
A Thesis Submitted to
the Graduate School of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Oğulcan ÖZDEMİR

February 2022
İZMİR

A STUDY ON EARLY DECRYPTION MECHANISM

AT VERIFIABLE DELAY FUNCTIONS

ABSTRACT

A STUDY ON EARLY DECRYPTION MECHANISM AT VERIFIABLE
DELAY FUNCTIONS

In computer science, can we measure the passage of time in accordance with Earth
time and use this measurement mechanism as a time lock to decrypt encrypted data? The
search for answers to these questions has not yet been given a definite, straightforward
answer. Because there is no fixed definition of time in computer science.

Research on the use and measurement of "time-locked cryptography" in computer
science is based on the research of Time-Lock Puzzles and Timed-Release Crypto by
Rivest et al. In 2017, two studies were published that accelerated development in this
area: Simple Verifiable Delay Functions and Efficient Verifiable Delay Functions. In both
studies, timing requirements are defined as Verifiable Delay Functions (VDF).

However, current VDF solutions do not have a controlled early decryption feature
for time locking mechanism. The contributions we intend to make to the VDF protocol in
this study focus on the design, verification, and implementation of a new VDF protocol
that both guarantees the time lock mechanism requirements defined by VDF and provides
the ability to open the time lock in a controlled manner by authorised individuals before
the target time. VDF solution to be developed, unlike similar VDF protocols, should also
include the blockchain Ethereum component and work flexibly with any of the defined
VDF time lock algorithms, depending on which one is chosen.

ii

ÖZET

DOĞRULANABİLİR GECİKME FONKSİYONLARINDA ERKEN
ŞİFRE ÇÖZME MEKANİZMASI ÜZERİNE BİR ÇALIŞMA

Bilgisayar biliminde, zamanın geçişini Dünya saati ile uyumlu bir şekilde ölçe-
bilir ve bu ölçme mekanizmasını şifrelenmiş verilerin çözülmesi için bir zaman kilidi
olarak kullanabilir miyiz? Bu sorulara cevap arayışı teknolojinin de hızlı gelişimi ne-
deniyle, henüz kesin, net bir cevap verilmemiş, araştırmaları sonlandıracak tek bir çözüm
üretilememiştir. Çünkü, bilgisayar biliminde zamanın sabit bir tanımı yoktur.

Bilgisayar biliminde “zaman kilitli kriptografi” kullanımı ve ölçümü üzerine yapılan
araştırmalar, Rivest ve arkadaşlarının Time-Lock Puzzles and Timed-Release Crypto
araştırmasına dayanmaktadır. 2017 yılında bu alanda gelişimi hızlandıran iki araştırma
yayınlanmıştır: Simple Verifiable Delay Functions ve Efficient Verifiable Delay Functions.
Her iki araştırmada zamanlama gereksinimlerini Doğrulanabilir Gecikme Fonksiyonları
(Verifiable Delay Functions-VDF) olarak tanımlanmaktadır.

Ancak mevcut VDF çözümleri, protokol şemalarında zaman kilitleme mekaniz-
maları için kontrollü bir erken açma işlevine sahip değildir. Oysa, bazı mahkeme kararları
veya vasiyetnamelerin şifreli olarak saklanan belgelerin, hedeflenen gizlilik kalkış tarihi
gelmeden de açılmasını gerektirebilir ve var olan VDF mekanizmaları bu yeteneğe sahip
değillerdir.

Bu çalışmada VDF protokolüne hedeflediğimiz katkılar; VDF tarafından tanım-
lanan zaman kilidi mekanizması gereksinimlerinin garanti altına alan, ihtiyaç durumunda
zaman kilidinin yetkili kişiler tarafından kontrollü olarak hedeflenen zamanından önce
açılmasının olası olduğu yeni bir VDF protokolü tasarlanması, bu protokolün doğru-
lanması, atak analizlerinin yapılması ve uygulanmasına odaklanmaktadır. Kurulacak olan
VDF çözümünün ayrıca, benzer VDF protokollerinden farklı olarak Blockchain-Ethereum
bileşenini içermesi, ve tanımlı olan tüm VDF zaman kilit algoritmalarının hangisi seçilirse,
hepsi ile de çalışabilme esnekliğinde olması hedeflenmektedir.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. VDF and TIME-LOCK MECHANISMS . 3

2.1. Requirements . 3
2.2. Protocol Phases . 4
2.3. Properties. 6
2.4. Application Domains and Real World Use Cases 6
2.5. Suitable Algorithms for Protocols . 7

2.5.1. Successive Squaring. 7
2.5.2. Weak Keys . 9
2.5.3. Successive Hashing (Hash Chains) . 9
2.5.4. Nakamoto Consensus with Continuous VDF 10
2.5.5. Random Oracle Model . 10
2.5.6. Witness Encryption . 10
2.5.7. Random Encodings. 11
2.5.8. Comparison of Algorithms for Requirements. 11

CHAPTER 3. RELATED WORKS . 13

3.1. Simple Verifiable Delay Functions . 13
3.2. Efficient Verifiable Delay Functions . 13
3.3. Homomorphic Time-Lock Puzzles and Applications 15

CHAPTER 4. FOUNDATIONAL TECHNOLOGIES for PROPOSED SOLUTION 17

4.1. Main Structure of Proposed ED-VDF Protocol. 17
4.1.1. Setup Phase . 18
4.1.2. Early-Decryption Setup Phase . 19
4.1.3. Eval Phase . 19
4.1.4. Early-Decryption Phase . 20
4.1.5. Verify Phase . 20

4.2. Foundational Technologies . 20
4.2.1. Ethereum Blockchain . 21

iv

4.2.2. Smart Contract . 22
4.2.3. Ethereum Account. 22
4.2.4. The Work in Proof-of-Work Concept. 23
4.2.5. Chain Finality . 23
4.2.6. Block Mining Times . 23

CHAPTER 5. DESIGN of ED-VDF PROTOCOL and EXPERIMENTAL WORKS 25

5.1. Design . 25
5.1.1. High-Level Protocol . 25
5.1.2. Early Decryption Phase . 28

5.2. Experimental Works . 30
5.3. Use Cases . 34

5.3.1. Use Case #1: Testaments . 34
5.3.1.1. Testament - ED-VDF Protocol Integration 36

5.3.2. Use Case #2: Declassification of Secret Information. 37

CHAPTER 6. ATTACKS ANALYSIS . 39

6.1. Ethereum Blockchain-Based Attacks . 39
6.2. Protocol Based Attacks . 42

6.2.1. Protocol Reconstruction in AVISPA. 42
6.2.2. On-the-Fly Model Checker (OFMC) . 45
6.2.3. Constraint Logic-based Attack Searcher (CL-AtSe) 46

CHAPTER 7. FUTURE WORK . 47

CHAPTER 8. CONCLUSION . 48

REFERENCES . 50

APPENDICES . 56

APPENDIX A.BLOCK DIFFICULTY CALCULATION . 56

APPENDIX B. EXPERIMENTAL WORKS CODE SNIPPETS FOR SMART CON-
TRACTS. 57

APPENDIX C. UI MOCKUP DESIGN FOR PROTOCOL IMPLEMENTATION . . . 59

APPENDIX D.VERIFICATION OF EXPERIMENTAL WORKS SCENARIO 60

v

LIST OF FIGURES

Figure Page

Figure 2.1. VDF Protocol Overview . 5
Figure 2.2. VDF Protocol Story Demonstration . 5
Figure 4.1. ED-VDF Protocol Demonstration . 18
Figure 5.1. High-Level Protocol Flow Chart representation for Setup Phases 25
Figure 5.2. High-Level Protocol Pseudocode representation for Setup Phases 26
Figure 5.3. High-Level Protocol Pseudocode representation for Setup Flow 26
Figure 5.4. High-Level Protocol Flow Chart Second Part for Eval and Verify Phases 27
Figure 5.5. High-Level Protocol Pseudo Code Second Part for Eval and Verify

Phases . 27
Figure 5.6. High-Level Protocol Pseudo Code Second Part for Eval and Verify

Phases . 28
Figure 5.7. Generation of Shared Private Keys . 29
Figure 5.8. Reconstruction of Private Parameter . 29
Figure 5.9. Protocol Implementation Sequence Diagram First Part 31
Figure 5.10. ED-VDF Smart Contract First Part . 31
Figure 5.11. UI Mockup design for Sender . 32
Figure 5.12. Protocol Implementation Sequence Diagram Second Part 32
Figure 5.13. UI Mockup design for Secret-Sharer Participants . 33
Figure 5.14. UI Mockup design for Recipient . 33
Figure 5.15. Use Case #1: Testaments Sequence Diagram. 35
Figure 5.16. ED-VDF Hybrid Protocol for Testaments . 36
Figure 5.17. Use Case #2 Declassification of secret information Sequence Diagram 38
Figure 6.1. ED-VDF Setup Phase . 40
Figure 6.2. ED-VDF Early Decryption Setup Phase . 40
Figure 6.3. ED-VDF Eval Phase . 41
Figure 6.4. ED-VDF Verify Phase . 41
Figure 6.5. Protocol reconstruction Sender role definition. 43
Figure 6.6. Protocol reconstruction EBC role definition . 43
Figure 6.7. Protocol reconstruction Receiver role definition . 44
Figure 6.8. Protocol reconstruction Session definition . 44
Figure 6.9. Protocol reconstruction Environment definition . 45
Figure 6.10. OFMC protocol test results . 45
Figure 6.11. CL-AtSe protocol test results . 46

vi

LIST OF TABLES

Table Page

Table 2.1. Time-Lock delay algorithms comparison against requirements in section
2.1 . 12

Table 2.2. VDF delay algorithms comparison against requirements in section 2.1 . 12

vii

CHAPTER 1

INTRODUCTION

How can the passage of time be measured appropriately and used in a time lock
mechanism for encrypted data in computers? The concept of time itself is a complex and
multi-layered entity. If we want to explain time using traditional physics, we must use
the periodic motion of the earth around the sun. If we want to explain it using modern
relativity physics, it is a concept that changes depending on the observer’s speed and the
gravity to which he is subjected. If we look at it from a psychological perspective, it is a
subjective concept that changes depending on the current mood of the observer.

As we can deduce, time definitions differ from the perspective of the identifying
domains. In computer science, the time has no direct constant definition. It is tied to
the measurement assumption of universally recognised devices or systems. For example,
we can use an electrical circuit to measure the round-trip time of an electrical pulse or
write a program to compute the solution to a nondeterministic polynomial problem and
measure time. Alternatively, we can use atomic clocks to observe the reactions of atoms
of the element strontium to electromagnetic radiation. Certain frequency changes are
accepted as time units, and these measurements are transmitted to the computer as a clock
reference. Regardless of which of the defined solutions we choose, it is necessary to rely
on a reference system or a third trusted party that is not in the research context of computer
science to measure time.

