0 The general form of the Runge-Kutta method is

yn+1 = yn + hΦ(xn, yn; h), n = 0, 1, . . . ,N − 1 (3.6)

where Φ(xn, yn; h) is an increment function on the our interval [xn, xn+1] and h = xn+1−xn
N is

the step size. We can define its general form like

Φ(x, y; h) =

R∑
r=1

brkr, (3.7)

br’s are the constant weight coefficients and kn’s are the coefficients to be calculated.

k1 = f (xn, yn)

k2 = f (xn + c2h, yn + a21k1h)

...

kr = f (xn + hcr, yn + h
r−1∑
s=1

brsks), r = 2, . . . ,R

cr =

r−1∑
s=1

ars, r = 2, . . . ,R

In this, for each of the function k’s are symbolize slope of the solution which are approxi-

mated to y(x). The coefficients ar, cr, kr define the numerical method. These are normally

arranged in Butcher tableau:

c A

bT

The coefficient bT is a vector of quadrature weights, and ai j = (1, . . . , s) defines the matrix

A [9].

13



3.1.1.2. Explicit Runge Kutta-Method

We can define the R-stage Explicit Runge-Kutta method like

yn+1 = yn +

R∑
i=1

biki (3.8)

where

k1 = f (xn, yy)

ki = f (xn + cih, yn +

R−1∑
j=1

ai jki), i = 1, 2, . . .R

where h = xn+1−xn
N .

If Runge-Kutta method is consistent, the following condition must be satisfied

i−1∑
j=1

ai j = ci, i = 2, . . . ,R (3.9)

Simple representation of Runge-Kutta method is known as the (Explicit) Euler method.

We can describe One-stage Runge-Kutta methods (R = 1).

yn+1 = yn + h f (xn, yn)

we can formed as shown their tableau

0 0

1

14



Moreover, Runge-Kutta method is known as midpoint method which is called a second-

order method (R = 2).

yn+1 = yn + h f (xn +
1

2
h, yn +

1

2
h f (xn, yn))

and their tableau

0 0

1
2

1
2

0

0 1

For calculating y(xn+1), higher order of derivatives is necessary to expand at the Taylor

series.

y(xn+1) = y(xn) + hy′(xn) +
1

2!
h2y′′(xn) + · · · + 1

p!
hpy(p)(xn) (3.10)

Differentiating the differential equation y′(x) = f (x, y(x)) with respect to using the

chain rule gives

y′′(x) = fx + y′ fy = fx + f fy (3.11)

We get

y(xn+1) = y(xn) + h f +
1

2
h2 fy f + O(h3) (3.12)

The second-order approximate solution of the Runge-Kutta method can be obtained

yn+1 = yn + [b1k1 + b2k2] (3.13)

where

k1 = f (xn, yn) = f (3.14)

k2 = f (xn + c2h, yn + ha21k1) = f + ha21 f fy (3.15)
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then, if we put that in Eqn.(3.13)

yn+1 = yn + [b1 f + b2( f + ha21 f fy)] (3.16)

Now, if we match Eqn.(3.40) with Taylor series Eqn.(3.10), we will obtain the following

equations

b1 + b2 =1

b2a21 =
1

2

In this case we take b1 = 0, b2 = 1 and a21 =
1
2
, we will obtain the modified Euler method:

yn+1 = yn + h f (xn +
1

2
h,

1

2
h f (xn, yn) (3.17)

Furthermore if we choose b1 = 0, b2 = 1 and a21 = 1, we will obtain the improved Euler

method:

yn+1 = yn +
1

2
h[ f (xn, yn) + f (xn + h, yn + h f (xn, yn)] (3.18)

3.1.1.3. Implicit Runge-Kutta Method

The form of R stage Runge-Kutta method is known like

yn+1 = yn + h
R∑

i=1

biki (3.19)

where

ki = f (xn + cih, yn + h
R∑

j=1

ai jk j), i = 1, . . . ,R (3.20)
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and we can define their Butcher tableau as follows

c1 a11 a12 . . . a1r

c2 a21 a22 . . . a2r

...
...

...
. . .

...

cr ar1 ar2 . . . arr

b1 b2 . . . br

Implicit Runge-Kutta method is obviously much more complicated than explicit version.

The complexity can be justified by improved stability and higher order.

