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A B S T R A C T   

A tuned mass damper (TMD) is a vibration control system used to reduce the structural responses to earthquakes 
and extreme wind loads. The performance of a TMD depends on its parameters, such as mass, damping coeffi-
cient, and stiffness. Therefore, several methods have been proposed to optimize the parameters of TMDs. This 
paper proposes a new method for optimizing TMDs’ parameters using the Mouth Brooding Fish (MBF) algorithm 
based on white noise excitations. The effectiveness of TMDs optimized using the proposed method and other 
methods in reducing the maximum displacement of a ten-story linear structure was compared. The results 
indicated that the proposed method could effectively find the optimum parameters of the TMD. The efficacy of 
elastic and elastoplastic TMDs optimized using the proposed method in the responses of linear and nonlinear 10- 
story structures was also investigated. According to the results, the optimal elastic TMD more effectively reduced 
the maximum displacement of linear and nonlinear structures than the optimal elastoplastic TMD. Besides, 
elastic and elastoplastic TMDs exhibited higher efficiency in reducing the maximum displacement of the linear 
structure than the nonlinear structure.   

1. Introduction 

Tuned mass dampers (TMDs) are among the earliest and most used 
structural control systems installed on various structures to reduce 
structural vibrations caused by natural disasters such as earthquakes and 
extreme winds [1,2]. The primary type of a tuned mass damper, made up 
of a mass, a dashpot, and a spring, was designed by Den Hartog by 
attaching dampers to the device invented by Frahm [3]. The perfor-
mance of a TMD depends on its properties, such as mass, stiffness, and 
damping coefficient; thus, they need to be tuned according to the 
properties of the main system [4]. Brock discussed the procedure of 
determining optimal parameters of TMDs utilized in a linear structure 
subjected to external harmonic excitation [5]. Den Hartog proposed 
formulas to calculate the optimized frequency and damping ratio of 
TMDs for single-degree-of-freedom (SDOF) structures [6]. Warburton 
developed a simple tuning equation to identify the optimal parameters 
of linear SDOF systems subjected to random excitations, including har-
monic and white noise excitations [7]. Based on frequency domain an-
alyses, Sadek et al. proposed formulas to optimize the parameters of 
TMDs for linear SDOF and multi-degree-of-freedom (MDOF) structures 
[8]. 

In the last decades, various optimization techniques have been used 
to optimize the parameters of tuned mass dampers [9–12]. Hadi and 
Arfiadi proposed an optimum tuned mass damper design for seismically 
excited buildings using the genetic algorithm (GA). By comparing their 
method with the approaches of Den Hartog and Warburton, they found 
that it led to greater reductions in the responses of the structures [13]. 
Lee et al. developed a numerical optimization algorithm for buildings 
with TMD to decrease the performance index value [14]. Harmony 
search (HS), a metaheuristic optimization method, was used by Bekdaş 
and Nigdeli to find the optimum parameters of TMDs [15]. Farshidianfar 
and Soheili employed the ant colony optimization (ACO) method to 
obtain the best parameters of TMDs for high-rise structures considering 
the soil-structure interaction [16]. Özsarıyıldız and Bozer utilized the 
differential evolution (DE) algorithm to find optimal parameters of 
TMDs. According to their study, the DE algorithm worked as effectively 
as GA while its execution time was seven times shorter than that of GA 
[17]. Kaveh et al. revised and applied the charged system search (CSS) to 
minimize the dynamic response of MDOF structures. According to their 
numerical studies, the TMD optimized using CSS outperformed those of 
previous works in displacement reduction of structures [18]. Using an 
improved harmony search (IHS) algorithm, Yazdi et al. optimized the 
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parameters of TMDs. Their study showed that the IHS was superior to 
GA [19]. Using the HS algorithm, Nigdeli and Bekdaş compared fre-
quency domain-based and time domain-based optimization of TMDs and 
reported that both methods effectively found optimum parameters of 
TMDs [20]. Nigdeli et al. hybridized HS and flower pollination algo-
rithm (FPA) for optimum tuning of mass dampers [21]. Etedali and 
Rakhshani evaluated the performance of the multi-objective cuckoo 
search (MOCS) for the optimal design of TMDs. They showed that the 
MOCS performed better than other methods in reducing the maximum 
responses of the structures subjected to different earthquakes [22]. 
Chang et al. used the active control algorithm (ACA) for the seismic 
design of parameters of tuned mass dampers [23]. Fahimi and Kaveh 
used colliding bodies optimization (CBO) algorithm to find the optimum 
parameters of the TMD for a ten-story shear building in the frequency 
domain [24]. Kaveh et al. optimized the parameters of TMDs using the 
chaotic optimization algorithm (COA). According to their numerical 
studies, the TMDs optimized using COA were well capable of attenuating 
the responses of structures under different earthquakes [25]. Through a 
metaheuristic optimization based on the differential evolution method, 
Caicedo et al. optimized TMDs to minimize the seismic response of high- 
rise buildings [26]. Kayabekir et al. combined HS, FPA, teaching 
learning-based optimization (TLBO) algorithm, and Jaya algorithm (JA) 
to generate a hybrid algorithm for the optimal design of active TMDs 
[27]. 

