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ABSTRACT 
 

P/KEY: PUF BASED SECOND FACTOR AUTHENTICATION 
 

 Second-factor authentication mechanisms increase the security of authentication 

processes by implementing an additional auxiliary layer to a single factor. As a second 

factor, using one-time passwords (OTP) is mainly preferred due to their hardware 

independence and easy generation. OTP generation protocols should be evaluated in two 

main categories: time and security. In time-based OTP mechanisms (TOTP), client and 

server store a shared secret key. However, if attackers compromise the server, attackers 

can generate new OTPs using the key and impersonate the client. To solve this problem, 

protocols based on the hash chain mechanism have been proposed; however, these 

methods have weaknesses mainly due to the authentication speed and the limited number 

of OTPs they generate. This thesis proposes a server-side tamper-proof and fast response 

physical unclonable function (PUF) based second-factor authentication protocol on 

overcoming these problems. PUF is a digital fingerprint that ensures that every device 

produced is unique due to uncontrollable factors in the production stages of devices. It 

generates responses that correspond to challenges. Since PUF is based on the micro-level 

differences in devices, micro-level structure changes in the event of an attack, and the 

PUF takes to generate different responses. Although PUF is a fast response function, it is 

impossible to reach the challenge from the response it generates. In the proposed protocol, 

the PUF inside the server generates key values and used to store clients’ secret seed values 

securely. In case of side-channel attack on server-side, the key values of the clients cannot 

be obtained by the attackers, as the PUF structure will be corrupted. Even if the attacker 

obtains the server’s credentials and gains access to the system, they cannot get the secret 

seed values of the clients and cannot generate the OTPs. In this way, the attacker cannot 

authenticate by impersonating the client. 
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ÖZET 
 

P/ANAHTAR: PUF TABANLI İKİNCİ FAKTÖR 
KİMLİK DOĞRULAMA 

 

 Kimlik doğrulama işleminin güvenliğini arttırmak amacıyla tek faktöre yardımcı 

ek bir katman eklenerek iki faktörlü kimlik doğrulama mekanizmaları kullanılmaktadır. 

İkinci faktör olarak tek kullanımlık şifre (OTP) kullanımı donanım bağımsız, kolay 

üretilebilmesinden kaynaklı tercih edilir. OTP üreten protokolleri temel olarak iki 

kategoride değerlendirmek gerekir: zaman maliyeti ve güvenlik. Zamana dayalı OTP 

mekanizmalarında (TOTP) istemci ve sunucu ortak bir anahtar değer saklar. Ancak 

sunucu saldırganlar tarafından ele geçirilirse, saldırgan anahtar bilgisini kullanarak yeni 

OTP üretebilir ve istemci gibi davranıp sisteme erişim sağlayabilir. Bu sorunu çözmek 

amacıyla hash zinciri mekanizmasına dayalı çeşitli yöntemler önerilmiştir ancak bu 

yöntemler temel olarak kimlik doğrulama hızı ve limitli sayıda OTP ürettiklerinden dolayı 

zafiyetler içerir. Bu tez çalışmasında bu sorunların üstesinden gelmek amacıyla, sunucu 

tarafı saldırıya karşı güvenli ve hızlı yanıt veren fiziksel klonlanmayan fonksiyonlara 

(PUF) dayalı iki faktörlü kimlik doğrulama mekanizması öne sürüyoruz. PUF, cihazların 

üretim aşamalarındaki kontrol edilemeyen faktörler sebebiyle üretilen her cihazın 

benzersiz olmasını sağlayan dijital parmak izidir. Meydan okuma değerlerine karşı, 

cevaplar üretir. PUF yapısı cihazlardaki mikro seviyedeki farklılıklardan kaynaklandığı 

için saldırı durumunda mikro seviyede yapı değişir ve PUF farklı cevaplar üretmeye 

başlar. PUF hızlı cevap üreten bir fonksiyon olmasına karşı, ürettiği yanıttan girdi 

değerine ulaşmak imkansızdır. Önerilen protokolde, sunucunun içindeki PUF, anahtar 

değerleri üretir ve ayrıca istemcilerin gizli tohum değerlerini güvenli bir şekilde saklamak 

için kullanılır. Sunucu tarafında yan kanal saldırısı olması durumunda, PUF yapısı 

bozulacağı için istemcilerin anahtar değerleri saldırganlar tarafından elde edilemez. 

Saldırgan, sunucunun kimlik bilgilerini alıp sisteme erişim sağlasa bile, istemcilerin gizli 

tohum değerlerini alamaz ve bu değerleri kullanarak OTP oluşturamaz. Bu sayede, 

saldırgan istemcinin kimliğine bürünerek kimlik doğrulaması yapamaz. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

  Authentication is the process of proving itself when a person or program wants to 

access a system [36]. Authentication system checks whether the person is authorized by 

looking at the authorized entity list. It is required on systems that are not public contain 

personal or group-specific information. Authentication is meaningless without 

identifying the user beforehand to the system. In initialization step, the authentication 

server registers a client and authorizes it to access the system. Authentication mechanisms 

can be examined in two different factor groups: Single Factor Authentication (SFA) and 

multi-factor authentication (MFA). SFA systems are the simplest form of authentication 

mechanisms [18]. In SFA, the client authenticates to the system by entering only one 

secret. Authentication is generally provided with a username and password. If a user has 

been granted access to the system beforehand, authentication is provided. SFAs are 

preferred because of their easy deployment [34, 29]. One-time password or facial 

recognition system can also be used as a single factor for authentication [9]. MFAS, which 

is generally used in systems with advanced security measures, aims to increase security 

by using various forms of authentication factors in addition to a single factor when the 

user logs into the system [57, 10, 7, 19]. Other factors that are independent of the first 

factor can be provided by biometric features, OTP, security questions, or dedicated 

hardware. Secret keys must be stored securely on the server in both factor groups. 

Otherwise, the attacker can obtain the keys and log into the system.  

 

 

1.1. Motivation 
  

 

  Second-factor authentication which is a sub-branch of MFAs were proposed to 

overcome the security weaknesses of SFAs [58, 53, 63]. Second factor authentication 

mechanism can be provided in many ways. Password-face recognition, password-OTP 
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pairs can be one of these methods. Applications such as Google Authenticator [1] and 

DUO [2] are also applications that generate time-based OTPs and provide a second factor 

authentication mechanism that works integrated with many different programs. The 

success criterion of second factor authentication mechanisms can be evaluated with two 

concepts: time cost and security. It is significant that the authentication request is 

completed quickly, and that the confidential information of the client is kept securely. In 

TOTP based second factor mechanisms, secret key values are kept on the server [44, 60, 

52, 33]. When authentication is required, the values sent by the client are verified with 

the information stored on the server. However, If the attacker can access the server, they 

get credentials and can act as a client and authenticate the system. This risk has been 

encountered not only theoretically but also in practice. RSA and Linode companies got 

hacked. One time password secret keys from server stolen [68]. Also, this mechanism is 

not resistant to side-channel attacks. Since the direct storage of the keys on the server will 

pose a security risk [68], hash-chain based mechanisms have been proposed [23, 33]. 

However, the number of OTP produced in these mechanisms is limited, after the OTPs 

are depleted, re-initialization is required thus OTPs are generated again. The number of 

OTPs produced depends on the length of the hash chain. If the hash chain is kept long, 

the number of OTPs will increase. Because each hash output value is an OTP. However, 

in this case, the verification time is delayed.  

  Based on these problems, in this thesis, the answer to the following question was 

reviewed:  

• Can we design a protocol that is resistant to side-channel attacks on the server side, 

respond quickly to authentication requests, and the valuable information required 

for authentication cannot be retrieved from the server by the attackers even if the 

server is compromised? 

