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ABSTRACT

INVESTIGATION ON THE BIOACTIVE SECONDARY
METABOLITES OF THE ENDOPHYTIC FUNGUS PENICILLIUM
ROSEOPURPUREUM

In recent years, endophytic fungi have been considered as significant resources
of new bioactive secondary metabolites, so they are predicted to have an important
impact in drug discovery and development.

In our preliminary study, the chemical diversity and cytotoxic activity of an
endophytic fungus, namely Penicilium roseopurpureum 1E4BS1 isolated from
Astragalus angustifolius, have been demonstrated. Based on these data, it was aimed to
obtain bioactive secondary metabolites of P. roseopurpureum 1E4BS1 within the scope
of this thesis. Firstly, a fermentation study was carried out in a rotary shaker at 180 rpm,
25 °C for 20 days, and the obtained broth was extracted with EtOAc. Secondly, nine
metabolites were isolated from the EtOAc extract by chromatographic methods, and the
structures of compounds were elucidated by spectral methods (1D-, 2D NMR, and MS).
The structure elucidation studies revealed that seven metabolites had anthraquinone
backbone, whereas two compounds were found to be derivatives of curvularin from
macrolide group. A chemical structure search confirmed that five of the metabolites
were new for nature.

Cytotoxic activity of the compounds and the EtOAc extract was tested against
three cancer (DU145, LnCaP, and PC3) and normal (RPWE-1) cell lines by MTT cell
viability assay. The metabolite PR-EB-01 exhibited the highest activity with ICso
values of 26.0, 37.2, 24.7, and 30.9 uM against LNCaP, PC3, DU145, and RPWE-1

cells, respectively.



OZET

ENDOFITIK PENICILLIUM ROSEOPURPUREUM FUNGUSUNDAN
ELDE EDILEN SEKONDER METABOLITLERI VE
BiYOAKTIVITELERI

Son yillarda endofitik funguslar yeni biyoaktif sekonder metabolitlerin tiretimi
icin 6nemli kaynaklar olarak degerlendirilmistir ve 6zellikle ilag endiistrisi agisindan
ilac kesfi ve gelistirilmesine biiyiik katki saglayacagi ongoriilmektedir.

On calismamizda, Astragalus angustifolius’tan izole edilen bir endofitik fungus
olan Penicillium roseopurpureum 1E4BS1’in kimyasal ¢esitliligi ve sitotoksik aktivitesi
gosterilmistir. Bu verilerden hareketle, bu tez kapsaminda P. roseopurpureum
1E4BS1'in biyoaktif sekonder metabolitlerinin elde edilmesi amagclanmustir. Ilk olarak
20 giin boyunca 25 °C 180 rpm’de calkalamali inkiibatorde fermentasyon islemi
gerceklestirilmis ve elde edilen broth EtOAc ile ekstraksiyon islemine tabii tutulmustur.
EtOAc ekstresinden kromatografik yontemlerle dokuz metabolit izole edilmis ve
spektral yontemlerle (1D-, 2D-NMR ve MS) yapilart belirlenmistir. Yapi tayini
calismalar1 yedi metabolitin antrakinon iki metabolitin ise makrolid grubu curvularin
iskeletine sahip oldugunu gostermistir. Gergeklestirilen kimyasal yapi taramasi elde
edilen bes metabolitin doga i¢in yeni oldugunu ortaya koymustur.

Bilesiklerin ve EtOAc ekstresinin sitotoksik etkileri, ti¢ kanser (DU145, LnCaP
ve PC3) ve bir normal (RWPE-1) hiicre hattina karst MTT hiicre canliligi testi ile
arastirtlmistir. Metabolit PR-EB-01 LnCaP, PC3, DU145 ve RWPE-1 hiicrelerine karsi
strasiyla 26, 37.2, 24.7 ve 30.9 uM ICso degerleri ile en yiiksek aktiviteyi gostermistir.
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CHAPTER 1

INTRODUCTION

Secondary metabolites are natural products with diverse chemical structures, not
essential for growth, and possess diverse bioactivities. The discovery of new secondary
metabolites has become even more important for not only pharmaceutical industry but
also many other industries around the world including cosmetic, food and agriculture
(Bills and Gloer 2017; Vasundhara, Sudhakara Reddy, and Kumar 2019) .

In mutualistic relationship between host plant and fungi, it is known that
endophytic fungi produce beneficial metabolites that allow the host plant to survive via
providing them to adapt distinct environmental stress factors (Patil, Patil, and
Maheshwari 2016; Macheleidt et al. 2016) which holds a great potential for the
identification of various new secondary metabolites (Thirumalanadhun et al. 2021).
Although endophytic fungi isolated from plants are one of the important natural sources
with new and diverse structures that are considerable for drug discovery and
development studies, only a few plants have been studied in terms of endophytic fungi
of which and their bioactive secondary metabolites until today (Thirumalanadhun et al.
2021; Wei and Wu 2020) and only some of them used in the commercial production of
fungal bioactive compounds (Gupta et al. 2020; Bills and Gloer 2017). In recent years,
endophytic fungi attracted the attention of scientists as a new source for drug discovery
and development due to their rich metabolic profiles consisting of novel and bioactive
compounds (Marinelli and Marcone 2019; Bills and Gloer 2017; Vasundhara,
Sudhakara Reddy, and Kumar 2019).

There are two main routes for the investigation of secondary metabolites; the
first is to isolate the unknown secondary metabolites, and the second is to isolate the
unknown secondary metabolites with varied biological activities (Kalyanarman
Rajagopal, SS, and R. 2019; Yadav et al. 2019). Therefore, to understand the true
potential of endophytic fungi, the aspects of biochemical, biotechnological, chemical
and related fields need to be elucidated. Within the scope of this thesis, the discovery of



new bioactive secondary metabolites produced by endophytic fungi P. roseopurpureum
1E4BS1 isolated from Astragalus angustifolius/stem were be elucidated and to

obtaining excellent sources that can be used by pharmaceutical industry.

2.1. Secondary Metabolites

Secondary metabolites are heterogeneous low-molecular-weight natural
compounds and distinct from the primary metabolites like lipids, amino acids,
carbohydrates and nucleic acids. Secondary metabolites are not essential for growth,
development, and reproduction of organism unlike primary metabolites (Brakhage
2013; Mosunova, Navarro-Muiioz, and Collemare 2020; Kumar et al. 2017a).

Secondary metabolites are synthesized by many organisms such as bacteria,
fungi, and plants. The production and variation of secondary metabolites is mainly
regulated by the interactions with their micro- and macro-environment (biotic or abiotic
factors); thus, it can be considered that secondary metabolites have important roles in
the survival of the organisms by exhibiting numerous biological activities owing to
diverse chemical structures. Secondary metabolites have been an important source for
scientist from different backgrounds for centuries and currently endophytic fungi
attracted the attention of the experts in the field as a novel and virgin source
(Mosunova, Navarro-Muifioz, and Collemare 2020; Chomel et al. 2016; Kumar et al.
2017a).

The main functions of secondary metabolites in the organisms.

I.  Competitive weapons against detrimental organisms such as animals,
plants, insects, and microorganisms,
Il.  Metal transporting agents,

I1l.  Agents for symbiotic relation with other organisms,

IV.  Reproductive agents,

V. Differentiation effectors,

VI.  Agents of communication between organisms, and

VII. Interference in spore formation (not obligatory) and germination

(Demain and Fang 2000; Thirumurugan et al. 2018a).



Secondary metabolites have been used for centuries due to their versatile
functions as antibiotics (Narmani et al. 2019; Abdelgaleil et al. 2020), enzyme inhibitors
(Gaber et al. 2016), immunosuppressive agents (Wang et al. 2018), antitumor agents
(Narmani et al. 2019; Ramakrishna et al. 2021), pigments and surfactans (Barrios-
Gonzalez 2018; Vaishnav and Demain 2011), and nutraceuticals (Cisneros-Zevallos
2021). Additionally, secondary metabolites increase agricultural productivity as
pesticides (Abdelgaleil et al. 2020), insecticides, growth promoters of plants (Ullah,
Bano, and Janjua 2020), effectors of ecological competition, symbiosis and
pheromones, thus secondary metabolites positively affect industrial productions by
increasing the productivity (Thirumurugan et al. 2018b; Chomel et al. 2016;
Vasundhara, Sudhakara Reddy, and Kumar 2019; Newman and Cragg 2020).

2.2. The Secondary Metabolism Pathways

The production of secondary metabolites begins from the primary metabolism
since the necessary precursors come from the main biosynthetic pathways and regulated
with specific enzymes (He et al. 2018; Grijseels et al. 2017).

Many secondary metabolites, that are structurally complex, come from
structurally similar precursors. The most substantial precursors are acetyl-coenzyme A
(CoA) and propionyl-CoA, creating polyketides, terpenes, steroids, and different other
metabolites, and the intermediates pathways and krebs cycle help production of the
secondary metabolites (Figure 1) (Sanchez and Demain 2019; Daniel 2007).

Secondary metabolites require numerous of specific enzymatic reactions for
synthesis. The basis enzymes such as polyketide synthases, non-ribosomal peptide
synthetases, hybrid polyketide synthase-nonribosomal peptide synthetases, terpene
cyclases, and dimethylallyl tryptophan synthases catalyze simple primary metabolites
involved acetyl-CoA, amino acids, or isoprene units for the production of more complex
secondary metabolites which are polyketides (Bond, Tang, and Li 2016), nonribosomal
peptides(Kopp and Marahiel 2007), hybrid polyketide- nonribosomal peptides (Cox,
Skellam, and Williams 2018; Cox 2007), terpenoids (Ma et al. 2021; Habtemariam
2019), and alkaloids (Schldger and Driager 2016; Hohlman and Sherman 2021),



respectively. Distinct metabolic pathways can afford different products (He et al. 2018;
Keller 2019; Siddhardha and Meena 2020; Brakhage 2013).