The idea of sending messages to the future using the Time-Lock Puzzles protocol
was first put forward by Timothy C. May [64]. The responsibility for the confidentiality
of the messages in the protocol and the opening after the specified time limit is given
to the "independent trustees" as third party participants. The encrypted messages and
keys are fragmented and distributed among the "independent trustees". This is to prevent
"independent trustees" from opening messages independently. Messages and keys that are
opened are forwarded by "independent trustees" to their recipients.

In the following years, Rivest et al. [1] proposed an RSA-based puzzle scheme in
the "Time-lock Puzzles and Timed-release Crypto" research for the operation of Time-Lock
Puzzles. The purpose of this scheme is to establish a puzzle (delay) mechanism that cannot
be opened before the specified time, even against attackers with high computational power
without the need for a third party trusted agent. The scheme provides the sequentiality
required for this mechanism with the Successive Squaring algorithm.

The Verifiable Delay Function (VDF) scheme declares a protocol that provides a

1

publicly verifiable system based on time-lock puzzles. VDF defines concrete boundaries
to sequential computation schemes on which both VDF and "Time-Locks Puzzles" are
based. So far, VDF implementations are "trusted public randomness" on distributed
systems, such as fair contract signings, bids in auctions, and coin tosses.

Existing solutions do not have a controlled opening function for time-lock mech-
anisms in their protocol schemes. Our contribution focuses on ensuring time-lock and
VDF mechanism requirements and designing, verifying, and implementing a new VDF
and Time-Lock hybrid protocol so that authorised individuals’ controlled opening of the
time-lock(delay) function is possible before the target time, if needed.

In other words: We aim to combine the ability to send encrypted messages to the
future from the Time-Lock puzzle and the VDF’s "publicly verifiable system" and add
a mechanism for early decryption. With the early decryption mechanism, we want to
ensure that future encrypted messages can be decrypted early under certain conditions.
We have named this new behaviour in the VDF scheme Early Decryptable Verifiable Delay
Functions (ED-VDF). Use cases of the ED-VDF scheme include real-world applications
such as declassification of secret information, legal testaments and auction systems.

We focus on legal testaments use case in this work. Testaments are binding
papers signed by both the testator and the trustee. Testaments can be disclosed before
the decedent’s death when certain circumstances are met. For example, testaments of
decedents who lose intellectual capacity may be unsealed before the decedent’s death.
The testament procedure is public and legally verifiable by anybody using our ED-VDF
protocol. As a result, we eliminate the need for a third party to keep the testament
secure until it is revealed. ED-VDF protocol ensures that the criteria of the testamentary
procedure are met.

The work is organised as follows: First, in chapter 2, we give information about
the VDF and Time-Lock protocol schemes and their delay algorithms. Then, in the
Related Works chapter, we compare and contrast similar researches. In the Foundational
Technologies for Proposed Solution chapter, we explain our addition to the VDF scheme
in detail. The Design and Experimental Works chapter describes our protocol design and
implementation on the Ethereum blockchain environment. Subsequently, in the Attacks
Analysis chapter, we study the techniques of intrusion and the countermeasures against
our protocol. Eventually, we mention extensibility and improvement areas in the Future
Work chapter. Finally, we briefly summarise our research and contribution to the VDF
scheme.

2

CHAPTER 2

VDF and TIME-LOCK MECHANISMS

In this chapter, the mechanism of the VDF and Time-Lock protocols is explained
in detail. The VDF and Time-Lock protocols are closely related. However, there are
approach differences between the two protocols.

Time-Lock protocol applications provide the cryptographic realisation of the
"sending encrypted messages to future" concept. In order to provide this concept, the
Time-Lock mechanism relies on algorithms that provide sequential work. Such as the
Successive Square algorithm. We explain the Successive Square algorithm in section
2.5.1.

VDF protocol structuring Time-Lock protocol phases(Setup-Eval-Verify) to a more
streamlined scheme. In addition, VDF protocol focuses on public verifiability of the
sequential work output of delay(time-lock puzzle) algorithms. This verification time
is exponentially shorter than evaluation time and easily verifies the evaluation output’s
correctness.

We are focusing on merging these two protocols in such a way that guarantees the
Time-Lock and VDF mechanism requirements to designing, verifying, and implementing
a new VDF and Time-Lock hybrid protocol that provides a mechanism to authorised
individuals(secret-sharer) controlled opening of the time-lock(delay) function is possible
before the target time.

Firstly we define mutual requirements in section 2.1 for VDF and Time-Lock
protocols. Then we give a brief definition of VDF and Time-Lock protocols shared steps
in section 2.2. In addition, we mention common properties of VDF in section 2.3. Finally,
we state application domains and real-world use cases of VDF protocol in section 2.4.

2.1. Requirements

A sender (encryptor) prepares an encrypted message and sends it to the recipient
(decryptor) in the general scenario. In order to fulfil the protocol premise, the encrypted
message can be automatically and autonomously decrypted at the time specified without
the sender’s presence so that the recipient can read it in time. In addition, senders and re-
cipients should not use any computational resource to perform a delay (puzzle) mechanism.
Therefore, existing and proposed solutions must support following requirements:

3

• Non-Interactive: The sender of the message should not be present during the
decryption phase. The recipient can open the encrypted message by himself without
any interaction.

• No-Trusted Setup: Third parties or illegitimate parties should not be involved
in keeping the decryption key to perform functions. Thus provide a true idea of
sending encrypted messages into the future without interference. In our proposed
ED-VDF structure, a new mechanism is proposed to give a chance to legitimate
parties to resolve the delay mechanism earlier than the aimed decryption date under
legal judgments. We explain the detail of this mechanism in section 4.

• No-Resource Restrictions: When the target decryption time has elapsed, the re-
ceiver who wants to decrypt the ciphertext should not perform computationally
intensive operations to decrypt it. However, this property does not apply to de-
lay(puzzle) mechanisms. To enable the notion of trustworthy timing, there should
be a mathematically reliable structure that is not tied to any particular message or
person in the system nor any processed function. The related algorithms and their
mathematical structures are defined in section 2.5.

2.2. Protocol Phases

The structure of VDFs is built by one-to-one mapped functions. This means that
each input x of these functions should have only one valid output y. VDFs must be valid
for the following three steps according to two researches [3,4];

• Setup: Accepts the time limit (T) input from the sender. Then prepare the delay
functions’ input parameters as public parameters (pp and x). These are used for the
eval and verify steps

• Eval: Takes inputs as a delay function and public parameters. Then outputs the
solution to the function and the proof of this evaluation.

• Verify: Takes input of public parameters, delay function, and solution. Outputs the
decision of whether a correct evaluation was given for the delay function. Then the
recipient receives a decrypted message.

4

Figure 2.1. VDF Protocol Overview

Figure 2.2. VDF Protocol Story Demonstration

Figure 2.1 represents protocol sequence diagram, and Figure 2.2 visualise protocol flow.

5

2.3. Properties

The most important part of the VDF structure is building a unique delay function
evaluation context; otherwise, the requirements mentioned above cannot be satisfied. Due
to that reason, Boneh et al. [5] state that the VDF protocol should realise the following
properties with described main three steps in section 2.2.

• Sequentiality: Eval delay algorithm should run in timeless than 𝑇

• Uniqueness: For the input x 𝜀 X, verify step considers one to one map exactly one
y 𝜀 Y.

Notations:

• 𝑇 : Time constraint computed in Setup Phase

• 𝑥: public parameters generated in Setup Phase.

• 𝑋: public parameters space in Setup Phase.

• 𝑦: evaluated output equal to the private parameter in Setup Phase.

• 𝑌 : evaluated output equal to the private space in Setup Phase.

2.4. Application Domains and Real World Use Cases

Verifiable delay functions have a wide range of applications, such as auctions and
multilateral legal agreements. For instances:

• A person wishes to encrypt his/her testaments(will)in such a way that it cannot be
decoded until a certain time and with an event has elapsed.

• Declassification of secret information withheld in public authority records.

• A bidder in an auction wants to seal his bid, so it cannot be opened until the bidding
period is closed.

• A community that wants to make sure voting results open after a predetermined
time.

6

2.5. Suitable Algorithms for Protocols

In this section we examine algorithms that provide a delay mechanism for Time-
Lock and VDF protocols. Common features of the algorithms require sequential compu-
tational steps to calculate the result in aimed delay time, while the time to check the result
is relatively concise.

Successive Squaring, Weak Keys and Successive Hashing (Hash Chains) algo-
rithms are used for Time-Lock. In VDF protocol Nakamoto Consensus with Continuous
VDF, Random Oracle Model, Witness Encryption, and Random Encodings could be used.

2.5.1. Successive Squaring

Rivest et al. suggest a scheme based on a successive square algorithm in research
for Time-lock Puzzles and Timed-release Crypto [1]. In this scheme, puzzle generation
steps follow;

1. The sender generates n which is the product of two large random primes denoted p
and q.

𝑛 = 𝑝𝑞 (2.1)

2. Then computes
Φ(𝑛) = (𝑝 − 1) (𝑞 − 1) (2.2)

3. The sender calculates t with T multiplied by S. T is an expected reveal time in
seconds. S is the number of squarings per second. Finally, t is the total squarings
modulo that required the complete Time-Lock solving phase, which is equivalent to
the VDF eval phase. Note that, S value changes are based on predictions for average
computational power solver (evaluators) nodes in protocol network.

𝑡 = 𝑇𝑆 (2.3)

4. The sender calculates a random key(K) for a symmetric encryption scheme such as
RC5 [2]. The encryption key should be strong enough to resist brute force prevent
early decryption before the predetermined time of the puzzle(delay).

5. The sender using the RC5 algorithm encrypts message(M) with key(K) to get the

7

ciphertext.
𝐶𝑀 = 𝑅𝐶5(𝐾, 𝑀) (2.4)

6. The sender choose a random a modulo n (with 1 < a < n), and encrypts K as

𝐶𝐾 = 𝐾 + 𝑎2𝑡𝑚𝑜𝑑𝑛 (2.5)

(a) For efficiency, the sender first calculates

𝑒 = 2𝑡 (𝑚𝑜𝑑𝜙(𝑛)) (2.6)

(b) Then computes
𝑏 = 𝑎𝑒 (𝑚𝑜𝑑𝑛) (2.7)

7. Finally the sender has a output public parameters as (𝑛, 𝑎, 𝑡, 𝐶𝐾 , 𝐶𝑀)) and gives the
puzzle solver (evaluator as VDF protocols states).

At puzzle solving(eval) phase evaluator should found K in order decrypt mes-
sage(M) which is encoded as

𝐶𝐾 − 𝑎2
𝑡 (𝑚𝑜𝑑𝑛) = 𝐾 (2.8)

However evaluator only knows (𝑛, 𝑎, 𝑡, 𝐶𝐾 , 𝐶𝑀)) public parameters as stated in
preparation step 7. Thus the evaluator must calculate t squarings sequentially each time
squaring the previous result. This process is called successive(repeated) squaring which is
an intrinsically sequential process. Calculation continues until finding a satisfying value
of K that equal 𝐶𝐾 in the finite field 𝐺𝐹 (𝑛). Here, the delay function is built on the
factorization problem of n, due to that large prime factors of n have to be chosen.