 

 

1.2. Thesis Definition and Contributions 
 

 

 This thesis proposes a server-side tamper-resistant second factor authentication 

mechanism based on physical unclonable function (PUF). When the authentication 

request is received, the keys are generated within PUF in the server, it means that the 

client registers with the server. The PUF generates the response using the secret seed 
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challenge value that the client sends to the server, and this response is the secret value for 

the client. When client authentication is required, it generates one-time passwords using 

its secrets and time information and transmits them to the server. The server verifies the 

client’s one-time passwords by generating the client’s secrets again with the help of the 

PUF. 

 In the proposed protocol, as in TOTP mechanism, time information is used in 

OTPs, but unlike TOTP, clients’ secrets are not stored on the server. The important point 

in this regard is that the client’s secrets are generated on the server side with the help of 

PUF in the initialization part, and after they are transmitted to the client, they are deleted. 

In the authentication phase, the server regenerates the client’s secrets using the PUF. 

Since the authentication part is based on the PUF mechanism on the server and PUFs are 

resistant to tampering and produce different results than in the case of an attack, the 

proposed protocol is resistant to side-channel attacks. Furthermore, because the secrets of 

clients are stored in the server’s database in the hidden format, the proposed protocol is 

also resistant to server-side compromise. 

Accordingly, the contributions of the study were expressed as follows: 

• Server-side tamper-proof second factor authentication mechanism: In the proposed 

protocol, the verification process is done by the server with help of PUF. For this 

reason, in case of a side channel attack on the server, the PUF characteristic will 

change, therefore PUF will behave differently and generate different secrets than 

before. If attackers have these secrets, they cannot impersonate client and 

authenticate to the system. 

• Quick authentication response time: Secret generation in the protocol is done with 

the help of PUF. It is not iterative and time-consuming as in the hash chain 

mechanism. Since PUFs produce fast responses against input challenge values, secret 

generation and authentication time is short. 

• Secrets are not stored on server-side: Secrets are not stored on the server. The server 

generates secrets to verify client’s authentication request and deletes them after use. 

Only seed values are stored in the server with hidden form thanks to XOR operation. 

It does not make sense for the attacker to obtain these hidden values in case of log in 

the system. Because attacker cannot extract the secrets of the clients. 
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CHAPTER 2 
 

 

RELATED WORK 
 

 

In this section, examined the second factor one-time password mechanisms and 

PUF based authentication protocols. 

In one-time password (OTP) mechanisms, the password is generated based on 

seed and moving factors [45]. Moving factor in HMAC one-time password (HOTP) is 

counter value [43]. Counter value enables different OTPs to be produced within the 

HMAC function with a fixed seed value. When authentication occurs, the counter value 

is incremented by one on the server and client sides in the HOTP mechanism [43]. In this 

way, it is ensured that both parties generate the same hash values. However, in cases 

where the client does not send the generated password to the server, there may be a 

synchronization problem between the client and server counter values. Although the 

server checks the passwords sent by the client with more than one hash value in the 

window range, in case of synchronization problems, re-initialization is required between 

the client and server. Brute force attack poses a threat in HOTP mechanisms where the 

window size is in a wide range [45]. Time is the moving factor in the time-based one-

time password (TOTP) mechanism [44]. Passwords are generated based on the time 

elapsed from the timestamp agreed by the client and server. Since the client and server 

generate a password using a shared key, OTP can be generated if unauthorized people 

obtain the key. S/Key protocol finds a solution to the problem of key storage on the server 

[23]. It hides the keys by storing the hash of the OTP sent by the client to the server [23]. 

However, the protocol is not time-based, and OTP is not renewed unless there is an 

authentication request. T/Key protocol proposed by Kogan et al. is a combination of 

TOTP and S/Key [33] [44] [23]. It aims to create an extra layer of security by adding time 

information to OTP as an additional feature to S/Key. Nevertheless, the long hash chain 

mechanism in this protocol causes computational costs [33]. Since the proposed P/Key 

model produces time-based passwords as in TOTP and T/Key mechanisms, the produced 

OTPs do not remain valid for a long time. Also, in our proposed P/Key protocol, keys are 

not directly stored on the server-side. Therefore, the protocol proposed in the thesis is 
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based on TOTP, S/Key, and T/Key mechanisms. A detailed description of the three 

models is given in Section 2.1, 2.2, 2.3. 

In addition to these, Bıcakci and Baykal proposed an OTP mechanism based on 

asymmetric cryptography [11]. However, key generation and verification computational 

costs are higher than other protocols [6]. Many studies have been conducted on the use 

of PUF for the authentication of IoT applications [67][62] [14]. One of the significant 

reason for this is that there is no key storage requirement. Yoon et al. proposed an 

authentication mechanism based on the use of PUF on the client-side and the server 

sending the challenge value from the CRP database to the client when an authentication 

request is received [67]. Unlike P/Key, the PUF mechanism is used on the client-side. 

One of the most important reasons for this is that IOT client devices may be vulnerable 

to tampering and may carry the risk of client compromising. Wallrabenstein presented a 

low-cost tamper resistance authentication protocol using PUF in 2006 [62]. However, this 

protocol does not generate OTP and is not a second-factor mechanism. 

 

 

2.1. TOTP: Time Based One Time Password Protocol [44] 
 

 

Time-based one-time password scheme [44] is a protocol that allows one-time use 

and generates a time-based password that is valid for certain periods such as thirty 

seconds or one minute. This scheme is executed over the shared secret key stored on both 

server and client. Keys are generated by performing the HMAC operation between the 

shared secret key and time information both server and client. As time information, the 

period information from UNIX time until now is used. 

UNIX time is the number of seconds that have passed since January 1, 1970. The 

number of seconds that have passed since this date is divided into periods. Password that 

created for each period is only valid for that period. TOTP is also used in software-based 

one-time passwords 2FA applications such as Google Authenticator [1]. 
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2.1.1. Implementation 
 

 

2.1.1.1. Initialization 
 

 

1. Convert date and time to Unix Epoch Time. 

2. Calculate  

=Total number of time steps in UNIX time 

= time step. 

3. Convert  to hexadecimal format. 

4. Convert into 8-byte array format and assign value to message  

5. Convert to secret key to 20 bytes array and assign the value to  

6. Calculate the HMAC using  and  

 

Figure 2.1. HMAC Hash Function 

7. Get last four bits integer value of HMAC, this shows offset. 

8. Get the first 4 bytes starting from the offset value of the HMAC hash. 

9. Perform binary operation for each byte. 

10. Convert binary value to integer  

11. Select token size  
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12. Token  

13. if  < , add prefix. 
 

 

2.1.1.2. Authentication 
 

 

Server and client create password using the above algorithm in 2.1.1.1 using the 

shared secret key at the same time period. The client sends the generated OTP to the 

server. If the OTP the server receives from the client is the same as the OTP it generates, 

server verifies the authentication request. 

 

 

2.1.2. Protocol Review 
 

 

 In the TOTP structure, shared secret key is stored on server. If the attackers 

compromise the server, keys can be obtained, and valid tokens can be generated. The 

attacker who obtains the key can impersonate the client and authenticate the system.  

 As advantages of TOTP, there is no need for hardware as it generates software-

based passwords. This provides benefits both in terms of cost and ease of use. If desired, 

it can be also integrated into special hardware. 

 

 

2.2. S/Key Second Factor Authentication Mechanism [23] 
 

 

For one-way hash function, it is easy to compute hashed value from left to right, 

however it is hard to return from the hash value to the original value. S/Key generates 

password based on hash chain structure and each password can only be used once [23]. 

Each hashing generates a password, and the passwords become invalid after it is used. 

Hash function takes the secret key and the salt value as input. 
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2.2.1. Implementation 
 

 

2.2.1.1. Initialization 
 

 

1. The hash function produces a hash value by taking the secret value and the salt value 

as input in client-side. 

