

P/KEY: PUF BASED SECOND FACTOR
AUTHENTICATION

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Ertan UYSAL

April 2022
İZMİR

 ii

ACKNOWLEDGMENTS

 I would like to earnestly acknowledge the sincere efforts and valuable time

given by my respected supervisors Asst. Prof. Mete AKGÜN and Asst. Prof. Serap

ŞAHİN. Without their guidance and involvement in every step of the process, I could

never accomplish this. I am thankful for your guidance, support, encouragement.

 I would like to thank my thesis committee members Prof. Fatih ALAGÖZ, Prof.

Mehmet Ufuk ÇAĞLAYAN and Asst. Prof. Nesli ERDOĞMUŞ for their valuable

insight and suggestions.

 I would also like to give special thanks to my family, Hülya UYSAL, Melek

Selin UYSAL, Melek KADIOĞLU, Ebru DEMİR and Raşit KADIOĞLU. Like

everything I have achieved in life, I owe this thesis to their unconditional love and

support.

 I would like to thank my friends Ece, Aleyna, Gazi their motivation during this

period, and also to my classmates Elman, Kıvanç, Mücahit and Utku. Together we had

overcome many difficulties.

 Finally, I would like to thank my manager Necmi TÜRER and Bosch Group to

support to do master’s degree in working life.

 iii

ABSTRACT

P/KEY: PUF BASED SECOND FACTOR AUTHENTICATION

 Second-factor authentication mechanisms increase the security of authentication

processes by implementing an additional auxiliary layer to a single factor. As a second

factor, using one-time passwords (OTP) is mainly preferred due to their hardware

independence and easy generation. OTP generation protocols should be evaluated in two

main categories: time and security. In time-based OTP mechanisms (TOTP), client and

server store a shared secret key. However, if attackers compromise the server, attackers

can generate new OTPs using the key and impersonate the client. To solve this problem,

protocols based on the hash chain mechanism have been proposed; however, these

methods have weaknesses mainly due to the authentication speed and the limited number

of OTPs they generate. This thesis proposes a server-side tamper-proof and fast response

physical unclonable function (PUF) based second-factor authentication protocol on

overcoming these problems. PUF is a digital fingerprint that ensures that every device

produced is unique due to uncontrollable factors in the production stages of devices. It

generates responses that correspond to challenges. Since PUF is based on the micro-level

differences in devices, micro-level structure changes in the event of an attack, and the

PUF takes to generate different responses. Although PUF is a fast response function, it is

impossible to reach the challenge from the response it generates. In the proposed protocol,

the PUF inside the server generates key values and used to store clients’ secret seed values

securely. In case of side-channel attack on server-side, the key values of the clients cannot

be obtained by the attackers, as the PUF structure will be corrupted. Even if the attacker

obtains the server’s credentials and gains access to the system, they cannot get the secret

seed values of the clients and cannot generate the OTPs. In this way, the attacker cannot

authenticate by impersonating the client.

 iv

ÖZET

P/ANAHTAR: PUF TABANLI İKİNCİ FAKTÖR
KİMLİK DOĞRULAMA

 Kimlik doğrulama işleminin güvenliğini arttırmak amacıyla tek faktöre yardımcı

ek bir katman eklenerek iki faktörlü kimlik doğrulama mekanizmaları kullanılmaktadır.

İkinci faktör olarak tek kullanımlık şifre (OTP) kullanımı donanım bağımsız, kolay

üretilebilmesinden kaynaklı tercih edilir. OTP üreten protokolleri temel olarak iki

kategoride değerlendirmek gerekir: zaman maliyeti ve güvenlik. Zamana dayalı OTP

mekanizmalarında (TOTP) istemci ve sunucu ortak bir anahtar değer saklar. Ancak

sunucu saldırganlar tarafından ele geçirilirse, saldırgan anahtar bilgisini kullanarak yeni

OTP üretebilir ve istemci gibi davranıp sisteme erişim sağlayabilir. Bu sorunu çözmek

amacıyla hash zinciri mekanizmasına dayalı çeşitli yöntemler önerilmiştir ancak bu

yöntemler temel olarak kimlik doğrulama hızı ve limitli sayıda OTP ürettiklerinden dolayı

zafiyetler içerir. Bu tez çalışmasında bu sorunların üstesinden gelmek amacıyla, sunucu

tarafı saldırıya karşı güvenli ve hızlı yanıt veren fiziksel klonlanmayan fonksiyonlara

(PUF) dayalı iki faktörlü kimlik doğrulama mekanizması öne sürüyoruz. PUF, cihazların

üretim aşamalarındaki kontrol edilemeyen faktörler sebebiyle üretilen her cihazın

benzersiz olmasını sağlayan dijital parmak izidir. Meydan okuma değerlerine karşı,

cevaplar üretir. PUF yapısı cihazlardaki mikro seviyedeki farklılıklardan kaynaklandığı

için saldırı durumunda mikro seviyede yapı değişir ve PUF farklı cevaplar üretmeye

başlar. PUF hızlı cevap üreten bir fonksiyon olmasına karşı, ürettiği yanıttan girdi

değerine ulaşmak imkansızdır. Önerilen protokolde, sunucunun içindeki PUF, anahtar

değerleri üretir ve ayrıca istemcilerin gizli tohum değerlerini güvenli bir şekilde saklamak

için kullanılır. Sunucu tarafında yan kanal saldırısı olması durumunda, PUF yapısı

bozulacağı için istemcilerin anahtar değerleri saldırganlar tarafından elde edilemez.

Saldırgan, sunucunun kimlik bilgilerini alıp sisteme erişim sağlasa bile, istemcilerin gizli

tohum değerlerini alamaz ve bu değerleri kullanarak OTP oluşturamaz. Bu sayede,

saldırgan istemcinin kimliğine bürünerek kimlik doğrulaması yapamaz.

 v

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

LIST OF ABBREVIATION .. ix

CHAPTER 1. INTRODUCTION ... 1

1.1. Motivation... 1

1.2. Thesis Definition and Contributions ... 2

CHAPTER 2. RELATED WORK .. 4

2.1. TOTP: Time Based One Time Password Protocol [44] 5

2.1.1. Implementation ... 6

2.1.2. Protocol Review .. 7

2.2. S/Key Second Factor Authentication Mechanism [23] 7

2.2.1. Implementation ... 8

2.2.2. Protocol Review .. 9

2.3. T/Key Second Factor Authentication with Hash Chains [33] 9

2.3.1. Implementation ... 10

2.3.2. Protocol Review .. 11

CHAPTER 3. BACKGROUND ... 13

3.1. Second Factor Authentication Mechanism ... 13

3.1.1. One Time Password (OTP) ... 14

3.2. Physical Unclonable Function .. 14

3.2.1. Concept ... 16

3.2.2. Availability ... 16

3.2.3. Types of PUF .. 17

3.2.4. Strong and Weak PUF .. 20

3.2.5. Error Correction .. 21

 vi

3.2.6. Modelling Attacks... 22

3.3. Side Channel Attacks.. 22

3.3.1. Power Analysis Attack.. 23

3.3.2. Timing Attack ... 25

3.3.3. Electromagnetic Attack ... 25

3.3.4. Cold Boot Attack [22]... 26

CHAPTER 4. P/KEY: PUF BASED SECOND FACTOR AUTHENTICATION 28

4.1. Introduction .. 28

4.2. Assumptions ... 29

4.3. Protocol Description ... 30

4.3.1. Initialization .. 30

4.3.2. Authentication ... 33

4.4. Comparison ... 36

CHAPTER 5. SECURITY ANALYSIS ... 39

5.1. Threat Model .. 39

5.2. Formal Definition of One-time Password Protocol 39

5.3. Adversary Model .. 40

5.4. Analysis .. 41

CHAPTER 6. CONCLUSION ... 44

REFERENCES ... 46

 vii

LIST OF FIGURES

Figure Page

Figure 2.1. HMAC Hash Function.. 6

Figure 2.2. S/Key Password Generation Schema ... 8

Figure 2.3. T/Key Password Generation Schema ... 10

Figure 2.4. T/Key Authentication Schema ... 11

Figure 3.1. PUF Concept: Challenge-Responpe Pairs .. 16

Figure 3.2. Ring Oscillator PUF ... 18

Figure 3.3. Arbiter PUF [37] .. 18

Figure 3.4. Optical PUF Structure .. 19

Figure 3.5. SRAM PUF Architecture ... 20

Figure 3.6. SPA Trace Showing DES Rounds 2 and 3 [30] ... 24

Figure 3.7. Conceptual View Of The Timing Attacks [8] .. 25

Figure 4.1. P/Key: Overall Initialization Scheme ... 32

Figure 4.2. P/Key: Overall Authentication Scheme ... 36

 viii

LIST OF TABLES

Table Page

Table 4.1. P/Key Notation Table .. 29

Table 4.2. Comparison Table .. 37

 ix

LIST OF ABBREVIATION

SFA Single Factor Authentication

2FA Two-factor Authentication

MFA Multi Factor Authentication

OTP One-Time Password

PUF Physical Unclonable Function

P/Key PUF-based Second Factor Authenticatio

TOTP Time-based One-time Password

HOTP HMAC-based One-time Password

HMAC Hash Message Authentication Code

S/KEY S/Key Second Factor Authentication Mechanism

T/KEY T/Key: Second-Factor Authentication From Secure Hash Chains

DUO Google DUO

 1

CHAPTER 1

INTRODUCTION

 Authentication is the process of proving itself when a person or program wants to

access a system [36]. Authentication system checks whether the person is authorized by

looking at the authorized entity list. It is required on systems that are not public contain

personal or group-specific information. Authentication is meaningless without

identifying the user beforehand to the system. In initialization step, the authentication

server registers a client and authorizes it to access the system. Authentication mechanisms

can be examined in two different factor groups: Single Factor Authentication (SFA) and

multi-factor authentication (MFA). SFA systems are the simplest form of authentication

mechanisms [18]. In SFA, the client authenticates to the system by entering only one

secret. Authentication is generally provided with a username and password. If a user has

been granted access to the system beforehand, authentication is provided. SFAs are

preferred because of their easy deployment [34, 29]. One-time password or facial

recognition system can also be used as a single factor for authentication [9]. MFAS, which

is generally used in systems with advanced security measures, aims to increase security

by using various forms of authentication factors in addition to a single factor when the

user logs into the system [57, 10, 7, 19]. Other factors that are independent of the first

factor can be provided by biometric features, OTP, security questions, or dedicated

hardware. Secret keys must be stored securely on the server in both factor groups.