Remarks:

1. In our experiments, we use successive squaring algorithm. However, we change the
encryption algorithm RC5. We explain these mechanisms in the experimental work
in Section 5.2.

2. In preparation step 3, we state that the number of successive squaring computations
calculated with find average computational power solver(evaluators) nodes in the
network. This property is feasible only in Time-Lock or VDF protocols that run in

8

blockchain based public networks. We also use a blockchain-based network in our
experimental works, and we will explain its details in section 5.2.

3. It is crucial to calculate the time cost of a single operation of the Time-Lock and
VDF to ensure the desired delay time before opening the message. For that purpose,
we calculate time cost at the setup phase of our protocol. We explain the setup phase
in section 4.1.1. We also explain the calculation of the average computational power
of the blockchain network in Appendix A.

2.5.2. Weak Keys

The weak-key algorithm is based on short-length symmetric keys chained together
to increase resistance against brute-force guessing. A weak key can be found in an
intolerable fraction of the time. However, if we use short keys consecutively to encrypt
message repeatedly. Decryption time of message can be adjusted one of short key; brute
force time probability of the short key.

This algorithm does not address the serialisation/computational power argument.
Some actors can break any short key much faster with computational resources, and it
makes little difference if it is one of many weak keys. They are still able to open it before
others. Therefore, the expected delay time cannot be met.

2.5.3. Successive Hashing (Hash Chains)

Successive hashing uses the output of each previous hash as the input for the next
hash. This creates a sequential hash chain from the primary hash to the last successor
hash. For taking advantage of this property of iterative hashing, the last successive hash
can be used as the symmetric key to encrypt the message. The decryptor repeats the hash
steps exactly as many times as the encryption phase. Hash steps a predetermined number
that adapts the current computing power to the recomputation time for a hash.

In 2006, Chalkias et al. [6] proposed a solution based on successive hashes and
bilinear pairings. They use successive hashes as timestamps and public key infrastructure
as integrity and confidentiality mechanisms in their proposed system.

9

2.5.4. Nakamoto Consensus with Continuous VDF

Wei et al. [12] propose an algorithm based on Nakamoto consensus and Contin-
uous VDF. Nakamoto consensus is a multi-party agreement model used in the Bitcoin
blockchain system. Nakamoto consensus is based on the proof-of-work idea. Partici-
pants validate their commitment to the blockchain network by computing hard polynomial
problems at predetermined intervals.

Continuous VDF (cVDF) [13] research to improve the successive squaring algo-
rithm of Rivest et al. [1]. cVDF reduces the time complexity of the verification step in
the successive squaring algorithm.

2.5.5. Random Oracle Model

In cryptography, a random oracle (a theoretical black box) responds to each query
with a (truly) random answer chosen uniformly from its output space. When a query is
repeated with the same input, it responds in the same way for each query. We can thus
assume that such an algorithm can be used as a delay function in VDFs.

Mahmoody et al. [8] explain the random oracle algorithm in more detail. Random
oracle algorithm defined is a delay function generator. The output of (where A is the
random input and H is the random oracle) is a pair (M, V): the puzzle M and a solution
checker V. Given M, the solution checker must output a solution x such that V(x) = 1.
When a delay function has a single solution, V compares its input with this constant value
to hide an encrypted message.

2.5.6. Witness Encryption

Witness Encryption use NP problems as a delay function. Since it is an NP
condition, the computational complexity of finding a satisfying input (called a witness for
the language) grows rapidly.

Garcia et al. [11] give the construction of such an encryption scheme based on
a multilinear map (a generalisation of a bilinear map, but with arbitrarily many inputs).
Then we only need to know the instruction NP to encrypt text, but we need a witness of
the appropriate length to decrypt the ciphertext again. The construction of the example
witness encryption follows;

• Assume (𝑥, 𝑤) 𝜖 𝑅 where x is statement and w is witness

10

• Encrypt message m as 𝑐 ← 𝑊𝐸.𝐸𝑛𝑐(𝑥, 𝑚)

• With witness w satisfies (𝑥, 𝑤) 𝜖 𝑅 used decrypt ciphertext c as𝑚 = 𝑊𝐸.𝐷𝑒𝑐(𝑐, 𝑤)

2.5.7. Random Encodings

Random encodings is a way to compute every 𝑓 (𝑥) there should be 𝑓 (𝑥; 𝑟) satisfies;

• Privacy: 𝑓 (𝑥; 𝑟) should not leak x besides 𝑓 (𝑥).

• Correctness: 𝐷 (𝑓 (𝑥; 𝑟)) = 𝑓 (𝑥) such that D is algorithm for given input x and
random r mapping for f(x)

Thus, by the concept of random encoding, the coding of two computations with
the same output is indistinguishable, even if the computation behaves differently before
the output. For example, one computation may solve a complex problem while the other
stops and then produces a hard-coded solution to a complex problem. Jain et al. [14] state
the architecture follows this intuition:

1. Encyrptor chooses intricately hard problem f(x) for the delay function.

2. Encryptor generates random encodings to map every x to be relatively simple 𝑓 (𝑥; 𝑟).

3. When decryptor solve f(x) and find y encryptor easily verifies a y is correct solution
with that 𝑓 (𝑥; 𝑟)) mapping that compute in step 2.

2.5.8. Comparison of Algorithms for Requirements

In the tables below, the compliance status of the algorithms mentioned in section
2.5 to the requirements defined in section 2.1 is compared. Tables are divided into two
according to protocol and application use cases. About the column naming of the following
tables;

• For the setup phase, the “Non-Trusted Setup” requirement addresses that a third
party agent is not needed.

• In the eval phase, the "Non-Interactive" requirement checks whether the algorithm
does not need a sender or a receiver to guarantee the aimed delay time.

11

• For all phases, “No-Resource Restrictions” checks whether the algorithm has no
computational requirement constraints for its realisation.

• Implementable column checks whether an algorithm has been implemented with
the current software technology capabilities.

Table 2.1. Time-Lock delay algorithms comparison against requirements in section 2.1

Non-Interactive Non-Trusted Setup
No-Resource
Restrictions*

Implementable

Successive Squaring + + - +
Weak Keys + + - +

Successive Hashing
(Hash chain)

+ + - +

Table 2.2. VDF delay algorithms comparison against requirements in section 2.1

Non-Interactive Non-Trusted Setup
No-Resource
Restrictions*

Implementable

Nakamoto
Consensus with
Continuous VDF

+ + + +

Random Oracle
Model

+ + - -**

Witness Encryption + + - +***
Random Encodings + + - +

* “No-Resource Restriction” requirement only satisfies if the blockchain network
has enough distributed computing power on the network.

** True Random Oracle function is not feasible due to the limitation described
in The Church-Turing Thesis [47] as “no function computable by a finite algorithm can
implement a true random oracle”.

*** Witness Encryption based on NP-complete problems, and every NP problem
does not have a known solution. However, Liu et al. [9] researched in “How to build a
time-lock encryption” paper to show a real-world implementation of Witness Encryption.

12

CHAPTER 3

RELATED WORKS

The most recent research related to our contribution are Simple Verifiable De-
lay Functions [3], Efficient verifiable delay functions [4] and Homomorphic Time-Lock
Puzzles and Applications [10].

3.1. Simple Verifiable Delay Functions

K. Pietrzak offered a technique to create a Verifiable Delay Function (VDF) [3] by
demonstrating how the Rivest-Shamir-WagnerTime-Lock puzzle may become publically
verifiable.

The answer to this problem is to conceal the group order in some way, such that it
can only be used to efficiently test if a particular solution is right, rather than to speed up
its calculation. There is no known implementation of this technique at the moment.

K. Pietrzak devised a technique in which a prover P can persuade a verifier V that
it computed the correct result 𝑦 = 𝑥2

𝑇

𝑚𝑜𝑑 (𝑁) (Successive Square algorithm described
section 2.5.1) SVDF’s interactive protocol is public-coin, however it may be turned non-
interactive and hence yield a VDF through the Fiat-Shamir transformation [68].

In this case, the prover’s messages are substituted by a random function applied to
the transcript. When performed constant-round public-coin interactive proof system, the
Fiat-Shamir transformation yields a solid non-interactive proof system.

Although SVDF’s proof is not constant-round, it can nevertheless demonstrate
transformation works, it provides a sound non-interactive proof method in comparison to
a random function. In reality, the random function is realized with a real hash function,
such as SHA256; soundness holds only computationally; such systems are referred to as
arguments, not proofs.

3.2. Efficient Verifiable Delay Functions

Efficient Verifiable Delay Functions(EVDFs) [4] is a protocol that although evalu-
ating takes a certain quantity of consecutive stages, the outcome may be rapidly confirmed.

13

B. Wesolowski constructed EVDFs, with a trapdoor VDF. A trapdoor VDF is
essentially a VDF that can be evaluated efficiently by parties who know a secret (the
trapdoor). EVDFs construction is also built on groups of unknown order class imaginary
quadratic field such as RSA.

The construction output is succinct, and the verification of accuracy is quite effi-
cient. Similarly Rivest et al. research [1]: given as input an RSA group (𝑍/𝑁)𝑥 , N is a
product of 2 large, primes, a arbitrary component x 𝜀 (𝑍/𝑁)𝑥 , and a timing constraint t
to compute 𝑥2𝑡 .

This task necessitates t consecutive squarings in the group without the factorisation
of N. This design is just a time-lock problem, not a VDF, since there is no feasible technique
to verify that supplied an output 𝑦 = 𝑥2𝑡 .

The EVDF design involves of answering an instance of the Time-Lock puzzle [1]
and calculating a proof of correctness that allows anybody to easily check the outcome. Set
the time parameter Δ, the security degree k, and the group G. The essential characteristics
are associated with EVDF properties:

1. It isΔ−𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 To calculate, it takes (Delta) consecutive steps, given Time-Lock
[1] constraint of cite1 in the group G.

2. It is fair to say that it is impossible to create a valid argument for a wrong output
given particular group-theoretic criteria on G, which are thought class groups of
quadratic imaginary number fields.

3. Every one of output and the evidence of correctness is an unique member of the
group G.

4. The evidence can be generated through group operations in 𝑂 (Δ/𝑙𝑜𝑔(Δ)).

The suggested structure is a trapdoor VDF, from which a genuine VDF may be
derived, with the following use scenario: Alice has a secret key sk (the trapdoor) and
an attached public key pk. Provided a data x, trapdoor verifiable delay functions allow a
hidden trapdoor to calculate an output y from x or Δ(time) a sequential work. Trapdoor
verifiable delay functions have the following steps:

• 𝑘𝑒𝑦𝑔𝑒𝑛→ (𝑝𝑘, 𝑠𝑘) is a key production technique that generates Alice’s public and
secret keys, pk and sk.

• 𝑡𝑟𝑎𝑝𝑑𝑜𝑜𝑟𝑠𝑘 (𝑥,Δ) → (𝑦, 𝜙) : Receives the data x 𝜀 X as input and utilizes the secret
key sk to create the output y from x, as well as a proof 𝜙. The variable Δ shows

14

the amount of sequential effort necessary to calculate the identical result y in the
absence of the secret key.