2. The result of hash value is re-entered into the hash function, and a new hash value is 

created. 

3. The hashing process continues for the length of the hash chain. 

4. Each hash output is also one-time password value. 

 

 

Figure 2.2. S/Key Password Generation Schema 
 

 

2.2.1.2. Authentication 
 

 

1. Clients compute   Then: 

2. Initially, client sends  to server for storage. 

3. When authentication is needed, the client uses  as the first OTP, and sends it to the 
server for verification. 

4. Server gets the   then server hashes the . 

5. If the H ( ) = , then authentication is provided. 

6. Server update ,  value as  for next authentication. 



  9 

2.2.2. Protocol Review 
 

 

• S/Key scheme is designed for a small number of login operations. The number of 

generated passwords is directly proportional to the length of the hash chain. However, 

it is not clear how the length of the hash chain will affect security [33]. Re-

initialization is needed when the passwords created with the hash function are 

depleted. • Since the same hash function is used in each iteration, if the hash function 

is known, passwords can be generated by unauthorized people. 

• In this protocol, the one-time-password mechanism is not time-based. For this reason, 

in case of no authentication for a long time, the same password can be stored on the 

server for a long time. 

• If there is a distributed server structure, passwords must be updated in a coordinated 

and secure manner on each server. In this way, all servers agree on the same response 

[33]. 

• Passwords are not stored directly on the server. Since the hashed value is stored on 

the server, it does not make sense for the attacker to obtain this hashed value. 

 

 

2.3. T/Key Second Factor Authentication with Hash Chains [33] 
 

 

T/Key is the second factor authentication mechanism based on S/Key and TOTP 

mechanisms [33]. As in S/Key, T/Key is based on the creation of OTP by hash chain 

mechanism [23]. However, there is no time-based token creation in the S Key mechanism. 

T/Key uses time information in the hash chain mechanism, similar to TOTP [33] [23]. 
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2.3.1. Implementation 
 

 

In the T/Key mechanism, there is no key value stored on the server [33]. The 

server contains the previous authentication value, salt value and the last authentication 

time information. 

 

 

2.3.1.1. Initialization 
 

 

•  Client chooses a secret  salt value and expiration time that can be four years from 

now. After expiration time expires, reinitialization required. 

•  Client traverses hash chain. Each element of hash chain is OTP. To hash, client uses 

time value for each operation like TOTP [44]. 

•  Final element of chain that called  sends to server with salt and initial time 

values for first authentication. 

 

Figure 2.3. T/Key Password Generation Schema 
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2.3.1.2. Authentication 
 

 

 During authentication, the client starts hashing from  until current time.  

 Output hashed one-time password (OTP) is relayed from client to server.  

 The server hashes the OTP received from the client until it reaches the  

time. 

 If the   = , then authentication succeed. Server stores   and 

. 

 

Figure 2.4. T/Key Authentication Schema 

 

 

2.3.2. Protocol Review 
 

 

Kogan et al. introduced a new protocol that called T/Key by adding the time 

information to the hash chain in S/Key [33] [23]. However, adding time information 

greatly increased the cost of password generation and verification [66]. Because when 

authentication is required, it will be necessary to perform hash operations from expiration 

time,  to the current time, one for each interval. If the validity gap is taken as 30 

seconds for each OTP, it is necessary to generate 220 hash chains for a period of one year. 

Although Kogan et al. proposed checkpoints to improve performance of hash chain, In 

the worst-case scenario, password generation and verification times are still costly [66]. 
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If the protocol expiration time is selected shorter, the performance will increase, but the 

new reinitialization will occur earlier.  
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CHAPTER 3 
 

 

BACKGROUND 
 

 

3.1. Second Factor Authentication Mechanism 
 

 

  Second factor authentication mechanism is a branch of multi factor authentication. 

It provides extra security by adding an additional layer to the single factor such as 

password or token while authentication is taking place. The reason for this is to prevent 

the factor in single-factor mechanisms from being captured by the attackers and 

authenticated to the system. In the last 10 years, millions of usernames and passwords 

have been stolen from organizations or individuals. The Cybersecurity and Infrastructure 

Security Agency (CISA) has officially announced that single-factor authentication 

mechanisms are risky in terms of security [54]. 

  Second factor authentication mechanism is based on the three factor categories: 

knowledge based, possession based, and inherence based. Second factor authentication 

mechanisms are formed by the combination of these factor types. Knowledge-based 

factors are usually self-determined by the user, such as a password or pin. Confidentiality 

of the password is significant. Because it can be used in more than one system. According 

to a study by Google, 13 % of people state that they use the same password all account 

[47]. Possession factors is those that are only owned by the user, such as an assigned USB 

stick or a bank card. Inference factors are factors based on the biometrics that user is. 

Examples include face shape, fingerprint, iris scans. Possession factors have been 

popularized especially by use of fingerprint and face recognition systems in 

authentication processes on mobile devices. However, many of these second factor 

authentication mechanism factors are static and must be stored securely by the 

verification server and client. Having static keys also pose a threat in terms of replay 

attack. In this respect, OTPs are more secure due to the single usage for in each session 

[46]. 
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3.1.1. One Time Password (OTP) 
 

 

One-time passwords are the bit strings that are automatically generated and used 

for a single authentication session. It usually consists of 6–8 characters. Passwords 

become invalid and regeneration needed if they are not used within the specified session 

interval. It has provided a solution to the loss and theft problems of static passwords. 

There are two approaches in OTP mechanisms. They can be time based, and event based. 

In time-based approaches, the client and server agree on a common timestamp. After this 

timestamp, OTP is reproduced at frequent intervals. In event-based approach, OTP’ 

regeneration occurs by triggering the OTP generator. Both approaches have distinct 

relative advantages over each other. Short-term validity of time-based OTPs have benefits 

in terms of security, however they can consume more processing power if they are 

produced with complex algorithms. In the event-based approach, OTP must be stored 

securely because it can maintain its validity for a long time [38]. But it is more user 

friendly because password can be used any time. 

 

 

3.2. Physical Unclonable Function 
 

 

Physical Unclonable Functions (PUF) is a device-specific digital fingerprint that 

consists of differences in the manufacturing processes of semiconductors. These 

differences are uncontrollable and unpredictable. PUF is a hardware security concept that 

can provide low-cost hardware security by leveraging the unique inherent randomness of 

a device. PUF mechanism can be occurred with the help of different physical materials 

such as optical materials, RAMs on microchips. Values such as uncontrollable 

temperature, electromagnetic wave, voltage in the production processes on these physical 

materials cause the devices to form their own digital fingerprints and cause each device 

to be different from each other at the micro level. Since these differences in the 

microstructure can be used as a device-specific key or id, the PUF mechanism can be 

applied in systems that require high security. 
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PUF instance need to have the following properties [3] [61]: 

Robustness: Responses of the PUF to the same challenge values in different time are the 

same or can be corrected with helper functions. 

Unclonability: A PUF structure cannot be copied or imitated. It is not entirely possible 

to emulate the physical conditions of a PUF for a different PUF instance. 

Unpredictability: Even if a sufficient number of challenge-response pairs have been 

obtained, it is not possible to predict beforehand the response to be generated in the PUF 

against a given challenge value. 

Tamper-evident: Any unauthorized access attempt to the PUF causes its behavior to 

change and accordingly to generate different challenge-response values. 

PUF has become a viable work topic for IoT security and privacy due to resource 

constraints and access difficulties of IoT devices and has a wide variety of uses. 

Implementing PUF mechanism-based authentication schemes that ensure reasonable 

security of RFID tags under resource constraints is an effective way to avoid RFID 

deployment concerns. Maurya and Bagchi propose unilateral factor authentication 

mechanism for use in RFID systems [41]. As a different field, In order to provide secure 

communication between Smart meters at consumer and the servers at the Utility 

Operators due to resource constraints in IoT meters, Boyapally et al. proposed PUF based 

authentication mechanism that performs cryptographic operations on the server [13]. 