Otherwise, the attacker can obtain the keys and log into the system.

1.1. Motivation

 Second-factor authentication which is a sub-branch of MFAs were proposed to

overcome the security weaknesses of SFAs [58, 53, 63]. Second factor authentication

mechanism can be provided in many ways. Password-face recognition, password-OTP

 2

pairs can be one of these methods. Applications such as Google Authenticator [1] and

DUO [2] are also applications that generate time-based OTPs and provide a second factor

authentication mechanism that works integrated with many different programs. The

success criterion of second factor authentication mechanisms can be evaluated with two

concepts: time cost and security. It is significant that the authentication request is

completed quickly, and that the confidential information of the client is kept securely. In

TOTP based second factor mechanisms, secret key values are kept on the server [44, 60,

52, 33]. When authentication is required, the values sent by the client are verified with

the information stored on the server. However, If the attacker can access the server, they

get credentials and can act as a client and authenticate the system. This risk has been

encountered not only theoretically but also in practice. RSA and Linode companies got

hacked. One time password secret keys from server stolen [68]. Also, this mechanism is

not resistant to side-channel attacks. Since the direct storage of the keys on the server will

pose a security risk [68], hash-chain based mechanisms have been proposed [23, 33].

However, the number of OTP produced in these mechanisms is limited, after the OTPs

are depleted, re-initialization is required thus OTPs are generated again. The number of

OTPs produced depends on the length of the hash chain. If the hash chain is kept long,

the number of OTPs will increase. Because each hash output value is an OTP. However,

in this case, the verification time is delayed.

 Based on these problems, in this thesis, the answer to the following question was

reviewed:

• Can we design a protocol that is resistant to side-channel attacks on the server side,

respond quickly to authentication requests, and the valuable information required

for authentication cannot be retrieved from the server by the attackers even if the

server is compromised?

1.2. Thesis Definition and Contributions

 This thesis proposes a server-side tamper-resistant second factor authentication

mechanism based on physical unclonable function (PUF). When the authentication

request is received, the keys are generated within PUF in the server, it means that the

client registers with the server. The PUF generates the response using the secret seed

 3

challenge value that the client sends to the server, and this response is the secret value for

the client. When client authentication is required, it generates one-time passwords using

its secrets and time information and transmits them to the server. The server verifies the

client’s one-time passwords by generating the client’s secrets again with the help of the

PUF.

 In the proposed protocol, as in TOTP mechanism, time information is used in

OTPs, but unlike TOTP, clients’ secrets are not stored on the server. The important point

in this regard is that the client’s secrets are generated on the server side with the help of

PUF in the initialization part, and after they are transmitted to the client, they are deleted.

In the authentication phase, the server regenerates the client’s secrets using the PUF.

Since the authentication part is based on the PUF mechanism on the server and PUFs are

resistant to tampering and produce different results than in the case of an attack, the

proposed protocol is resistant to side-channel attacks. Furthermore, because the secrets of

clients are stored in the server’s database in the hidden format, the proposed protocol is

also resistant to server-side compromise.

Accordingly, the contributions of the study were expressed as follows:

• Server-side tamper-proof second factor authentication mechanism: In the proposed

protocol, the verification process is done by the server with help of PUF. For this

reason, in case of a side channel attack on the server, the PUF characteristic will

change, therefore PUF will behave differently and generate different secrets than

before. If attackers have these secrets, they cannot impersonate client and

authenticate to the system.

• Quick authentication response time: Secret generation in the protocol is done with

the help of PUF. It is not iterative and time-consuming as in the hash chain

mechanism. Since PUFs produce fast responses against input challenge values, secret

generation and authentication time is short.

• Secrets are not stored on server-side: Secrets are not stored on the server. The server

generates secrets to verify client’s authentication request and deletes them after use.

Only seed values are stored in the server with hidden form thanks to XOR operation.

It does not make sense for the attacker to obtain these hidden values in case of log in

the system. Because attacker cannot extract the secrets of the clients.

 4

CHAPTER 2

RELATED WORK

In this section, examined the second factor one-time password mechanisms and

PUF based authentication protocols.

In one-time password (OTP) mechanisms, the password is generated based on

seed and moving factors [45]. Moving factor in HMAC one-time password (HOTP) is

counter value [43]. Counter value enables different OTPs to be produced within the

HMAC function with a fixed seed value. When authentication occurs, the counter value

is incremented by one on the server and client sides in the HOTP mechanism [43]. In this

way, it is ensured that both parties generate the same hash values. However, in cases

where the client does not send the generated password to the server, there may be a

synchronization problem between the client and server counter values. Although the

server checks the passwords sent by the client with more than one hash value in the

window range, in case of synchronization problems, re-initialization is required between

the client and server. Brute force attack poses a threat in HOTP mechanisms where the

window size is in a wide range [45]. Time is the moving factor in the time-based one-

time password (TOTP) mechanism [44]. Passwords are generated based on the time

elapsed from the timestamp agreed by the client and server. Since the client and server

generate a password using a shared key, OTP can be generated if unauthorized people

obtain the key. S/Key protocol finds a solution to the problem of key storage on the server

[23]. It hides the keys by storing the hash of the OTP sent by the client to the server [23].

However, the protocol is not time-based, and OTP is not renewed unless there is an

authentication request. T/Key protocol proposed by Kogan et al. is a combination of

TOTP and S/Key [33] [44] [23]. It aims to create an extra layer of security by adding time

information to OTP as an additional feature to S/Key. Nevertheless, the long hash chain

mechanism in this protocol causes computational costs [33]. Since the proposed P/Key

model produces time-based passwords as in TOTP and T/Key mechanisms, the produced

OTPs do not remain valid for a long time. Also, in our proposed P/Key protocol, keys are

not directly stored on the server-side. Therefore, the protocol proposed in the thesis is

 5

based on TOTP, S/Key, and T/Key mechanisms. A detailed description of the three

models is given in Section 2.1, 2.2, 2.3.

In addition to these, Bıcakci and Baykal proposed an OTP mechanism based on

asymmetric cryptography [11]. However, key generation and verification computational

costs are higher than other protocols [6]. Many studies have been conducted on the use

of PUF for the authentication of IoT applications [67][62] [14]. One of the significant

reason for this is that there is no key storage requirement. Yoon et al. proposed an

authentication mechanism based on the use of PUF on the client-side and the server

sending the challenge value from the CRP database to the client when an authentication

request is received [67]. Unlike P/Key, the PUF mechanism is used on the client-side.

One of the most important reasons for this is that IOT client devices may be vulnerable

to tampering and may carry the risk of client compromising. Wallrabenstein presented a

low-cost tamper resistance authentication protocol using PUF in 2006 [62]. However, this

protocol does not generate OTP and is not a second-factor mechanism.

2.1. TOTP: Time Based One Time Password Protocol [44]

Time-based one-time password scheme [44] is a protocol that allows one-time use

and generates a time-based password that is valid for certain periods such as thirty

seconds or one minute. This scheme is executed over the shared secret key stored on both

server and client. Keys are generated by performing the HMAC operation between the

shared secret key and time information both server and client. As time information, the

period information from UNIX time until now is used.

UNIX time is the number of seconds that have passed since January 1, 1970. The

number of seconds that have passed since this date is divided into periods. Password that

created for each period is only valid for that period. TOTP is also used in software-based

one-time passwords 2FA applications such as Google Authenticator [1].

 6

2.1.1. Implementation

2.1.1.1. Initialization

1. Convert date and time to Unix Epoch Time.

2. Calculate

=Total number of time steps in UNIX time

= time step.

3. Convert to hexadecimal format.

4. Convert into 8-byte array format and assign value to message

5. Convert to secret key to 20 bytes array and assign the value to

6. Calculate the HMAC using and

Figure 2.1. HMAC Hash Function

7. Get last four bits integer value of HMAC, this shows offset.

8. Get the first 4 bytes starting from the offset value of the HMAC hash.

9. Perform binary operation for each byte.

10. Convert binary value to integer

11. Select token size

 7

12. Token

13. if < , add prefix.

2.1.1.2. Authentication

Server and client create password using the above algorithm in 2.1.1.1 using the

shared secret key at the same time period. The client sends the generated OTP to the

server. If the OTP the server receives from the client is the same as the OTP it generates,

server verifies the authentication request.