3.1.1.4. Fourth Order Runge-Kutta Method

We can explain the Fourth Order Runge-Kutta method, which is the most impor-

tant method, as follows

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.21)

where

k1 = f (xn, yn)

k2 = f (xn +
1

2
h, yn +

1

2
hk1h)

k3 = f (xn +
1

2
h, yn +

1

2
hk2h)

k4 = f (xn +
1

2
h, yn + k3h)

17



The Fourth Degree Runge-Kutta method is crucial important and most well-known of all

Runge Kutta methods. Their tableau as follows

0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

The local truncation error is O(h5) and this is the most important. Also, it has four evalu-

ation of function for each step [15].

3.1.1.5. Convergence and Stability Condition of Fourth-order

Runge-Kutta Method

Söderlind [1] emphasizes that the stability property has a crucial role in solving

first-order ODEs using numerical methods.

dα
dT
= f (T, α), α(T0) = α0 (3.22)

If we consider the integral form of 3.22 equation

αn = αn+1 +

∫ Tn+1

Tn

f (T, α)dT (3.23)

We obtain Runge-Kutta formula has order 4, so it will be possible to approximate the

integral
∫ Tn+1

Tn
f (T, α)dT by using a numerical method with truncation error of O(h5). The

Simpson’s rule is fits for this condition.

18



Simpson’s rule in the form of quadratic interpolation is used to obtain the Runge-Kutta

formula in a form similar to the initial value problem [36]. The equation is shown below:

∫ Tn+1

Tn

f (T )dT =
h
6

[
(Tn + 2 f

(Tn + TT+1

2

)
+ f (Tn+1)

]
+ ε (3.24)

where the cut error is ε = − 1
90

f 4(ψ, α)h5, and ε ∈ (Tn,Tn+1)

Consequently, the form of Fourth-order Runge-Kutta formula can be illustrated as below

K1 = f (Tn−1, αn−1)

K2 = f (Tn−1 +
1

2
h, αn−1 +

h
2

K1)

K3 = f (Tn−1 +
1

2
h, αn−1

h
2

K2) (3.25)

K4 = f (Tn−1 + h, αn−1 + h(aK1 + bK2 + cK3))

αn =αn−1 +
h
6

(K1 + 2K2 + 2K3 + K4)

To determine the unknown coefficients, the stability analysis is used:

K1 =(−λ)αn−1

K2 =(−λ + 1

2
λ2h)αn−1

K3 =(−λ + 1

2
λ2h − 1

4
λ3h2)αn−1

K4 =(−λ + λ2h +
1

2
)λ3h2 − 1

4
λ4h3)αn−1

Then we can obtain the following equation:

αn+1 = αn +
1

6

[
1 − λh + 1

2
λ2h2 − 1

6
λ3h3 +

1

24
λ4h4

]
αn−1 (3.26)
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Comparing with the corresponding Taylor’s formula:

αn = αn+1 +

[
λh +

1

2!
λ2h2 +

1

3!
λ3h3 +

1

4!
λ4h4

]
αn+1 (3.27)

The increment function of Eqn.(3.25)

Φ(T, α, h) =
1

6
[k1(T, α, h) + 2k2(T, α, h) + 2k3(t, α, h) + k4(T, α, h)] (3.28)

where

k1(T, α, h) = f (T, α)

k2(T, α, h) = f (T +
1

2
h, α +

h
2

k1(T, α, h))

k3(T, α, h) = f (T +
1

2
h, α

h
2

k2(t, α, h))

k4(T, α, h) = f (T + h, α + hk3(T, α, h))

(3.29)

According to Lipschitz Condition:

20

|k1(T, α1, h) − k2(T, α2, h)| ≤L|α1 − α2| (3.30)

|k2(T, α1, h) − k2(T, α2, h)| ≤L
(
|α1 − α2| + 1

2
hL|α1 − α2|

)
(3.31)

=L(1 +
1

2
h)|α1 − α2|



|k3(T, α1, h) − k3(T, α2, h)| ≤L(|α1 − α2| + 1

2
hL(1 +

1

2
h)|α1 − α2|) (3.32)

=L(1 +
1

2
hL + (

1

2
h)2)|α1 − α2|

|k4(T, α1, h) − k4(T, α2, h)| ≤L

(
|α1 − α2| + hL(1 +

1

2
hL + (

1

2
h)2)|α1 − α2|

)
(3.33)