Primary Metabolic Pathway Primary Metabolic Products Secondary Metabolites
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Figure 1. This diagram outlines how the secondary metabolite building blocks that

occur during photosynthesis, glycolysis, and the krebs cycle are formed
(Thirumurugan et al. 2018c¢).

2.3. Sources of Secondary Metabolite

With the discovery of new bioactive metabolites, especially antibiotics and
anticancer agents, scientists have begun to investigate various natural resources (Gupta
et al. 2020; Fleming 1929; Bills and Gloer 2017; Alkhulaifi et al. 2019). Numerous



bioactive secondary metabolites have been found out since 1950 (Marinelli and
Marcone 2019; Bills and Gloer 2017).

In accordance with a survey conducted worldwide, about 61% of chemical
compounds (535 out of 877) was isolated from nature between 1981 and 2002 and
converted to drugs. In addition, 78% of antibacterial and 74% of anticancer substances
were obtained from natural resources (Khan et al. 2014; Jamloki et al. 2021;
Thirumurugan et al. 2018a). There are still a lot of undescribed compounds from soil,
marine environments, plants or from symbiotic microorganisms with plants against
variety of diseases (Marinelli and Marcone 2019; Bills and Gloer 2017; Daley, Brown,
and Badal 2017).

Microorganisms and medicinal plants have important role to produce large
number of secondary metabolites with pharmaceutical and biological activity (Marinelli
and Marcone 2019; Demain and Fang 2000; Khan et al. 2014; Sanchez and Demain
2019; Jouda et al. 2016). More than 500 antibiotics are discovered each year, and 60%
of them are acquired from the soil (Alkhulaifi et al. 2019).

As a result, there is an outstanding opportunity to discover new biomolecules
from the myriad plants and microorganisms found in different kind of niches and
ecosystems (Gupta et al. 2020).

2.3.1. Microbial Secondary Metabolites

Recently, natural product research has begun to intensify due to drug-resistant
pathogenic microorganisms, the emergence of new diseases and side effects caused by
synthetic drugs. Fungi have turned out to be a valuable resource containing important
natural products with the discovery of penicillin by Alexander Fleming (Gupta et al.
2020; Fleming 1929; Bills and Gloer 2017; Alkhulaifi et al. 2019).

There are many important secondary metabolites remain undiscovered in terms
of chemical diversity, and secondary metabolites produced by an estimated 99% of
bacteria and 95% of fungi have not yet been investigated. The screening of these natural
products may lead to the discovery of new drugs and allow the treatment of many

diseases. In addition, the identification of biosynthetic gene clusters involved in the



synthesis of secondary metabolites is an crucial step for the discovery and development
of microbial secondary metabolites (Marinelli and Marcone 2019; Bills and Gloer 2017;
Abdelgaleil et al. 2020).

Microorganisms like small chemical factories synthesize distinct and many
secondary metabolites which can be used as a antibiotic, antitumor and pigments (Table
1) (Abdelgaleil et al. 2020). The discovery studies of secondary metabolite have shown
that microbial compounds have exclusive molecular structures which are not obtainable
in chemical libraries, and chemists have revealed that it is not possible to synthesize
many of these metabolites. Over the past fifty years, more than 50.000 novel biological
active metabolites have been obtained from microorganisms, out of which 17.000 are
new antibiotics (Kalyanarman Rajagopal, SS, and R. 2019; Yadav et al. 2019).

Microorganisms such as Bacillus, Pseudomonas, Myxobacteria and
Cyanobacteria produce valuable secondary metabolites. It is known that most of the
secondary metabolites are generated by the genus Streptomyces. Fungi are the most
significant resources capable of producing many different secondary metabolites, and
many metabolites with antibiotic properties have been obtained from fungi
(Kalyanarman Rajagopal, SS, and R. 2019; Yadav et al. 2019).

Table 1. List of secondary metabolites produced by different microorganisms with their
applications (Ullah, Bano, and Janjua 2020).

Activities Microbial Secondary Metabolites
Antibiotics Bacilysocin, Thuricin, Pseudomonine, Holomycine, Spiramycin,
Rifamycin, Teicoplanin, Tetracycline, Mitosane,

Chloramphenicol

Growth Hormon Indoleacetic acid, Gibberellic acid, Abscisic acid, Cytokinin,
Ethylene
Pigments Astraxanthin, Monascin, Carotenoids, Flavins, Chlorophyll,

Quinines, Prodigioson, Violacien

Chelating Compounds Zincophore (ethylene diamine disuccinate), Siderophores

(pyoverdines, phenol catecholates hydroxamate)

Antitumor Anthracycline,  Bleomycines,  Antracenones,  Epotilones,

Mitomycin, Trioxacarcins, Chinikomycins A and B




2.3.1.1. Fungal Bioactive Metabolites

Fungi are somewhere between multicellular and unicellular eukaryotic structures
that produce biologically active secondary metabolites. Although they are structurally
apart from plants and animals, they possess some similar forms with them. Fungi can
produce desired secondary metabolites by providing varied nutrients under different
fermentation conditions. They can live in a wide variety of environments, including
water, land/soil, plants and animals. Fungi also allow the non-living plants and animals
to be recycled into organic compounds using extracellular digestive enzymes, so they
can synthesize secondary metabolites with the analogous starting units, such as terpenes
and polyketides (Khan et al. 2014; Bills and Gloer 2016; 2017).

In addition, development of new culturing conditions in laboratory has made it
even more common to utilize fungi in experimental models. As fungi are one of the
main sources of secondary metabolite production, some fungal genus such as
Penicillium, Aspergillus, Trichoderma and Fusarium are the most frequently
encountered microorganisms in the production of secondary metabolites (Figure 2)
(Rokas et al. 2020; Kumar et al. 2017a).

Aspergillus ]
Lovastatin
terreus
) Trichothecene
Fusarium

T-2 Toxin
graminearum

Cont. on next page
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Figure 2. Some approved secondary metabolites from fungal species (Rokas et al. 2020).
Some important pharmaceuticals such as fusidic acid, cephalosporin and
penicillin generated by fungi are broadly utilized in the treatment of many diseases
(Alkhulaifi et al. 2019; Newman and Cragg 2020; Tallapragada and Dikshit 2017).
In studies, the fungi are used to discover not only new antibiotics, but also,
antitumor, pigments, enzyme inhibitors, insecticides, immunosuppressive agents, and
etc.(Kalyanarman Rajagopal, SS, and R. 2019; Yadav et al. 2019).



2.3.1.1.1. Endophytic Fungi as a Source of Bioactive Secondary
Metabolites

Endophytes are microorganisms, which colonizes in the internal and distinct
tissues of the host plants (Figure 3) (Mazumder et al. 2021; Ogbe, Finnie, and van
Staden 2020a). As an endophytic microorganism, it uses nutrients from the plant (Patil,
Patil, and Maheshwari 2016; Macheleidt et al. 2016a).

Each plant hosts one or more endophytic microorganisms, and these
microorganisms have symbiotic relationships with their host plants as mutualistic,
commensalistic or parasitic (Mazumder et al. 2021; Ogbe, Finnie, and van Staden
2020a) depending on the characteristics of the host and endophyte (Patil, Patil, and
Maheshwari 2016; Macheleidt et al. 2016). In mutualistic relationship, endophytic
microorganisms provide their host plants to be resistant to varied biotic (pathogen
damage) and abiotic factors (drought, salinity and temperature changes, etc.) (Patil,
Patil, and Maheshwari 2016; Macheleidt et al. 2016).
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Figure 3. Endophyhtic organisms colonizes in plant or different niches
(Kalyanarman Rajagopal, SS, and R. 2019).

Plants growing in Arctic, Antarctic, geothermal soils, deserts, oceans, and
coastal regions provide a well opportunity for the discovery and exploration of new
endophytic microorganisms. Although fungi, bacteria, actinobacteria and algae might
have symbiotic associations with the plants, fungi are the most common endophytic
microorganisms (Singh et al. 2021a; Patil, Patil, and Maheshwari 2016).

Many important bioactive metabolites have been discovered from endophytic
fungi for the treatment of certain diseases. Therefore, it is of great importance to
research and discover endophytes for the isolation of novel and bioactive compounds
(Patil, Patil, and Maheshwari 2016; Jouda et al. 2016). It has been observed that some
endophytes are able to produce the same or similar metabolites as host plants by
mimicking host chemistry.; for example, paclitaxel (Taxol), camptothesin and its
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structural analogues, jasmonic acid, ginkgolide azadirachtin, etc (Patil, Patil, and
Maheshwari 2016; Singh et al. 2021a).

The past two decades, the basis of natural product screening studies has
developed for the acquisition of new bioactive compounds from endophytes. In a study,
it was shown that the number of new products produced by endophytic isolates (51%) is
greater than the number of new products generated by soil isolates (38%) (Gloer, n.d.;
Dreyfuss and Chapela 1994; “EF as a Source,” n.d.). In addition, the discovery of new
and bioactive compounds produced by various endophytic microorganisms has become
even more important due to drug-resistant pathogenic  microorganisms
(Thirumalanadhun et al. 2021; Ogbe, Finnie, and van Staden 2020a).

Also, some compounds such as alkaloids, polyketides, steroids, terpenoids,
quinine, and flavonoids derived from distinct endophytic fungi have been exhibited to
have different biological activity (Figure 4). Phenolic, flavonoid and terpenoid
compounds obtained from endophytes have also been proven to show antioxidant
activity. In addition, endophytic fungi are the most preferred among the endophytic
microorganisms, as they have the potential to develop antibiotics and anticancer drugs.
Therefore, the discovery of fungal endophytes could aid in the discovery of new
secondary metabolites with biological activities and the development of a new drug
(Table 2) (Thirumalanadhun et al. 2021; Ogbe, Finnie, and van Staden 2020a;
Hoffmeister and Keller 2007; Tallapragada and Dikshit 2017).