There are also studies on the use of PUF in the authentication and key sharing processes 

of sensors in the wireless sensor network (WSN) [40]. 
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3.2.1. Concept 
 

 

 

Figure 3.1. PUF Concept: Challenge-Response Pairs 

 

 

Physical unclonable function construct is basically the concept of creating the 

output value of a unique function in the device at the micro level against an input value. 

The input value entering the function is called challenge, while the value created by the 

function is called response as shown in Figure 3.1.  Challenge response pairs are unique 

and random. What is meant by unique is that the response corresponding to each 

challenge value is different from each other. PUFs produce values that are easy to 

calculate, and difficult to recover similar to hash functions. 

 

 

3.2.2. Availability 
 

 

Aubel et al. carried on a study looking for PUF components in PC components 

[4]. They couldn’t find a way to access CPU cache and registers before initialized. 

However, they obtained a usable PUF structure on Nvidia GTX 295 GPU. The situation 

was different when they upgraded Nvidia GPU drivers. This was explained as due to the 

large amount of GPU SRAM being cleared on new generation GPUs. In this study, they 

showed that PUFs are present in the Nvidia GTX 295 graphics card and conclude that 
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they can be found in other graphics devices as well [4]. FPGA manufacturers in the 

industry have started to offer products based on PUF. Intel has created PUF-based option 

for AES key storage in Stratix® 10 FPGA [15]. Intel is working with Intrinsic ID 

company on PUF-based storage. Intrinsic-Id is a company that provides secure key 

generation with the help of SRAM PUF and has products on hardware security [28]. 

 

 

3.2.3. Types of PUF 

 

 

PUFs can classify into four main categories according to their working 

mechanisms: Electronics, optical, radio frequency and magnetic. The PUF types that the 

industry focuses on are the Ring oscillator PUF, Arbiter PUF, SRAM PUF, Power Distro 

PUF which are obtained from microchips based on electronic mechanism [42]. 

 

 

3.2.3.1. Ring Oscillator PUF 
 

 

Ring oscillator PUF is a mechanism based on signal transmission delay. It is 

formed by connecting an odd number of inverters together sequentially as shown in 

Figure 3.2 [12]. The reason for using an odd number of NOT gates is to reverse the 

incoming signal. The signal from the last inverter is given to both the input and the output. 

In this way, counter 1-0 signals occur with certain frequencies at the output gate. The 

output gate frequency is related to the delay of the transmission of the signal from the 

inverters. Delays in inverters cannot be controlled or predicted in systems where more 

than one ring oscillator is used and combined into a multiplexer as follows. For this 

reason, response is unpredictable and device-based due to the production stages of the 

inverter inside on device. 
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Figure 3.2. Ring Oscillator PUF 

 

 

3.2.3.2. Arbiter PUF 
 

 

The arbitrary PUF structure was first proposed by Lee et al. [37]. Arbiter PUF 

structure consists of two symmetrical flows. These flows consist of multiplexes and the 

outputs at the end of the streams are connected to the d flip-flop as shown below in Figure 

3.3. The selector bit in each multiplex in two symmetrical streams is the challenge bit. 

However, due to propagation delays in the multiplexer, one of the two streams reaches 

the d flip-flop first. The arrival of the flows to the flip flop at different times affects the 

output (Q) response of the flip flop. Flip flop arrival time is unpredictable and is caused 

by differences in the production phase of multiplexers. Arbiter PUF implementation is 

shown in the Figure 3.3. 

 

Figure 3.3. Arbiter PUF [37] 
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3.2.3.3. Power Distribution PUF 
 

 

Power distribution PUF provides a unique device-specific characteristic due to the 

differences in the power distribution lines of the integrated circuit and the unpredictable 

internal resistances of the components. In this structure, the current coming out of the 

power source completes the circuit through the route. Power drops at certain points on 

the circuit are measured one by one with the help of power ports (PP01, PP02 etc.) [25]. 

Challenge in this PUF structure is the number and location of the power transmission 

lines, while the response is the resistance value created by these components [42]. 

 

 

3.2.3.4. Optical PUF 
 

 

Optical PUFs, originally called "Physical One-Way Functions (POWFs)”, is 

among the first of the different PUF type mechanisms [51]. It basically consists of five 

different components. These are laser beam, scattering token, speckle pattern, CCD 

camera and gabor hash. The core element of the optical PUF mechanism is the scattering 

token. Scattering tokens are formed by the random scattering of glass spheres in a certain 

area at a microscopic size on a transparent material. The laser beam sent onto this token 

creates a unique reflection based on the beam’s character. This reflected speckle pattern 

is captured with the help of the camera. The resulting image is hashed with the help of 

the gabor function. The result obtained is a string of bits representing the unique value 

[39]. Overall scheme is depicted in Figure 3.4. 

The most advantage of the optical PUF mechanism is that it consists of low-cost 

components. The structure that carries the PUF does not contain microelectronics. 

 

Figure 3.4. Optical PUF Structure 
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3.2.3.5. SRAM PUF 
 

 

SRAM, as featured in Figure 3.5, is an IC element that usually consists of four or 

six transistors and stores one bit of data in a cell 3.5. In the SRAM PUF structure, device 

specific identification is provided based on the micro-level differences in the production 

processes of the transistors. When SRAM is power on, the 1-0 pairs stored by cells are 

also random and device specific. In other words, each SRAM cell sets its preferred state 

either 1 or 0 in the when power up. These 1-0 values in each cell can be reproduced slight 

differences in the same order for each chip. These minor differences can be corrected 

using the fuzzy extractor. It is suitable for industry use, as many devices contain SRAM. 

Intrinsic ID company is working on hardware security in the industry using SRAM PUF 

[21]. 

 

Figure 3.5. SRAM PUF Architecture 

 

3.2.4. Strong and Weak PUF 
 

 

One of the distinguishing and selective features of PUF mechanisms is strength. 

PUF mechanisms are classified in two levels as strong and weak PUF in terms of strength. 

The strengthens of PUFs is related to challenge-response pairs created from a single 

device. Increase in the number of CRPs also correlates with the size of the device. Since 

weak PUFs support few CRPs, CRP values can be obtained in the event of an attack. An 

attacker who has gets the CRP pairs can send the correct response values to challenges 



  21 

and pretend as server. However, weak PUF produce more stable and robustness responses 

than strong PUFs. An example of a Weak PUF is the SRAM PUF. Since the power on 

state is device-specific and standard, the number of CRP is one in the SRAM PUF 

structure. Because there is only one challenge value: power-on status on the device [26]. 

In Strong PUF, there is more than one complex component in generating a response. 

Unlike weak PUF, there are many challenges that can be applied to the PUF. This makes 

it difficult for an attacker to access all of the CRPs, even if they gain access to the physical 

environment. In most of the Strong PUFs, a structure can be created where everyone can 

get a response against the challenge values [42]. 

 

 

3.2.5. Error Correction 
 

 

Against the same challenge values in the same device, PUF is expected to produce 

the same response, but this may not be possible due to changing physical conditions. 

Especially the varying noise level affecting the PUF can be a big challenge [26]. 

Environmental factors such as temperature, pressure, magnetic field are other factors that 

change the behavior of the PUF. These factors lead to the degradation of the "digital 

fingerprint" characterization representing the PUF. Incorrect bits occurring in the PUF 

need to be corrected. Otherwise, responses consisting of PUF become meaningless, the 

responses cease to be device-specific information. Multiple fuzzy extractor techniques 

can be used to correct corrupted bits. 