2.1.2. Protocol Review

 In the TOTP structure, shared secret key is stored on server. If the attackers

compromise the server, keys can be obtained, and valid tokens can be generated. The

attacker who obtains the key can impersonate the client and authenticate the system.

 As advantages of TOTP, there is no need for hardware as it generates software-

based passwords. This provides benefits both in terms of cost and ease of use. If desired,

it can be also integrated into special hardware.

2.2. S/Key Second Factor Authentication Mechanism [23]

For one-way hash function, it is easy to compute hashed value from left to right,

however it is hard to return from the hash value to the original value. S/Key generates

password based on hash chain structure and each password can only be used once [23].

Each hashing generates a password, and the passwords become invalid after it is used.

Hash function takes the secret key and the salt value as input.

 8

2.2.1. Implementation

2.2.1.1. Initialization

1. The hash function produces a hash value by taking the secret value and the salt value

as input in client-side.

2. The result of hash value is re-entered into the hash function, and a new hash value is

created.

3. The hashing process continues for the length of the hash chain.

4. Each hash output is also one-time password value.

Figure 2.2. S/Key Password Generation Schema

2.2.1.2. Authentication

1. Clients compute Then:

2. Initially, client sends to server for storage.

3. When authentication is needed, the client uses as the first OTP, and sends it to the
server for verification.

4. Server gets the then server hashes the .

5. If the H () = , then authentication is provided.

6. Server update , value as for next authentication.

 9

2.2.2. Protocol Review

• S/Key scheme is designed for a small number of login operations. The number of

generated passwords is directly proportional to the length of the hash chain. However,

it is not clear how the length of the hash chain will affect security [33]. Re-

initialization is needed when the passwords created with the hash function are

depleted. • Since the same hash function is used in each iteration, if the hash function

is known, passwords can be generated by unauthorized people.

• In this protocol, the one-time-password mechanism is not time-based. For this reason,

in case of no authentication for a long time, the same password can be stored on the

server for a long time.

• If there is a distributed server structure, passwords must be updated in a coordinated

and secure manner on each server. In this way, all servers agree on the same response

[33].

• Passwords are not stored directly on the server. Since the hashed value is stored on

the server, it does not make sense for the attacker to obtain this hashed value.

2.3. T/Key Second Factor Authentication with Hash Chains [33]

T/Key is the second factor authentication mechanism based on S/Key and TOTP

mechanisms [33]. As in S/Key, T/Key is based on the creation of OTP by hash chain

mechanism [23]. However, there is no time-based token creation in the S Key mechanism.

T/Key uses time information in the hash chain mechanism, similar to TOTP [33] [23].

 10

2.3.1. Implementation

In the T/Key mechanism, there is no key value stored on the server [33]. The

server contains the previous authentication value, salt value and the last authentication

time information.

2.3.1.1. Initialization

• Client chooses a secret salt value and expiration time that can be four years from

now. After expiration time expires, reinitialization required.

• Client traverses hash chain. Each element of hash chain is OTP. To hash, client uses

time value for each operation like TOTP [44].

• Final element of chain that called sends to server with salt and initial time

values for first authentication.

Figure 2.3. T/Key Password Generation Schema

 11

2.3.1.2. Authentication

 During authentication, the client starts hashing from until current time.

 Output hashed one-time password (OTP) is relayed from client to server.

 The server hashes the OTP received from the client until it reaches the

time.

 If the = , then authentication succeed. Server stores and

.

Figure 2.4. T/Key Authentication Schema

2.3.2. Protocol Review

Kogan et al. introduced a new protocol that called T/Key by adding the time

information to the hash chain in S/Key [33] [23]. However, adding time information

greatly increased the cost of password generation and verification [66]. Because when

authentication is required, it will be necessary to perform hash operations from expiration

time, to the current time, one for each interval. If the validity gap is taken as 30

seconds for each OTP, it is necessary to generate 220 hash chains for a period of one year.

Although Kogan et al. proposed checkpoints to improve performance of hash chain, In

the worst-case scenario, password generation and verification times are still costly [66].

 12

If the protocol expiration time is selected shorter, the performance will increase, but the

new reinitialization will occur earlier.

 13

CHAPTER 3

BACKGROUND

3.1. Second Factor Authentication Mechanism

 Second factor authentication mechanism is a branch of multi factor authentication.

It provides extra security by adding an additional layer to the single factor such as

password or token while authentication is taking place. The reason for this is to prevent

the factor in single-factor mechanisms from being captured by the attackers and

authenticated to the system. In the last 10 years, millions of usernames and passwords

have been stolen from organizations or individuals. The Cybersecurity and Infrastructure

Security Agency (CISA) has officially announced that single-factor authentication

mechanisms are risky in terms of security [54].

 Second factor authentication mechanism is based on the three factor categories:

knowledge based, possession based, and inherence based. Second factor authentication

mechanisms are formed by the combination of these factor types. Knowledge-based

factors are usually self-determined by the user, such as a password or pin. Confidentiality

of the password is significant. Because it can be used in more than one system. According

to a study by Google, 13 % of people state that they use the same password all account

[47]. Possession factors is those that are only owned by the user, such as an assigned USB

stick or a bank card. Inference factors are factors based on the biometrics that user is.

Examples include face shape, fingerprint, iris scans. Possession factors have been

popularized especially by use of fingerprint and face recognition systems in

authentication processes on mobile devices. However, many of these second factor

authentication mechanism factors are static and must be stored securely by the

verification server and client. Having static keys also pose a threat in terms of replay

attack. In this respect, OTPs are more secure due to the single usage for in each session

[46].

 14

3.1.1. One Time Password (OTP)

One-time passwords are the bit strings that are automatically generated and used

for a single authentication session. It usually consists of 6–8 characters. Passwords

become invalid and regeneration needed if they are not used within the specified session

interval. It has provided a solution to the loss and theft problems of static passwords.

There are two approaches in OTP mechanisms. They can be time based, and event based.

In time-based approaches, the client and server agree on a common timestamp. After this

timestamp, OTP is reproduced at frequent intervals. In event-based approach, OTP’

regeneration occurs by triggering the OTP generator. Both approaches have distinct

relative advantages over each other. Short-term validity of time-based OTPs have benefits

in terms of security, however they can consume more processing power if they are

produced with complex algorithms. In the event-based approach, OTP must be stored

securely because it can maintain its validity for a long time [38]. But it is more user

friendly because password can be used any time.

3.2. Physical Unclonable Function

Physical Unclonable Functions (PUF) is a device-specific digital fingerprint that

consists of differences in the manufacturing processes of semiconductors. These

differences are uncontrollable and unpredictable. PUF is a hardware security concept that

can provide low-cost hardware security by leveraging the unique inherent randomness of

a device. PUF mechanism can be occurred with the help of different physical materials

such as optical materials, RAMs on microchips. Values such as uncontrollable

temperature, electromagnetic wave, voltage in the production processes on these physical

materials cause the devices to form their own digital fingerprints and cause each device

to be different from each other at the micro level. Since these differences in the

microstructure can be used as a device-specific key or id, the PUF mechanism can be

applied in systems that require high security.

 15

PUF instance need to have the following properties [3] [61]:

Robustness: Responses of the PUF to the same challenge values in different time are the

same or can be corrected with helper functions.

Unclonability: A PUF structure cannot be copied or imitated. It is not entirely possible

to emulate the physical conditions of a PUF for a different PUF instance.

Unpredictability: Even if a sufficient number of challenge-response pairs have been

obtained, it is not possible to predict beforehand the response to be generated in the PUF

against a given challenge value.

Tamper-evident: Any unauthorized access attempt to the PUF causes its behavior to

change and accordingly to generate different challenge-response values.

PUF has become a viable work topic for IoT security and privacy due to resource

constraints and access difficulties of IoT devices and has a wide variety of uses.

Implementing PUF mechanism-based authentication schemes that ensure reasonable

security of RFID tags under resource constraints is an effective way to avoid RFID

deployment concerns. Maurya and Bagchi propose unilateral factor authentication

mechanism for use in RFID systems [41]. As a different field, In order to provide secure

communication between Smart meters at consumer and the servers at the Utility

Operators due to resource constraints in IoT meters, Boyapally et al. proposed PUF based

authentication mechanism that performs cryptographic operations on the server [13].

There are also studies on the use of PUF in the authentication and key sharing processes

of sensors in the wireless sensor network (WSN) [40].

 16

3.2.1. Concept

Figure 3.1. PUF Concept: Challenge-Response Pairs

Physical unclonable function construct is basically the concept of creating the

output value of a unique function in the device at the micro level against an input value.

The input value entering the function is called challenge, while the value created by the

function is called response as shown in Figure 3.1. Challenge response pairs are unique

and random. What is meant by unique is that the response corresponding to each

challenge value is different from each other. PUFs produce values that are easy to

calculate, and difficult to recover similar to hash functions.

3.2.2. Availability

Aubel et al. carried on a study looking for PUF components in PC components

[4]. They couldn’t find a way to access CPU cache and registers before initialized.

However, they obtained a usable PUF structure on Nvidia GTX 295 GPU. The situation

was different when they upgraded Nvidia GPU drivers. This was explained as due to the

large amount of GPU SRAM being cleared on new generation GPUs. In this study, they

showed that PUFs are present in the Nvidia GTX 295 graphics card and conclude that

 17

they can be found in other graphics devices as well [4]. FPGA manufacturers in the

industry have started to offer products based on PUF. Intel has created PUF-based option

for AES key storage in Stratix® 10 FPGA [15]. Intel is working with Intrinsic ID

company on PUF-based storage. Intrinsic-Id is a company that provides secure key

generation with the help of SRAM PUF and has products on hardware security [28].