=L(1 + hL +
1

2
(hL)2 +

1

4
(hL)3)|α1 − α2|

(3.34)

we can get the inequality:

|Φ(T, α1, h) − Φ(T, α2, h)| ≤ L
[
1 +

1

2
hL +

1

6
h2L2 +

1

24
h3L3

]
|α1 − α2| (3.35)

We have assume that

L̃ = L
[
1 +

1

2
hL +

1

6
h2L2 +

1

24
h3L3

]
(3.36)

where L implies Lipschitz constant, h represent the step size and the problem is called to

be convergent if L̃ > 0. Clearly, the condition could be satisfied by an appropriate hL.

The solution of the inequality L̃ > 0 is [25]

hL > −2.7853 (3.37)

The inequality Eqn.(3.37) always holds.

The stability condition of Runge-Kutta Method the same way is obtained in Eqn.(3.27).

21



[
1 − λh + 1

2
λ2h2 − 1

6
λ3h3 +

1

24
λ4h4

]
< 1 (3.38)

The stability function of Runge-Kutta Method is

S (λh) = 1 − λh + 1

2
(λh)2 − 1

6
(λh)3 +

1

24
(λh)4 (3.39)

3.1.1.6. Existence and Uniqueness Theorem

Theorem 3.1 (Gronwall’s Inequality)

Let α, β and c be non-negative constants, and u, f : [α, β] −→ [0,∞] continuous. If,

u(t) ≤ c +
∫ t

α

f (s)u(s)ds, α ≤ β,

then

u(t) ≤ ce
∫ t
α

f (s)ds, α ≤ β.

Theorem 3.2 (ODE Uniqueness)

Let f (x, y) = ( f1(x, y), f2(x, y), ..., fn(x, y))tr be a vector function whose components are

each continuous in both x and y in some neighborhood a ≤ x ≤ b and a1 ≤ y1 ≤ b1, a2 ≤
y2 ≤ b2, . . . , an ≤ y1 ≤ bn and whose partial derivative ∂yl fk(x, y) are continuous in both

x and y in the same neighborhoods for each l, k = 1, ..., n. Then given any initial point

(x0, y0) ∈ R × Rn such that a < x0 < b and ak < y0k < bk for all k = 1, ..., n any solution to

IVP

y′(x) = f (x, y)

y(x0) = y0 (3.40)

is unique on the neighborhood of continuity [9].
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Consider the our kinetic model

dα
dT
=

A
β

exp(− E
RT

) f (α), α(T0) = α0 (3.41)

In the literature there are different choice of f (α). For the model most suitable choice is

f (α) = αm(1 − α)n, m + n = 2

and suppose that we want to estimate uniqueness on the intervals for sample1 and α ∈
(0, 1).

dα
dT
= F(α(T )) (3.42)

We begin by supposing that α1(T ) and α2(T ) represent two solutions of the Eqn.(3.41).

α1(T ) = F(α1(T ))

α2(T ) = F(α2(T ))

|α1(T ) − α2(T )| ≤
∫ T

T0

|F(α1(s)) − F(α2(s))|ds

≤
∫ T

T0

L
dF
dα
|α1(s) − α2(s)|ds

we can calculate dF
dα

dF
dα
=

A
β

exp(− E
RT

) f (α)

= f (α) = α0.6(1 − α1.4)

d f
dα
= − ((1 − α)(2/5)(10α − 3))

5α(2/5)
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and 0 < α < 1.

L is the Lipchitz condition and we can reorganize that

V(T ) = |α1(T ) − α2(T )|

and

V(T ) ≤
∫ T

T0

LV(s)ds

from Gronwall’s Inequality we can poof that

V(T ) ≤ 0 +

∫ T

T0

LV(s)ds

and

|V(T )| ≤ceL
∫ T

T0
V(s)ds

≤0eL
∫ T

T0
V(s)ds

= 0

and we from definition of V(T ) we know that

V(T ) =|α1(T ) − α2(T )| = 0 α1(T ) = α1(T )

Theorem 3.3 (Banach fixed point theorem)

Let V be a Banach space, let K ⊂ V be a closed subset, and let F : X −→ X be a

contraction (0 < q < 1) such that

||F(x) − F(y)|| ≤ q||x − y|| f or all x, y ∈ X.
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holds. Then the following conclusions hold:

1.) F has a unique fixed point x∗ ∈ K i.e F(x∗) = x∗.