Forward error correction is typical error correction algorithm. It requires to 

creation of an error correction code (ECC). This mechanism is based on the hamming 

distance. The receiver stores the codewords corresponding to the bit sequence in its 

memory. The sender converts, adding control bits, the bit string to the corresponding 

codewords that the receiver stores in its memory. Sender sends the data in this format to 

the receiver. The receiver splits the bit sequence from the sender into parts. The receiver 

also converts the bit sequence to its original form using the dictionary. If there is a piece 

without a dictionary equivalent, the hamming distance is calculated one by one with the 

values in the ECC dictionary. value corresponding to the smallest result is used. But ECCs 

can be require costly processing time or processing power. These can be a challenge for 

resource restricted devices. To solve this problem, the data remanence method was 
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proposed by Aung et al. [5]. They achieved 99.98% stability in their study on 512 bits 

SRAM values. 

 

 

3.2.6. Modelling Attacks 
 

 

The most prominent attack type in PUF mechanisms is the modeling attack. The 

basic principle in the modeling attack type is create a model that predicts the responses 

corresponding to challenge values that can be sent to the PUF with different prediction 

techniques (machine learning, data mining etc.). Ruhrmair et al., using two different 

prediction algorithms in five different PUF types obtained an accuracy between 95% and 

99.9% [55]. Hospodar et al. studied the susceptibility of 65nm CMOS Arbiter PUF to 

machine learning attacks. They concluded that Simple Arbiter PUFs cannot be used 

reliably for PUF-based authentication, and the applicability of 2-XOR Arbiter PUFs is 

also limited [27]. Many studies are also being carried out to build PUF that is resistant to 

modeling attacks. Oun and Niamat designed delay-based FPGA that has PUF 

characteristic. KNN achieved the highest accuracy rate of 6.8%, corresponding to the 

machine learning attack in the proposed PUF design. The proposed PUF design 

considerably prevents threats against modeling attacks [49]. Similarly, Wangetal. propose 

a new PUF mechanism that is resistant to modeling attacks by modifying the arbiter PUF 

mechanism. They create a complex CRP structure for the prediction model by changing 

some response values. In the model they propose, the response  value from the PUF is 

sent to the server in its original form or modified in a middleware and saved as  [64]. 

3.3. Side Channel Attacks 
 

 

Mathematical and software-based methods often come to mind when cracking 

cryptographic keys and algorithms. Side-channel attack is based on making inferences by 

physically monitoring the system. Monitoring of power consumption, electromagnetic 

wave graphs, sound frequencies and timing information are some of the factors used in 
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side-channel attacks. It has been shown that many algorithm implementations, by used 

these side channel factors, tried to make inferences about secret information. Including 

DES, AES and RSA are vulnerable to side-channel analysis attacks, and various measures 

that can be taken have been suggested. Ghosh et al. performed side channel attack analysis 

on the hardware implementation of the RSA algorithm. They concluded that RSA have 

vulnerabilities in differential power attacks (DPA) [20]. The use of deep learning and 

machine learning techniques in combination with side-channel attacks increases the 

power of the attack. Kubota et al. created a Convolutional neural network-based side 

channel attack mechanism and evaluated its success on the AES encryption algorithm 

[35]. Different implementations of the same algorithm may leak different amounts and 

forms of side channel information. For this reason, side-channel analysis attacks are often 

not generalizable. 

 

 

3.3.1 Power Analysis Attack 
 

 

The most powerful of side-channel attack is power analysis attacks [50]. In power 

analysis attacks, a correlation is established between the power consumption of the 

cryptographic device and the confidential information, or the transactions performed, and 

it is tried to access the confidential information [48] [65]. A resistor is placed circuit, and 

the current drawn information is obtained by using the difference in voltage values at both 

ends of this resistor. Kocher tried power analysis attacks in first time on Data Encryption 

Standard (DES) and was successful [30]. We can examine power analysis attacks under 

two headings: simple power analysis and differential power analysis. 

3.3.1.1. Simple Power Analysis 
 

 

Simple Power Analysis (SPA) attacks are made using a single measurement of 

power consumption while the crypto device is running. Simple power analysis attack 

analyzes the relationship between the power consumed by the cryptographic system and 

the processing steps it performs. While microprocessor instructions perform different 

operations such as addition and multiplication, integrated circuits consume different 
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amounts of power. During the operation of the crypto algorithm, different operations take 

place depending on the key value used, and the key value can be captured with the power 

consumption information observed during this time. 

Figure 3.6. SPA Trace Showing DES Rounds 2 and 3 [30] 

Some details of the algorithm can be seen more clearly when examining a high-

resolution power consumption measurement of two consecutive DES rounds (rounds 2 

and 3) shown in Figure 3.6. 28-bit DES key registers are rotated once (left arrow) on 

round 2 and twice (right arrows) on round 3 [30]. These differences are mainly due to 

jump operations. 

 

 

3.3.1.2. Differential Power Analysis (DPA) 
 

 

While SPA attacks are primarily analyzed based on visual inspection of the power 

fluctuations, side-channel information or confidential information can be obtained using 

statistical techniques and error correction methods in DPA. Small variation in power 

consumption due to the processed data makes observation difficult because of 

measurement errors and noise. DPA attacks are more difficult to implement than SPA 

attacks. However, they are much more powerful and irresistible than BGA attacks [31]. 

Using DPA, an adversary can obtain secret keys by statistically analyzing power 

consumption measurements from multiple cryptographic operations performed by a 

vulnerable smart card or other device. 
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3.3.2. Timing Attack 
 

 

 

Figure 3.7. Conceptual View of The Timing Attacks [8] 

In timing analysis attacks, leaked timing information by algorithms that do not 

have a fixed data processing time is used as side channel information. Attacker tries to 

compromise the system by observing the processing time of iterations in the algorithm. 

The reason for the formation of side channel information is that the processing time in 

the steps of the algorithm depends on the secret key used. The attack is more effective if 

there is a conditional operation in the algorithm. Since the timing characteristics of 

symmetric-key algorithms are not as key-dependent as those of asymmetric-key 

algorithms, they are more robust against timing analysis attacks. In 1996, Paul Kocher 

showed in the study RSA leaks key information over algorithm runtime [32]. 

 

 

3.3.3. Electromagnetic Attack 
 

 

Signals in digital circuits consist of zeros and ones. The energy consumed when 

the signal goes from zero to one is about a thousand times the energy required to remain 

unchanged at that level. 1% of this excess energy is spent to maintain the new voltage 

level, about 4% is converted into heat, and the rest is emitted as electromagnetic waves. 

This emitted wave may contain not only noise, but also signal leakage related to the 

information that is effective in its formation [17]. The Biot-Savart law used to calculate 

electromagnetic radiation is as follows: 
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0 ℓ ×ˆr 

 B=  (3.1) 

 4  2 

 

where ˆ = unit vector, 0 = vacuum permeability, ℓ = the length of the current 

carrying conductor,  = current value. 

According to this equation, we can make the following inferences: 

1. The intensity of electromagnetic radiation varies with the current density. Therefore, 

electromagnetic radiation is directly related to the size of the data [24]. 

2. Direction of electromagnetic radiation changes depending on the current direction. 

Transient Electromagnetic Pulse Emanation Standard (TEMPEST) standards 

have been introduced to prevent information leakage of electromagnetic radiation [59]. 

In electromagnetic attack, measurement analysis operations are similar to power analysis 

attacks. While it is necessary to place a resistor with physical intervention between the 

circuit and the power source for current change measurement in power analysis, it is not 

needed in electromagnetic analysis attacks. The electromagnetic field can be measured 

by means of an antenna without interfering with the circuit [24]. 