3.2.3. Types of PUF

PUFs can classify into four main categories according to their working

mechanisms: Electronics, optical, radio frequency and magnetic. The PUF types that the

industry focuses on are the Ring oscillator PUF, Arbiter PUF, SRAM PUF, Power Distro

PUF which are obtained from microchips based on electronic mechanism [42].

3.2.3.1. Ring Oscillator PUF

Ring oscillator PUF is a mechanism based on signal transmission delay. It is

formed by connecting an odd number of inverters together sequentially as shown in

Figure 3.2 [12]. The reason for using an odd number of NOT gates is to reverse the

incoming signal. The signal from the last inverter is given to both the input and the output.

In this way, counter 1-0 signals occur with certain frequencies at the output gate. The

output gate frequency is related to the delay of the transmission of the signal from the

inverters. Delays in inverters cannot be controlled or predicted in systems where more

than one ring oscillator is used and combined into a multiplexer as follows. For this

reason, response is unpredictable and device-based due to the production stages of the

inverter inside on device.

 18

Figure 3.2. Ring Oscillator PUF

3.2.3.2. Arbiter PUF

The arbitrary PUF structure was first proposed by Lee et al. [37]. Arbiter PUF

structure consists of two symmetrical flows. These flows consist of multiplexes and the

outputs at the end of the streams are connected to the d flip-flop as shown below in Figure

3.3. The selector bit in each multiplex in two symmetrical streams is the challenge bit.

However, due to propagation delays in the multiplexer, one of the two streams reaches

the d flip-flop first. The arrival of the flows to the flip flop at different times affects the

output (Q) response of the flip flop. Flip flop arrival time is unpredictable and is caused

by differences in the production phase of multiplexers. Arbiter PUF implementation is

shown in the Figure 3.3.

Figure 3.3. Arbiter PUF [37]

- 0

1
S0

Mux

0

1
S0

Mux

Counter

Counter

> >
1 Bit

Response

Enable

Enable

Ring Oscilattor
1

Ring Oscilattor
2

Challenge
c

 19

3.2.3.3. Power Distribution PUF

Power distribution PUF provides a unique device-specific characteristic due to the

differences in the power distribution lines of the integrated circuit and the unpredictable

internal resistances of the components. In this structure, the current coming out of the

power source completes the circuit through the route. Power drops at certain points on

the circuit are measured one by one with the help of power ports (PP01, PP02 etc.) [25].

Challenge in this PUF structure is the number and location of the power transmission

lines, while the response is the resistance value created by these components [42].

3.2.3.4. Optical PUF

Optical PUFs, originally called "Physical One-Way Functions (POWFs)”, is

among the first of the different PUF type mechanisms [51]. It basically consists of five

different components. These are laser beam, scattering token, speckle pattern, CCD

camera and gabor hash. The core element of the optical PUF mechanism is the scattering

token. Scattering tokens are formed by the random scattering of glass spheres in a certain

area at a microscopic size on a transparent material. The laser beam sent onto this token

creates a unique reflection based on the beam’s character. This reflected speckle pattern

is captured with the help of the camera. The resulting image is hashed with the help of

the gabor function. The result obtained is a string of bits representing the unique value

[39]. Overall scheme is depicted in Figure 3.4.

The most advantage of the optical PUF mechanism is that it consists of low-cost

components. The structure that carries the PUF does not contain microelectronics.

Figure 3.4. Optical PUF Structure

 20

3.2.3.5. SRAM PUF

SRAM, as featured in Figure 3.5, is an IC element that usually consists of four or

six transistors and stores one bit of data in a cell 3.5. In the SRAM PUF structure, device

specific identification is provided based on the micro-level differences in the production

processes of the transistors. When SRAM is power on, the 1-0 pairs stored by cells are

also random and device specific. In other words, each SRAM cell sets its preferred state

either 1 or 0 in the when power up. These 1-0 values in each cell can be reproduced slight

differences in the same order for each chip. These minor differences can be corrected

using the fuzzy extractor. It is suitable for industry use, as many devices contain SRAM.

Intrinsic ID company is working on hardware security in the industry using SRAM PUF

[21].

Figure 3.5. SRAM PUF Architecture

3.2.4. Strong and Weak PUF

One of the distinguishing and selective features of PUF mechanisms is strength.

PUF mechanisms are classified in two levels as strong and weak PUF in terms of strength.

The strengthens of PUFs is related to challenge-response pairs created from a single

device. Increase in the number of CRPs also correlates with the size of the device. Since

weak PUFs support few CRPs, CRP values can be obtained in the event of an attack. An

attacker who has gets the CRP pairs can send the correct response values to challenges

 21

and pretend as server. However, weak PUF produce more stable and robustness responses

than strong PUFs. An example of a Weak PUF is the SRAM PUF. Since the power on

state is device-specific and standard, the number of CRP is one in the SRAM PUF

structure. Because there is only one challenge value: power-on status on the device [26].

In Strong PUF, there is more than one complex component in generating a response.

Unlike weak PUF, there are many challenges that can be applied to the PUF. This makes

it difficult for an attacker to access all of the CRPs, even if they gain access to the physical

environment. In most of the Strong PUFs, a structure can be created where everyone can

get a response against the challenge values [42].

3.2.5. Error Correction

Against the same challenge values in the same device, PUF is expected to produce

the same response, but this may not be possible due to changing physical conditions.

Especially the varying noise level affecting the PUF can be a big challenge [26].

Environmental factors such as temperature, pressure, magnetic field are other factors that

change the behavior of the PUF. These factors lead to the degradation of the "digital

fingerprint" characterization representing the PUF. Incorrect bits occurring in the PUF

need to be corrected. Otherwise, responses consisting of PUF become meaningless, the

responses cease to be device-specific information. Multiple fuzzy extractor techniques

can be used to correct corrupted bits.

Forward error correction is typical error correction algorithm. It requires to

creation of an error correction code (ECC). This mechanism is based on the hamming

distance. The receiver stores the codewords corresponding to the bit sequence in its

memory. The sender converts, adding control bits, the bit string to the corresponding

codewords that the receiver stores in its memory. Sender sends the data in this format to

the receiver. The receiver splits the bit sequence from the sender into parts. The receiver

also converts the bit sequence to its original form using the dictionary. If there is a piece

without a dictionary equivalent, the hamming distance is calculated one by one with the

values in the ECC dictionary. value corresponding to the smallest result is used. But ECCs

can be require costly processing time or processing power. These can be a challenge for

resource restricted devices. To solve this problem, the data remanence method was

 22

proposed by Aung et al. [5]. They achieved 99.98% stability in their study on 512 bits

SRAM values.

3.2.6. Modelling Attacks

The most prominent attack type in PUF mechanisms is the modeling attack. The

basic principle in the modeling attack type is create a model that predicts the responses

corresponding to challenge values that can be sent to the PUF with different prediction

techniques (machine learning, data mining etc.). Ruhrmair et al., using two different

prediction algorithms in five different PUF types obtained an accuracy between 95% and

99.9% [55]. Hospodar et al. studied the susceptibility of 65nm CMOS Arbiter PUF to

machine learning attacks. They concluded that Simple Arbiter PUFs cannot be used

reliably for PUF-based authentication, and the applicability of 2-XOR Arbiter PUFs is

also limited [27]. Many studies are also being carried out to build PUF that is resistant to

modeling attacks. Oun and Niamat designed delay-based FPGA that has PUF

characteristic. KNN achieved the highest accuracy rate of 6.8%, corresponding to the

machine learning attack in the proposed PUF design. The proposed PUF design

considerably prevents threats against modeling attacks [49]. Similarly, Wangetal. propose

a new PUF mechanism that is resistant to modeling attacks by modifying the arbiter PUF

mechanism. They create a complex CRP structure for the prediction model by changing

some response values. In the model they propose, the response value from the PUF is

sent to the server in its original form or modified in a middleware and saved as [64].

3.3. Side Channel Attacks

Mathematical and software-based methods often come to mind when cracking

cryptographic keys and algorithms. Side-channel attack is based on making inferences by

physically monitoring the system. Monitoring of power consumption, electromagnetic

wave graphs, sound frequencies and timing information are some of the factors used in

 23

side-channel attacks. It has been shown that many algorithm implementations, by used

these side channel factors, tried to make inferences about secret information. Including

DES, AES and RSA are vulnerable to side-channel analysis attacks, and various measures

that can be taken have been suggested. Ghosh et al. performed side channel attack analysis

on the hardware implementation of the RSA algorithm. They concluded that RSA have

vulnerabilities in differential power attacks (DPA) [20]. The use of deep learning and

machine learning techniques in combination with side-channel attacks increases the

power of the attack. Kubota et al. created a Convolutional neural network-based side

channel attack mechanism and evaluated its success on the AES encryption algorithm

[35]. Different implementations of the same algorithm may leak different amounts and

forms of side channel information. For this reason, side-channel analysis attacks are often

not generalizable.

3.3.1 Power Analysis Attack

The most powerful of side-channel attack is power analysis attacks [50]. In power

analysis attacks, a correlation is established between the power consumption of the

cryptographic device and the confidential information, or the transactions performed, and

it is tried to access the confidential information [48] [65]. A resistor is placed circuit, and

the current drawn information is obtained by using the difference in voltage values at both

ends of this resistor. Kocher tried power analysis attacks in first time on Data Encryption

Standard (DES) and was successful [30]. We can examine power analysis attacks under

two headings: simple power analysis and differential power analysis.