Although endophytic fungi are one of the natural sources with new and diverse
structures that play a role in the development of new drugs, very few plants have been
studied in terms of endophytic fungi and bioactive secondary metabolite diversity to
date (Thirumalanadhun et al. 2021; Wei and Wu 2020).
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Figure 4. The chemical group of secondary metabolite produced from endophytic fungi
(Singh et al. 2021b)

Despite the large amount of research on the production of bioactive compounds
from fungal endophytes, the potential of this field is still in its initial stages (Gupta et al.
2020; Bills and Gloer 2017). This work will contribute to the discovery of new
bioactive secondary metabolites produced by endophytic fungi that can be used by

pharmaceutical industry.

Table 2. List of the known bioactive compounds produced from endophytic fungi (Kalyanarman
Rajagopal, SS, and R. 2019).

S.No. | Endophytic Fungus | Host Plant | Compound
Anticancer Compounds
1. Taxomyces andreanae Taxus brevifolia Taxol
2. Pestalotiopsis microsporum | Torreya taxifolia Torreyanic acid
3. Entrophospora infrequens Nothapodytes foetida Camptothecin
4, Fusarium solani Camptotheca acuminata Topotecan
5. Aspergillus fumigates Juniperus communis Podophyllotoxin
Philalocephala fortinii Podophyllum peltatum
Fusarium oxysporum Juniperus recurva
6. Leaf Endophyte Mimusops elengi Ergoflavin

Cont. on next page
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Cont. of Table 2

7. Mangrove Endophyte Mangroves Secalonic acid D

8. Rhinocladiella sp. Tripteygium wilfordii Cytochalasin
Cytochalasin H
Cytochalasin J
Epoxycytochalasin

9. Chaetomium globosum Imperata cylindrica Chaetoglobosin

10. Mycelia Sterilia Catharanthus roseus Vincristine

11. Fusarium oxysporum Annona squamosa Polyketide

12. Alternaria sp. Taxus cuspidata Paclitaxel

Antioxidant Compounds

13. Pestalotiopsis microspora Terminalia morobensis Pestacin
Isopectacin

14. Cephalosporium sp. Sinarundinaria nitida Isobenzofurane

15. Fusarium sp. Cajanus cajan Cajaninstilbene acid

16. Xylaria sp. Ginkgo biloba Phenolics
Flavonids

17. Chaetomium sp. Nerium oleander Flavonids
Phenolic acids

Immunosuppressive Compounds

18. Cytonaema sp. Medicinal Plant Cytonic acid A&B

19. Unidentified endophyte Quercus coccifera Torreyanic acid

20. Pullularia sp. Unidentified tree Pullularins A-D

21. Pestalotiopsis theae Unidentified tree Pestalotheol-C

22. Aspergillus fumigates Juniperus communis Podophyllotoxin

Phialocephala fortinii Podophyllum peltatum
Fusarium oxysporum Juniperus recurva
23. Leaf Endophyte Mimusops Elengi Ergoflavin

1.1.1.1.2. Secondary Metabolites of The Genus Penicillium

Filamentous fungal genus Penicillium, which has more than 483 species, is
widely found in nature due to its high adaptation to environmental changes and
conditions. Penicillium is an anamorphic ascomycete. Penicillium species are the most
studied species due to their prevalence and capacity to produce a wide range of
secondary metabolites with known bioactivities. The active metabolites include
antifungal and antibacterial agents, immunosuppressants, cholesterol-lowering agents,
anticancer and potent mycotoxins. Roguefortine produced by Penicllium is a mycotoxin
as a neurotoxic compound and inhibits digestive system enzymes and the activities of
cytochrome P-450. Alkaloids,
polyketides are some examples of biologically active compounds (Grijseels et al. 2017,
Tallapragada and Dikshit 2017).

diketopiperazines, quinolines, quinazolines, and
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Penicillium produce the best-known secondary metabolite, penicillin (Fleming
1929), discovered by Fleming, and which is now produced on a large scale under better
production conditions using P. rubens. Griseofulvin with antifungal properties (Oxford,
Raistrick, and Simonart, n.d.), mycophenolic acid with immunosuppressant properties
(Regueira et al. 2011), and cholesterol-lowering drug compactin/mevastatin (Brown et
al., n.d.) are only a few examples of important pharmaceutical compounds produced by
Penicillium species. These examples show that Penicillium sp. have great importance as
sources of bioactive compounds in medical applications. In addition, Penicillium
species can also produce mycotoxins such as citrinin, ochratoxin, and patulin (Frisvad et
al. 2004), which can pose a risk to humans and animals (Grijseels et al. 2017;
Tallapragada and Dikshit 2017).

Penicillium species have also been shown to produce many significant
compounds such as 3-oxoquinuclidine from Penicillium jenseii, limonene from
Penicillium purpurogenum, P. olsonii, P. roqueforti, P. vulpinum, orcinol and 1,3,8-p-
menthatriene from Penicillium canescens, and formamidine from Penicillium pusillum.
Penicillium rubens, and Penicillium roqueforti are utilized as cheese starters, and
Penicillium nalgiovense is used to ferment sausages. Cellulose and hemicellulose are
produced by Penicillium waksmanii. Moreover, all Penicillium species produce fatty
acids and hydrocarbons (Jouda et al. 2016; Kumar et al. 2017a).

Penicillium genus is also involved in bioremediation because their members can
break down phenols, halogenated phenolic compounds, oil hydrocarbons, polycyclic
aromatic compounds and polychlorinated biphenyls. It can be used specifically to
rearrange ecosystems contaminated with oil and its derivatives. Penicillium has been
successfully used in various fields such as food, biotechnology, and medicines.
(Kozlovsky et al. 2020; Assaf et al. 2020; Kumar et al. 2017a).
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CHAPTER 2

MATERIALS AND METHODS

2.1. Materials

Biological and chemical materials together with the instruments used in this

study are given below.

2.1.1. Endophytic Fungi

The endophytic fungus Penicillium roseopurpureum 1E4BS1 (Ac KJ775658.1)
was previously isolated from the stems of Astragalus angustifolius as part of our
ongoing studies on endophytes (funded by TUBITAK, Project No: 1147958, PI. Prof.
Dr. Erdal BEDIR), and it was utilized in this thesis.

2.1.2. Used Culture Media

In this study, two different media were utilized. Both media were sterilized by

autoclave at 121 °C (15 psi pressure) for 15 minutes (Tez et al. 2016a).

Table 3. List of used culture media.

Medium Preparation Procedure Usage

Potato Dextrose Agar (PDA) | 39 g of the medium (Merck | The activation of fungi
Millipore-110130) was mixed | from stock cultures.

in 1000 ml distilled water.

Potato Dextrose Broth (PDB) | 24 g of the medium (Merck | The fermentation studies
Millipore-110130) was mixed
in 1000 ml distilled water.
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2.1.3. Used Chemicals

The chemicals used in the extraction and isolation stages are listed below.

2.1.3.1. Chemicals used in the extraction and isolation studies

Methanol (MeOH): Sigma-Aldrich

Ethanol (EtOH): ISOLAB

n-Hexane: Sigma-Aldrich

Deuterated Dimethyl Sulfoxido (DMSO-d6):

tert-butanol: Carlo Erba

Chloroform (CHClz): VWR Chemicals

Ethyl Acetate (EtOAc): VWR Chemicals

Dimethyl Sulfoxide (DMSO): Carlo Erba

Distilled water (dH20): Sartorius

20% Sulfuric acid (H2S04): Sigma-Aldrich

Sephadex LH-20: GE Healthcare Life Sciences

RP-18 (Chromabond C18): Macherey-Nagel

RP-18 F254 Thin Layer Chromatography (RP-TLC): Merck
Kieselgel 60, F254 Thin Layer Chromatography (TLC): Merck
Kieselgel 60, 70-230 mesh silica: Merck

Preparative RP TLC: Merck

Preparative Silica TLC: Merck

2.1.3.2. Used Equipments

Nuclear Magnetic Resonance Spectrometry (NMR): Varian AS 400; Varian 600;
Bruker AVANCE Neo 500

Mass Spectrometry (MS): Thermo ORBITRAP Q-EXACTIVE
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e SpeedVac Concentrator: Thermo Scientific Savant SPD 121P
e Freeze Dryer: Labconco FreeZone Freeze Dry System

e UV Imaging system: Vilber Lourmat

e Autoclave: Nuve OT 90L

e Rotavapor: Heidolph, Germany; ISOLAB

e Vacuum Pump: Labnet

e Peristaltic Pump: Thermo Scientific

e pH Meter: Mettler Toledo

e Vortex Mixer: Thermo-scientific

e Hotplate with magnetic stirrer Hotplate: ISOLAB

e Ultrasonic bath: Bandelin

2.1.4. Materials for Cytotoxicity Studies

The cell lines used for cytotoxicity studies:
DU145, PC3, LNCaP and RPWE-1 cells are human prostate cancer/normal cell

lines.

2.1.4.1. Used Chemicals in Cytotoxicity Studies

e Phosphate buffered saline (PBS): Sigma-Aldrich
e Fetal Bovine Serum (FBS): Hyclone

e Dimethyl Sulfoxide (DMSO)

e Dulbecco’s Modified Eagle Medium (DMEM)

e Trypan Blue Solution: Sigma-Aldrich

e EDTA-Trypsin: Sigma-Aldrich

e L-glutamine: Sigma-Aldrich

e MTT solution: Sigma-Aldrich
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2.1.4.2. Equipment Used on Cytotoxicity Studies

e COz-Incubator: Thermo-scientific

e Light Microscope: Euromex Oxion Inverso, OX.2003-PL
e Laminar Flow Cabinet: ESCO

e Shaking Incubator: Hangzhou Miu

o Plate reader: Thermo-scientific Multiskan Sky

e Water Baths: Wisd Laboratory Instruments

e Neubauer Counting Chamber

2.2. Methods

2.2.1. Preparative Scale

Stock cultures of endophytic fungi stored at +4 °C were grown on potato
dextrose agar (PDA) containing petri dishes at 25 °C for 10 days. The spore solution
was prepared with 0.1% (w/v) Tween 80 and used to inoculate (2% v/v) five of 5 L
Erlenmayer flasks containing 2 L potato dextrose broth (PDB). Fermentation process
was carried out in a rotary shaker at 180 rpm, 25 °C for 20 days.