3.3.4. Cold Boot Attack [22] 
 

 

Cold boot attack is another side-channel attack that requires being physically close 

to the device. Data is stored in an encrypted, format on your device storage. When the 

device boots up, device stores encryption key in its RAM and uses it to encrypt and 

decrypt data as long as your device stays powered on. The RAM can hold data from a 

few seconds to a few minutes even after power off. The time it takes for data to disappear 

from RAM can be significantly extended by cooling the RAM. In this short period, 

anyone with the appropriate tool scan read the RAM and copy its contents to a secure and 

permanent storage on a USB stick or SD Card using a different lightweight operating 

system. It is possible to extract the passwords from the information obtained from the 
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RAM. Typically, the purpose of a cold boot attack is to illegally obtain disk encryption 

keys without permission. 
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CHAPTER 4 
 

 

P/KEY: PUF BASED SECOND FACTOR 

AUTHENTICATION 
 

 

4.1. Introduction 
 

 

In this thesis, we propose a second-factor authentication protocol that uses PUFs 

on the server-side as s secure storage for clients’ secrets. The server contains a PUF and 

based on the randomness of the PUF, a unique key value is generated for each client in 

server. The protocol also offers a time-based second factor authentication mechanism, as 

in the TOTP [44]. However, unlike TOTP, the clients’ key are not stored on the server. 

The keys are generated during the authentication request on the server-side and deleted 

after use. Thus, if the server is compromised, the attacker cannot learn the clients’ secrets. 

Furthermore, our protocol is resistance to side-channel attacks. This means the side-

channel attacker cannot learn the secret of a client whose secrets are revealed to the 

server’s memory during the protocol execution. 

The secrets produced by the server in each authentication request for a client are 

needed to be the same. This is achieved with the fuzzy extractor. For this reason, it is 

important that the PUF is not damaged. Otherwise, PUF may produce different results for 

the same challenge value at different requests. This problem results in incorrect secret 

generation and authentication cannot be provided. 

It is more suitable to use PUF structures formed in the integrated circuit so that it 

can be used in industry. An example of this is the SRAM PUF. Aubel et al. [4] have also 

shown that PUFs are present in the Nvidia GTX 295 graphics card and conclude that they 

may be present in other graphics devices. In the publication, it was stated that CPU 

manufacturers could introduce the PUF feature of the CPU by making minor changes in 

the hardware features. 

 



  29 

Table 4.1. P/Key Notation Table 

Symbol Description 
  value represents the challenge seed value that the client sends 

to the server to generate the first key. 
  value represents the challenge seed value that the client sends 

to the server to generate the second key. 
 , (i.e., )) is the first key value of the client. 

It is obtained by putting the client seed value  in the PUF. 
 , (i.e., )) is the second key value of the client. 

It is obtained by putting the client seed value in the PUF. 
 is a random value that is chosen by the client 
  is a random value that is chosen by the client. 
  is a random value that is chosen by the server. 
  is the random value that is chosen by the server. 
  is the partial seed of one of the client’s secret. 
  is the partial seed of one of the client’s secret. 

  is a random value chosen by the client. 
  is the time interval between two timestamps. It also determines the 

validity period of OTP. 
  is the first OTP. 
  is the second OTP. 

 PUF. {0, 1}  → {0, 1}  
 XOR operator 
  is elements of operator 
 Hash function. {0, 1}  × {0, 1}  → {0, 1} . 

 

 

4.2. Assumptions 
 

 

We make the following assumptions: 

• The communication channel between client and server is secured with TLS [16]. 

• Sadeghi [56] defined the idealized behavior of PUF. We assume that the ideal PUF 
is used in the protocol. This means that the PUF produces the same response against 
the same challenge value at different times. Also, if in case of any tampering attempt 
in server, the PUF is destroyed and shows different characteristics than before.  
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• The client and server have a synchronized clock to calculate the time period. They 
agree beforehand on the time interval, , required to calculate the number of elapsed 
periods. 

4.3. Protocol Description 
 

 

The proposed second-factor authentication protocol has two phases: initialization 

and authentication. The server has randomly chosen seed values for each client and 

generates clients’ secrets by evaluating these seeds with the PUF during the 

authentication. This means the server can verify the one-time passwords of a client with 

the client’s secrets generated with the PUF. 

 

 

4.3.1. Initialization 
 

 

Initialization is a process in which a client and server agree on common secrets. 

These common secrets will be used to authenticate the client that wants to benefit from a 

service provided by the server. In the proposed initialization protocol, a client chooses 

four different random values and sends them to the server. Server gets these 

random values and performs the following steps in order: 

 

Step 1:    

Server gets 1 challenge seed value that sent by client and put it in PUF function. Response 

value produced by PUF is the secret  of the client. Then XOR operation is performed 

between  value and value. The XOR operation hides the secret   within . 

 

Step 2:  {0, 1}

Server chooses an  -bit random value . 

 

Step 3:  

Server perform XOR operation between client’s secret seed value, 1, and the random 

value . Thus, in case the server is hacked, the attacker cannot access the secret 1 of the 
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clients. Because to reach the secret, , the attacker must know the value of  and put 

this value in the PUF as the challenge value. However, the server performs an XOR 

operation between  and . Thus, server hides the  value in . 

 

Step 4:  

In the fourth step, server deletes the values ,  and  so that in case of an attack, 

the attacker cannot obtain the secret of the client. 

 

Step 5: 

As in step 1, the server generates the secret  of the client with the PUF, and then 

XORes  with  value. This XOR operation hides the secret  within . 

 

Step 6:  {0, 1}  

As in step 2, the server chooses an -bit random value . 

 

Step 7:  

The server hides the seed of the secret, , by performing XOR operation between the 

seed value, , and the random value . Thus, in case the server is hacked, and 

unauthorized people gain the database access, the attacker cannot extract the seed of the 

secret  from . 

 

Step 8:  

The server deletes the  value ( ,  and , in order to prevent the attacker from 

accessing the secret . 

 

Step 9: The server sends , and  to the client. 

The server sends , and  to the client.  and  hide the secrets ,  and , 

respectively. These values are hidden by the XOR operation as mentioned above.  and 

 values are also sent to the client so that the client’s  and  values can be generated 

on the server-side in the authentication phase. 
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Step 10: delete ,  

The server deletes  and  values after sending them to the client. If these values are 

not deleted and stored in the server’s database, the attacker having the credentials of the 

server can obtain the values  and  using the equations  =  and  = 

. After obtaining the  and  values, it can obtain the secrets and  by 

evaluating  and , respectively, with the PUF. 

 

 

Figure 4.1. P/Key: Overall Initialization Scheme 

 

 

Client Server
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4.3.2. Authentication 
 

 

In the proposed authentication protocol, the client computes two OTPs that are 

valid for a certain period. Our protocol requires a synchronized clock between the client 

and the server like other TOTP protocols. When authentication is needed, the client 

calculates the elapsed time and use it in the calculation of OTPs. 

In the calculation of OTPs, a random value   is used. This value is used to prevent 

potential modifications on OTPs by the attacker that can access them. In addition to this, 

 is used to make two OTPs to be dependent on each other. Thus, the server that is able 

to generate the secrets of the client can extract the random value  from the first OTP  

and use it in the verification of the second OTP . 

Each client secret is used to calculate only one OTP. This means one secret is used 

to calculate  and the other is used to calculate . The server uses the PUF to generate 

the secrets of the client sequentially to verify the authentication request of the client. In 

the case of physical attacks (e.g., side-channel attacks), since the characteristics of the 

PUF will change, at least one of the PUF execution will behave differently and incorrect 

key values will be generated. For this reason, the server will not be able to verify the 

client. 

The client registers to the server in the initialization phase and obtains the 1, 2, 

1 and 2 values required for authentication from the server. 

The authentication protocol is depicted in Figure 4.2. The steps of the 

authentication protocol are as follows: 

 

 

4.3.2.1 Client Side 
 

 

Step 1:   (0, 1)  

The client chooses -bit random value . 
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Step 2: (  − ) /  

The time period that OTPs will be valid is calculated. The current time is subtracted from 

the time , and the result is divided by interval to calculate the valid time period. 