3.3.1.1. Simple Power Analysis

Simple Power Analysis (SPA) attacks are made using a single measurement of

power consumption while the crypto device is running. Simple power analysis attack

analyzes the relationship between the power consumed by the cryptographic system and

the processing steps it performs. While microprocessor instructions perform different

operations such as addition and multiplication, integrated circuits consume different

 24

amounts of power. During the operation of the crypto algorithm, different operations take

place depending on the key value used, and the key value can be captured with the power

consumption information observed during this time.

Figure 3.6. SPA Trace Showing DES Rounds 2 and 3 [30]

Some details of the algorithm can be seen more clearly when examining a high-

resolution power consumption measurement of two consecutive DES rounds (rounds 2

and 3) shown in Figure 3.6. 28-bit DES key registers are rotated once (left arrow) on

round 2 and twice (right arrows) on round 3 [30]. These differences are mainly due to

jump operations.

3.3.1.2. Differential Power Analysis (DPA)

While SPA attacks are primarily analyzed based on visual inspection of the power

fluctuations, side-channel information or confidential information can be obtained using

statistical techniques and error correction methods in DPA. Small variation in power

consumption due to the processed data makes observation difficult because of

measurement errors and noise. DPA attacks are more difficult to implement than SPA

attacks. However, they are much more powerful and irresistible than BGA attacks [31].

Using DPA, an adversary can obtain secret keys by statistically analyzing power

consumption measurements from multiple cryptographic operations performed by a

vulnerable smart card or other device.

 25

3.3.2. Timing Attack

Figure 3.7. Conceptual View of The Timing Attacks [8]

In timing analysis attacks, leaked timing information by algorithms that do not

have a fixed data processing time is used as side channel information. Attacker tries to

compromise the system by observing the processing time of iterations in the algorithm.

The reason for the formation of side channel information is that the processing time in

the steps of the algorithm depends on the secret key used. The attack is more effective if

there is a conditional operation in the algorithm. Since the timing characteristics of

symmetric-key algorithms are not as key-dependent as those of asymmetric-key

algorithms, they are more robust against timing analysis attacks. In 1996, Paul Kocher

showed in the study RSA leaks key information over algorithm runtime [32].

3.3.3. Electromagnetic Attack

Signals in digital circuits consist of zeros and ones. The energy consumed when

the signal goes from zero to one is about a thousand times the energy required to remain

unchanged at that level. 1% of this excess energy is spent to maintain the new voltage

level, about 4% is converted into heat, and the rest is emitted as electromagnetic waves.

This emitted wave may contain not only noise, but also signal leakage related to the

information that is effective in its formation [17]. The Biot-Savart law used to calculate

electromagnetic radiation is as follows:

 26

0 ℓ ×ˆr

 B= (3.1)

 4 2

where ˆ = unit vector, 0 = vacuum permeability, ℓ = the length of the current

carrying conductor, = current value.

According to this equation, we can make the following inferences:

1. The intensity of electromagnetic radiation varies with the current density. Therefore,

electromagnetic radiation is directly related to the size of the data [24].

2. Direction of electromagnetic radiation changes depending on the current direction.

Transient Electromagnetic Pulse Emanation Standard (TEMPEST) standards

have been introduced to prevent information leakage of electromagnetic radiation [59].

In electromagnetic attack, measurement analysis operations are similar to power analysis

attacks. While it is necessary to place a resistor with physical intervention between the

circuit and the power source for current change measurement in power analysis, it is not

needed in electromagnetic analysis attacks. The electromagnetic field can be measured

by means of an antenna without interfering with the circuit [24].

3.3.4. Cold Boot Attack [22]

Cold boot attack is another side-channel attack that requires being physically close

to the device. Data is stored in an encrypted, format on your device storage. When the

device boots up, device stores encryption key in its RAM and uses it to encrypt and

decrypt data as long as your device stays powered on. The RAM can hold data from a

few seconds to a few minutes even after power off. The time it takes for data to disappear

from RAM can be significantly extended by cooling the RAM. In this short period,

anyone with the appropriate tool scan read the RAM and copy its contents to a secure and

permanent storage on a USB stick or SD Card using a different lightweight operating

system. It is possible to extract the passwords from the information obtained from the

 27

RAM. Typically, the purpose of a cold boot attack is to illegally obtain disk encryption

keys without permission.

 28

CHAPTER 4

P/KEY: PUF BASED SECOND FACTOR

AUTHENTICATION

4.1. Introduction

In this thesis, we propose a second-factor authentication protocol that uses PUFs

on the server-side as s secure storage for clients’ secrets. The server contains a PUF and

based on the randomness of the PUF, a unique key value is generated for each client in

server. The protocol also offers a time-based second factor authentication mechanism, as

in the TOTP [44]. However, unlike TOTP, the clients’ key are not stored on the server.

The keys are generated during the authentication request on the server-side and deleted

after use. Thus, if the server is compromised, the attacker cannot learn the clients’ secrets.

Furthermore, our protocol is resistance to side-channel attacks. This means the side-

channel attacker cannot learn the secret of a client whose secrets are revealed to the

server’s memory during the protocol execution.

The secrets produced by the server in each authentication request for a client are

needed to be the same. This is achieved with the fuzzy extractor. For this reason, it is

important that the PUF is not damaged. Otherwise, PUF may produce different results for

the same challenge value at different requests. This problem results in incorrect secret

generation and authentication cannot be provided.

It is more suitable to use PUF structures formed in the integrated circuit so that it

can be used in industry. An example of this is the SRAM PUF. Aubel et al. [4] have also

shown that PUFs are present in the Nvidia GTX 295 graphics card and conclude that they

may be present in other graphics devices. In the publication, it was stated that CPU

manufacturers could introduce the PUF feature of the CPU by making minor changes in

the hardware features.

 29

Table 4.1. P/Key Notation Table

Symbol Description
 value represents the challenge seed value that the client sends

to the server to generate the first key.
 value represents the challenge seed value that the client sends

to the server to generate the second key.
 , (i.e.,)) is the first key value of the client.

It is obtained by putting the client seed value in the PUF.
 , (i.e.,)) is the second key value of the client.

It is obtained by putting the client seed value in the PUF.
 is a random value that is chosen by the client
 is a random value that is chosen by the client.
 is a random value that is chosen by the server.
 is the random value that is chosen by the server.
 is the partial seed of one of the client’s secret.
 is the partial seed of one of the client’s secret.

 is a random value chosen by the client.
 is the time interval between two timestamps. It also determines the

validity period of OTP.
 is the first OTP.
 is the second OTP.

 PUF. {0, 1} → {0, 1}
 XOR operator
 is elements of operator
 Hash function. {0, 1} × {0, 1} → {0, 1} .

4.2. Assumptions

We make the following assumptions:

• The communication channel between client and server is secured with TLS [16].

• Sadeghi [56] defined the idealized behavior of PUF. We assume that the ideal PUF
is used in the protocol. This means that the PUF produces the same response against
the same challenge value at different times. Also, if in case of any tampering attempt
in server, the PUF is destroyed and shows different characteristics than before.

 30

• The client and server have a synchronized clock to calculate the time period. They
agree beforehand on the time interval, , required to calculate the number of elapsed
periods.

4.3. Protocol Description

The proposed second-factor authentication protocol has two phases: initialization

and authentication. The server has randomly chosen seed values for each client and

generates clients’ secrets by evaluating these seeds with the PUF during the

authentication. This means the server can verify the one-time passwords of a client with

the client’s secrets generated with the PUF.

4.3.1. Initialization

Initialization is a process in which a client and server agree on common secrets.

These common secrets will be used to authenticate the client that wants to benefit from a

service provided by the server. In the proposed initialization protocol, a client chooses

four different random values and sends them to the server. Server gets these

random values and performs the following steps in order:

Step 1:

Server gets 1 challenge seed value that sent by client and put it in PUF function. Response

value produced by PUF is the secret of the client. Then XOR operation is performed

between value and value. The XOR operation hides the secret within .

Step 2: {0, 1}

Server chooses an -bit random value .

Step 3:

Server perform XOR operation between client’s secret seed value, 1, and the random

value . Thus, in case the server is hacked, the attacker cannot access the secret 1 of the

 31

clients. Because to reach the secret, , the attacker must know the value of and put

this value in the PUF as the challenge value. However, the server performs an XOR

operation between and . Thus, server hides the value in .

Step 4:

In the fourth step, server deletes the values , and so that in case of an attack,

the attacker cannot obtain the secret of the client.

Step 5:

As in step 1, the server generates the secret of the client with the PUF, and then

XORes with value. This XOR operation hides the secret within .

Step 6: {0, 1}

As in step 2, the server chooses an -bit random value .

Step 7:

The server hides the seed of the secret, , by performing XOR operation between the

seed value, , and the random value . Thus, in case the server is hacked, and

unauthorized people gain the database access, the attacker cannot extract the seed of the

secret from .

Step 8:

The server deletes the value (, and , in order to prevent the attacker from

accessing the secret .

Step 9: The server sends , and to the client.

The server sends , and to the client. and hide the secrets , and ,

respectively. These values are hidden by the XOR operation as mentioned above. and

 values are also sent to the client so that the client’s and values can be generated

on the server-side in the authentication phase.