In addition to extensive and comprehensive studies performed on the 
effect of elastic dampers on linear structures and different methods 
proposed for their optimization, several researchers also focused on the 
effectiveness of elastoplastic and elastic TMDs in the response of linear 
and nonlinear structures, respectively. Pinkaew et al. evaluated the ef-
fects of a TMD on a nonlinear structure. They modeled a 20-story 
building based on an equivalent inelastic SDOF building. The results 
indicated a gradual reduction in the effectiveness of the TMD by 
increasing the inelasticity of the building [28]. Sgobba and Marano 
analyzed the effects of a linear TMD on a simple SDOF Bouc-Wen system, 
which indicated the possibility of tuning loss. Due to the detuning effect, 
the tuning loss may reduce the efficiency of the TMD in reducing the 
vibration of structures in nonlinear ranges [29]. Mohebbi and Joghataie 
used a distributed genetic algorithm for the optimal design of a linear 
TMD to reduce the structural response of an eight-story nonlinear shear 
building. According to the results, the method successfully determined 
the TMD parameters [30]. Mate et al. evaluated the seismic pounding 
response of inelastic and elastic SDOF structures with and without a 
TMD. They found that using a TMD was more effective in increasing the 
consistency and regularity of the force–deformation hysteresis plot of 
the main system in inelastic structures than in elastic structures [31]. 
Gerges and Vickery designed a wind tunnel test to evaluate the effec-
tiveness of a group of nonlinear TMDs in reducing the oscillations of an 
across-wind structure. They found that the damping of a nonlinear 
system must be less pronounced than that of its equivalent linear system. 
Based on their results, the optimal frequency ratio of a TMD with a 
nonlinear stiffness occurs only within a certain range of amplitudes [32]. 
Alexander and Schilder examined the performance of a nonlinear TMD, 
designed based on a two-degree-of-freedom system with cubic nonlin-
earity. The results indicated that any configuration of the proposed 
nonlinear TMD would not result in any improvement compared to an 
optimal linear TMD [33]. Guo et al. introduced a simplified optimization 
method for nonlinear TMDs in an SDOF system. They argued that 
excitation could affect the effectiveness of the nonlinear TMD. There-
fore, the performance sensitivity of the optimal nonlinear TMD was 
examined using various structural damping ratios and excitation in-
tensities. According to the results, the engineering applications of the 
nonlinear TMD may be limited by sensitivity. They concluded that a 
nonlinear TMD is more practical for determinate excitations, such as the 
wind [34]. Bagheri and Rahmani utilized an elastoplastic spring in a 
TMD to develop a new seismic response control system. They studied the 
responses shown by several main structures in the form of SDOF systems 

using the proposed TMD under various seismic excitations. Their device 
reduced seismic responses efficiently [35]. Li and Du compared the 
effectiveness of TMD and nonlinear tuned mass damper (NTMD) opti-
mized using the harmonic balance method (HBM) in the reduction of the 
steady-state displacement amplitude of an SDOF structure. They 
concluded that TMD developed using the typical design method, which 
ignores TMD’s nonlinearity, cannot produce the best control effect when 
stiffness nonlinearity is considered [36]. 

The present study proposes a new optimization method using the 
Mouth Brooding Fish (MBF) algorithm, considering a set of white noise 
excitations for the optimal design of the parameters of TMDs. Addi-
tionally, the efficiency of the proposed method is evaluated and 
compared with several other methods in reducing the maximum 
displacement of a linear structure under a set of earthquakes. Moreover, 
the effectiveness of elastic and elastoplastic TMDs optimized using this 
method in reducing the maximum displacement of linear and nonlinear 
MDOF structures is compared. 