• 𝑒𝑣𝑎𝑙𝑝𝑘 (𝑥,Δ) → (𝑦, 𝜙) technique for evaluating the delay function on x with public
key pk for a certain number of sequential work Δ. It generates the output y given x
and an evidence 𝜙. This process is designed to be impracticable in less than Δ.

• 𝑣𝑒𝑟𝑖 𝑓 𝑦𝑝𝑘 (𝑥, 𝑦, 𝜙,Δ) → 𝑡𝑟𝑢𝑒𝑜𝑟 𝑓 𝑎𝑙𝑠𝑒 : Examine if y is the right result for x, as
related public key pk and evaluation period Δ.

Without knowing of the secret key sk, the right result cannot be created in less
than Δ time. Our contribution also relies on a trapdoor verifiable delay functions scheme
that bridges the Time-Lock puzzle and VDF protocol.

3.3. Homomorphic Time-Lock Puzzles and Applications

Homomorphic Time-Lock Puzzles (HTLP) [10] is a Time-Lock puzzle which
enables anybody to homomorphically assess a circuit C across sets of puzzles (Z1,...,
Zn). Without being knowledge of the secret messages (s1,..., sn) encoded in puzzles. The
resultant output (puzzle) includes the circuit output C(s1,..., sn), and timing difficulty of
this problem is independent of the length of evaluated circuit C. (compactness).

Construction of such a scheme using successive squaring [1] described for param-
eters

(𝑁,𝑇, 𝑥, 𝑥2𝑇 .𝑘, 𝐸𝑛𝑐(𝑘, 𝑠)) (3.1)

where N=p.q are RSA prime integers, s secret key, and T time constraint tuples.
Satisfies (x, k) samples in 𝑍∗

𝑁
and Enc(k, s) symmetric encryption with s. Using paillier

cryptosystem [15], group 𝑍2𝑠

𝑁
can be redefined as a product of (1+N) and a group of N-th

residues 𝑋𝑁 : 𝑥 ∈ 𝑍 𝑠
𝑁
) order p(N) parameters written as

(𝑁,𝑇, 𝑥, 𝑥𝑁2𝑇

.(1 + 𝑁)𝑠)) (3.2)

for random 𝑥 ∈ 𝑍 𝑠
𝑁

with fixed N equal to

(𝑁,𝑇, 𝑥.𝑦, 𝑥𝑁2𝑇 .𝑦𝑁2𝑇 .(1 + 𝑁)𝑠 .(1 + 𝑁)𝑠) = (𝑁,𝑇, (𝑥, 𝑦), (𝑥.𝑦)𝑁.2𝑇 .(1 + 𝑁)𝑠+𝑠) (3.3)

Prove linearity of homomorphic property of successive squaring on paillier cryptosystem.

15

The main focus of Malavolta et al. [10] research on HTLP is to reduce the
consumption of computational resources when solving blocking (delay) functions for
VDFs. To achieve this, the generated delay function must satisfy homomorphic scheme
properties. This allows the aggregation of lock(delay) functions into an overall solution
of the delay function. However, homomorphic schemes determine the use of delay
function algorithm types. Therefore, different approaches for delay functions with these
requirements should be considered.

We also provide a configurable, verifiable runtime for the delay function for the first
time, which is an improvement for Homomorphic Time-Lock Puzzles and Applications
[10]. This makes it easy to use HTLP as cost-saving prevention. For example, independent
delay functions can be solved with a single block as long as they satisfy the homomorphic
scheme.

16

CHAPTER 4

FOUNDATIONAL TECHNOLOGIES for PROPOSED

SOLUTION

Time-Lock puzzles define a solution to sending encrypted messages into the future.
In addition to that, Verifiable Delay Functions(VDFs) are concise and well-formed protocol
that specify steps to verify delay(puzzle) algorithms solution proofs publicly. However,
neither of these protocols provided a solution to the secure early decryption mechanism.
This section provides a detailed explanation for our contribution to existing protocols.
Afterwards, we describe foundational technologies that we use for our contribution.

4.1. Main Structure of Proposed ED-VDF Protocol

We propose a solution integrating a secret-share algorithm to construct a new
Time-Lock and VDF protocol hybrid scheme that provides an early decryption mech-
anism. Our contribution is based on Efficient Verifiable Delay Functions(EVDFs) [4].
We named this scheme Early Decryptable Verifiable Delay Functions(ED-VDF). ED-VDF
scheme is constructed as following main steps;

1. SETUP: The generation of the delay(puzzle) and the public and private parameters
is prepared in the setup phase. Then the message is encrypted with a private
parameter.

2. EARLY-DECRYPTION SETUP: Private parameter used as a shared secret key
constructed with a Shamir Secret Share algorithm in the early decryption setup
phase.

3. EVAL: Delay(puzzle) algorithm evaluated to provide sequential work in this phase
using public parameters and a delay(puzzle).

4. EARLY-DECRYPTION: Suppose the Secret Share Participants want to open the
encrypted message before the specified time. Secret share participants reconstruct
the private parameter key and decrypt the encrypted message with a reconstructed
private parameter.

17

5. VERIFY: If step 4 is not executed before the Eval phase is complete. The validation
phase begins by evaluating the output of the delay(puzzle) algorithm. Then, the
delay(puzzle) output is used to decrypt the encrypted message.

In Figure 4.1, the overview of the proposed ED-VDF solution is presented, and
details of the design will be explained in the following subsections 4.1.1.

Figure 4.1. ED-VDF Protocol Demonstration

4.1.1. Setup Phase

Setup phase, the same as the EVDFs scheme, we construct x 𝜀 X is input where the
VDF will be assessed which X is finite group G. The group G is (𝑍/𝑁𝑍)𝑥 where 𝑁 = 𝑝𝑞

given a pair of different prime numbers p and q, using (𝑝 − 1) (𝑞 − 1) as the secret key.
For a given time variable t, the aim evaluation time is provided by Δ = 𝑡𝛿, where 𝛿 is the
time-rate (number of sequential work) to calculating an unique squaring in group G.

After computation of public and private parameters, the sender encrypts her/his
message with the receivers’ public key then encrypts the message with private parameter,
as shown in Figure 4.1. Then public parameters and encrypted messages are published to
the Ethereum network as a transaction. Transaction distributed through Ethereum network
as sealed and immutable state.

18

4.1.2. Early-Decryption Setup Phase

Shamir’s Secret Sharing algorithm is based on the Lagrange interpolation theorem.
Algorithm aim is to divide secret S into n pieces of data 𝑆1, ..., 𝑆𝑛 (known as shares) Then
set reconstruction threshold k; that:

• Knowledge of any k or more pieces makes S constructible.

• Knowledge of any k-1 or fewer pieces leaves S non constructible.

In ED-VDF protocol, private parameter split into shares and set threshold value
as Shamir Secret Share reconstruction. Afterwards, private parameter shares(parts) send
the Secret Share Participants’ Ethereum Account through to the Ethereum network as a
transaction.

We note that Secret Share Participants’ shares are encrypted with their account
public key. In addition, the threshold value for the Early Decryption phase send it as an
Ethereum Smart Contract transaction. Ethereum Smart Contract and Account systems are
explained in detail in sections 4.2.2 and 4.2.3.

4.1.3. Eval Phase

In ED-VDF Eval phase is processed at one of the Ethereum Miner nodes. The
selection of the miner node is random in the Ethereum network. Evaluate phase similar
to EVDF mechanism for input x;

1. The main notion is that sender can easily calculate 𝑔2𝑡 using two exponentiations
for every t 𝜀 Z > 0 by first calculating 𝑒 = 2𝑡𝑚𝑜𝑑 |𝐺 |, then 𝑔𝑒.

2. The runtime in t is logarithmic. Anyone else who not know |G| could calculate 𝑔2𝑡

by doing t sequential squarings with a runtime of t.

3. As a result, everyone can calculate 𝑦 = 𝑔2𝑡 , however only sender can accomplish it
quickly, and any other participant must spend time linear in t.

Notations:

• t: Time bound parameter

• g: Base prime

19

• e: RSA coprime

• G: Group order

4.1.4. Early-Decryption Phase

If Secret Share Participants decide to early decryption. They can decrypt encrypted
message using the reconstruction of private parameter with their shares from the Early-
Decryption Setup Phase. In order to start the early decryption process. They send their
secret share parts through Ethereum Smart Contract transactions.

If Secret Share Participants reach a threshold value computed at the Early-Decryption
Setup phase. Reconstructed private parameter use to decrypt encrypted message first layer.
Then the message is sent to the recipient, and the recipient decrypts the encrypted message
with his or her private key. We explain the public key cryptography system in the Ethereum
Account system in section 4.2.3.

4.1.5. Verify Phase

Protocol verification phase similar to EVDFs scheme with value y as output of
Eval phase not have a shortcut to the apparent strategy consisting in recomputing 𝑔2𝑡 and
checking if it matches. To solve this issue, B. Wesolowski proposes the following public-
coin succinct argument to prove that 𝑦 = 𝑔2

𝑡 . Detail explaination at EVDFs [4] paper
Section 4.1. When verification of Eval phase output, use decrypt encrypted messages.
Then the message is sent to the recipient and the recipient decrypts the encrypted message
with his or her private key.

4.2. Foundational Technologies

This section explains the technologies that form the basis of our ED-VDF scheme.
As we mentioned in Section 2.2, the protocol consists of three phases. With the ED-VDF
scheme, we add two intermediate phases that provide an early decryption mechanism, as
mentioned in section 4.1.

To satisfy the requirements of both the existing Time-Lock and VDF protocols with
the addition of ED-VDF, we chose to use Ethereum blockchain and smart contract tech-
nologies. Ethereum provides a “no-resource-restriction” runtime environment. Ethereum

20

Smart Contract provides a public medium that meets “non-interactive” and “non-trusted
setup” as mentioned requirements in sections 2.1 and 4.1 to implement the ED-VDF
protocol.

4.2.1. Ethereum Blockchain

Ethereum Blockchain technology allows a network of computers to periodically
agree on the true state of a public ledger [50]. Activities on a blockchain are stored in
chronological order, resulting in an irreversible record. Depending on how the system is set
up, transactions on a blockchain can be more confidential or anonymous. The network’s
ledger is scattered across many people and does not exist in a single location. Ethereum
Blockchain data is stored in each actively participating node in the network. The types
of data stored in the Ethereum Blockchain are; currencies, digitised claims, proprietary
information, identifications, and inventory quantities.

Ethereum is a cryptographically secure transactional shared-state singleton ma-
chine [16]. Cryptographically secure means that advanced mathematical methods protect
Ethereum block production. This makes it extremely difficult to commit fraudulent trans-
actions in Ethereum.

The term “transactional singleton machine” refers to a machine with only a single
version that is accountable for all transactions performed on the network; in other words,
there is now only a single concrete shared state that everyone on the Ethereum Node
Network [55] accepts. A “shared state” refers to the fact that the state stored on this system
is public and accessible to everyone.