2.)For any x0 ∈ X the sequence xn+1 = F(xn) converges to x∗

Consider the our kinetic model Eqn.(3.46) and suppose we want to establish exis-

tence on the intervals for sample 1 and 0 ≤ α ≤ 1, with T0 ∈ T and α ∈ (0, 1).

dα
dT
= V(α(T ))

α(T ) =α0 +

∫ T

T0

V(α(T ))

α(T ) =F(α(T ))

Since F is a contraction mapping, we have that for all ε > 0 there exists an M ∈ N such

that

||αk+m − αk|| < ε f or all k > M and all m > 0.

To indicate this, choose some k and m ∈ N and investigate that

||αk+m − αk|| =||αk+m +

m−1∑
j=1

(αk+ j − αk+ j) − αk||

≤
m∑

j=1

||(αk+ j − αk+ j−1)||

From αk+ j = F(αk+ j−1) one has

||αk+ j − αk+ j−1|| = ||F(αk+ j−1) − F(αk+ j−2)|| ≤ q||αk+ j−1 − αk+ j−2||

also,

||αk+ j−1 − αk+ j−2|| = ||F(αk+ j−2) − F(αk+ j−3)|| ≤ q||αk+ j−3 − αk+ j−4||
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such that

||αk+ j − αk+ j−1|| = ||F(αk+ j−1) − F(αk+ j−2)|| ≤ q2||αk+ j−3 − αk+ j−4||

Thus, such a conclusion can be reached by induction:

||αk+ j − αk+ j−1|| = ||F(αk+ j−1) − F(αk+ j−2)|| ≤ · · · ≤ qj−1||αk+1 − αk||

Substituting back to the inequality we obtain

||αk+m − αk|| =
m∑

j=1

||αk+ j − αk+ j−1|| ≤
m∑

j=1

qj−1||αk+1 − αk|| (3.43)

Sum of geometric series is used here:

∞∑
j=1

pj−1 =
1

1 − q

Also, we know that

||αk+1 − αk|| = ||F(αk+1) − F(αk)|| ≤ q||αk − αk−1|| ≤ q2||αk−1 − αk−2||

which leads us to

||αk+ j − αk+ j−1|| ≤ qk||α1 − α0||
With Eqn.(3.43) this gives:

||αk+m − αk|| ≤ qk

1 − q
||α1 − α0||

Because q < 1, pk will decrease with increasing k, and therefore it is possible to conclude

26



that (αk ) is a Cauchy sequence. Since K is complete there exists an α∗ ∈ K such that

αk −→ α∗.
we have to obtain p constant from kinetic equation. To show that we will use mean value

theorem:

According to mean value theorem for all x, y ∈ K where x < y, that there exists a point c

in an open interval (x, y) at which

|| f (y) − f (x)|| = || f ′(c)||.||y − x|| ≤ q||y − x||

we can say that for some positive q ≤ 1, which implies that f is a contraction mapping

with a bounded factor q.

If we consider kinetic equation

||F(α) − F(β)|| ≤ dF
dα
||α − β|| (3.44)

we can calculate dF
dα

dF
dα
=

A
β

exp(− E
RT

) f (α)

= f (α) = α0.6(1 − α1.4)

d f
dα
= − ((1 − α)(2/5)(10α − 3))

5α(2/5)

and 0 < α < 1 and this is our constant 0 < q < 1.

3.2. Curve Fitting

Curve fitting is the process of define the model that provides the best fit to the

specific curves in given for the data. Curved is the relationships between variables which
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is given dataset.