To profile metabolite diversity of the fungus, a fermentation experiment in shake
flask cultures was followed by a TLC analysis of the ethyl acetate extracts obtained

from the samples of day 7, 14 and 20.

2.2.2. Extraction Studies

After the preparative studies, the biomass was removed from the broth by
filtration using Buchner funnel system. After filtration, liquid-liquid extraction was
18



performed for four times using equal volume of EtOAc. The EtOAc phases were
evaporated in the rotary evaporator at 35-40 °C. The TLC analysis of the extracts were
performed by using Silica gel 60 F254 and/or reversed-phase RP-C18 F254 coated
aluminum plates. TLC plates were heated at 105-110 °C for 5-10 minutes by spraying
20% aq.H2SO4 until the spots became visible, after UV-active compounds and non-UV-
active compounds were detected at UV2s4 and UV 366 nm.

2.2.3. Isolation and Purification Studies

For profiling the EtOAc extracts, the normal phase silica gel TLC analysis were
used with the following solvent systems n-Hex:EtOAc:MeOH (10:10:2; 10:10:5),
CHCI3:MeOH (95:5; 90:10); and for the RP-C18 TLC analysis MeOH:H>0O (90:10;
85:15). In accordance with the TLC profiles, chromatographic methods were selected
for isolation studies. In prefractionation and isolation steps, Open Column
Chromatography and Vacuum Liquid Chromatography (VLC) were used. During this
study, silica gel 60, RP C-18 and Sephadex LH-20 were used as the
adsorbent/stationary phase. The chemical structures of purified metabolites were
elucidated by spectral methods (1D-, 2D-NMR and MS).

i - Separation of Media
! and Biomass

Microbial
Production Extraction of
culture broth

X Evaporation of
Purification of TLC analysis E{0A
the extracts

Figure 5. lllustration of general methodology
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Isolation studies on the EtOAc extract (599.8 mg) started with a 135 g silica gel
using open column chromatography (Figure 6). First, the extract was dissolved in
CHCI3:MeOH mixture and impregnated with silica gel and dried. Subsequently, the
dried silica containing the extract applied to the silica column equilibrated with CHCls.
The column was eluted with CHCI3:MeOH (100:0 — 0:100). Collected fractions

showing similar profiles were pooled together, and 22 main fractions were obtained
(Figure 7-8).

Figure 6. Images of the first column at different elution steps and main fractions collected.

T - - -
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o

Figure 7. TLC profiles of the fractions under UVsss and UVzss nm (EtOAC extract of P.

roseopurpureum 1E4BS1) (Normal phase silica gel plate, Mobile Phase, 95:5;
CHCI3:MeQOH)
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Figure 8. TLC profiles of the fractions under UVsss and UVass nm (EtOAC extract of P.
roseopurpureum 1E4BS1) (Reverse phase silica gel plate, Mobile Phase,
85:15; MeOH:H;0)

Among these 22 main fractions, 7 of them were selected for further isolation and
purification studies according to TLC profiles. Detailed isolation schemes were given in
below.

S4-14 (83 mg) was chromatographed over RP-C18 column (30 g) and eluted
with MeOH:H2O (50:50 — 100:0) solvent system, and sixteen subfractions were
obtained. S4-14 RP7-12 (32.8 mg) subfraction was subjected to a silica gel column (10
g) and eluted with CHCI3:MeOH (99:1—0:100) solvent system. S4-14 RP7-12 column
gave PR-EB-01 (8.3 mg) and S4-14 RP7-12_S71-86 subfraction was further subjected
to a RP-C18 column (20 g) and eluted with MeOH:H20 (55:45) solvent system to give
PR-EB-03 (4.7 mg) (Figure 9).

S24-44 (104.4 mg) was chromatographed over a silica gel column (80 g) using
n-Hex:EtOAc:MeOH (10:10:0.5 — 100% MeOH) solvent system, and twenty-three
subfractions were obtained. S24-44 S145-181 (31 mg) subfraction was further
subjected to a Sephadex LH-20 column (15 g) and eluted with MeOH (100%) as mobile
phase to give PR-EB-04 (10 mg) and PR-EB-05 (2.4 mg). S24-44 S145-181 Sep15-19
and S24-44 S145-181 Sep22-34 subfractions were combined and subjected to a
Sephadex LH-20 column (15 g) using MeOH (100%) as mobile phase, which afforded
PR-EB-04 (11.2 mg) and PR-EB-05 (3.9 mg) (Figure 9).

S65-90 (87.9 mg), one of the main fractions was chromatographed over
Sephadex LH-20 column (35 g) and eluted with MeOH (100%) as mobile phase, and
nine subfractions were obtained. S65-90_Sep12-15 (6.5 mg) subfraction was further
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subjected to a silica gel column (10 g) using n-Hex:EtOAc:MeOH (10:10:0.5—100%
MeOH) as mobile phase to give PR-EB-06 (4.2 mg) (Figure 10).

S107-131 (58.8 mg) was chromatographed over Sephadex LH-20 column (35 g)
and eluted with MeOH (100%) as mobile phase, and eight subfractions were obtained.
S107-131_Sep41-52(7 mg) subfraction was subjected to Sephadex LH-20 column (15 g)
using MeOH (100%) as mobile phase, and four subfractions were obtained. S107-
131 Sep53 (2.7) and S107-131 Sep41-52 Sep28-43 (1.7 mg) subfractions were
combined to give PR-EB-09 (4.4 mg) (Figure 10).

S170-171 (93.5 mg) was chromatographed over Sephadex LH-20 column (15 gr)
and eluted with MeOH (100%) as mobile phase, and ten subfractions were obtained.
S170-171_Sep36-48 (12.6 mg) subfraction was subjected to a silica gel column (10 gr)
using CHCI3:MeOH (90:10—0:100) solvent system, and six subfractions were
obtained. S170-171_Sep36-48_S27 (10 mg) subfraction was subjected to a silica gel
column (10 g) and eluted with n-Hex:EtOAc:MeOH (10:10:4—100% MeOH) solvent
system to give PR-EB-10 (3.8 mg) and PR-EB-11 (2.5 mg) (Figure 10).

S15-23 (43.8 mg) was chromatographed over Sephadex LH-20 column (30 g)
and eluted with MeOH (100%) as mobile phase, and ten subfractions were obtained.
S15-23 Sep7-21 (14.5 mg) subfraction was subjected Prep TLC (RP-C18) with
MeOH:H.O (85:15) solvent system. S15-23 Sep7-21 Prepl was further subjected
Sephadex LH-20 column (10 g) and eluted with MeOH (100%) as mobile phase to give
PR-EB-17 (1.7 mg) (Figure 11).
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Penicillium roseopurpureum
10 L, 20 day, 25°C, 180 rpm

Y
EtOAc Extract
599.8 mg
\
Silica gel CC 135 g
CHCl3:MeOH
(95:5,90:10, 85:15, 80:20)
CHCl5:MeOH:H,0
(50:50:10)

Fr. 4-7 Fr. 8-12 Fr. 13-14 Fr.24-32 | Fr. 33-44
55.9 mg 17.5 mg 9.6 mg 44.8mg 59.6 mg

VLC (RP C18)
30g
MeOH:H,0
(50:50, 55:45,
60:40, 65:35,
70:30, 80:20,
90:10, 100:0)

Silica gel CC
80 gr
n-Hex:EtOAc:MeOH
(10:10:0,5, 10:10:1,

10:10:2, 10:10:2,5,
10:10:3, 10:10:5,
] 0:0:10)

| | [ l

Fr. 145-168| |Fr. 169-181

20.8 mg 10.2 mg
Silica gel CC VLC (RP C18)
10 gr 20 gr
CHCI;:MeOH MeOH:H,0
(99:1, 98:2, (55:45) |

Sephadex-LH 20 Sephadex-LH 20
15 gr 15 gr

100% MeOH 100% MeOH
PR-EB-03
4.7 mg _ -

Fr. 10-19
| 1.9mg \

PR-EB-04
11.2 mg

97:3, 90:10, +
85:15, 0:100)

PR-EB-01
8.3 mg

Fr. 41-53
8.1 mg

Fr. 35-50
4 mg
PR-EB-05 Sephadex-LH 20
3.9 mg 15 gr

100% MeOH

| I I |
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Figure 9. The isolation scheme of PR-EB-01, PR-EB-03, PR-EB-04 and PR-EB-05.
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EtOAc Extract
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Figure 10. The isolation scheme of PR-EB-06, PR-EB-09, PR-EB-10 and PR-EB-11.
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Penicillium Roseopurpureum
9L, 20 day, 25°C, 180 rpm
EtOAc Extract
599,8 mg

Y

Silica gel CC
135 ¢
CHCl3;:MeOH
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CHCI3:MeOH:H,0
(50:50:10)

Fr. 15-17 Fr. 18 Fr. 19-23
14.6 mg 7 mg 22.2 mg

Sephadex-LH 20
30 gr
% 100 MeOH

Fr. 7-10 Fr. 16-21 Fr. 11-15
2.5mg 6.9 mg 5.1 mg

RP Prep TLC
MCOH:Hzo,
(80:20)

Sephadex-LH 20
10 gr Fr.2
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Figure 11. The isolation scheme of PR-EB-17.
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2.2.4. Bioactivity Studies

The cytotoxicity of molecules was investigated by the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) test, which is one of the most widely used
methods for cell viability. In this section, the bioactivity method was explained.