 32

Step 10: delete ,

The server deletes and values after sending them to the client. If these values are

not deleted and stored in the server’s database, the attacker having the credentials of the

server can obtain the values and using the equations = and =

. After obtaining the and values, it can obtain the secrets and by

evaluating and , respectively, with the PUF.

Figure 4.1. P/Key: Overall Initialization Scheme

Client Server

 33

4.3.2. Authentication

In the proposed authentication protocol, the client computes two OTPs that are

valid for a certain period. Our protocol requires a synchronized clock between the client

and the server like other TOTP protocols. When authentication is needed, the client

calculates the elapsed time and use it in the calculation of OTPs.

In the calculation of OTPs, a random value is used. This value is used to prevent

potential modifications on OTPs by the attacker that can access them. In addition to this,

 is used to make two OTPs to be dependent on each other. Thus, the server that is able

to generate the secrets of the client can extract the random value from the first OTP

and use it in the verification of the second OTP .

Each client secret is used to calculate only one OTP. This means one secret is used

to calculate and the other is used to calculate . The server uses the PUF to generate

the secrets of the client sequentially to verify the authentication request of the client. In

the case of physical attacks (e.g., side-channel attacks), since the characteristics of the

PUF will change, at least one of the PUF execution will behave differently and incorrect

key values will be generated. For this reason, the server will not be able to verify the

client.

The client registers to the server in the initialization phase and obtains the 1, 2,

1 and 2 values required for authentication from the server.

The authentication protocol is depicted in Figure 4.2. The steps of the

authentication protocol are as follows:

4.3.2.1 Client Side

Step 1: (0, 1)

The client chooses -bit random value .

 34

Step 2: (−) /

The time period that OTPs will be valid is calculated. The current time is subtracted from

the time , and the result is divided by interval to calculate the valid time period.

Step 3:

In this step, the secret value is hashed with the time period calculated in the previous

step. Then, the XOR operation is performed with the result and the value. Thus, the first

OTP is calculated. In this way, it is ensured that different values are produced in each

authentication request, even if it is in the same time period.

Step 4: (, (−) /)

In the calculation of the second OTP firstly, XOR operation is performed with the

value and . Result is hashed with time period. Then, the generated , , and

values are sent to the server as an authentication request.

4.3.2.2. Server Side

The server stores and values that are generated for each registered client in

the initialization phase. We assume that the partial seeds of a client’s secrets are stored in

the server database along with the client’s descriptive and complementary information.

Step 5:

The server calculates the seed the client by performing XOR operation between the

 value that the client sends and the value it stores. It gets the secret by putting

value in the PUF.

Step 6:

The server hashes the time period with the secret obtained in the previous step. Then,

XOR operation is performed between the value sent by the client and the hash result.

Thus, the random value is obtained. value is authentication specific and different for

each authentication request. The important point is that the server extracts the value in

 35

the same time period as the client generated. If the is extracted after a long time

has passed, the value obtained will not be the same as the one produced by the client,

since the time period will change.

Step 7:

The server deletes the , , values. The reason for this is to ensure that in

case of an attack in further steps, the attacker cannot learn the secret .

Step 8:

The server calculates the seed the client by performing XOR operation between the

value that the client sends and the value it stores as in Step 5. It gets the secret by

putting value in the PUF.

Step 9:

The server has the necessary and values to generate the message. As in the client

side, it generates the OTP and compares it with . If and are equal, the server

authenticates the client.

Step 10:

The server deletes the , values. The reason for this is to ensure that in

case of an attack in further steps, the attacker cannot learn the secret .

 36

Figure 4.2. P/Key: Overall Authentication Scheme

4.4. Comparison

In the proposed protocol, the seeds of the clients’ secrets are stored on the server

in a hidden format. Therefore, if the server is compromised, the values obtained by the

attacker cannot be used to impersonate the clients. In the protocol, if and only if an

attacker attacks and accesses the server while a client performs authentication, the

attacker can learn the secret keys, 1 and 2, of that client. However, in this case, the

attacker only obtains the secrets of the client that sends authentication request. The secrets

of other clients that have previously registered on the server are still safe. For this reason,

the protocol is partial resistant to server-side compromising. In T/Key and S/Key

protocols, secrets are kept hashed on the server. Thus, these protocols are also resistant

Client Server

 37

to server-side compromising. But the situation is different in TOTP. In TOTP, the attacker

who takes over the server, by getting the server credentials, can generate the OTP because

it obtains the secret of the clients.

In case of a side-channel attack on the server for our proposed protocol, the PUF

is destroyed. This means the physical structure of the PUF will change. Therefore, the

server will not be able to generate the correct secrets using the PUF. For this reason, the

protocol is resistant to side-channel attacks on server-side. In the case of a side-channel

attack in the T/Key protocol, the OTPs obtained by the attacker is not sufficient for client

impersonating because OTPs are time-dependent, and the attacker cannot obtain the

previous hash values to generate the future OTPs. In the S/Key protocol, the OTP of a

client obtained by the side-channel attacker can be used to impersonate that client with

high probability because the OTP is not time-dependent. As in T/Key, the attacker cannot

obtain the previous values in the hash chain and cannot generate the future OTPs. In the

TOTP mechanism, the secret of a client sending the authentication request to the server

can be obtained with side-channel attacks and then can be used to impersonate the client.

Table 4.2. Comparison Table

 Metric TOTP S/Key T/Key P/Key
Resistance to Server-side Side
Channel Attack

Not Resistant Resistant Resistant Resistant

Resistance to Server-Side
Compromise Attack

Not Resistant Resistant Resistant Partially
Resistant

Usability Limitations
(Hash Chain Usage) No Yes Yes No
Resistance to Replay Attacks
(Time-based Passwords) Yes No Yes Yes

In our protocol, the hash chain structure is not used. It is costly in terms of time as

many hash operations take place in systems based on the hash chain. In the protocol, since

the authentication and key generation processes are done in the PUF, these processes are

completed quickly. Thanks to PUF, the protocol that responds quickly to authentication

requests on the server side is proposed.

In time-based OTP protocols, secrets are periodically renewed on the server side.

For this reason, the same secret is not stored on the server for a long time. TOTP, T/Key

and P/Key are time-based OTP mechanisms. However, in the S/Key protocol, the stored

 38

secret required for verification on the server is not updated until a new authentication

occurs. The secret of a client is updated when it is used in the S/Key mechanism.

Because of that reason, OTP can valid for a long time. Storing the same secret on the

server for a long time poses a security threat. Comparison of the proposed protocol with

the other three protocols are given in Table 4.2.

 39

CHAPTER 5

SECURITY ANALYSIS

5.1. Threat Model

We assume that the user device meets the required security requirements, does

not carry any malware so that the user session cannot be hijacked by an attacker. We

assume that the communication channel between the user device and the server is

protected by TLS [16], thus man-in-the-middle (MITM) attacks are not possible. All

TOTP schemes are vulnerable to online phishing attacks, where users’ short-term one-

time passwords are compromised. However, the time limit of one-time passwords makes

it difficult to carry out an attack using them.

We assume that adversaries are able to access the server multiple times and obtain

the necessary information to authenticate the clients. For our protocol, the information

received from the compromised server is the seeds of the clients’ secrets and the

passwords that can be obtained from the memory during the execution of the protocol for

a specific client.

We assume that attackers with physical access to the server can perform side-

channel attacks [22], especially cold-boot attacks, to extract client passwords and secrets.

5.2. Formal Definition of One-time Password Protocol

A one-time password protocol is defined by the following procedures:

• PPGen(1s): is an algorithm that outputs the password length the given security

parameter .

 40

• KeyGen(l): is a probabilistic polynomial-time algorithm that outputs the secrets 1

and 2 of the prover and the internal state of the verifier consisting of partial seeds 1

and 2 of the prover’s secrets.

• Prover (t, k1, k2): is a polynomial time algorithm that takes the time and the prover’s

secrets 1 and 2 and outputs the one-time passwords 1 and 2.

• Verifier (t, d1, d2, M1, M2): is a polynomial time algorithm that takes as input the time

 and the verifier’s internal state 1 and 2, and one-time passwords M1 and M2. It

outputs accept or reject based on whether one-time passwords are verified

successfully.

In order to prove the correctness, our protocol must output "accept" for every

Verifier (t, d1, d2, M1, M2) call, where is monotonically increasing and, M1 and M2 are

produced with Prover (t, k1, k2).

5.3. Adversary Model

The adversary is mainly defined by specifying the actions she is allowed to take

(the oracles she can query), the purpose of her attack (the definition of the game), and the

way she interacts with the server and clients.

An adversary is an algorithm that can run the following oracles.

• Launch: enables the client to start a new protocol instance at time .

• SendServer (m, , t): sends a message to the server in a protocol instance for the

time . Then, it receives the message ′ as an answer.

• Result(): returns 1, if the server verifies a client, and 0 otherwise at the end of the

protocol session .

• CorruptServer(): corrupts the server and gets the internal states of it.

 41

5.4. Analysis

In this section, we analyze the security of the proposed protocol.

Definition 5.4.1 (Hash Function). Let be a security parameter, , N be

polynomially bounded in . A hash function is defined as {0, 1} → {0, 1} with the

following basic requirements:

1. For a given output , it is computationally infeasible to find an input satisfying

ℎ() = .

2. It is computationally infeasible to find a pair (,) satisfying ≠ and ℎ() =

ℎ().