The Ethereum Virtual Machine (EVM) [32] is a distributed state machine built on
transactions in computing. A state machine evaluates a series of inputs and afterwards
move into a new state based on those inputs. Ethereum’s state machine starts with a
genesis state, which resembles a clean canvas until any network transactions have taken
place. From this genesis state, it transitions to a final state after transactions have been
processed, with this final state reflecting Ethereum’s current state at any given time. Every
Ethereum Node has an identical copy of EVM.

Each Ethereum transaction is added to a block in the Ethereum blockchain. A
transaction must be legitimate to move from one state to another. A transaction must
go through a verification process called "mining" to be declared genuine. The "mining"
process is performed by one of the nodes on the Ethereum network, using its computing
resources to create a block of legitimate transactions. The mining process is a crucial
function for our ED-VDF protocol. We use this function to distribute the ED-VDF phases
among the mining nodes.

21

Ethereum Blockchain mainstay of ED-VDF protocol. Ethereum Blockchain allows
us to meet the requirements of VDF, we state in section 2.1. Also, satisfy ED-VDF early
decryption requirements at the same time in section 4.1. We will explain the use of
Ethereum in detail in our ED-VDF protocol in section 5.2.

4.2.2. Smart Contract

The smart contract is a program that runs on the Ethereum virtual machine [32].
Like real contracts, smart Contracts [51] can set rules and implement them using code
itself. It is a set of commands, functions, data, and state stored at a single Ethereum
blockchain address. The contract data needs to be allocated to a memory or storage space.
Contracts can be used by another contract.

Smart contracts are not managed by a user but are installed on the network and
work with triggered transactions. Moreover, real user accounts can connect to a smart
contract by sending transactions that perform a function defined by the smart contract.

Smart Contracts on Ethereum are public and can be considered open APIs. Still,
Smart Contracts cannot communicate directly outside of the Ethereum Virtual Machine
because the contracts cannot establish HTTP calls. However, Ethereum network nodes can
interact with the smart contract and execute transaction requests from users. In addition,
users can call other users’ smart contracts to expand their smart contract capabilities
significantly.

We use smart contracts with decentralised data storage and autonomous function
call properties to satisfy the ED-VDF requirements. We solve the problem of non-
interactive requirements with autonomous function calls of smart contracts. Once the
ED-VDF smart contract is deployed in the Ethereum blockchain; Its receiver can decrypt
a message without the sender of the contract being present.

In addition, we provide secure, independent, secret message storage for VDF
contracts with the decentralised data storage feature of smart contracts, as each smart
contract has its own unique and confidential storage on the Ethereum blockchain.

4.2.3. Ethereum Account

An Ethereum account is entity in the Ethereum that can send transactions to
Ethereum network. All participants of protocol should have an account.Accounts can be
managed by the user or distributed as smart contracts. The Elliptic Curve Digital Signature
Algorithm is used to produce the account’s public key from the private key [69].

22

The private key is used to sign communications and transactions that produce a
signature. Other account holders can then use the signature to generate a public key for
the account, validating the message’s authorship.

4.2.4. The Work in Proof-of-Work Concept

The proof-of-work algorithm forces miners to compete in a guessing game to find
the nonce for a block. Only blocks with a valid nonce were allowed to be joined to
the chain. A miner racing to produce a block will continually send a dataset through a
cryptographic algorithm that can only be achieved by getting and executing the whole
chain. The dataset is used to generate a mixHash that is less than a nonce generated by
the block challenge.

The hash’s aim is determined by the challenge. The lower the threshold, the fewer
valid hashes produced when there are. When a hash is produced, all other miners and
clients may easily validate it. Despite the fact that just one transaction changed, the hash
would be different, suggesting forging.

4.2.5. Chain Finality

Because miners employ a decentralized mechanism, numerous genuine blocks may
be mined at the same time, resulting in a temporary chain fork. The Ethereum network
selects which of these chains will eventually be recognized as the main chain.

On rare cases, transactions refused on the transitory fork may be accepted on the
permitted chain. This suggests that transactions might be reversed. Ethereum’s proposed
length is six blocks, or little more than one minute. Following the first six blocks, it is
reasonable to assume that the transaction was successful. As a result, finality is determined
by the number of blocks passed before declaring a transaction permanent.

4.2.6. Block Mining Times

The Ethereum network is set up to generate a block of 12 second periods. Block
timings may fluctuate depending on the time needed to create a hash that matches the
current mining difficulty. Twelve seconds was selected as a period that is as quick as
feasible while yet being significantly longer for network latency.

The 12-second configuration’s primary goal is to enable the network to disseminate

23

blocks as quickly as possible while preventing the detection of a significant percentage of
stationary blocks by miners. Decker and Wattenhofer published a study in 2013 in Zurich
that assessed Bitcoin network delay [66] and discovered that it takes 12.6 seconds for a
new block to spread to 95% of nodes. Appendix A has a full description of the block
mining difficulty computation.

24

CHAPTER 5

DESIGN of ED-VDF PROTOCOL and EXPERIMENTAL

WORKS

This section provides design and implementation details to our contribution for
empirical proof on real-world application. Then we give use case scenarios for our
contribution in section 5.3.

5.1. Design

Our ED-VDF scheme design is visualised as 2 parts. Those charts are namely
high-level protocol flowchart and protocol implementation sequence diagram.

5.1.1. High-Level Protocol

Below Figures 5.1-2 describes the first part of our design flowchart the start to the
evaluation phase. Pseudocode represent experimental works section 5.2 contains the start
to the evaluation phase.

Figure 5.1. High-Level Protocol Flow Chart representation for Setup Phases

25

Figure 5.2. High-Level Protocol Pseudocode representation for Setup Phases

As shown in Figure 5.3, the protocol starts with a message, delay duration, recipient
public key(Ethereum account public address) and a total number of private key shares as
input from the sender. Then the Setup phase prepares the delay function, public and
private parameters for next protocol phases.

Figure 5.3. High-Level Protocol Pseudocode representation for Setup Flow

Then, the message is asymmetrically encrypted with the recipient public key.
Afterwards, the message is symmetrically encrypted with the private parameter. Simul-
taneously, the private parameter is split into the desired number of secret shares using
Shamir’s Secret Sharing Scheme in the Early Decryption Setup phase, as shown in the
Generation Of Shared Private Keys subflow in Section 5.1.2. Subsequently, the delay
function eval phase starts.

Figures 5.4 and 5.5 describes the second part of our design, which contains the
Eval, Verify and the Early Decryption Setup phases. The Eval phase can be terminated by
two cases: (i) when the desired delay time has expired, or (ii) when the legitimate secret
share participants can decide to terminate it earlier than the desired delay time. Secret
share participants can decrypt the message early until the eval phase is completed.

Figure 5.6 describes if secret share participants decide to early decryption. Private
parameter reconstructed with participants’ secret shares using the Shamir Secret Share
scheme, as shown in Section 5.1.2 Reconstruction the Private Parameter flow. Alterna-
tively, In the Eval phase, the evaluator of the delay function finds private parameter after
the delay duration.

26

Figure 5.4. High-Level Protocol Flow Chart Second Part for Eval and Verify Phases

Figure 5.5. High-Level Protocol Pseudo Code Second Part for Eval and Verify Phases

27

Figure 5.6. High-Level Protocol Pseudo Code Second Part for Eval and Verify Phases

Then the output private parameter will be verified for VDF evaluation requirements.
Consecutively validated output using as a private parameter to decrypt encrypted message
to encrypted message with the recipient public key form. Then the message is decrypted
by the Recipient with his private key to the plain message form.

As we describe in the above flowcharts, our contribution to the VDF protocol as
an ED-VDF scheme is that the current VDF protocols do not support an early decryption
mechanism. We decrypt the message with an additional phase for private key distribution
using Shamir Secret Share and Early Decryption capability using the thresholds of the
distributed shares private key.

Present researches on VDF protocols are based on specific fix delay algorithms
tailored to the problem domain. Contrary to other VDF researches, our ED-VDF scheme
delay function(algorithm) is loosely coupled, and any delay function(algorithm) as pre-
sented under Section 2.5 can be prefered.

5.1.2. Early Decryption Phase

We use the Shamir Secret Share algorithm [59] as described in the figures below.
We implement a succinct and cryptographically secure early decryption system to our
ED-VDF protocol with this algorithm. We visualise the Generation of Shared Private
Keys and Reconstruction of Private Parameter flows in Figures 5.7 and 5.8 previously
referenced in the design flowchart in section 5.1.1.

The sender uses this solution after the encryption of the message. The secret key is
divided into many pieces and distributed to legitimate parties, as in Figure 5.7, who have
the grant to open this encrypted message under specific conditions, i.e. a decision from a
court. As shown in Figure 5.8, the legitimate owners of shared keys combine these partial
values according to a threshold number of partial keys, and the secret key can be rebuilt.

28

Figure 5.7. Generation of Shared Private Keys

Figure 5.8. Reconstruction of Private Parameter

29

5.2. Experimental Works

We use the Ethereum Decentralized Applications (DApps) [29] structure to im-
plement our ED-VDF protocol design. DApps is a blueprint for applications built on
Ethereum smart contracts. We chose the DApp Hardhat [54] infrastructure to scaffold
ED-VDF experimental works. Hardhat provide a convenient development environment.
We use Solidity Smart Contract Language [70] to write ED-VDF Smart Contract. Exper-
imental works published publicly on our Github repository [71]. In addition we add full
ED-VDF smart contract visualisation in Appendix B. Our application structure is divided
into 4 modules: Artifacts, Contracts, Scripts and Tests.

• Artifacts: Contains compiled contracts and their build information.

• Contracts: Holds contracts written with Solidity programming language.

• Scripts: Embody code that provides a bridge between ethereum virtual machine
(EVM) [32] and application code that manages interaction, transaction and listening
events on VDF smart contract at EVM.

• Test: Enclose unit, functional and attack scenario tests for implementation.

As mentioned in section 5.1.1, implementation follows ED-VDF protocol phases.
These protocol phases are implemented in the Ethereum Blockchain system.

First, we implement the ED-VDF phases in Smart Contract format, and Appendix
B presents an example of the Smart Contract format created by our implementation. We
use the Solidity programming language [31] to implement the Smart Contract. The Smart
Contract represents the ED-VDF protocol in the Ethereum Virtual Machine (EVM) [32].
To use the ED-VDF smart contract, we compile the Application Binary Interface (ABI)
[53] and deploy it to Ethereum Network as a transaction using the Ethereum client [55].
ABI is a gateway for data exchange between the application code and the EVM.

30

Figure 5.9. Protocol Implementation Sequence Diagram First Part

The above sequence diagram describes when the sender wants to initiate a new
ED-VDF instance, it performs a new Setup and Early Decryption Setup as Ethereum
transaction [56] using below code snippet in Figure 5.10.