224.1. Cell Culture studies

LNCaP cells were maintained with RPMI with 10% FBS while PC3 and DU145
cell lines cells were grown in petri dishes with DMEM containing 10% FBS. Cells were
grown in petri dishes at 37 °C in humidified atmosphere with 5% CO2. When cells
reached 70% confluence, the growth medium was removed, and cells were treated with
0.05% trypsin. Then, cells were detached from surface with 0.25% trypsin at 37 °C until
removal. Cells were collected with fresh medium and appropriate amount of cell

suspension was transferred to a new culture dish containing fresh medium.

2.2.4.2. Cell viability (MTT assay)

After DU145 (7 x 10° cells/well), PC3 (6 x 10° cells/well) and LNCaP cells (8 x
103 cells/well) were seeded in 96 well plates, they were incubated to adhere at 37 °C in
humidified atmosphere with 5% CO: for 24 h. Selected concentrations of compounds
dissolved in DMSO were subjected to wells in triplicate. After 48 h of incubation, the
culture medium was removed from wells and fresh media containing 10% MTT was
added. Living cells transform MTT into formazan crystals with mitochondrial activity,
and thus formazan crystals is used to determine percentage of viable cells by using
colorimetric method. After 4 h of incubation, the medium containing 10% MTT was

taken out of wells, and the formed formazan crystals were dissolved by adding DMSO.
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Finally, absorbance was measured at wavelength of 590/690 nm via Varioscan
flash spectrophotometer by Thermo Scientific. The data were analyzed by using

GraphPad Prism to determine 1Cso value of molecules.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1. Structure Elucidation of Isolated Compounds

In this thesis, P. roseopurpureum 1E4BS1 was used to obtain structurally diverse
secondary metabolites with cytotoxic properties. After fermentation and isolation
studies, ten compounds were isolated, and their structures were elucidated by using
spectroscopic methods (1D NMR, 2D NMR and MS spectra). Below, structural

determination of the isolates were discussed.

3.1.1. Structure Elucidation of PR-EB-01

12

16
Chemical Formula; C17H2,06
Exact Mass: 322,14164

Figure 12. Chemical structure of PR-EB-01.
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The HR-ESI-MS spectrum of PR-EB-01 exhibited a major ion peak at m/z
323.14845 [M + H]", (calcd. 323.14946) supported a molecular formula C17H22016 with
seven indices of hydrogen deficiency.

Analysis of its *H and *C NMR spectra revealed that PR-EB-01 was a mixture
of two stereoisomers (PR-EB-01A and PR-EB-01B) with a macrolide structure, a
common secondary metabolite group in Penicillium species. Further inspection of 1D-
and 2D NMR spectra and literature search suggested that PR-EB-01 had a curvularin-
type polyketide backbone (Zhan and Gunatilaka 2005; Deng et al. 2015). The difference
was readily deduced to be the presence of two O-methyl signals in the 'H and *C NMR
spectra (6c 55.6 x 2; on 3.18 and 3.23, PR-EB-01B and PR-EB-01A, respectively). The
position of the OMe group was established to be C-11 by examining the COSY, HSQC,
and HMBC spectra. By comparing the spectral data of PR-EB-01 with those of 11-
hydroxycurvularin  and 11-methoxycurvularin stereoisomers, the full spectral
assignment of PR-EB-01B and PR-EB-01A was accomplished., whereas the absolute
stereochemistry at C-11 and C-15 was deduced (Greve et al. 2008; Ye et al. 2015;
Shang et al. 2016; Zhan et al. 2004; Ha et al. 2017; Liang et al. 2007). Thus, the
structures of diastereomeres were established as (4R,8R)-11,13-dihydroxy-8-methoxy-
4-methyl-4,5,6,7,8,9-hexahydro-2H-benzo[d][1]oxacyclododecine-2,10(1H)-dione =
PR-EB-01A and (4S,8R)-11,13-dihydroxy-8-methoxy-4-methyl-4,5,6,7,8,9-hexahydro-
2H benzo [d] [1] oxacyclo- dodecine -2,10(1H)-dione = PR-EB-01B, which were
previously described compounds from Penicillium species (Zhan et al. 2004; Ha et al.
2017; Liang et al. 2007).

Table 4. H and **C NMR spectroscopic data of PR-EB-01A, a) (in DMSO-d6, ‘H:600 MHz,

13C:150 MHz
Position éc (ppm) dx (ppm), (J in Hz)

1 170.3 s -

2a 395t 3.83

2b 3.54

3 136.6d -

4 111.0 d 6.16 d (2.4)
5 160.0s -

6 101.7d 6.30d (2.3)
7 158.9 s -

8 118.2 s -

9 202.7 s -

10a 4851 3.24m

Cont. on next page
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Cont. of Table 4

10b 2.85m
11 76.5d 3.50m
12b 1.33m
13a 176t 1.28m
13b -
14a 30.7t 1.42
14b 1.71
15 72.7d 473 m
16 21.1.q 1.04d
5-OH - 9.945s
7-OH - 10.20s
11-OMe 55.6 q 3.23

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.

Table 5. 'H and *C NMR spectroscopic data of PR-EB-01B, a) (in DMSO-d6, *H:600 MHz,
13C:150 MHz)

Position dc (ppm) on (ppm), (J in H2)
1 169.7 s -
2a 395t 3.83d
2b 3.54m
3 136.6 d -
4 111.4d 6.16 d (2.4)
5 160.0's -
6 101.9d 6.30d (2.4)
7 158.9s -
8 118.2s -
9 202.7 s -
10a 485t 3.24m
10b 2.85m
11 76.5d 3.50m
12a 30.7t 151 m
12b 1.33m
13a 1761t 1.28m
13b -
14a 30.7t 1.35
14b 1.52
15 69.8d 4.86 m
16 18.7 q 1.02d
5-OH - 9.94s
7-OH - 10.20s
11-OMe 55.6 q 3.18

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
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3.1.2. Structure Elucidation of PR-EB-03

OCHj o) OH

Chemical Formula; C3H22010
Exact Mass: 566,1213

Figure 13. Chemical structure of PR-EB-03.

The HR-ESI-MS spectrum of PR-EB-03 exhibited a prominent ion peak at m/z
567.12799 [M+H]" (calcd. 567.12912) supported a molecular formula C32H22010 with
twenty-two indices of hydrogen deficiency.

Analysis of its *H and $3C NMR spectra revealed the presence of a methyl (Sn-11,
2.32 s, dc-11 21.50), a methoxy group (H-1-OMe: 6 3.91 s; C-1-OMe & 56.3 s), three
aromatic carbon methines (6c-2 118.5, 6c4 119.6, dcg 107.1), and ten non-protonated
carbons (six aromatic dc-1 159.6, dc-3 144.9, dc-2a 135.9 s, dc-5a 131.9 s, dc6 127.0, dc-7
159.6, 6c9 165.0, 6c-0a 106.8 s, , dc-10a 118.4 s and two keto carbons at dc5 184.2 s, dc-10
207.3 s). Detailed inspection of the 1D-, 2D-NMR, and HR-ESI-MS spectra implied
that PR-EB-03 was a homodimeric anthraquinone, suggested to be linked through C-6
and C-6 carbons. Additionally, the monomeric unit was established as 1-O-
methylemodin by comparing the spectral data with those of previous reports (Ayer and
Trifonov 1994). In the 'H NMR spectrum of PR-EB-03, the aromatic proton was
lacking for C-6 when compared to that of 1-O-methylemodin (Ayer and Trifonov 1994),

which substantiated that the monomers were coupled to each other at C-6 and C-6’. The
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atropisomerism at C-6/C-6" (Sa or Ra) for this bis-anthraquinone structure could not be
determined due to insufficient spectral data. Thus, based on the data from H and *C
NMR and 2D spectra (COSY, HSQC and HMBC), the planar structure of PR-EB-03
was determined to be 2,2'4,4-tetrahydroxy-5,5'-dimethoxy-7,7'-dimethyl-[1,1'-
bianthracene]-9,9',10,10'-tetraone (IUPAC name) as the new member of anthraquinone

derivatives.

Table 6. 'H and C NMR spectroscopic data of PR-EB-03, a) (in DMSO-d6, 'H:600 MHz,
13C:150 MHz)

Position dc (ppm) o1 (ppm), (J in Hz)
1(17) 159.6 s -
2(2%) 118.5d 7.27s
3(3”) 1449s -
4(4) 119.6 d -

4a(4’a) 13595 7.15s
5(5%) 184.2s -

5a(5’a) 131.9s -
6(6”) 127.0s -
7(7) 159.6 s -
8(8”) 107.1d 6.15s
9(9”) 165.0 s -

9a(9’a) 106.8 s -

10(10%) 207.3s -

10a(10’a) 118.4s -

11 (117) 21.5q 2.32s

1-OMe(1°-OMe) 56.3q 391s
7-OH(7°-OH) - -
9-OH(9’-OH) - 14.16's

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
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3.1.3. Structure Elucidation of PR-EB-04

OCH; O OH

Chemical Formula: C;¢H;,04
Exact Mass: 300,06339

Figure 14. Chemical structure of PR-EB-04.

The HR-ESI-MS spectrum of PR-EB-04 exhibited a prominent ion peak at m/z
323.05176 [M+Na]* (calcd. 323.05316) supported a molecular formula C16H1206 with
eleven indices of hydrogen deficiency.

The 'H NMR and *C NMR data of PR-EB-04 (Tables 7) showed a close
structural relationship with PR-EB-03 (Table 6). A primary alcohol group instead of the
methyl group in PR-EB-03 was evident, whereas a monomeric framework was
proposed for PR-EB-04 based on the mass data and an extra aromatic signal assigned to
H-6 in the *H NMR spectrum.