2. Equation of motion of structures with TMD 

The equation of motion of an N-story shear building equipped with a 
TMD on top of it, subjected to an earthquake, can be defined as follows: 

Mẍ(t)+Cẋ(t)+Kx(t) = − Meẍg(t) (1)  

where M, C, and K are the matrices of mass, damping coefficient, and 
stiffness of the system, defined by Eqs. (2), (3), and (4), respectively. 
Moreover, x, ẋ, and ẍ are (N + 1) × 1 vectors of displacement, velocity, 
and acceleration of the system, respectively, and ẍg donates the (N + 1) 
× 1 acceleration vector of the earthquake [37]. Furthermore, eT =

[ 1, 1, ⋯, 1 ]1×(N+1) is the ground acceleration mass transformation 
vector [22]. The properties of TMD are donated with md, cd, and kd for 
mass, damping coefficient, and stiffness of TMD, respectively. 

M =
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Fig. 1. Elastoplastic stiffness model.  
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(4) 

In an elastoplastic system, the stiffness of each degree of freedom 
(DOF) is not constant and depends on the value of the resisting force of 
the system at each time step. An elastoplastic stiffness model is illus-
trated in Fig. 1. Here, fs is the resisting force, and fy and uy are yield 
strength and deformation, respectively. The value of stiffness at each 
time step is straightly dependent on the ratio of the resisting force of 
each DOF of the system to its yield strength (fs/fy); fs/fy < 1 means the 
DOF behavior is elastic, and ke should be used as the stiffness value in 
calculations; while fs/fy = 1 indicates that the behavior is within the 
elastoplastic range, and kp should be considered as the stiffness value. 

3. Mouth brooding fish algorithm 

Highly complex optimization problems have arisen with the 
advancement of technology. Most newly-developed optimization prob-
lems have many variables with a wide range of variations. Consequently, 
numerous optimization algorithms have been proposed to solve prob-
lems. Most of these algorithms are nature-inspired and widely used in 
engineering applications, thanks to their ability to obtain global optima 
and fast convergence [38–42]. Inspired by the lifecycle of the mouth-
brooding fish, an algorithm called the Mouth Brooding Fish was devel-
oped by Jahani and Chizari in 2018 [43]. This algorithm mimics the 
movements of the Cichlid family as a foundation to solve optimization 
problems. Considering the effects of various factors on the movements of 
this fish family, including the main movements of each fish, the move-
ments of left-out fish, shark attacks, or various dangers, and integrating 
the roulette wheel selection, the algorithm seeks to find the optimal 
solution for a selected problem [44]. 

The MBF algorithm consists of several control parameters, which 
increase the convergence speed to find the best possible solution [45]. In 
this algorithm, the size of the fish population (nFish), as one of the most 
important control factors, indicates how many fish will go through the 
procedure of solving a problem. While it can be any positive number 
more than two, choosing nFish values of less than five is not logical. In 
this study, nFish was considered equal to 50. Another determining factor 
is the influence of a mother’s power or source point (SP) on the cichlid 
movement. This factor only affects the measure of movements, not their 
direction. The displacement between motions grows when SP is 
increased. It should be emphasized that increasing the value of SP 
merely makes it simpler for the MBF algorithm to tackle local optima 
problems. In the present research, the value of SP, which can range from 
0 to 1, was taken to be equal to 0.6. In nature, as time passes, the 
mother’s strength diminishes, affecting the movements of herself and 
her children. Damping of the source point of the mother (SPdamp) plays 
a similar role in each iteration of the MBF algorithm. In this study, 
SPdamp was set equal to 0.95, although it can be considered any value 
between 0.85 and 0.95. The cichlid’s best position, discovered in pre-
vious iterations, is another movement factor. Every cichlid tends to 
move to their best position in previous iterations, which is distinct from 
its present position. The other regulating parameter in the MBF algo-
rithm, the dispersion (Dis), which varies between 1 and 2 and was set to 
1.8, allows the user to regulate this movement effect. It is worth noting 
that this movement becomes more effective as the value of Dis grows. 
The mouthbrooding fish keeps and protects some of the cichlids. The 
mother may care for as many cichlids as her mouth can hold, and the 
others, known as left-out cichlids, must contend with nature’s obstacles. 
These left-out cichlids must deviate from the basic movement to avoid 
harm. Like in nature, the MBF algorithm employs a regulating parameter 