3.2.1. The Method of Least Squares

Curve fitting is a very common problem in science and engineering. Suppose

that from some experiment N observations values of a dependent variable y measured at

specified values of an independent variable x, have been collected. In other words, we

have a set of N

(x1, y1), (x2, y2), (x3, y3), . . . , (xN , yN) (3.45)

for linear function of the form

y = f (x) = Ax + B (3.46)

we may define the experimental error in the measurements associated to saying

ek = f (xk) − yk f or 1 ≤ k ≤ N (3.47)

We can define several norms that can be used with the errors to measure how far the curve

from our data

Maximum error : E∞( f ) = max
1≤k≤N

{ f (xk) − yk}

Average error : E1( f ) =
1

N

N∑
k=1

| f (xk) − yk|

Root − mean − square error : E2( f ) =

⎛⎜⎜⎜⎜⎜⎝ 1

N

N∑
k=1

| f (xk) − yk|2
⎞⎟⎟⎟⎟⎟⎠

1/2

Least squares fitting is due to the choice of f parameters to minimize the root mean square

error.

For our data set in Eqn.(3.45) and our linear function Eqn.(3.46) the root-mean-square

error will be minumum if and only if N(E2( f ))2 =
(

1
N

∑N
k=1(Axk + B − yk)

2
)2

is a minumum

[20].
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Theorem 3.4 (Least-Squares Line) Suppose that {(xk, yk)}Nk=1
are N points, where the

abscissas {xk}Nk=1
are distinct. The coefficients of the least-squares line

y = Ax + B (3.48)

is the solution to the following linear system, known as the normal equations:

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

x2
k

⎞⎟⎟⎟⎟⎟⎠ A +

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

xk

⎞⎟⎟⎟⎟⎟⎠ B =
N∑

k=1

xkyk

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

xk

⎞⎟⎟⎟⎟⎟⎠ A + NB =
N∑

k=1

yk

(3.49)

Proof We have to minimize the error. Let us define the function

E(A, B) =

N∑
k=1

(Axk + B − yk)
2 (3.50)

The minimum value of Eqn.(3.48) is determined by taking partial derivates with respect

to A and B equal to zero. We have system of equations

0 =
∂E(A, B)

∂A
= 2

N∑
k=1

(Ax2
k + Bxk − xkyk) (3.51)

0 =
∂E(A, B)

∂B
= 2

N∑
k=1

(Axk + B − yk) (3.52)

After doing some arrangements we get the system Eqns.(3.49). �

3.2.2. Data Linearization Technique

When two variables are plotted and the resulting graph is non-linear (power, expo-

nential, or sinusoidal), it is difficult to determine the functional relationship between the

two variables from the shape of the curve. However, there is data linearization techniques
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that can be used to turn a non-linear equation into a linear one.

Suppose that we are given the points (x1, y1), (x2, y2), · · · , (xN , yN) and want to fit an ex-

ponential curve of the form

y = CeAx (3.53)

First, we will take the logarithm of the both sides and we get

ln(y) = Ax + ln(C) (3.54)

Then, we will do change of variables:

Y = ln y

X = x

B = ln C

Hence, the new equation is

Y = AX + B (3.55)

This process is called data linearization [7]. Our normal equations in Eqn.(3.49) becomes

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

X2
k

⎞⎟⎟⎟⎟⎟⎠ A +

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

Yk

⎞⎟⎟⎟⎟⎟⎠ B =
N∑

k=1

XkYk

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

Xk

⎞⎟⎟⎟⎟⎟⎠ A + NB =
N∑

k=1

Yk

(3.56)
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After A and B have been found, we can compute C as folows:

C = eB

We can easily see that in the table (3.1).

Table 3.1. Table of linearization

y = f (x) Linearized form, Y = Ax + B Change of variable(s)

y = CeAx ln(y) = Ax + ln(C) X = x,Y = ln(y),C = eB

3.3. A New Numerical Approach: Nonlinear Fitting

Suppose that the experimental data T = [T1,T2 . . . ,Tn] and α = [y1, y2, . . . , yN]

temperature and conversion values are given. N is the number of the data. Consider the

activation function as follows:

α(T ) = A(tanh(B(Tn −C) − 3) + 1) (3.57)

where A, B and C are unknowns. We want to fit a function which has a form in Eqn.(3.57).

For this purpose, the nonlinear least square method is used. The nonlinear least-square

procedure that we find a minimum of

E(A, B,C) =

N∑
n=1

(yn − A(tanh(B(Tn −C) − 3) + 1))2 (3.58)
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The partial derivative E(A, B,C) with respect to A, B,C are must be zero in order to guar-

antee minimum of the function given in Eqn.(3.58).