Analysis of its *H and *C NMR spectra revealed the presence of a methoxy
group (H-1-OMe: 8 3.93, s; C-1-OMe: 6 56.4, s), three aromatic carbon methines (5c-2
116.2 d, 6c-2116.8 d, dc-6 107.7 d, 6c-8 108.4 d), and eleven non-protonated carbons (Six
aromatic dc-1 160.6, dc3 151.3, 6c-4a 134.7 s, dcsa 133.9 s, dc7 164.7, dc-9 165.4, dc-9a
109.7, dc-10a 118.4 and two keto carbons at dcs 182.5 s, dc-10 186.0 s). Detailed
inspection of the 1D-, 2D NMR and HR-ESI-MS spectra implied that the structure of
PR-EB-04 was 1,3-dihydroxy-6-(hydroxymethyl)-8-methoxy-anthracene-9,10-dione, a
known compound namely carviolin. The established structure was also confirmed by

comparing the spectral data with previous reports (Aly et al. 2011; Elbanna et al. 2021).
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Table 7. H and *C NMR spectroscopic data of PR-EB-04, a) (in DMSO-d6, *H:400 MHz,
13C:100 MHz)

Position dc (ppm) o1 (ppm), (J in Hz)
1 160.6 s -
2 116.2d 7.47d (1.5)
3 151.3s -
4 116.8d 7.72d (1.5)
4a 134.7 s -
5 182.5s -
5a 1339s -
6 107.7d 7.02d (2.4)
164.7 s -
8 108.4d 6.52 d (2.4)
9 165.4 s -
%9a 109.7 s -
10 186.0s -
10a 118.4s -
11 62.3t 4.63 s
1-OMe 56.4 q 3.93s
7-OH - -
9-OH - 13.28s
11-OH - -

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
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Spectrum 16. HSQC spectrum of PR-EB-04.
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3.1.4. Structure Elucidation of PR-EB-05

OCH; O OH

Chemical Formula: C3,H,,0;
Exact Mass: 582,11621

Figure 15. Chemical structure of PR-EB-05.

The HR-ESI-MS spectrum of PR-EB-05 exhibited a prominent ion peak at m/z
583.12300 [M+H], (calcd. 583.12404) supported a molecular formula C32H22011 with
twenty-two indices of hydrogen deficiency.

The spectroscopic features suggested that PR-EB-05 was a dimeric
anthraquinone like PR-EB-03. PR-EB-05 had a 16 amu (atomic mass unit) increase
compared to PR-EB-03, implying oxygenation. In accordance, a primary alcohol group
was readily assigned based on the resonances of § 4.53 (s, 2H) and & 62.3, in the *H-
and *C NMR spectrum of PR-EB-05, respectively. Detailed inspection of the 1D-, 2D-
NMR, and HR-ESI-MS spectra inferred that PR-EB-05 was a heterodimer
anthraquinone. One of the two monomeric units was established as 1-O-methylemodin
by comparing the spectral data with those of previous reports and PR-EB-03 (Ayer and
Trifonov 1994), and the other monomeric unit was established as carviolin by
comparing the spectral data with those of previous reports and PR-EB-04 (Aly et al.
2011; Elbanna et al. 2021). As in the case of PR-EB-03, in the 'H NMR spectrum of
PR-EB-05, the aromatic H-6 proton was missing in both 1-O-methylemodin and
carviolin substructures (Ayer and Trifonov 1994; Elbanna et al. 2021; Aly et al. 2011),

signifying that monomeric moieties were linked through C6/C6’. X-Ray or circular
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dichroism experiments are warranted to determine the absolute stereochemistry of PR-

EB-05. Consequently, the planar structure of PR-EB-05 was elucidated as 2,2',4,4'-

tetrahydroxy-7-(hydroxymethyl)-5,5-dimethoxy-7'-methyl-[1,1'-bianthracene]-

9,9',10,10-tetraone. A literature survey revealed that PR-EB-05 was a new

heterodimeric anthraquinone.

Table 8. *H and ®C NMR spectroscopic data of PR-EB-05, a) (in DMSO-d6, *H: 600 MHz,

13C:150 MHz)

Position dc (ppm) on (ppm), (J in H2)
1 159.9s -
2 115.3d 7.40s
3 150.2 s -
4 116.6d 7.40s
4a 135.6s -
5 c -
5a 131.2s -
6 c -
7 c -
8 107.2d 6.39 s
9 164.4 s -
9a c -
10 c -
10a 119.7 s -
11 62.3t 453s
1-OMe 56.4 q 3.93s
7-OH - -
9-OH - 13.28s
11-OH - -
1-OMe 56.4 q 3.93"s
7-OH - 13.40 s
9-OH - 14.05s
11-OH - 5.45 bs
I 159.9 s -
2’ 118.8d 7.31s
3’ 145.7 s -
4 119.8d 7.26s
4a 135.6 s -
5 c -
5’a 131.2s -

Cont. on next page



Cont. of Table 8

6’ c -

7 164.4 s -

8’ 107.2d 6.39 bs

9’ 164.4 s -

9’a c -

10° 180.1s -

10’a 118.9s -

12 21.6 2.34s
1’-OMe 56.4 q 3.92°s
7’-OH - 13.40 bs
9’-OH - 14.05 bs

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
b) Interchangeable.
¢) Not observed.
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Spectrum 19. HR-ESI-MS Spectrum of PR-EB-05 (positive mode).
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3.1.5. Structure Elucidation of PR-EB-06

OH 0 OH OH 0

aulllo
I

(S)

HO HO

(R)

Chemical Formula: C;gH,(Og
Exact Mass: 308,12599

Figure 16. Chemical structure of PR-EB-06.
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The HR-ESI-MS spectrum of PR-EB-06 exhibited a prominent ion peak at m/z
331.11477 [M+H]*, (calcd. 331.11576) supported a molecular formula C1sH2006 with
seven indices of hydrogen deficiency.

The 'H and ¥C NMR spectra of PR-EB-06 showed a close structural
relationship with PR-EB-01. Firstly, PR-EB-06 was also a mixture of two
diastereomers (PR-EB-06A and PR-EB-06B). Second, a hydroxy group substitution
instead of the methoxy group at position 11 was proposed for PR-EB-06 consistent
with the MS data. Additionally, the presence of an exchangeable proton for each
stereoisomer (SoH-11a 4.60; don-118 4.58) together with the up-field shift of C-11 (dc-11a
65.0; dc-118 65.9) about 10 ppm supported our assumption. Accordingly, the HMBC
cross-peaks from C-11 and C-12 (dc-12a and 6c-128 34.4) to the exchangeable protons
verified the structural deduction.

Detailed inspection of the 1D- and 2D-NMR spectra and comparison of the
spectral data with those previously published established that the diastereomeric
mixture was composed of (4R,8S)-8,11,13-trihydroxy-4-methyl-4,5,6,7,8,9-hexahydro-
2H-benzo[d][1]oxacyclododecine-2,10(1H)-dione (PR-EB-06A) and (4R,8R)-8,11,13-
trihydroxy-4-methyl-4,5,6,7,8,9-hexahydro-2H-benzo[d][1] oxacyclododecine-
2,10(1H)-dione (PR-EB-06B). Both compounds were isomers of a known polyketide,
namely 11-hydroxycurvularin (Greve et al. 2008).

Table 9. *H and **C NMR spectroscopic data of PR-EB-06A, a) (in DMSO-d6, *H: 600 MHz,
13C: 150 MHz)

Position dc (ppm) ou (ppm), (J in Hz)
1 169.9s -
2a 389t 3.77.d (13.6)
2b -
3 136.0d -
4 111.4d 6.15d (2.3)
5 159.7 s -
6 101.8d 6.26 d (2.2)
7 157.6s -
8 11955 -
9 203.5s -
10a 53.2t 2.85s
10b 3.14s
11 65.0d 3.87s
12a 34.41 1.21m
12b 1.47m

Cont. on next page

50



Cont. of Table 8

13a 21.7t 1.06 s
13b 1.05s
1l4a 31.1t 1.46 m
14b 1.21m
15 70.2d 484 m
16 18.0 ¢ 1.06s
5-OH - 9.87s
7-OH - 10.03 s
11-OH - 4.60d (5.2)

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.

Table 10. *H and *C NMR spectroscopic data of PR-EB-06B, a) (in DMSO-d6, *H: 600 MHz,

13C: 150 MHz)

Position dc (ppm) &n (ppm), (J in H2)
1 170.2s -
2a 389t -
2b 3.56 d (15.6)
3 136.0d -
4 110.8d 6.15d (2.3)
5 159.4 s -
6 101.7d 6.28d (2.3)
7 15855 -
8 118.8s -
9 204.2 s -
10a 539t 2.85s
10b 3.14s
11 65.9d 3.77d (13.6)
12a 344t 1.21m
12b -
13a 21.7t 1.06s
13b -
14a 305t 1.58 m
14b 1.32m
15 72.8d 4.71m
16 18.8q 1.06s
5-OH - 9.81
7-OH - 10.09
11-OH - 4.58 d (5.8)

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
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3.1.6. Structure Elucidation of PR-EB-09

Chemical Formula: C32H22012
Exact Mass: 598,1111
Figure 17. Chemical structure of PR-EB-009.

The HR-ESI-MS spectrum of PR-EB-09 exhibited a prominent ion peak at m/z
599.11768 [M+H]" (calcd. 599.11895) supported a molecular formula C32H22012 with
twenty-two indices of hydrogen deficiency.