called Pdis, which is between 0 and 1 and was assumed equal to 0.2 in 
this study for tuning the second phase of movement of the left-out 
cichlids. The control parameter settings made based on the MBF algo-
rithm’s optimal performance for various problem types may be found in 
[43]. The authors of [43] regarded four different kinds of problems 
using these functions to identify the values of the control parameters: 
unimodal functions, simple multi-modal functions, hybrid functions, 
and composition functions. While one of the controlling parameters 
varies between the minimum and maximum limits, the others remain 
constant at their average values. The settings of the governing param-
eters that result in the best potential solutions for any type of problem 
were ultimately selected based on a successful examination of the MBF 
algorithm. 

4. Optimal design of TMDs using the MBF algorithm 

For optimal design of the parameters of TMDs and NTMDs, an 
optimization problem is defined, and using the MBF algorithm, the op-
timum values of dampers are found. The optimization problem has two 
design variables for optimization of TMDs, including the damping co-
efficient and stiffness of TMD, and three design variables for optimiza-
tion of NTMDs, including the damping coefficient, elastic stiffness (ked),

and yielding displacement (uyd) of NTMD. 
In the optimization procedure, instead of using a specific seismic 

motion record, a set of white noise excitation records is used, and an 

Fig. 2. The flowchart of the proposed method.  
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objective function is considered to minimize the sum of the ratios of the 
maximum displacement of the controlled structure to the corresponding 
value of the uncontrolled structure under all white noise excitations. The 
design variables and objective functions are defined as follows: 

For elastic TMDs: 

Find : cd, kd (5)  

Minimize : X =
∑N

i=1
(
max

⃒
⃒xTMD

structure

⃒
⃒

max |xstructure|
)i (6)  

and for elastoplastic TMDs: 

Find : cd, ked, uyd (7)  

Minimize : X =
∑N

i=1
(
max

⃒
⃒xNTMD

structure

⃒
⃒

max |xstructure|
)i (8)  

where N is the number of white noise excitations used in the optimiza-
tion problem, which is considered equal to 20 in this study, and xstructure, 
xTMD

structure, and xNTMD
structure are the maximum displacements of the structure 

without TMD, with TMD, and with NTMD, respectively. 
In the optimization methodology, as shown in Fig. 2, a set of random 

white noise excitations are generated. Then, the properties of the 
structure, design variable ranges, and MBF parameters are read. In the 
next step, the MBF algorithm generates desired values as the parameters 
of the tuned mass dampers. Then, the ratios of the maximum displace-
ment of the controlled structure to the maximum displacement of the 
corresponding uncontrolled structure under all white noise excitations 
are summed. In the same way, the next cycles start, the sum of the ratios 
of the maximum displacement of the controlled structure equipped with 
TMD with newly generated parameters to the maximum displacement of 
the corresponding uncontrolled structure under all white noise excita-
tions is calculated. This cycle continues until the stop condition is met, 
which herein occurs when the number of function evaluations (NFE) 
reaches 100. Finally, the most effective parameters of TMD are 
presented. 

5. Numerical examples 

5.1. Example 1 

In the first numerical study, the effectiveness of the TMD which was 
optimized using the proposed method in reducing the maximum 
displacement of a ten-story linear shear building from [46] subjected to 
the El Centro 1940 NS earthquake is investigated and compared to the 
effectiveness of TMDs optimized using other methods presented in 
Table 1. The mass, damping coefficient, and stiffness of each story are 
360 tons, 6200 kNs/m, and 650,000 kN/m, respectively. For optimal 
design of the parameters of the TMD, the mass was considered equal to 
108 tons, and the damping coefficient and stiffness were explored up to 
300 kNs/m and 5000 kN/m, respectively. 

As presented in Table 1, the proposed method, which optimizes TMD 
based on white noise excitations using the MBF algorithm, more effec-
tively reduced the maximum displacement of the building under the El 
Centro earthquake than other methods. The displacement of the top 
story of the structure, without TMD and with TMD optimized using the 
proposed method under the El Centro earthquake, is shown in Fig. 3. 
Furthermore, the convergence curves of the methods are depicted in 
Fig. 4. As can be seen, using the proposed method, the optimum vari-
ables are found in 21 function evaluations (NFE = 21). 