 

Step 3:  

In this step, the secret value  is hashed with the time period calculated in the previous 

step. Then, the XOR operation is performed with the result and the  value. Thus, the first 

OTP is calculated. In this way, it is ensured that different values are produced in each 

authentication request, even if it is in the same time period. 

 

Step 4: ( , (  − ) / ) 

In the calculation of the second OTP  firstly, XOR operation is performed with the  

value and . Result is hashed with time period. Then, the generated ,  ,  and  

values are sent to the server as an authentication request. 

 

 

4.3.2.2. Server Side 
 

 

The server stores  and  values that are generated for each registered client in 

the initialization phase. We assume that the partial seeds of a client’s secrets are stored in 

the server database along with the client’s descriptive and complementary information. 

 

Step 5:  

The server calculates the seed  the client by performing XOR operation between the 

 value that the client sends and the  value it stores. It gets the secret by putting 

value in the PUF. 

 

Step 6:  

The server hashes the time period with the secret  obtained in the previous step. Then, 

XOR operation is performed between the value sent by the client and the hash result. 

Thus, the random value  is obtained.  value is authentication specific and different for 

each authentication request. The important point is that the server extracts the  value in 



  35 

the same time period as the client generated. If the  is extracted after a long time 

has passed, the  value obtained will not be the same as the one produced by the client, 

since the time period will change. 

 

Step 7:  

The server deletes the , ,  values. The reason for this is to ensure that in 

case of an attack in further steps, the attacker cannot learn the secret . 

 

Step 8:  

The server calculates the seed  the client by performing XOR operation between the  

value that the client sends and the  value it stores as in Step 5. It gets the secret  by 

putting  value in the PUF. 

 

Step 9:  

The server has the necessary  and  values to generate the  message. As in the client 

side, it generates the OTP  and compares it with . If  and  are equal, the server 

authenticates the client. 

 

Step 10:  

The server deletes the ,  values. The reason for this is to ensure that in 

case of an attack in further steps, the attacker cannot learn the secret . 
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Figure 4.2. P/Key: Overall Authentication Scheme 

 

 

4.4. Comparison 
 

 

In the proposed protocol, the seeds of the clients’ secrets are stored on the server 

in a hidden format. Therefore, if the server is compromised, the values obtained by the 

attacker cannot be used to impersonate the clients. In the protocol, if and only if an 

attacker attacks and accesses the server while a client performs authentication, the 

attacker can learn the secret keys, 1 and 2, of that client. However, in this case, the 

attacker only obtains the secrets of the client that sends authentication request. The secrets 

of other clients that have previously registered on the server are still safe. For this reason, 

the protocol is partial resistant to server-side compromising. In T/Key and S/Key 

protocols, secrets are kept hashed on the server. Thus, these protocols are also resistant 

Client Server
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to server-side compromising. But the situation is different in TOTP. In TOTP, the attacker 

who takes over the server, by getting the server credentials, can generate the OTP because 

it obtains the secret of the clients. 

In case of a side-channel attack on the server for our proposed protocol, the PUF 

is destroyed. This means the physical structure of the PUF will change. Therefore, the 

server will not be able to generate the correct secrets using the PUF. For this reason, the 

protocol is resistant to side-channel attacks on server-side. In the case of a side-channel 

attack in the T/Key protocol, the OTPs obtained by the attacker is not sufficient for client 

impersonating because OTPs are time-dependent, and the attacker cannot obtain the 

previous hash values to generate the future OTPs. In the S/Key protocol, the OTP of a 

client obtained by the side-channel attacker can be used to impersonate that client with 

high probability because the OTP is not time-dependent. As in T/Key, the attacker cannot 

obtain the previous values in the hash chain and cannot generate the future OTPs. In the 

TOTP mechanism, the secret of a client sending the authentication request to the server 

can be obtained with side-channel attacks and then can be used to impersonate the client. 

 

Table 4.2. Comparison Table 

 Metric TOTP S/Key T/Key P/Key 
Resistance to Server-side Side 
Channel Attack 

Not Resistant Resistant Resistant Resistant 

Resistance to Server-Side 
Compromise Attack 

Not Resistant Resistant Resistant Partially 
Resistant 

Usability Limitations 
(Hash Chain Usage) No Yes Yes No 
Resistance to Replay Attacks 
(Time-based Passwords) Yes No Yes Yes 

 

In our protocol, the hash chain structure is not used. It is costly in terms of time as 

many hash operations take place in systems based on the hash chain. In the protocol, since 

the authentication and key generation processes are done in the PUF, these processes are 

completed quickly. Thanks to PUF, the protocol that responds quickly to authentication 

requests on the server side is proposed. 

In time-based OTP protocols, secrets are periodically renewed on the server side. 

For this reason, the same secret is not stored on the server for a long time. TOTP, T/Key 

and P/Key are time-based OTP mechanisms. However, in the S/Key protocol, the stored 
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secret required for verification on the server is not updated until a new authentication 

occurs. The secret of a client is updated when it is used in the S/Key mechanism. 

Because of that reason, OTP can valid for a long time. Storing the same secret on the 

server for a long time poses a security threat. Comparison of the proposed protocol with 

the other three protocols are given in Table 4.2.  
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CHAPTER 5  
 

 

SECURITY ANALYSIS 
 

 

5.1. Threat Model 
 

 

We assume that the user device meets the required security requirements, does 

not carry any malware so that the user session cannot be hijacked by an attacker. We 

assume that the communication channel between the user device and the server is 

protected by TLS [16], thus man-in-the-middle (MITM) attacks are not possible. All 

TOTP schemes are vulnerable to online phishing attacks, where users’ short-term one-

time passwords are compromised. However, the time limit of one-time passwords makes 

it difficult to carry out an attack using them. 

We assume that adversaries are able to access the server multiple times and obtain 

the necessary information to authenticate the clients. For our protocol, the information 

received from the compromised server is the seeds of the clients’ secrets and the 

passwords that can be obtained from the memory during the execution of the protocol for 

a specific client. 

We assume that attackers with physical access to the server can perform side-

channel attacks [22], especially cold-boot attacks, to extract client passwords and secrets. 

 

 

5.2. Formal Definition of One-time Password Protocol 
 

 

A one-time password protocol is defined by the following procedures: 

• PPGen(1s): is an algorithm that outputs the password length  the given security 

parameter . 



  40 

• KeyGen(l): is a probabilistic polynomial-time algorithm that outputs the secrets 1 

and 2 of the prover and the internal state of the verifier consisting of partial seeds 1 

and 2 of the prover’s secrets. 

• Prover (t, k1, k2): is a polynomial time algorithm that takes the time  and the prover’s 

secrets 1 and 2 and outputs the one-time passwords 1 and 2. 

• Verifier (t, d1, d2, M1, M2): is a polynomial time algorithm that takes as input the time 

 and the verifier’s internal state 1 and 2, and one-time passwords M1 and M2. It 

outputs accept or reject based on whether one-time passwords are verified 

successfully. 

In order to prove the correctness, our protocol must output "accept" for every 

Verifier (t, d1, d2, M1, M2) call, where  is monotonically increasing and, M1 and M2 are 

produced with Prover (t, k1, k2). 

 

 

5.3. Adversary Model 
 

 

The adversary is mainly defined by specifying the actions she is allowed to take 

(the oracles she can query), the purpose of her attack (the definition of the game), and the 

way she interacts with the server and clients. 

An adversary is an algorithm that can run the following oracles. 

• Launch: enables the client to start a new protocol instance  at time . 

• SendServer (m, , t): sends a message  to the server in a protocol instance  for the 

time . Then, it receives the message ′ as an answer. 

• Result( ): returns 1, if the server verifies a client, and 0 otherwise at the end of the 

protocol session . 