The spectroscopic features suggested that PR-EB-09 was a dimeric
anthraquinone like PR-EB-05. PR-EB-09 had a 16 amu (atomic mass unit) increase
compared to PR-EB-05, implying oxygenation. In accordance, two primary alcohol
group was readily assigned based on the resonances observed at 6 4.53 (s, Hz-11, Ho-
11°) and & 62.2, in the *H- and **C NMR spectra of PR-EB-09, respectively. Detailed
inspection of the 1D-, 2D NMR, and HR-ESI-MS spectra inferred that PR-EB-09 was a
homodimeric anthraquinone. The monomeric unit was established as carviolin by
comparing the spectral data with those of previous reports and PR-EB-04 (Aly et al.
2011; Elbanna et al. 2021). As in the case of PR-EB-05, in the *H NMR spectrum of
PR-EB-09, the aromatic H-6 proton was missing in carviolin substructure (Elbanna et
al. 2021; Aly et al. 2011), signifying that the monomeric moieties were linked through
C6/C6’. X-Ray or circular dichroism experiments are warranted to determine the
absolute stereochemistry of PR-EB-09. Consequently, the planar structure of PR-EB-
09 was elucidated as 7,7'-diethyl-2,2',4,4' 5,5'-hexamethyl-9,9',10,10'-tetramethylene-
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9,9',10,10'-tetrahydro-1,1'-bianthracene. A literature survey revealed that PR-EB-09

was a new homodimeric anthraquinone.

Table 11. H and **C NMR spectroscopic data of PR-EB-09, a) (in DMSO-d6, *H: 500 MHz,

13C: 125 MHz)

Position dc (ppm) on (ppm), (J in H2)
1(17) 160.2 s -
2(2%) 115.6d 7.42s
3(3) 151.1s -
4(4%) 116.7d 7.45s

4a(4’a) 135.4s -
5(57) 183.1s -

5a(5’a) 130.9s -
6(6”) 122.3s -
7(7) b -
8(8") 107.5d 6.63s
9(9) 164.0s -

9a(9’a) 109.9d -

10(10%) 186.2s -

10a(10’a) 118.3s -

11(11%) 62.2t 453s

1-OMe(1°- 56.4 q 3.88s
OMe)
7-OH(7’-OH) - 10.82s
9-OH(9’-OH) - 13.87 s
11-OH(11°- - 5.47
OH)

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.

b) Not observed
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3.1.7. Structure Elucidation of PR-EB-10

OCH; O OH

OCH; O OH

Chemical Formula; Cs2H2,0g
Exact Mass: 534,1315
Figure 18. Chemical structure of PR-EB-10.

The HR-ESI-MS spectrum of PR-EB-10 exhibited a major ion peak at m/z
533.12463 [M-H], (calcd. 533.12419) supported a molecular formula C32H220sg with six
indices of hydrogen deficiency.

The *H NMR and *C NMR data of PR-EB-10 (Tables 13) showed a close
structural relationship with PR-EB-03 (Table 6). The spectroscopic features suggested that
PR-EB-10 was a naphtodianthrone derivative like PR-EB-03. Detailed inspection of the
1D-, 2D NMR, and HR-ESI-MS spectra inferred that PR-EB-10 was a homodimer
naphtodianthrone derivative. The monomeric unit was established as 1-O-methylemodin
by comparing the spectral data with those of previous reports and PR-EB-03 (Ayer and
Trifonov 1994).

In the *H NMR spectrum of PR-EB-10, the aromatic protons were lacking for C-6c,
C-16c¢, C-3a, and C-3b when compared to that of 1-O-methylemodin (Ayer and Trifonov
1994), which substantiated that the substructures were connected through C-3a - C-3b
and C-16¢ - C-6c¢ bridges. (Ayer and Trifonov 1994; Elbanna et al. 2021; Aly et al.
2011). X-Ray or circular dichroism experiments are warranted to determine the absolute
stereochemistry of PR-EB-10. Consequently, the structure of PR-EB-10 was elucidated
as 1,3,4,6-tetrahydroxy-8,15-dimethoxy-10,13-dimethyldibenzo[a,o]perylene-7,16-
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dione. A literature survey revealed that PR-EB-10 was the new member of

naphtodianthrone derivatives.

Table 12. H and **C NMR spectroscopic data of PR-EB-10, a) (in DMSO-d6, *H: 500 MHz,
13C:125 MHz)

Position dc (ppm) on (ppm), (J in H2)

1 168.6 s -

2 104.1d 6.22s

3 172.1s -
3a 118.5s -
3b 1185s -

4 172.1s -

5 104.1d 6.22s

6 168.6 s -
6a 101.2s -
6b 138.3s -
6c 127.7 s -

7 182.9s -
7a 117.2s -

8 159.3s -

9 112.3d 6.96 s
10 141.0s -
11 127.1d 7.11s
1la 129.3s -
12 127.1d 7.11s
12a 129.3s -
13 141.0s -
14 112.3d 6.96 s
15 159.3 s -
15a 117.2s -
16 182.9s -
16a 101.2s -
16b 138.3s -
16¢ 127.7 s -
17 215q 2.09's
18 215¢q 2.09s

8-OMe 56.0 q 3.93s

15-OMe 56.0 q 3.93s
1-OH - b
3-OH - b
4-OH - b
6-OH - b

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
b) Not observed.
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3.1.8. Structure Elucidation of PR-EB-11

OCH; O OH

OCH, 0 OH

Chemical Formula: C32H2209
Exact Mass: 550,1264
Figure 19. Chemical structure of PR-EB-11.

The HR-ESI-MS spectrum of PR-EB-11 exhibited a major ion peak at m/z m/z
549.11969 [M-H];, (calcd. 549.11910) supported a molecular formula Cs2H2209 with
twenty-two indices of hydrogen deficiency.

The spectroscopic features suggested that PR-EB-11 was a naphtodianthrone
derivative like PR-EB-10. PR-EB-11 had a 16 amu (atomic mass unit) increase
compared to PR-EB-10, implying oxygenation. In accordance, a primary alcohol group
was readily assigned based on the resonances of & 4.25 (s, H2-17) and & 62.4, in the *H-
and *C NMR spectra of PR-EB-11, respectively. Detailed inspection of the 1D-, 2D
NMR, and HR-ESI-MS spectra inferred that PR-EB-11 was a heterodimer
naphtodianthrone. One of the two monomeric units was established as 1-O-
methylemodin by comparing the spectral data with those of previous reports and PR-
EB-03 (Ayer and Trifonov 1994), and the other monomeric unit was established as
carviolin by comparing the spectral data with those of previous reports and PR-EB-04
(Aly et al. 2011; Elbanna et al. 2021). As in the case of PR-EB-04 and PR-EB-03, in
the *H NMR spectrum of PR-EB-11, the aromatic H16¢/H6c and H3a/H3b protons

65



were missing in both 1-O-methylemodin and carviolin substructures (Ayer and Trifonov
1994; Elbanna et al. 2021; Aly et al. 2011), signifying that the substructures were linked
through two bridges: C16¢c - C6c and C3a > C3b. X-Ray or circular dichroism
experiments are warranted to determine the absolute stereochemistry of PR-EB-11.
Consequently, the structure of PR-EB-11 was elucidated as 1,3,4,6-tetrahydroxy-10-
(hydroxymethyl)-8,15-dimethoxy-13-methyldibenzo[a,o]perylene-7,16-dione. A

literature survey revealed that PR-EB-11 was a new heterodimeric naphtodianthrone.

Table 13. *H and *C NMR spectroscopic data of PR-EB-11, a) (in DMSO-d6, *H:500 MHz,
13C:125 MHz2)

Position dc (ppm) &n (ppm), (J in H2)

1 168.7 s -

2 104.1d 6.22d

3 172.0°s -
3a 1185s -
3b 118.4s -

4 172.1°s -

5 104.1d 6.22d

6 168.7 s -
6a 101.1s -
6b 138.3°s -
6¢ 1278 s -

7 182.9s -
7a 1179s -

8 1594 s -

9 109.0d 7.06s
10 145.7 s -
11 124.0d 7.25s
1l1a 129.3s -
12 127.1d 7.10s
12a 129.3s -
13 1415s -
14 112.3d 6.4s
15 159.3 s -
15a 117.1s -
16 183.0s -
16a 101.1s -
16b 138.4°s -
16¢ 127.7 s -
17 62.41 4.25m
18 21.6q 2.07s

1-OH - 16.24° bs

Cont

. on next page
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Cont. of Table 13

3-OH - 18.5 bs
4-OH - 16.25° bs

6-OH - 5.16t
17-OH - 3.94%s
8-OMe 55.9 q 3.92°s
15-OMe 55.9¢

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
b) Interchangeable.
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Spectrum 43. HR-ESI-MS Spectrum of PR-EB-11 (negative mode).
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Spectrum 48. HMBC spectrum of PR-EB-11.

3.1.9. Structure Elucidation of PR-EB-17

OCH; O OH

Chemical Formula: C16H120s
Exact Mass: 284,0685
Figure 20. Chemical structure of PR-EB-17.

The HR-ESI-MS spectrum of PR-EB-17 exhibited a major ion peak at m/z
283.06140 [M-H], (calcd. 283.1622) supported a molecular formula CisH1206 with
eleven indices of hydrogen deficiency.

The 'H- and 3C NMR data of PR-EB-17 (Table 14) revealed that it was another
monomeric anthraquinone like PR-EB-04 (Table 7). PR-EB-17 had a 16 amu decrease

compared to PR-EB-04, whereas the low-field resonance of primary alcohol group in
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PR-EB-04 was missing. Instead, the appearance of a methyl group at 6 2.46 (s, Hz-11)
and § 21.7 (C-11) in the 'H- and *C NMR spectra of PR-EB-17 readily established the
structure as 1,3-dihydroxy-8-methoxy-6-methylanthracene-9,10-dione, a known
compound namely 1-O-methylemodin. The established structure was also confirmed by
examining the 2D NMR spectra of PR-EB-17 and comparing the data with previous
reports (Ayer and Trifonov 1994).