∂E
∂A
= 0,

∂E
∂B
= 0,

∂E
∂C
= 0. (3.59)

When the all partial derivatives in Eqn.(3.59) are set equal to zero, the resultantly normal

equations are obtained:

N∑
n=1

(−2 tanh(B(Tn −C) − 3)yn + 2A tanh(B(Tn −C) − 3) + 2A tanh(B(Tn −C) − 3)2

N∑
n=1

(2AB(sech(B(Tn −C) − 3)2yn − 2AB tanh(B(Tn −C) − 3) sech(B(Tn −C) − 3)2 − 2AB sech(B(Tn −C) − 3)2) = 0,

N∑
n=1

(−2AB sech(B(Tn −C) − 3)2yn + 2AB sech(B(Tn −C) − 3)2 tanh(B(Tn −C) − 3) + 2AB sech(B(Tn −C) − 3)2) = 0.

The equations in Eqns.(3.60), (3.61) and (3.62) are the nonlinear system of equations with

respect to unknowns A, B,C. The resultantly system can be solved by newton’s method

method which is given in Eqn.(3.63).

zk+1 = zk − J−1(zk)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F(zk)

G(zk)

S (zk)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.63)
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where zk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ak

Bk

Ck

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and J−1 is the inverse of the of the Jacobian matrix,

J(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂E
∂A

∂E
∂B

∂E
∂C

...
. . .

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

To start the Newton’s iterative method, an initial condition is needed [26]. For convergent

A, B and C values we choose appropriate initial condition, z0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and our stopping cri-

teria for k = 100 .

we will seek values of pre-experimental factor A and activation energy E which are given

in Eqn.(2.5). In Eqn.(2.5), there are 4 unknowns and they are A, E, α and f (α).

By using the curve fitting procedure, function given in Eqn.(9) fit the α(T ). In the litera-

ture there are different choice of f (α). For the model most suitable choice is

f (α) = αm(1 − α)n

where m, n are pozitif real numbers. As a result, there are only two unknowns A and E in

Eqn.(2.5). To find these unknowns, data linearization technique is used.

The first step is to take the logarithm of both sides of the Eqn.(2.5)

ln

(
β

f (α)

)
+ ln

(
dα
dT

)
= ln(A) − E

RT
. (3.64)

This results in a linear relation between the new values X and Y:

Y = Ā + EX. (3.65)
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Then introduce the change of variables:

Y = ln

(
β

f (α)

)
+ ln

(
dα
dT

)
, Ā = ln(A), X = − 1

RT
. (3.66)
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CHAPTER 4

SIMULATIONS

4.1. Optimization of Kinetic Parameters

Convection function (α(T )) was described as Eqn.(3.57). To start the Newton’s

iterative method, an initial condition is needed. For convergent A,B and C values appro-

priate initial condition was chosen.

For calculations, Matlab solver is used (the codes are given in the Appendix section). Fi-

nally we obtain the unknown as A,B and C

In this section, it is seeking for values of pre-experimental factor A and activation

energy E which are given in Eqn.(2.5). There are four unknows as A, E, α and f (α) .

The function of α(T ) is obtained and f (α) is chosen as f (α) = αm(1 − α)n. To calculate

unknowns of the linearization, linear fitting method is used. In Table 4.3, E and A values

are given for different samples.

In Table 4.2, E and Ā values are given for different samples. Kinetic analysis was per-

formed by a new mathematical approach based on the nonlinear least square fitting a tanh

function and linearization method. This new algorithm is called as a GMN method. Ex-

perimentally determined differential scanning calorimetry (DSC) data sets for an epoxy

resin functionalized by single wall carbon nanotubes are used for the verification of GMN

method. The results obtained from the GMN algorithm are also compared with the meth-

ods reported in the literature. Finally, GMN algorithm was in good agreement with ex-

perimental data for calculation of the kinetic parameters.

Kissinger method gives average of activation energy for whole process containing

all α values.

*The KAS method is an isoconversional method and changes depending on α. The range
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provide getting E, ln(A) for different β.