• CorruptServer(): corrupts the server and gets the internal states of it. 
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5.4. Analysis 
 

 

In this section, we analyze the security of the proposed protocol. 

Definition 5.4.1 (Hash Function). Let  be a security parameter, ,   N be 

polynomially bounded in . A hash function  is defined as {0, 1}  → {0, 1}  with the 

following basic requirements: 

 

1. For a given output , it is computationally infeasible to find an input  satisfying 

ℎ( ) = . 

2. It is computationally infeasible to find a pair ( , ) satisfying  ≠  and ℎ( ) = 

ℎ( ). 

3. Any probabilistic polynomial time adversary who queried  for a polynomial number 

of times can distinguish the output of  with at most negligible probability. 

 

Definition 5.4.2 (Physically Unclonable Function (PUF) [56]). Let   N be a security 

parameter, ,   N be polynomially bounded in . An ideal PUF  is defined as {0, 1}  

→ {0, 1}  that has the following parameters: 

 

1. For all   {0, 1}  and all pairs ( , )  [ ( )]2, it holds that probability  [  = ] 

=1. 

2. Any physical attempt to tamper the device on which  is implemented results in the 

destruction of . Thus,  cannot be evaluated any more correctly because its 

behavior is changed. 

3. Any probabilistic polynomial time adversary who queried   for a polynomial number 

of times can compute the output of  with at most negligible probability. 

 

Lemma 5.4.3. Let A be an adversary. The advantage of  of obtaining the secrets 1 and 

2 by corrupting a server during the execution of the initialization protocol is negligible. 

 

Proof. We assume that there is an adversary  that can learn the secrets 1 and 2 of a 

client by corrupting the server during the execution of the initialization protocol. If  

corrupts the server while it is not interacting with any client,  does not learn anything 
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because the volatile memory is empty. In the case where  corrupts the server while 

interacting with any client, corruption time is important to determine what the attacker 

can learn because deletion of some values are performed two time during the protocol 

execution. Assume that  corrupts the server before the first deletion and obtains 1, 2, 

1, 2, 1, 1 and 1.  extracts the secret 1 by computing 1= 1  1 and wants to infer 

the secret 2. In order to infer 2, A has to simulate the PUF (.) but this contradicts with 

the security of PUF (Definition 5.4.2). Assume that  corrupts the server before the 

second deletion and obtains 2, 2, 2, 1, 2, and 2.  computes the secret 2 = 2  2 

and wants to infer the secret 1. In order to infer 1,  has to expose it from 1 but 1 and 

1 are random it is not possible extract 1 from 1 without knowing 1. Alternatively,  

can calculate  ( 1  1) to get the secret 1, but this means  can simulate (.). This 

contradicts with the security of PUF (Definition 5.4.2). As a result,  can learn 1 and 2 

by corrupting the server during the execution of the initialization protocol with negligible 

probability. 

 

Lemma 5.4.4. Let  be an adversary. The advantage of  of obtaining the secrets 1 and 

2 by corrupting a server during the execution of the authentication protocol is negligible. 

 

Proof. We assume that there is an adversary  that can learn the secrets 1 and 2 of a tag 

by corrupting the server during the execution of the authentication protocol. If  corrupts 

the server while it is not interacting with any client,  does not learn anything because 

the volatile memory is empty. In the case where  corrupts the server while interacting 

with any client, corruption time is important to determine what the attacker can learn 

because deletion of some values are performed two time during the protocol execution. 

Assume that  corrupts the server before the first deletion and obtains 1, 2, 1, 2, 1, 

, 1 and 2.  knows the secret 1 and wants to infer the secret 2. In order to infer 2, 

A has to expose it from 2, but this contradicts with the security of hash functions 

(Definition 5.4.1). A knows that 2 = ( 2 2) so the other way to infer 2 is to simulate 

(.). This contradicts with the security of PUF (Definition 5.4.2). Assume that  corrupts 

the server before the second deletion and obtains 1, 2, 1, 2, 2, , 1 and 2.  knows 

the secret 2 and wants to infer the secret 1. In order to infer 1,  has to expose it from 

1 but this contradicts with the security of hash functions (Definition 5.4.1).  knows 

that 1 =  ( 1  1) so the other way to infer 1 is to simulate (.). This contradicts with 
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the security of PUF (Definition 5.4.2). As a result,  can learn 1 and 2 by corrupting 

the server during the execution of the authentication protocol with negligible probability. 

  

Theorem 5.4.5. The proposed authentication protocol provides second factor 

authentication. 

 

Proof. We assume that there is an adversary  that can generate valid 1, 2, 1 and 

2 for a given client.  wins the security experiment if 1 and 2 pass the verification in 

the server. The communication between the client and server is secured so  cannot 

listen the channel between them. 

Assume that during the execution of the initialization and authentication protocols 

between the client and server,  call CorruptServer () oracle to get the secrets of the 

client. This will contradict with Lemma 5.4.3 stating that  cannot learn the secrets of a 

given client by corrupting the server during the execution of the initialization protocol 

and with Lemma 5.4.4 stating that  cannot learn the secrets of a given client by 

corrupting the server during the execution of the authentication protocol. 

A performing the server corruption can learn one-time passwords 1 and 2 

created by the client. The time limitation of one-time passwords makes it difficult to 

perform an impersonation attack using them. This is the common problem of all TOTP 

protocols. 

Additionally, an adversary who obtains server login credentials learns partial 

seeds of client secrets from the server database and can execute the PUF without breaking 

it. It is impossible for an attacker to learn secrets from partial seeds. The adversary who 

has accessed the server can learn the secrets of the clients that sent authentication requests 

to the server during the time when the adversary has the control of the server. Since we 

can assume that it is very difficult to learn the login credentials of the server and the 

detection time of an adversary who has accessed the server is very short, the probability 

of such an attack is negligible.  
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CHAPTER 6  
 

 

CONCLUSION 

 

 

A more secure authentication mechanism is provided with second-factor 

authentication systems by adding an independent layer to the single factor. One-time 

passwords (OTPs) are preferred as the second factor due to their easy generation, platform 

independence, and one-time use.In the second-factor authentication protocols based on 

the hash chain mechanism, OTP production is limited as it depends on the length of the 

hash chain. As the hash length increases, the number of OTPs increases, but the 

authentication speed slows down. Since the number of OTPs is limited, they require re-

initialization after a certain period. 

The thesis proposes a PUF-based and time-dependent second-factor 

authentication mechanism. PUFs are the digital fingerprint of devices and cannot be 

copied. PUF differs for all semiconductors as it is a natural result of the manufacturing 

process of semiconductors. The device-specific and fast response properties of PUF are 

the main reasons for its widespread use in key generation in cryptology. OTPs in the 

proposed protocol are generated with a combination of client-specific secrets and valid 

for a certain period. Unlike the TOTP mechanism, the secrets of a client are not stored on 

the server. They are generated during the authentication phase and deleted after 

verification. As the secret is generated in the PUF inside the server, we proposed a tamper-

proof second-factor authentication protocol that can generate OTP fastly. In case of a 

side-channel attack, because the PUF is tampered with, its physical structure will change 

and produce different responses than before. In this way, the attacker will not be able to 

take over the system and will not be able to impersonate the clients. In addition, the secrets 

of the clients are not stored directly, but store in a hidden format in the server-side. Thus, 

the clients’ secrets are stored securely and cannot be retrieved in case of server 

compromise. However, while the client is requesting authentication to the server, if the 

attacker compromising the server can obtain the secrets of that client. As future work, we 

would like to work on a solution for this problem. 
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As a threat to the protocol, if many clients are registered to the server and the 

server has to respond to many instant authentication requests, the server’s response time 

may be delayed. How many requests the PUF can respond to instantly is a subject of 

research in future studies. 
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