Table 14. *H and **C NMR spectroscopic data of PR-EB-17, a) (in DMSO-d6, *H:500 MHz,
13C:125 MHz)

Position dc (ppm) &n (ppm), (J in H2)
1 160.6 s -
2 119.8d 7.43d (1.5)
3 146.9 s -
4 120.1d 7.60d (1.6)
4a 134.1s -
5 186.2 s -
5a 110.0's -
6 107.2d 7.03d (2.4)
164.5s -
108.3d 6.54d (2.4)
164.5s -
%a 117.9s -
10 18255 -
10a 134.6s -
11 21.7q 246 s
1-OMe 56.5¢ 3.93s
7-OH - -
9-OH - 13.28s

a) Assignments are confirmed by 2D-COSY, HSQC, and HMBC experiments.
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Spectrum 49. HR-ESI-MS Spectrum of PR-EB-17 (negative mode).

6500000

6000000

13.28
3.93
2.46

5500000

5000000

4500000

14000000

3500000

1-OMe 3000000

11 2500000

2000000

1500000

9-OH 1000000
| 42 6 8

| L] .

T T T T T T T T T T T T T T T T T T T T T T T T T T
145 14.0 135 13.0 125 12.0 115 11.0 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 3.0 25 20

f1 (ppm)

Spectrum 50. *H NMR Spectrum of PR-EB-17 (in DMSO-d6, tH: 500 MHz).

72



- 1400000
N n 9 o © HoN 9mN
© o ¥ o © T ¥ SOAN S®N n nean ™ 1300000
© © © © < 0 m R-- 960 © = =
- - - = -— e - ) RS ~
(. [ N NNV ~\
11200000
1100000
1000000
900000
800000
1700000
600000
500000
4 1400000
2 1-OMe
K 11
| 300000
9 8 |
|
| 1 10a 4, |
10 \ f 1200000
5 | 3 | 7a ) 6
| ! I ‘ - 100000
-0
T T T T T T T T T T T T T T T T T T
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20
f1 (ppm)

Spectrum 51. *C NMR Spectrum of PR-EB-17 (in DMSO-d6, **C:125 MHz).

2 (ppm)

Spectrum 52. HSQC spectrum of PR-EB-17.

2 6
4 8 | -OMM U
11 § o
G
(0]
> a]
E -
T T T T T T T . : T T T T
8.0 7.5 7.0 6.5 6.0 55 5.0 45 4.0 35 3.0 25 2.0

k40

50

60

F70

f1 (ppm)

80

90

100

F110

120

130

73



F2.1
r2.2
r2.3
2.4
r2.5
r2.6
2.7
r2.8
r2.9
r3.0
r3.1
r3.2
r3.3
r3.4
r3.5
r3.6
r3.7
r3.8
r3.9
r4.0

4.1

T T
4.1 4.0 3.9 38 3.7 36 3.5 3.4 3.3 3.2 3.1 3.0 29 2.8 2.7 2.6
2 (ppm)

Spectrum 53. COSY spectrum of PR-EB-17.

e

2.5

® o 0
e °
@
©
— &

ﬁ
1
|

T T T T T T T T T T T T T T
4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6

2 (ppm)

Spectrum 54. HMBC spectrum of PR-EB-17.

10
20
30
40
50
60
70
80
90
100
F110
r120
130
140
150
160
F170
180
190

200

1 (ppm)

f1 (ppm)



3.2. Results of bioactivity studies

The cytotoxic effects of all compounds and the EtOACc extract were investigated
by MTT assay on three human prostate cell lines namely LNCap, PC3, Dul45 and
RPWEL. Cells were treated with different concentrations of the compounds for 48 h,
and DMSO was used as control. Finally, the spectrophotometric absorbance was

measured at wavelength of 590/690 nm. The data was analyzed by using GraphPad

Prism to determine ICso values of the compounds (Table 15).

Table 15. 1Cso values of the isolated compounds.

LNCaP PC3 Dul145 RPWE-1
PR-EB-01 26 uM 37.6 uM 24.7 uM 309 uM
PR-EB-03 >50 uM >50 uM >50 uM ND
PR-EB-04 >50 uM >50 uM >50 uM >50 uM
PR-EB-05 >50 uM >50 uM >50 uM >50 uM
PR-EB-06 cytostatic cytostatic cytostatic >50 uM
PR-EB-09 >50 uM >50 uM >50 uM >50 uM
PR-EB-10 >50 uM >50 uM >50 uM >50 uM
PR-EB-11 >50 uM >50 uM >50 uM >50 uM
PR-EB-17 >50 uM >50 uM >50 uM >50 uM
Extract 15 pg/ml 29.5 ng/ml > 32 pg/ml ND

3.2.1. Cytotoxic Activity Screening

The compounds except PR-EB-01 did not show a promising cytotoxic effect
(ICs0 >50 uM). PR-EB-01 exhibited cytotoxic effects towards all cell lines between 26
and 37.6 uM; however, its structurally close metabolite PR-EB-06, only revealed a
cytostatic effect, preventing us from calculating the value of ICso (Figures 21-24).
Somehow, the presence of O-methyl group at C-11 position of PR-EB-01 converts the
cytostatic action of PR-EB-06 into cytotoxic activity. This unexpected observation
might be explained by physicochemical alterations that affect solubility, cell membrane
penetration, distribution, the metabolization of the substance, or disturbing different
target site(s)/pathway(s). Additionally, PR-EB-01 was not selective towards human
prostate cell lines. The selectivity between cancer cells and non-cancerous cells

(therapeutic index) will be determined in due course.
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Figure 21. The cytotoxic effect of PR-EB-01, PR-EB-06 and the extract on the PC3 cell
line at 48 h. Certain concentrations of compounds were subjected to wells in
triplicate. DMSO is used as a control in all experiments. ICso values were
determined using GraphPad Prism.
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Figure 22. The cytotoxic effect of PR-EB-01, PR-EB-06 and the extract on the LNCaP
cell line at 48 h. Certain concentrations of compounds were subjected to wells
in triplicate. DMSO is used as a control in all experiments. 1Cso values were

determined using GraphPad Prism
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Figure 23. The cytotoxic effect of PR-EB-01, PR-EB-06 and the extract on the Du145 cell
line at 48 h. Certain concentrations of compounds were subjected to wells in
triplicate. DMSO is used as a control in all experiments. ICso values were
determined using GraphPad Prism.
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Figure 24. The cytotoxic effect of PR-EB-01 and PR-EB-06 on the RWPE-1 cell line at 48
h. Certain concentrations of compounds were subjected to wells in triplicate.
DMSO is used as a control in all experiments. 1Cso values were determined
using GraphPad Prism.
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The extract in a dose-dependent manner was as effective as PR-EB-01 with
similar 1Cso values towards PC3 and LNCaP cell lines. In contrast, the extract exhibited
lower activity 1Cso> 32 ug/ml on the Dul45 cell line, whereas PR-EB-01 had an 1Csg
value of 24.7 uM. In the literature, PR-EB-06 was reported to have cytotoxic activity
against different cell lines (Shen et al. 2015); however, herein it was cytostatic. It
somehow stopped the proliferation of all cell lines, as seen in Figures 21-24. According
to the data given above, it was clear that the extract showed more consistent and
significant results than most isolates. Thus, one should consider the possibility that the
minor substances, which were not isolated during isolation studies due to their low
amounts, would be contributing to the cytotoxic effect of the extract. In addition, none
of the molecules possessing anthraquinone backbone showed activity on prostate cancer

cell lines.
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CHAPTER 4

CONCLUSION

The endophytic fungi are important microorganisms for producing a wide range of
secondary metabolites. In the search for undescribed bioactive secondary metabolites, the
endophytes are good candidates because of the biotic and abiotic factors to that they are
exposed. These features lead to the biosynthesis of numerous and diverse compounds with a
broad range of bioactivities. A previous study reported that 51% of biologically active
compounds derived from endophytic fungi were previously unknown compounds (Strobel
and Daisy 2003). As many natural products have been obtained, the potential of
endophytic fungi has not yet been thoroughly examined to discover novel secondary
metabolites, including Penicillium species.

This thesis, according to the data obtained from previous screening studies,
aimed to isolate bioactive secondary metabolites from an endophytic fungus, namely P.
roseopurpureum 1E4BS1. In fermentation cultures, the color of the broth changed after
20 days of incubation. According to the TLC results of the 7" and 14" days of EtOAc
extracts, the primary molecule profile was not affected, while their amount increased. In
the fermentation studies, the obtained broth was extracted with EtOAc, and the nine
metabolites were isolated by chromatographic methods. The structures of the isolates
were elucidated by spectral methods (1D-, 2D-NMR, and HR-ESI-MS). When the
established structures were screened for novelty, five of them were turned out to be
undescribed compounds. All the new compounds were anthraquinone-type metabolites.
Additionally, the known compounds were identified as 11-methoxycurvularin (PR-EB-
01, epimeric mixture), carviolin (PR-EB-04) (Aly et al. 2011; Elbanna et al. 2021), and
11-hydroxycurvularin (PR-EB-06, diastereocisomeric mixture) (Greve et al. 2008).

The compounds were screened by MTT assay for their cytotoxic effects against
human prostate cancer cell lines. The macrolide PR-EB-01 had the highest activity
towards DU145, LNCaP, and PC3 cell lines, whereas the other macrolide (PR-EB-06)

exhibited cytostatic effects. Moreover, PR-EB-01 showed cytotoxicity in a dose-
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dependent manner towards the RPWE-1 cell line with an ICso value of 30.9 uM, so it
was clear that PR-EB-01 was not selective towards human prostate cell lines.

In addition, none of the anthraquinone molecules (PR-EB-03, -04, -05, -09, -10,
-11, and -17) exhibited cytotoxic activity. From the structure-activity relationship point
of view, observing the decisive activity difference between PR-EB-01 and PR-EB-06
was intriguing. This data implies that either the compounds target different
site(s)/pathway(s) or their physicochemical character changes, affecting their solubility,
cell membrane penetration, distribution, or metabolization properties. Further chemical
(derivatization) and molecular mechanism studies are warranted to shed light on this

issue.
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