Figure 5.10. ED-VDF Smart Contract First Part

31

Figure 5.11. UI Mockup design for Sender

Eventually, transactions are processed as a block by one of the Ethereum miner
nodes [55] in the Ethereum network. After the setup transactions are successfully pro-
cessed, the new ED-VDF instance stores the sender, receiver and secret-sharer information
as Ethereum account address [57] and encrypted message in EVM.

Then, the Eval transaction is automatically triggered after the setup transactions
are completed. Subsequently, one of the miner nodes starts evaluating the delay function.

Figure 5.12. Protocol Implementation Sequence Diagram Second Part

32

In the above sequence diagram, while the evaluation continues if the secret sharer
participants decide to decrypt the encrypted message before the specified time. They
initiate an early decryption transaction with their private parameter shares using Figure
5.13. When the number of their secret shares reaches the threshold, the encrypted message
is revealed, and the miner node is notified to abort the eval phase process.

Figure 5.13. UI Mockup design for Secret-Sharer Participants

Figure 5.14. UI Mockup design for Recipient

If the delay function resolves at a predetermined time, Verification transactions
trigger automatically, and the evaluation phase’s output is used to decrypt the encrypted
messages. The message appears in the recipient’s UI, as shown in Figure 5.14.

We tested the scenarios created for 5.3 Use Cases and 6.1 Attack Analysis sections
of the ED-VDF protocol using BDD for validation. We chose BDD style test cases because
of the improved test scenario visualisation. Also, provide a better binding between ED-
VDF protocol test scenarios and written experimental work codes in a human-readable
form.

33

Remarks:

• The current EVM implementation is not in an ideal condition to process evaluation
of the delay function due to limitations of heap and stack aspects. Nevertheless, we
implement experimental works to idealise test scenario conditions.

• For the purpose of experimental work, we choose the Successive Squaring algorithm
as the algorithm for the delay function. This algorithm satisfies the VDF require-
ments. However, the current computational performance slightly compromises the
delay timing.

• We plan to do experimental works with cVDF [12] to improve the usability of
ED-VDF on the current Ethereum network.

5.3. Use Cases

5.3.1. Use Case #1: Testaments

A testament is a formal document describing a testator’s desires regarding how their
assets should be dispersed following their pass away. Type of testaments are nuncupative
(non-culpatory), holographic, self-proved, notarial, will in solemn form. To ensure the
legality of testaments, individuals must agree with the statutory trustee. Legal trustees are
usually attorneys or law firms

Testaments are bound documents after the testator and the trustee sign the will.
However, wills can be disclosed before the decedent’s death if certain conditions occur.
For example, wills of decedents who lose intellectual capacity may be opened before
the decedent’s deceased. The following Figure presents the sequence diagram of the
Testaments. Testaments should have the following requirements to be considered valid:

1. There must be evidence that the testator actually created the will, which can be
proved through the use of witnesses, handwriting experts, or other methods.

2. The beneficiaries should receive their portion of assets exactly as stated in the
testament after the testator’s pass away.

3. If the testator loses his/her intellectual capacity after the testament is prepared. The
beneficiaries can request the testament process before the testator’s pass away.

34

Figure 5.15. Use Case #1: Testaments Sequence Diagram

As seen with the requirements above, testament documents need a third legal au-
thority for the accuracy and formality of the document. At the same time, the identities of
the testator and beneficiaries must be proven. With our ED-VDF protocol, the testament
process is public and legally verifiable by anyone. Hence we eliminate the third party re-
quirement for keeping testament secure until reveal time. Testament process requirements
are ensured with ED-VDF protocol as follows;.

• First requirement: Since that person must encrypt the testament with a key in the
setup step of the ED-VDF protocol, authentication will be made.

• Second requirement: The testator specifies testament’s beneficiaries during the
setup phase of the ED-VDF protocol that cannot be changed later thanks to Ethereum
Blockchain.

• Third requirement: ED-VDF protocol early decryption mechanism based on
Shamir Secret Share for situations where the testament needs to be opened early
during setup (i.e. testator loses his/her intellectual capacity) by the secret decryption
key.

35

Figure 5.16. ED-VDF Hybrid Protocol for Testaments

5.3.1.1. Testament - ED-VDF Protocol Integration

The above figure demonstrates Testament use case integration to ED-VDF protocol
phases. Testament steps in ED-VDF protocol as follows;

1. Testator starts protocol with generating public-private parameters and delay duration
for Testament. Then Testator encrypted his/her Testament with the Beneficiarys’
public key. Afterwards, Testator once again encrypt Testament using private param-
eter as a symmetric key.

2. Consecutively private parameter split into shares using Shamir Secret Share algo-
rithm with threshold value for reconstruction. Thereupon shares encrypted with
honest parties public key, then encrypted with the court (legal authority) public key.

3. Suppose honest parties decide early decryption of the Testament. Honest parties
submit Early Decryption request to the court. If the court allows early decryption,
honest parties’ private parameter shares are decrypted by the court and sent to the
honest parties.

4. If the honest parties not decide to early decryption of Testament. Eval phase continue
until desired delay time.

5. Verification starts with reconstructed private parameter from Early Decryption or
revealed eval phase output as private parameter. This private parameter is verified
mathematically by using parameters stated in section 4.1.5.

36

6. Verified parameter used as a symmetric decryption key to decrypt Testament second
level encryption that previously encrypted first step. Afterwards, the Testament
sends to the Beneficiary. Testament still encrypted with Beneficiarys’ public key at
this step. Then Beneficiary can decrypt the Testament with his/her private key.

The Testament use case involves two-level encryption feature to provide confiden-
tiality of Testament and identification of participants (Testator, Beneficiary, Honest Parties
and Legal Authority). Also, ED-VDF protocol has ability to send Testament more than
one beneficiary.

• Suppose the beneficiary count is more than one. Part of the testament, which belongs
to each Beneficiaries are encrypted with each beneficiary’s public key. This ensures
that each beneficiary sees only the testament section for him/herself.

• Usage of two level encryption provide;

– Confidentiality of Testament between Testator and Beneficiaries at first step.

– In the second step, first-level encryption be done by Honest Parties public key.
Thus provide confidentiality and identification of private parameter shares that
belongs each Honest Party. Then each share is encrypted with the courts’
public key. To give court authorization mechanism for early decryption.

• The integrity of Testament and other parameters of use case provided with Ethereum
Blockchain.

Remarks: Ethereum stores every use case step and parameters in blockchain as non-
reversible transactions. Ethereum Blockchain is explained detailed in section 4.2.1. Public
key cryptography provided with Ethereum Account system. Ethereum Account explained
in section 4.2.3.

5.3.2. Use Case #2: Declassification of Secret Information

ED-VDF can be used in various scenarios. Especially when public verifiability of
secret information is a necessity.

One of the examples is the declassification of secret information withheld by
countries [39]. In the United States, there are laws that require automatic declassification
of records after a certain time [40]. For all classified information held by public agencies,
the process of declassification begins after 10 years, except under certain conditions. If
these conditions are met, some information can remain classified for up to 75 years.
Information subject to declassification goes through the legal process.

37

The Freedom of Information Act [41] gives citizens the right to request disclosure
of secret information about public authority records that are kept secret in the United
Kingdom.

Figure 5.17. Use Case #2 Declassification of secret information Sequence Diagram

Our protocol allows secret information to be disclosed and stored in a publicly
auditable system. As shown in Figure 3; Public authorities and citizens ensure that secret
information is stored securely and unchanged until the time of publication. Judges can
decide to disclose secret information ahead of time in the context of litigation.

38

CHAPTER 6

ATTACKS ANALYSIS

In this section, we examine attack types for our ED-VDF protocol. Attack types
are divided into two main parts: Ethereum Blockchain and Protocol based attacks. Before
giving detail for attack analysis, we would like to explain our protocol’s attack surfaces
briefly.

ED-VDF protocol scheme is implemented in the Ethereum Blockchain network.
The Ethereum blockchain network already has countermeasures against its domain attacks.
Nevertheless, we will explain these types of attacks in the Ethereum Network against our
protocol in Section 6.1.

Protocol-based attack types were simulated and tested using AVISPA [33] protocol
validation tool. We will explain in detail these types of attacks in section 6.2.

6.1. Ethereum Blockchain-Based Attacks

Ethereum Smart Contracts’ attack surface is primarily circumvented by the dis-
tributed Ethereum Virtual Machine [32]. Each protocol phases process by the Ethereum
miner nodes, validated by a smart contract function running on the public Ethereum
network. These validations minimise the attack surface of the Delay Function processing.

Ethereum Blockchain-based attacks split up 4 scenarios that are ED-VDF protocol
phases implemented in the Ethereum Smart Contract system. In order to test the controlled
environment, we construct a private Ethereum test network that simulates a real Ethereum
network. In the private Ethereum test network we simulate adversaries’ attack on a test
with interruption and modification trials. In addition we add low level tests to our protocol
in Appendix D.

39

Figure 6.1. ED-VDF Setup Phase

In the above figure, we tested our ED-VDF protocol setup phase. We aim to
measure and check whether the expected phase steps are realisation on our Ethereum test
network. As we can see, the scenario evaluates successfully.

Figure 6.2. ED-VDF Early Decryption Setup Phase

We tested our ED-VDF protocol Early Decryption Setup phase in the above figure.
We aim to measure and check whether the expected phase steps are realisation on our
Ethereum test network. As we can see, the scenario evaluates successfully.

40

Figure 6.3. ED-VDF Eval Phase

We tested our ED-VDF protocol Eval phase in the above figure. We aim to measure
and check whether the expected phase steps are realisation on our Ethereum test network.
The scenario evaluates successfully, and the expected delay timing is met.

Figure 6.4. ED-VDF Verify Phase

41

6.2. Protocol Based Attacks

The proposed solution was tested using the security validation tool AVISPA [33]
and the visualisation tool SPAN [34]. We simulate On-the-Fly Model Checker (OFMC)
[35] and Constraint Logic-based Attack Searcher (CL-AtSe) [37] based attack algorithm
against our protocol.

AVISPA stands for Automated Validation of Internet Security Protocols and Ap-
plications. AVISPA simulates security protocols and evaluates whether they are secure
or insecure. AVISPA validate protocols using automated techniques for implementing
tree automaton approximations. The program analyses all backend protocols under the
premise of full encryption and exchange of protocol messages over a network controlled
by the Dolev-Yao intruder model.

AVISPA uses the high-level protocol specification language (HLPSL) [60] to define
and interpolate temporal logic consisting of fundamental roles with transitions between
their states. In addition, HLPSL provides a human readable and easy to use programming
language.

The runtime of AVISPA allows defining sessions, environment and channel vari-
ables for an accurate reenactment of protocol simulation. With those variables, we can
simulate various attacks such as passive/active "replay" and "man in the middle" attacks
by the adversary.

SPAN was developed to bridge this gap and facilitate formal definition for crypto-
graphic protocols written with AVISPA HLPSL protocol simulations. SPAN uses Message
Sequence Charts (MSCs) diagrams to animate AVISPA specifications in SPAN.