Sample No β A B C E ln(A)

1 2.5 0.5 0.0765 358.3126 89.8749 22.2212

1 5 0.5 0.0767 367.8309 85.5814 20.9993

1 10 0.5 0.0608 368.3936 73.3774 17.3604

1 20 0.5 0.0564 377.0870 70.3343 16.4869

2 2.5 0.5 0.0732 356.5693 82.7869 20.0338

2 5 0.5 0.0619 359.3702 71.0760 16.4988

2 10 0.5 0.0558 365.7544 66.7037 15.3149

2 20 0.5 0.0509 374.5726 69.8242 16.2947

3 2.5 0.5 0.0669 352.6327 73.1902 17.1211

3 5 0.5 0.0627 358.7051 68.1392 15.6939

3 10 0.5 0.0545 364.2501 63.2666 14.2895

3 20 0.5 0.0515 375.6366 64.49896 14.6932

4 2.5 0.5 0.0651 353.4174 73.7206 17.7973

4 5 0.5 0.0616 361.2695 76.1108 17.9529

4 10 0.5 0.0596 369.6381 73.5011 17.3437

4 20 0.5 0.0561 380.6521 73.1449 15.7400

Table 4.2. Comparison of the optimum values of GMN method to with Kissinger and

KAS* method.

Sample Kissinger KAS* GMN

No E ln(A) E ln(A) E ln(A)

1 73.6 13.6 75.5 − 61.5 15.2−10.38 73.3774 17.3604

2 66.3 11.3 69.0 − 54.3 13.3 − 8.2 66.7037 15.3149

3 68.1 11.8 61.1 − 51.6 10.6 − 7.8 63.2666 14.2895

4 70.8 12.6 64.9 − 68.6 11.6 − 10.6 73.1449 15.7400

given in the table shows the values corresponding to the α value starting from 0.1 and

reaching the value 0.9 with 0.05 increments.

4.2. Simulation of Experimental Data and Numeric Approximations

After optimized the constants A and E, we put that in the Eqn.(2.5). To calcu-

late this differential equation we used 4th order Runge Kutta Method and showed their

simulation with experimental data.

36

Table 4.1. A, B, C obtain from nonlinear fitting and Data Linearization Technique



4.2.1. For Sample 1

Figure 4.1. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 1 and β = 2.5.

Figure 4.2. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 1 and β = 2.5.
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Figure 4.3. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 1 and β = 5.

Figure 4.4. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 1 and β = 5.
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Figure 4.5. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 1 and β = 10.

Figure 4.6. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 1 and β = 10.
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Figure 4.7. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 1 and β = 20.

Figure 4.8. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 1 and β = 20.
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4.2.2. For Sample 2

Figure 4.9. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 2 and β = 2.5.

Figure 4.10. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 2 and β = 2.5.
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Figure 4.11. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 2 and β = 5.

Figure 4.12. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 2 and β = 5.
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Figure 4.13. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 2 and β = 10.

Figure 4.14. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 2 and β = 10.
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Figure 4.15. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 2 and β = 20.

Figure 4.16. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 2 and β = 20.
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4.2.3. For Sample 3

Figure 4.17. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 3 and β = 2.5.

Figure 4.18. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 3 and β = 2.5.
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Figure 4.19. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 3 and β = 5.

Figure 4.20. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 3 and β = 5.
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Figure 4.21. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 3 and β = 10.

Figure 4.22. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 3 and β = 10.
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Figure 4.23. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 3 and β = 20.

Figure 4.24. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 3 and β = 20.
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4.2.4. For Sample 4

Figure 4.25. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 4 and β = 2.5.

Figure 4.26. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 4 and β = 2.5.
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Figure 4.27. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 4 and β = 5.

Figure 4.28. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 4 and β = 5.
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Figure 4.29. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 4 and β = 10.

Figure 4.30. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 4 and β = 10.
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Figure 4.31. Temperature and conversion (α) values are plotted from experimental data

and activation function which is used fitting for Sample 4 and β = 20.

Figure 4.32. Temperature and conversion (α) values are plotted from experimental data

and ODE which is used 4th Runge Kutta Method for Sample 4 and β = 20.
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The errors we get using the 4 order Runge Kutta method are listed in the table.

Table 4.3. Error obtain from 4 order Runge Kutta method for different E, ln(A) and β.