As shown in Fig. 4, the cost function starts at 27.65 and approaches 
27. In other words, the difference between the 1st best cost and 100th 
best cost is approximately equal to 2%, which means the MBF algorithm 
could almost find the optimum values as the parameters of TMD in the 
first NFE based on the fifty cichlids’ best positions after their movements 
considering the control parameters including SP, Dis, Pdis, and SPdamp. 
It indicates the high performance and the adjustment of the control 
parameters of the MBF algorithm. 

For a comprehensive comparison between the proposed method (P. 
M.) and the other methods, the efficiency of the elastic TMDs optimized 
using the methods in reducing the maximum displacement of the ten- 

Table 1 
A comparison between the proposed method and the other methods.  

Optimization 
method 

cd (kN.s/ 
m) 

kd (kN/ 
m) 

Max. 
displacement (m) 

Percentage 
reduction 

GA [13]  151.50  3750.00  0.1216  35.2 
Lee et al. [14]  271.79  4126.93  0.1260  32.9 
DE [17]  151.20  3752.60  0.1216  35.2 
CSS [18]  88.70  4207.74  0.1219  35.0 
IHS [19]  210.90  3727.88  0.1231  34.4 
MOCS [22]  160.50  4428.70  0.1218  35.1 
COA [25]  144.60  3586.60  0.1215  35.2 
The proposed 

method  
122.55  3667.04  0.1208  35.6  

Fig. 3. Displacement of the top story of the uncontrolled and controlled structures under the EI Centro earthquake.  

Fig. 4. The convergence curves of the proposed method.  
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story structure under a set of near-field earthquake excitations, pre-
sented in FEMA P-695 [47], are evaluated and presented in Table 2. 

According to Table 2, the average percentage reduction of the 
maximum displacement of the ten-story structure equipped with a TMD 
optimized using the proposed method is approximately 17.1%, indi-
cating its higher efficiency in reducing the maximum displacement of 
the structure than the TMDs optimized using other methods. 

5.2. Example 2 

In the second numerical study, the effectiveness of elastic and 

Table 2 
Percentage reduction of maximum displacement of the structure with TMD optimized using different methods under near-field earthquakes.  

Name Component GA Lee DE CSS IHS MOCS COA P.M. 

Imperial Valley-06 E06140  27.6  25.1  27.7  34.6  25.4  31.2  26.4  27.9 
Imperial Valley-06 E07140  18.1  12.7  18.1  18.0  15.8  14.6  19.0  19.8 
Irpinia, Italy-01 STU000  15.3  19.3  15.3  11.1  18.4  16.4  15.2  13.5 
Superstition Hills-02 PTS225  38.1  27.6  38.1  29.7  32.3  33.2  38.3  41.5 
Loma Prieta STG000  21.0  16.2  21.1  18.9  18.6  14.2  20.4  21.8 
Erzican, Turkey ERZ-NS  4.4  2.7  4.4  5.2  3.6  3.8  4.5  4.9 
Cape Mendocino PET000  5.9  7.0  5.9  6.8  6.2  7.5  5.5  5.5 
Landers LCN260  − 17.7  − 19.1  − 17.7  − 25.7  − 16.9  − 24.3  − 15.7  − 16.9 
Northridge-01 RRS228  17.3  15.1  17.3  18.6  16.2  16.9  17.4  17.9 
Northridge-01 SYL090  − 1.9  9.0  − 1.9  − 0.7  2.4  8.6  − 4.5  − 6.0 
Kocaeli, Turkey IZT180  51.1  41.4  51.1  53.4  46.1  46.4  47.8  51.1 
Chi-Chi, Taiwan TCU065-E  22.4  6.7  22.4  13.3  16.5  4.5  26.5  28.5 
Chi-Chi, Taiwan TCU102-E  10.5  4.0  10.5  4.6  9.2  1.1  13.2  12.5 
Duzce, Turkey DZC180  17.4  17.1  17.4  20.9  16.5  20.0  16.6  17.3  

Average   16.4  13.2  16.4  14.9  15.0  13.9  16.5  17.1  

Table 3 
Design variable ranges and the optimum values.   