AVISPA and SPAN tools are widely used in protocol verification for security
algorithms. To evaluate our protocol security, we use the AVISPA tool’s two backends:
On-the-Fly Model Checker (OFMC) and Constraint Logic-based Attack Searcher (CL-
AtSe).

6.2.1. Protocol Reconstruction in AVISPA

We have reconstructed our solution protocol for AVISPA using the HLPSL lan-
guage. Here are excerpts from that construction. First, we define the roles used in the
protocol from our design flowchart described in section 5.1.1 in Figure 5.1.

42

Figure 6.5. Protocol reconstruction Sender role definition

Role S is the role of the sender who wants to encrypt a message for a certain time.
The sender can initiate the protocol described in transition state 0. State 0 begins with the
generation of a symmetric key using an encrypted message.

Formerly, an encrypted message is sent over a channel on the Ethereum blockchain
network. Then, the sender waits for confirmation of a successfully mined message on
Ethereum in state 1. This part of the definition refers start to the eval phase in our protocol
design flowchart.

Figure 6.6. Protocol reconstruction EBC role definition

EBC (Ethereum Blockchain) role is defined as a secure passthrough channel that
simulates an ethereum virtual machine. This role receives and sends messages between
sender and receiver roles at the transition state description. Part indicates the eval phase
in our design flowchart in section 5.1.1 in Figure 5.4.

43

Figure 6.7. Protocol reconstruction Receiver role definition

In role R, the Receiver waits to receive a message from the sender after a certain
time. Session role contains a unique statement for AVISPA that describes how to connect
roles in the protocol.

Figure 6.8. Protocol reconstruction Session definition

Environment role special instructions for AVISPA provide for the interaction (de-
scribed in section 5.2 at Figure 5.9) between roles and intruders via protocol variables and
roles in sessions. This section of protocol simulation refers between eval to end phase in
our design flowchart.

Remarks:

• AVISPA does not have the concept of time in protocol definitions. AVISPA reviews
the cryptological and network security aspects of the proposed solution.

• Symmetric key variable and trusted agents defined in the environment role in the
AVISPA protocol definition are used for simulation purposes only.

44

Figure 6.9. Protocol reconstruction Environment definition

6.2.2. On-the-Fly Model Checker (OFMC)

Model checking is about developing efficient methods for automatically evaluating
the properties of systems represented as transition systems. A model checking programme
for security protocols can be created by combining and extending several approaches, as
Basin et al. OFMC [35] algorithm shows.

Lazy evaluation decouples the model from the search process and heuristics,
allowing the infinite tree to be built dynamically and as needed. It is possible to isolate the
model from the search and heuristics by using lazy evaluation. OFMC found 4048 nodes
in 16 plies and evaluated their status against adversary intrusion.

Figure 6.10. OFMC protocol test results

45

In Figure 6.10, we simulate attack scenarios on SPAN for the OFMC protocol
security evaluation algorithm. Simulation results show that our ED-VDF protocol coun-
termeasures all possible attack types that OFMC generates. Therefore ED-VDF protocol
was evaluated as “safe” in the OFMC intruder simulation test.

6.2.3. Constraint Logic-based Attack Searcher (CL-AtSe)

Chevalier et al. [36] show security of cryptographic protocols can be evaluated
using the CL-Atse. CL-Atse a robust and adaptable automated analysis algorithm. CL-
Atse use for rewriting and constraint solving techniques. CL-Atse models checks all
possible states of the actors and determines whether or not an attack is possible against the
Dolev-Yao intruder [37]. This is done using a protocol provided as a rule set (IF format,
created by the AVISPA compiler).

Thanks to a comprehensive modular unification method, any state-based security
attribute can be simulated (secrecy, authentication, fairness), as well as the algebraic
operators’ xor, or, and exponentiation. Several other relevant constraints can be analysed,
such as type constraints, inequalities, and shared knowledge sets (including set operations
such as removals and negative tests).

Figure 6.11. CL-AtSe protocol test results

CL-AtSe found 29503 states of potential attack vectors from our protocol. How-
ever, the intruder only reaches 16691 states with its public knowledge. In Figure 6.11
we simulate attack scenarios on SPAN for the CL-AtSe algorithm to evaluate protocol
security. The simulation results show that our ED-VDF protocol is immune against all
possible attack types generated by CL-AtSe. Therefore, CL-AtSe concludes the evaluation
of our protocol as secure.

46

CHAPTER 7

FUTURE WORK

Currently, we plan to improve and explore two areas of our protocol, namely
enabling a cross transactional system between different blockchain networks using Cosmos
[42] and exploring the impact of quantum computing on our protocol.

Our protocol is based on the Ethereum blockchain network. However, we would
like to increase our protocol’s usability and transaction interchangeability with other
blockchain networks. This is not possible due to the limitations of the Ethereum imple-
mentation. In our research, we came across Cosmos. Cosmos provides a way to integrate
between different blockchain systems [44] with its Tendermint BFT engine [49]. We
will provide mechanisms for using DApps in other blockchain networks [45] with using
Cosmos.

Quantum computing is an emerging field of computer science. There are concerns
about quantum computing impact on cryptographic security protocols [43]. Since the
Ethereum blockchain relies heavily on RSA-based cryptographic functions, these concerns
interest our ED-VDF protocol. In our search, we found a candidate that replaces RSA-
based public cryptography with resistant post-quantum computing such as NTRU [52].
We would like to improve our protocol based on these implications in the future.

47

CHAPTER 8

CONCLUSION

In this study, we have investigated Verifiable Delay Functions (VDF) from a
computer science perspective. We have compared different approaches to VDF, from
successive squaring to witness encryption. Then we declare our contribution to the VDF
scheme in four criteria in section 4.1. Then according to aimed contributions; a new VDF
and Time-Lock hybrid protocol proposed, design and verified for different attack types;
which guarantees the common and main requirements of VDF and Time-Lock puzzle
protocols.

Proposed protocol integrates a secret-share algorithm to construct a new VDF
protocol scheme that provides an early decryption mechanism. Therefore, it is named as
Early Decryptable Verifiable Delay Functions (ED-VDF). Current VDF solutions do not
have a controlled early decryption feature for time locking mechanisms in both protocol
schemes. This facility is a requirement for social life; for example, court decisions may
require encrypted, stored documents to be opened before the intended expiration date
of secrecy. Testament process without a trusted third party and an early decryption
functionality that provides early testament reveal when Testator loses his mental capacity.
ED-VDF could be used for these types of scenarios.

ED-VDF uses Ethereum Blockchain and Smart Contract infrastructure to fulfill
VDF and Time-Lock protocol requirements. Moreover, we also use this infrastructure
to implement our contribution to VDF protocol named ED-VDF. We also extend our
protocol capabilities and real-world application areas with Ethereum Blockchain and
Smart Contract infrastructure. In addition, we mention future extensibility opportunities
of our ED-VDF protocol in section 7. Hence, we underlined that our proposed protocol
design will have new gains from the evolution of Ethereum Blockchain and Smart Contract
technologies.

ED-VDF solution has also work with any of the defined VDF or Time-Lock
algorithms, depending on which one is chosen. In our experiments, we use a Successive
Squaring algorithm. However, with the modularity and usage of the Ethereum Smart
Contract structure, the designed solution can use alternative delay(Time-Lock puzzle)
algorithms.

We explained the design details of our protocol. Then, we detailed the implemen-
tation of the protocol and explained how we solved the early decryption problem using the
Ethereum Smart Contract and Shamir’s Secret Key Sharing algorithm.

48

Finally, we analysed and evaluated our protocol attack scenarios in the Ethereum
Blockchain network. Then, we simulated our protocol using the security protocol valida-
tion tool AVISPA and validated that our protocol is safe against all known network and
communication attacks according to the Dolev-Yao intruder model.

49

REFERENCES

[1] R. L. Rivest, A. Shamir and D. A. Wagner. 1996. Time-lock Puzzles and Timed-
release Crypto. Technical Report. Massachusetts Institute of Technology, USA.
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf.

[2] R. L. Rivest. 1994. The RC5 Encryption Algorithm. Technical Report. Massachusetts
Institute of Technology, USA. https://link.springer.com/content/pdf/10.1007/3-540-
60590-8_7.pdf.

[3] K. Pietrzak.Simple Verifiable Delay Functions. Cryptology ePrint Archive, 2018/627,
2018. https://eprint.iacr.org/2018/627.pdf.

[4] B. Wesolowski. Efficient verifiable delay functions. Cryptology ePrint Archive,
2018/623, 2018. https://eprint.iacr.org/2018/623.pdf.

[5] D. Boneh, B. Bunz, and B. Fisch. A Survey of Two Verifiable Delay Functions.
Cryptology ePrint Archive, 2018/712, 2018. https://eprint.iacr.org/2018/712.pdf.

[6] K. Chalkias and G. Stephanides (2006) Timed Release Cryptography from Bilinear
Pairings Using Hash Chains. In: Leitold H., Markatos E.P. (eds) Communications
and Multimedia Security. CMS 2006. Lecture Notes in Computer Science, vol 4237.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/11909033_12.

[7] J. Ning, H. Dang, R. Hou and E. C. Chang. Keeping Time-Release Secrets
through Smart Contracts. Cryptology ePrint Archive, Report 2018/1166, 2018.
https://eprint.iacr.org/2018/1166.pdf.

[8] M. Mahmoody, T. Moran and S. Vadhan. Time-Lock Puzzles
in the Random Oracle Model. Cryptology ePrint Archive, 2011.
https://www.iacr.org/archive/crypto2011/68410039/68410039.pdf.

[9] Liu, J., Jager, T., Kakvi, S.A. et al. How to build time-lock encryption. Des. Codes
Cryptogr. 86, 2549–2586 (2018). https://doi.org/10.1007/s10623-018-0461-x.

[10] G. Malavolta and S. A. K Thyagarajan. Homomorphic Time-Lock Puz-
zles and Applications. Cryptology ePrint Archive, Report 2019/635, 2019
https://eprint.iacr.org/2019/635.pdf.

[11] F. Garcia, M. Ryan and J. Liu. Time-release Protocol from Bit-
coin and Witness Encryption for SAT. Cryptology ePrint Archive, 2015.
https://dx.doi.org/10.1007/s10623-018-0461-x.

50

[12] R. Wei and J. Long. Nakamoto Consensus with Verifiable Delay Puzzle. Arxiv ePrint
Archive, 2019. https://arxiv.org/pdf/1908.06394.pdf.

[13] C. Freitag, I. Komargodski, N. Ephraim and R. Pass. Continuous
Verifiable Delay Functions. Cryptology ePrint Archive, 2019/619, 2019.
https://eprint.iacr.org/2019/619.pdf.

[14] A. Jain, B. Waters, N. Bitansky, O. Paneth and S. Goldwasser. Time-Lock Puz-
zles from Randomized Encodings. Cryptology ePrint Archive, 2015/514, 2015.
https://eprint.iacr.org/2015/514.pdf.

[15] P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. Springer Archive, 1999. https://link.springer.com/content/pdf/10.1007/3-
540-48910-X_16.pdf.