Sample No β E ln(A) Error

1 2.5 89.8749 22.2212 0.8794

1 5 85.5814 20.9993 0.4824

1 10 73.3774 17.3604 0.2257

1 20 70.3343 16.4869 0.9466

2 2.5 82.7869 20.0338 0.8895

2 5 71.0760 16.4988 0.4245

2 10 66.7037 15.3149 0.2676

2 20 69.8242 16.2947 0.2894

3 2.5 73.1902 17.1211 0.4124

3 5 68.1392 15.6939 0.2575

3 10 63.2666 14.2895 0.2313

3 20 64.49896 14.6932 0.2601

4 2.5 73.7206 17.7973 0.6801

4 5 76.1108 17.9529 0.3527

4 10 73.5011 17.3437 0.1665

4 20 73.1449 15.7400 0.1974
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CHAPTER 5

CONCLUSION

In this thesis, we proposed a new algorithm (GMN) for determining pre-exponential

and activation energy of curing process. This method is based on the combination of tanh

fitting for the measured conversion values via least squares minimization technique and

linear fitting for the kinetic parameters. Experimentally determined differential scanning

calorimetry (DSC) data sets for an epoxy resin functionalized by single wall carbon nan-

otubes are used for the verification of the proposed method. After obtaining kinetic pa-

rameters we put that constants in the differential equation and solve initial value problem

by using 4th order Runge Kutta method. We showed that convergence and stability con-

dition of 4th order Runge Kutta method. Also we demonstrated existence and uniqueness

of initial value problem.In computational part, in order to denote the effectiveness of the

new proposed method, the results are also compared with the methods reported in the

literature. Finally, GMN algorithm was in good agreement with experimental data for

calculation of the kinetic parameters.
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%% A(tanh(B(T-C)-3)+1)%%

clear all;close all;clc

function [F,J] = Derivative (p, x, y)

if nargout > 1;

J = [(tanh(p(2)*(x-p(3))-3)+1), p(1)*(x-p(3))*(sech(p(2)*(x-p(3))-3).^2),

-p(1)*p(2)*(sech(p(2)*(x-p(3))-3).^2)];

end

end

% Vectors: Y and T

x=T’;

y=Y’;;

p0=[0; 0; 0];

% Jacobian setting

opts = optimset (’Jacobian’, ’on’)

% model function:

[x,norm] = lsqnonlin(@(p) Derivative(p, x, y), p0)

%T and Y are vectors for Sample 1 beta=2.5

TT=T+273; %Kelvin

c1=p(0);

c2=p(1);

n=1.4;

m=0.6;

B=2.5; %C/min

BB=B/60; %K/sec

R=8.314;

y=@(x) 0.5*(tanh(c1*(x-c2)-3)+1);
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ee=max(abs(y(TT)-Y))

xx = linspace(TT(1),TT(end));

figure(1)

plot(TT,Y,’ko’,xx,y(xx),’b-’)

legend(’Experimental’,’Fit’,’Location’,’northwest’)

xlabel(’T’)

ylabel(’\alpha(T)’)

dy=@(x) 0.5*c1*(sech(c1*(x-c2)-3).^2);

f=@(x) ((0.5*(tanh(c1*(x-c2)-3)+1)).^(m)).*(1-0.5*(tanh(c1*(x-c2)-3)+1)).^(n);

G=dy(TT)./f(TT);

X=-1./(R*TT);

YY=log(BB*G);

p=polyfit(X,YY,1);

lnA=p(2);

E=p(1)

A1=exp(lnA); % linear fit

fun=@(x,y) (A1/BB)*exp(-E./(R*x)).*(y.^m).*((1-y).^(n));

a=TT(2);

b=TT(end);

x0=TT(2);

N=length(X(2:end))-1;

h=(b-a)/N;

x=a:h:b;

rk4(1)=Y(2);

for j=1:N

kk1=h*fun(x(j),rk4(j));

kk2=h*fun(x(j)+h/2,rk4(j)+(kk1)/2);

kk3=h*fun(x(j)+h/2,rk4(j)+(kk2)/2);

kk4=h*fun(x(j)+h,rk4(j)+(kk3));
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rk4(j+1)=rk4(j)+(kk1+2*(kk2+kk3)+kk4)/6;

end

figure(2)

plot(x,rk4,’r-’)

axis tight

hold on

plot(TT(2:end),Y(2:end),’*b’) ;

legend(’Runge Kutta’,’Experimental’,’Location’,’northwest’)

xlabel(’T’)

ylabel(’\alpha(T)’)
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