3. Any probabilistic polynomial time adversary who queried for a polynomial number

of times can distinguish the output of with at most negligible probability.

Definition 5.4.2 (Physically Unclonable Function (PUF) [56]). Let N be a security

parameter, , N be polynomially bounded in . An ideal PUF is defined as {0, 1}

→ {0, 1} that has the following parameters:

1. For all {0, 1} and all pairs (,) [()]2, it holds that probability [=]

=1.

2. Any physical attempt to tamper the device on which is implemented results in the

destruction of . Thus, cannot be evaluated any more correctly because its

behavior is changed.

3. Any probabilistic polynomial time adversary who queried for a polynomial number

of times can compute the output of with at most negligible probability.

Lemma 5.4.3. Let A be an adversary. The advantage of of obtaining the secrets 1 and

2 by corrupting a server during the execution of the initialization protocol is negligible.

Proof. We assume that there is an adversary that can learn the secrets 1 and 2 of a

client by corrupting the server during the execution of the initialization protocol. If

corrupts the server while it is not interacting with any client, does not learn anything

 42

because the volatile memory is empty. In the case where corrupts the server while

interacting with any client, corruption time is important to determine what the attacker

can learn because deletion of some values are performed two time during the protocol

execution. Assume that corrupts the server before the first deletion and obtains 1, 2,

1, 2, 1, 1 and 1. extracts the secret 1 by computing 1= 1 1 and wants to infer

the secret 2. In order to infer 2, A has to simulate the PUF (.) but this contradicts with

the security of PUF (Definition 5.4.2). Assume that corrupts the server before the

second deletion and obtains 2, 2, 2, 1, 2, and 2. computes the secret 2 = 2 2

and wants to infer the secret 1. In order to infer 1, has to expose it from 1 but 1 and

1 are random it is not possible extract 1 from 1 without knowing 1. Alternatively,

can calculate (1 1) to get the secret 1, but this means can simulate (.). This

contradicts with the security of PUF (Definition 5.4.2). As a result, can learn 1 and 2

by corrupting the server during the execution of the initialization protocol with negligible

probability.

Lemma 5.4.4. Let be an adversary. The advantage of of obtaining the secrets 1 and

2 by corrupting a server during the execution of the authentication protocol is negligible.

Proof. We assume that there is an adversary that can learn the secrets 1 and 2 of a tag

by corrupting the server during the execution of the authentication protocol. If corrupts

the server while it is not interacting with any client, does not learn anything because

the volatile memory is empty. In the case where corrupts the server while interacting

with any client, corruption time is important to determine what the attacker can learn

because deletion of some values are performed two time during the protocol execution.

Assume that corrupts the server before the first deletion and obtains 1, 2, 1, 2, 1,

, 1 and 2. knows the secret 1 and wants to infer the secret 2. In order to infer 2,

A has to expose it from 2, but this contradicts with the security of hash functions

(Definition 5.4.1). A knows that 2 = (2 2) so the other way to infer 2 is to simulate

(.). This contradicts with the security of PUF (Definition 5.4.2). Assume that corrupts

the server before the second deletion and obtains 1, 2, 1, 2, 2, , 1 and 2. knows

the secret 2 and wants to infer the secret 1. In order to infer 1, has to expose it from

1 but this contradicts with the security of hash functions (Definition 5.4.1). knows

that 1 = (1 1) so the other way to infer 1 is to simulate (.). This contradicts with

 43

the security of PUF (Definition 5.4.2). As a result, can learn 1 and 2 by corrupting

the server during the execution of the authentication protocol with negligible probability.

Theorem 5.4.5. The proposed authentication protocol provides second factor

authentication.

Proof. We assume that there is an adversary that can generate valid 1, 2, 1 and

2 for a given client. wins the security experiment if 1 and 2 pass the verification in

the server. The communication between the client and server is secured so cannot

listen the channel between them.

Assume that during the execution of the initialization and authentication protocols

between the client and server, call CorruptServer () oracle to get the secrets of the

client. This will contradict with Lemma 5.4.3 stating that cannot learn the secrets of a

given client by corrupting the server during the execution of the initialization protocol

and with Lemma 5.4.4 stating that cannot learn the secrets of a given client by

corrupting the server during the execution of the authentication protocol.

A performing the server corruption can learn one-time passwords 1 and 2

created by the client. The time limitation of one-time passwords makes it difficult to

perform an impersonation attack using them. This is the common problem of all TOTP

protocols.

Additionally, an adversary who obtains server login credentials learns partial

seeds of client secrets from the server database and can execute the PUF without breaking

it. It is impossible for an attacker to learn secrets from partial seeds. The adversary who

has accessed the server can learn the secrets of the clients that sent authentication requests

to the server during the time when the adversary has the control of the server. Since we

can assume that it is very difficult to learn the login credentials of the server and the

detection time of an adversary who has accessed the server is very short, the probability

of such an attack is negligible.

 44

CHAPTER 6

CONCLUSION

A more secure authentication mechanism is provided with second-factor

authentication systems by adding an independent layer to the single factor. One-time

passwords (OTPs) are preferred as the second factor due to their easy generation, platform

independence, and one-time use.In the second-factor authentication protocols based on

the hash chain mechanism, OTP production is limited as it depends on the length of the

hash chain. As the hash length increases, the number of OTPs increases, but the

authentication speed slows down. Since the number of OTPs is limited, they require re-

initialization after a certain period.

The thesis proposes a PUF-based and time-dependent second-factor

authentication mechanism. PUFs are the digital fingerprint of devices and cannot be

copied. PUF differs for all semiconductors as it is a natural result of the manufacturing

process of semiconductors. The device-specific and fast response properties of PUF are

the main reasons for its widespread use in key generation in cryptology. OTPs in the

proposed protocol are generated with a combination of client-specific secrets and valid

for a certain period. Unlike the TOTP mechanism, the secrets of a client are not stored on

the server. They are generated during the authentication phase and deleted after

verification. As the secret is generated in the PUF inside the server, we proposed a tamper-

proof second-factor authentication protocol that can generate OTP fastly. In case of a

side-channel attack, because the PUF is tampered with, its physical structure will change

and produce different responses than before. In this way, the attacker will not be able to

take over the system and will not be able to impersonate the clients. In addition, the secrets

of the clients are not stored directly, but store in a hidden format in the server-side. Thus,

the clients’ secrets are stored securely and cannot be retrieved in case of server

compromise. However, while the client is requesting authentication to the server, if the

attacker compromising the server can obtain the secrets of that client. As future work, we

would like to work on a solution for this problem.

 45

As a threat to the protocol, if many clients are registered to the server and the

server has to respond to many instant authentication requests, the server’s response time

may be delayed. How many requests the PUF can respond to instantly is a subject of

research in future studies.

 46

REFERENCES

[1] Authentication - Google Safety Center. https://safety.google/authentication.
Accessed on 2022-02-11.

[2] GuidetoTwo-FactorAuthentication·DuoSecurity. https://guide.duo.com. Accessed
on 2022-02-11.

[3] Mete Akgün and M Ufuk Çaglayan. Providing destructive privacy and scalability in
rfid systems using pufs. Ad Hoc Networks, 32:32–42, 2015.

[4] Pol Van Aubel, Daniel J Bernstein, and Ruben Niederhagen. Investigating sram pufs
in large cpus and gpus. In International Conference on Security, Privacy, and
Applied Cryptography Engineering, pages 228–247. Springer, 2015.

[5] Pyi Phyo Aung, Koichiro Mashiko, Nordinah Binti Ismail, and Ooi Chia Yee.
Evaluation of sram puf characteristics and generation of stable bits for iot security.
Advances in Intelligent Systems and Computing, page 441–450, 2019.

[6] Sergey Babkin and Anna Epishkina. Authentication protocols based on one-time
passwords. 2019 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), 2019.

[7] Rohitash Kumar Banyal, Pragya Jain, and Vijendra Kumar Jain. Multi-factor
authentication framework for cloud computing. In 2013 Fifth International
Conference on Computational Intelligence, Modelling and Simulation, pages 105–
110. IEEE, 2013.

[8] Pourya Bayat-Makou, Ali Jahanian, and Media Reshadi. Security improvement of
fpga design against timing side channel attack using dynamic delay management.
In 2018 IEEE Canadian Conference on Electrical Computer Engineering
(CCECE), pages 1–4, 2018.

[9] Leila Benarous, Benamar Kadri, and Ahmed Bouridane. A survey on cyber security
evolution and threats: biometric authentication solutions. In Biometric security and
privacy, pages 371–411. Springer, 2017.

[10] Abhilasha Bhargav-Spantzel, Anna C Squicciarini, Shimon Modi, Matthew Young,
Elisa Bertino, and Stephen J Elliott. Privacy preserving multi-factor authentication
with biometrics. Journal of Computer Security, 15(5):529–560, 2007.

 47

[11] K. Bicakci and N. Baykal. Infinite length hash chains and their applications.
Proceedings. Eleventh IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2002.

[12] Lilian Bossuet, Xuan Thuy Ngo, Zouha Cherif, and Viktor Fischer. A puf based on
a transient effect ring oscillator and insensitive to locking phenomenon. IEEE
Transactions on Emerging Topics in Computing, 2(1):30–36, 2014.

[13] Harishma Boyapally, Paulson Mathew, Sikhar Patranabis, Urbi Chatterjee, Umang
Agarwal, Manu Maheshwari, Soumyajit Dey, and Debdeep Mukhopadhyay. Safe is
the new smart: Puf-based authentication for load modification-resistant smart
meters. IEEE Transactions on Dependable and Secure Computing, 2020.