Maximum TMD NTMD 

md (tons) 108  108.00  108.00 
cd (kNs/m) 300  122.55  82.67 
ked (kN/m) 5000  3667.04  3987.00 
uyd (m) 1.0  –  0.29  

Table 4 
The maximum displacements of the structures with and without TMD and NTMD (m).    

Linear structure Nonlinear structure 

Name Component W/O with TMD with NTMD W/O with TMD with NTMD 

Imperial Valley-06 H-E06140  0.217  0.156  0.152  0.171  0.144  0.158 
Imperial Valley-06 H-E07140  0.226  0.181  0.188  0.245  0.218  0.221 
Irpinia, Italy-01 A-STU000  0.095  0.082  0.085  0.080  0.082  0.084 
Superstition Hills-02 B-PTS225  0.365  0.213  0.265  0.328  0.309  0.328 
Loma Prieta STG000  0.154  0.121  0.114  0.158  0.139  0.144 
Erzican, Turkey ERZ-NS  0.282  0.268  0.266  0.300  0.311  0.314 
Cape Mendocino PET000  0.214  0.202  0.200  0.145  0.139  0.138 
Landers LCN260  0.137  0.160  0.168  0.226  0.245  0.260 
Northridge-01 RRS228  0.657  0.539  0.575  0.488  0.479  0.480 
Northridge-01 SYL090  0.214  0.225  0.221  0.253  0.275  0.280 
Kocaeli, Turkey IZT180  0.118  0.058  0.054  0.097  0.058  0.054 
Chi-Chi, Taiwan TCU065-E  0.437  0.313  0.383  0.390  0.333  0.346 
Chi-Chi, Taiwan TCU102-E  0.188  0.165  0.164  0.354  0.395  0.417 
Duzce, Turkey DZC180  0.183  0.151  0.148  0.157  0.132  0.144  

Fig. 5. The average percentage reduction of the maximum displacements of the controlled linear and nonlinear structures under the near-field earthquakes.  
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elastoplastic TMDs optimized based on a set of white noise excitations 
using the MBF algorithm, in the response of linear and nonlinear ten- 
story shear buildings subjected to a set of near-field earthquakes pre-
sented in [47] is investigated and compared. The properties of both 
linear and nonlinear structures are the same as the structures used in the 
first example. However, for the nonlinear structure, the yielding 
displacement of each story is assumed to be equal to 0.01 m. The design 
variable ranges and the optimum values are presented in Table 3. 
Table 4 lists the maximum displacements of the linear and nonlinear 
structures with and without TMDs. 

According to Table 4 and Fig. 5, the average percentage reductions of 
the maximum displacements of the 10-story structures equipped with 
the elastic and elastoplastic TMDs under near-field earthquakes are 
11.75% and 8.95%, respectively. Moreover, using the dampers on the 
top story of the linear and nonlinear structures led to a 16% and 4.7% 
reduction in the maximum displacement of the structures under the 
earthquakes, respectively. In other words, in nonlinear structures, once 
over yield strength, plastic deformation-mediated stiffness variations 
may result in modified mechanical properties, which causes TMDs to 
lose their efficiency. Furthermore, the vibration reduction efficiency of 
the elastoplastic TMD is reduced because of detuning effects, as sug-
gested by the results. 

6. Conclusion 

This study proposed a new optimization method for the optimal 
design of tuned mass dampers using the Mouth Brooding Fish algorithm 
based on a set of white noise excitations. The proposed method was 
evaluated using a ten-story linear structure subjected to fourteen near- 
field earthquakes. The results indicated higher efficiency of the pro-
posed method in the optimal tuning of TMDs compared to several other 
methods, e.g., the genetic algorithm, multi-objective cuckoo search al-
gorithm, charged system search algorithm, and chaotic optimization 
algorithm. Afterward, the effectiveness of the elastic and elastoplastic 
TMDs optimized using the proposed method in reducing the maximum 
displacement of the linear and nonlinear 10-story structures under the 
near-field earthquakes was assessed. According to the results, the elastic 
TMD was more efficient in reducing the maximum displacement of the 
structures than elastoplastic TMD. Additionally, the elastic and elasto-
plastic TMDs were more effective in reducing the maximum displace-
ment of linear structure than nonlinear structure. 
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