[16] “ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSAC-
TION LEDGER”, Jan. 05, 2022. Accessed on: Feb. 26, 2022. [Online].
https://ethereum.github.io/yellowpaper/paper.pdf

[17] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Tech. Rep., 2008

[18] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of BFT
protocols,” in Proc. 2016 ACM SIGSAC Conf. Comput. Commun. Secur., 2016, pp.
31–42.

[19] J. R. Douceur, “The Sybil attack,” in Proc. Int. Workshop Peer-Peer Syst. Berlin,
Germany: Springer, 2002, pp. 251–260.

[20] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions to the Sybil
attack,” Univ. Massachusetts Amherst, Amherst, MA, USA, Tech. Rep., 2006, vol. 7,
p. 224.

[21] G. O. Karame, E. Androulaki, and S. Capkun. (2012). Two Bitcoins at the Price of
One Double Spending Attacks on Fast Payments in Bitcoin, Jan. 07, 2022. Accessed
on: Feb. 25, 2022. [Online]. Available: http://eprint.iacr.org/2012/248.pdf

[22] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably se-
cure proof-of-stake blockchain protocol,” in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 2017, pp. 357–388.

[23] J. Kwon, “TenderMint: Consensus without Mining,” Draft v.0.6, Tech. Rep., 2014.

[24] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,”
Commun. ACM, vol. 61, no. 7, pp. 95–102, 2018.

51

[25] V. Buterin. (2014). Slasher: A Punitive Proof-of-Stake Algorithm. [Online].
Available: https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof- of-stake-
algorithm

[26] V. Zamfir. (2015). Introducing Casper ‘The Friendly Ghost’, Jan.
08, 2022. Accessed on: Feb. 23, 2022. [Online]. Available:
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost

[27] L. Xu et al., “Enabling the sharing economy: Privacy respecting contract based on
public blockchain,” in Proc. ACM Workshop Blockchain, Cryptocurrencies Contracts,
2017, pp. 15–21.

[28] V. Buterin and V. Griffith. (2017). ‘Casper the friendly finality gadget.’, Jan. 10, 2022.
Accessed on: Feb. 11, 2022. [Online]. Available: https://arxiv.org/abs/1710.09437

[29] “INTRODUCTION TO DAPPS”, Jan. 11, 2022. Accessed on: Feb. 15, 2021. [On-
line]. https://ethereum.org/en/developers/docs/dapps/

[30] “BENEFITS OF DAPP DEVELOPMENT”, Jan. 11, 2022. Accessed on: Feb.
15, 2021. [Online]. https://ethereum.org/en/developers/docs/dapps/#benefits-of-dapp-
development

[31] “Solidity”, Jan. 12, 2022. Accessed on: Feb. 16, 2021. [Online].
https://docs.soliditylang.org/en/latest/

[32] “ETHEREUM VIRTUAL MACHINE (EVM)”, October. 26, 2021. Accessed on:
Feb. 17, 2021. [Online]. https://ethereum.org/en/developers/docs/evm/

[33] “Avispa”, April. 14, 2021. Accessed on: May. 23, 2021. [Online].
https://people.irisa.fr/Thomas.Genet/span/

[34] “Span”, September. 24, 2020. Accessed on: May. 25, 2021. [Online].
https://people.irisa.fr/Thomas.Genet/span/

[35] Basin, D., Mödersheim, S. & Viganò, L. OFMC: A symbolic model checker for
security protocols. Int J Inf Secur 4, 181–208 (2005). https://doi.org/10.1007/s10207-
004-0055-7

[36] Chevalier, Yannick & Vigneron, Laurent. (2002). Automated Unbounded Verification
of Security Protocols. LNCS. 2404. 324-337. 10.1007/3-540-45657-0_24.

[37] D. Dolev and A. Yao, "On the security of public-key protocols," in IEEE Trans-
actions on Information Theory, vol. 29, no. 2, pp. 198-208, March 1983, doi:
10.1109/TIT.1983.1056650

52

[38] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. DOI:https://doi.org/10.1145/359168.359176

[39] “Declassification”, Jan. 25, 2021. Accessed on: Jan. 27, 2021. [Online].
https://www.justice.gov/archives/open/declassification/declassification-faq

[40] “Classified information in the United States”, Jan. 21, 2021. Accessed on: Jan. 25,
2021. [Online]. https://www.justice.gov/archives/open/declassification

[41] “What is the Freedom of Information Act”, Jan. 18, 2021. Accessed on: Jan. 25,
2021. [Online]. Available: https://ico.org.uk/for-organisations/guide-to-freedom-of-
information/what-is-the-foi-act/

[42] “What is Cosmos?", Sep. 18, 2021. Accessed on: Sep. 20, 2021. [Online].
https://v1.cosmos.network/intro

[43] Moody, Dustin & Chen, Lily & Jordan, Stephen & Liu, Yi-Kai Smith, Daniel &
Perlner, Ray & Peralta, René̇. (2016). NIST Report on Post-Quantum Cryptography.
10.6028/NIST.IR.8105.

[44] “INTER-BLOCKCHAIN COMMUNICATION PROTOCOL”, August. 11, 2021.
Accessed on: September. 10, 2021. [Online]. https://ibcprotocol.org/

[45] “Explore Cosmos Network”, September. 7, 2021. Accessed on: September. 10, 2021.
[Online]. https://v1.cosmos.network/ecosystem/apps

[46] “Will and testament”, Mar. 5, 2021. Accessed on: Mar. 7, 2021. [Online].
https://en.wikisource.org/wiki/Page%3AEB1911_-_Volume_28.djvu/674

[47] “The Church-Turing Thesis”, November. 10, 2017. Accessed on: Jun. 15, 2021.
[Online]. https://plato.stanford.edu/entries/church-turing/

[48] David Derler and Daniel Slamanig. 2018. Practical witness encryption for algebraic
languages or how to encrypt under Groth—Sahai proofs. Des. Codes Cryptography 86,
11 (November 2018), 2525–2547. DOI:https://doi.org/10.1007/s10623-018-0460-y

[49] “Tendermint”, June. 20, 2021. Accessed on: July. 15, 2021. [Online].
https://github.com/tendermint/tendermint

[50] “What is blockchain technology?”, April. 4, 2021. Accessed on: May. 5, 2021.
[Online]. https://www.ibm.com/topics/what-is-blockchain

[51] “INTRODUCTION TO SMART CONTRACTS”, September. 30, 2021. Accessed
on: October. 5, 2021. [Online]. https://ethereum.org/en/developers/docs/smart-
contracts/

53

[52] “NTRU (merger of NTRUEncrypt and NTRU-HRSS-KEM)”,
September. 30, 2021. Accessed on: October. 5, 2021. [Online].
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927303

[53] “Contract ABI Specification”, May. 17, 2021. Accessed on: June. 15, 2021. [Online].
https://docs.soliditylang.org/en/latest/abi-spec.html

[54] “Ethereum development environment for professionals”, April. 16, 2021. Accessed
on: April. 23, 2021. [Online]. https://hardhat.org/

[55] “NODES AND CLIENTS”, April. 10, 2021. Accessed on: April. 15, 2021. [Online].
https://ethereum.org/en/developers/docs/nodes-and-clients/

[56] “TRANSACTIONS”, April. 10, 2021. Accessed on: April. 15, 2021. [Online].
https://ethereum.org/en/developers/docs/transactions/

[57] “ETHEREUM ACCOUNTS”, April. 11, 2021. Accessed on: April. 15, 2021. [On-
line]. https://ethereum.org/en/developers/docs/accounts/

[58] “Randomized Encodings Practical Issues”, Accessed on: May. 27, 2021. [Online].
http://cryptowiki.net/index.php?title=Succinct_Randomized_Encodings

[59] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. https://doi.org/10.1145/359168.359176

[60] von Oheimb, David. (2005). The high-level protocol specification language HLPSL
developed in the EU project AVISPA. Proceedings of APPSEM 2005 Workshop.

[61] “Traplottery”, June. 15, 2021. Accessed on: August. 05, 2021. [Online].
https://github.com/mabbamOG/traplottery

[62] “Behavior-driven development”, June. 17, 2021. Accessed on: July. 12, 2021. [On-
line]. https://dannorth.net/introducing-bdd/

[63] “The history of Ethereum”, July. 03, 2021. Accessed on: September. 12, 2021.
[Online]. https://ethereum.org/en/history/

[64] “Timed-Release Crypto”, Feb. 10, 1993. Accessed on: Jan. 27, 2021. [Online].
http://cypherpunks.venona.com/date/1993/02/msg00129.html

[65] Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Generic constructions of incre-
mental and homomorphic timed-release encryption. IACR Cryptol. ePrint Arch.

[66] Decker, Christian & Wattenhofer, Roger. (2013). Information propagation in the
Bitcoin network. 110. 10.1109/P2P.2013.6688704.

54

[67] “Keccak”, July. 03, 2021. Accessed on: September. 12, 2021. [Online].
https://keccak.team/keccak.html.

[68] Fiat A., Shamir A. (1987) How To Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. In: Odlyzko A.M. (eds) Advances in Cryptology-
CRYPTO 86. CRYPTO 1986. Lecture Notes in Computer Science, vol 263. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/3540477217_12.

[69] Johnson, D., Menezes, A. & Vanstone, S. The Elliptic Curve Digital Signature
Algorithm (ECDSA). IJIS 1, 36–63 (2001). https://doi.org/10.1007/s102070100002.

[70] “Solidity”, December. 20, 2020. Accessed on: January. 02, 2021. [Online].
https://docs.soliditylang.org/en/latest/.

[71] “Early Decryptable Verifiable Delay Functions”, January. 05, 2021. Accessed on:
February. 11, 2022. [Online]. https://github.com/Ogulcan-Ozdemir/ed-vdf.

55

APPENDIX A

BLOCK DIFFICULTY CALCULATION

blockTime = currentBlockTimestamp — parentBlockTimestamp (A.1)

current_block_difficulty = parent_block_difficulty (A.2)

+ (parent_block_difficulty // 2048) * max(1 — (block_time // 10), -99) (A.3)

+ int(2**((current_block_number // 100000) — 2)) (A.4)

The complexity level is computed as follows, where // represents integer division
and 2** represents over of power two. The int function produces the biggest integer that
is smaller than or equal to a specified value.

The first portion calculates how far the block time differs from the predicted block
time (10 to 19 seconds). It will calculate an X factor according on how long it takes to
mine current block.

This factor will be positive if current block is mined in fewer than 10 seconds,
increasing the complexity. The complexity remains constant if block time is around 10
and 19 seconds. When the block duration is higher than or equal to 20 seconds, it will
result in a negative value, and difficulty will be reduced.

56

APPENDIX B

EXPERIMENTAL WORKS CODE SNIPPETS FOR SMART

CONTRACTS

57

58

APPENDIX C

UI MOCKUP DESIGN FOR PROTOCOL

IMPLEMENTATION

59

APPENDIX D

VERIFICATION OF EXPERIMENTAL WORKS

SCENARIO

60

61

62

63