[14] An Braeken. Puf based authentication protocol for iot. Symmetry, 10(8):352, 2018.

[15] Intel Corporation. Intel®nbsp;stratix®nbsp;10 fpgas overview - high performance

stratix® fpga, 2018.

[16] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176.

[17] Ulusal Elektronik and Kriptoloji Araştırma Enstitüsü Dergisi Cilt. Sayı: 3 “tempest,
tempest’in keşfi ve sinyal analizi, değerlendirme kriterleri ve ölçüm sistemleri, cihaz
tasarımı”, 2010.

[18] Steven Feltner. Single-factor authentication (sfa) vs. multi-factor authentication
(mfa), Dec 2016.

[19] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral biometric
for continuous authentication. IEEE transactions on information forensics and
security, 8(1):136–148, 2012.

[20] Santosh Ghosh, Monjur Alam, Dipanwita Roy Chowdhury, and Indranil Sen Gupta.
Effect of side channel attacks on rsa embedded devices. In TENCON 2007-2007
IEEE Region 10 Conference, pages 1–4. IEEE, 2007.

[21] Intrinsic ID GlobalSignVideos. Strong Device Identities Through SRAM PUF-
based Certificates | Webinar. YouTube, Sep 2017.

[22] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

 48

Felten. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM,
52(5):91–98, May 2009.

[23] Neil Haller. Rfc1760: The s/key one-time password system, 1995.

[24] Ersin Hatun, Elif Büyükkaya, and Sıddıka Berna Örs Yalçın. Electromagnetic
radiation analysis of implementation of rsa algorithm on a raspberry pi. In 2018 26th
Signal Processing and Communications Applications Conference (SIU), pages 1–4,
2018.

[25] Ryan Helinski, Dhruva Acharyya, and Jim Plusquellic. A physical unclonable
function defined using power distribution system equivalent resistance variations.
Proceedings of the 46th Annual Design Automation Conference on ZZZ - DAC ’09,
2009.

[26] Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas Devadas.
Physical unclonable functions and applications: A tutorial. Proceedings of the IEEE,
102(8):1126–1141, 2014.

[27] Gabriel Hospodar, Roel Maes, and Ingrid Verbauwhede. Machine learning attacks
on 65nm arbiter pufs: Accurate modeling poses strict bounds on usability. In 2012
IEEE International Workshop on Information Forensics and Security (WIFS), pages
37–42, 2012.

[28] Intrinsic ID. Company - intrinsic id: Home of puf technology, Feb 2022.

[29] Jae-Jung Kim and Seng-Phil Hong. A method of risk assessment for multi-factor
authentication. Journal of Information Processing Systems, 7(1):187–198, 2011.

[30] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[31] Paul Kocher, Joshua Jaffe, Benjamin Jun, et al. Introduction to differential power
analysis and related attacks, 1998.

[32] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

[33] Dmitry Kogan, Nathan Manohar, and Dan Boneh. T/key: second-factor
authentication from secure hash chains. Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

 49

[34] Radhesh Krishnan Konoth, Victor van der Veen, and Herbert Bos. How anywhere
computing just killed your phone-based two-factor authentication. In International
conference on financial cryptography and data security, pages 405–421. Springer,
2016.

[35] Takaya Kubota, Kota Yoshida, Mitsuru Shiozaki, and Takeshi Fujino. Deep
learning side-channel attack against hardware implementations of aes. In 2019 22nd
Euromicro Conference on Digital System Design (DSD), pages 261–268, 2019.

[36] Leslie Lamport. Password authentication with insecure communication.
Communications of the ACM, 24(11):770–772, 1981.

[37] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk, and
Srinivas Devadas. A technique to build a secret key in integrated circuits for
identification and authentication applications. In 2004 Symposium on VLSI Circuits.
Digest of Technical Papers (IEEE Cat. No. 04CH37525), pages 176–179. IEEE,
2004.

[38] Andrew Y. Lindell. Time versus event based one-time passwords. Jul 2008.

[39] Roel Maes and Ingrid Verbauwhede. Physically unclonable functions: A study on
the state of the art and future research directions. Information Security and
Cryptography, page 3–37, 2010.

[40] Mahabub Hasan Mahalat, Dipankar Karmakar, Anindan Mondal, and Bibhash Sen.
Puf based secure and lightweight authentication and key-sharing scheme for
wireless sensor network. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 18(1):1–23, 2021.

[41] Pramod Kumar Maurya and Satya Bagchi. A secure puf-based unilateral
authentication scheme for rfid system. Wireless Personal Communications,
103(2):1699–1712, 2018.

[42] Thomas McGrath, Ibrahim E. Bagci, Zhiming M. Wang, Utz Roedig, and Robert J.
Young. A puf taxonomy. Applied Physics Reviews, 6(1):011303, 2019.

[43] David M’Raihi, Mihir Bellare, Frank Hoornaert, David Naccache, and Ohad Ranen.
Hotp: An hmac-based one-time password algorithm. The Internet Society, Network
Working Group. RFC4226, 2005.

[44] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. Totp: Time-based
one-time password algorithm. Internet Request for Comments, page 685E, 2011.

[45] n.a n.a. Otp, totp, hotp: What’s the difference?: Onelogin, 0AD.

 50

[46] n.a n.a. One-time password (otp) – more security online, Oct 2020.

[47] AIMEE O’DRISCOLL. 25+ password statistics that may change your password
habits, Jan 2022.

[48] Levent Ordu. AES algoritmasının FPGA üzerinde gerçeklenmesi ve yan kanal
analizi saldırılarına karşı güçlendirilmesi. PhD thesis, 2006.

[49] Ahmed Oun and Mohammed Niamat. Design of a delay-based fpga puf resistant to
machine learning attacks. In 2021 IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 865–868. IEEE, 2021.

[50] Muhammet Öztemür. Aes algoritmasının bir gerçeklemesine güç analizi saldırıları.
2012.

[51] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-
way functions. Science, 297(5589):2026–2030, 2002.

[52] Woo-Suk Park, Dong-Yeop Hwang, and Ki-Hyung Kim. A totp-based two factor
authentication scheme for hyperledger fabric blockchain. In 2018 Tenth
International Conference on Ubiquitous and Future Networks (ICUFN), pages 817–
819. IEEE, 2018.

[53] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris
Ioannidis. Two-factor authentication: is the world ready? quantifying 2fa adoption.
In Proceedings of the eighth european workshop on system security, pages 1–7,
2015.

[54] Posted byPayam Pourkhomami. Single-factor authentication risk: Why it is bad
practice, Oct 2021.

[55] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and
Jürgen Schmidhuber. Modeling attacks on physical unclonable functions. In
Proceedings of the 17th ACM conference on Computer and communications
security, pages 237–249, 2010.

[56] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Puf-enhanced rfid
security and privacy. In Workshop on secure component and system identification
(SECSI), volume 110, 2010.

[57] Edward M Scheidt and Ersin Domangue. Multiple factor-based user identification
and authentication, January 18 2005. US Patent 6,845,453.

 51

[58] Bruce Schneier. Two-factor authentication: too little, too late. Communications of
the ACM, 48(4):136, 2005.

[59] Aykut Sevim, Hamdi Altıner, O Serkan Ünek, and Mehmet Şam. Kurumsal
yapılarda bilişim güvenliği, tempest problemi.

[60] Mariano Luis T Uymatiao and William Emmanuel S Yu. Time-based otp
authentication via secure tunnel (toast): A mobile totp scheme using tls seed
exchange and encrypted offline keystore. In 2014 4th IEEE International
Conference on Information Science and Technology, pages 225–229. IEEE, 2014.

[61] IngridVerbauwhedeandRoelMaes. Physicallyunclonablefunctions: manufacturing
variability as an unclonable device identifier. In Proceedings of the 21st edition of
the great lakes symposium on Great lakes symposium on VLSI, pages 455–460,
2011.

[62] John Ross Wallrabenstein. Practical and secure iot device authentication using
physical unclonable functions. 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud (FiCloud), 2016.

[63] Ding Wang, Debiao He, Ping Wang, and Chao-Hsien Chu. Anonymous two-factor
authentication in distributed systems: Certain goals are beyond attainment. IEEE
Transactions on Dependable and Secure Computing, 12(4):428–442, 2014.

[64] Sying-Jyan Wang, Yu-Sheng Chen, and Katherine Shu-Min Li. Modeling attack
resistant pufs based on adversarial attack against machine learning. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 11(2):306–318, 2021.

[65] SB Ors Yalçın. Hardware design of elliptic curve cryptosystems and side-channel
attacks. PhD thesis, PhD Thesis, Katholieke Universiteit Leuven, Belçika, 2005.

[66] Xinming Yin, Junhui He, Yi Guo, Dezhi Han, Kuan-Ching Li, and Arcangelo
Castiglione. An efficient two-factor authentication scheme based on the merkle tree.
Sensors, 20(20):5735, 2020.

[67] Seungyong Yoon, Byoungkoo Kim, Yousung Kang, and Dooho Choi. Puf-based
authentication scheme for iot devices. 2020 International Conference on
Information and Communication Technology Convergence (ICTC), 2020.

[68] Kim Zetter. Rsa agrees to replace securitytokens after admitting compromise.
Threat Level, Privacy, Crime and Security Online, 2011.

