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Abstract
In many developing countries, due to economic constraints, a single station on a river reach is often equipped to record flow 
variables. On the other hand, hydrographs at the upstream sections may also be needed for especially assessing flooded areas. 
The upstream flow hydrograph prediction is called the reverse flood routing. There are some reverse flood routing pocedures 
requiring sophisticated methods together with substantial data requirements. This study proposes a new reverse flood rout-
ing procedure, based upon the simple kinematic wave (KW) equation, requiring only easily measurable downstream stage 
data. The KW equation is first averaged along a channel length at a fixed time, t, assuming that channel width is spatially 
constant, and then the spatially averaged equation is averaged in time, Δt. The temporally averaged terms are approximated as 
the arithmetical mean of the corresponding terms evaluated at time t and t + Δt. The Chezy roughness equation is employed 
for flow velocity, and the upstream flow stage hydrograph is assumed be described by a two parameter gamma distribution 
(Pearson Type III). The spatially averaged mean flow depth and lateral flow are related to the downstream flow stage. The 
resulting routing equation is thus obtained as a function of only downstream flow stage, meaning that the method mainly 
requires measurements of downstream flow stage data besides the mean values of channel length, channel width, rough-
ness coefficient and bed slope. The optimal values of the parameters of reverse flood routing are obtained using the genetic 
algorithm. The calibration of the model is accomplished by using the measured downstream hydrographs. The validation 
is performed by comparing the model-generated upstream hydrographs against the measured upstream hydrographs. The 
proposed model is applied to generate upstream hydrographs at four different river reaches of Tiber River, located in central 
Italy. The length of river reaches varied from 20 to 65 km. Several upstream hydrographs at different stations on this river are 
generated using the developed method and compared with the observed hydrographs. The method predicts the time to peak 
with less than 5% error and peak rates with less than 10% error in the short river reaches of 20 km and 31 km. It also predicts 
the time to peak and peak rate in other two brances of 45 km and 65 km with less than 15% error. The method satisfactorily 
generates upstream hydrographs, with an overall mean absolute error (MAE) of 42 m3/s.

Keywords  Reverse flood routing · Kinematic wave · Flow stage · Gamma distribution · Hydrograph · Peak rate · Time to 
peak · Genetic algorithm

Introduction

Flow rate at a river section is required for many purposes 
including river restoration, navigation, design of flood con-
trol structures, reservoir operations, assessment of climate 

change effects and mitigation of drought impacts. Since flow 
rate is a product of cross section and velocity, the velocity 
and topographic cross-section measurements are required. 
For that purpose, channel section is equipped with hydro-
metric sensors for flow stage and current meter for flow 
velocity measurements (Moramarco et al. 2005).

In many cases, especially in developing countries, due 
to economic constraints, a single station on a river is often 
equipped to record flow rate. On the other hand, hydrographs 
at the upstream sections may be needed for especially assess-
ing flooded areas, and evaluating drought and climate change 
effects (Das 2009). The hydrograph at a gauging station 
may have quite different characteristics than the one at the 
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upstream section due to number of reasons such as different 
resistance, lateral inflow, drainage area and channel storage 
(Doria and Tanda 2012).

The reverse flood routing can be defined as the upstream 
hydrograph prediction using the channel reach geometric and 
downstream hydrograph characteristics (Doria and Tanda 
2012). There are several reverse flood routing methods such 
as: (1) the numerical solution of the St.Venant equations 
(Eli et al. 1974; Szymkiewicz 1996; Dooge and Bruen 2005; 
Bruen and Dooge 2007; Artichowicz and Szymkiewicz 
2009), (2) the employment of the Muskingum method (Das 
2009), (3) the Bayesian geostatistical approach (Doria and 
Tanda 2012) and (4) the basic conservation of mass principle 
(Zucco et al 2015). When Eli et al. (1974) performed the 
reverse flood routing at James River in Virginia by employ-
ing the St. Venant equations, they observed the numerical 
instabilities especially at low discharges. Other studies also 
observed strong oscillations for sharp hydrographs and step 
waves when performing the reverse flood routing using the 
St. Venant equations (Szymkiewicz 1996; Dooge and Bruen 
2005; Bruen and Dooge 2007). Bruen and Dooge (2007) 
stated that the parameters related to the discreatization may 
have influence on the numerical solution causing instabili-
ties. Das (2009) indicated the separate calibration of the 
Muskingum method before the application for the reverse 
flood routing. In the case of the reverse flood routing using 
the Bayesian geostatistical approach, the upstream hydro-
graph is treated as a random function defined by statisti-
cal properties and some sort of degree of continuity and 
smoothness is imposed on the hydrograph shape (Doria and 
Tanda 2012).

Application of the reverse flood routing methods of the 
St. Venant equations and the Muskingum method requires 
substantial data on river reach geometry and flow variables. 
In addition, these methods were, so far, applied to regular 
rivers having subcritical flows (Doria and Tanda 2012). 
Although the Bayesian geostatistical reverse flood routing 
method can be applied to more general cases, it requires sim-
ilar input requirements as the other methods since it routes 
the upstream hydrograph many times in downstream direc-
tion by employing the one-dimensional St. Venant equations 
to produce the downstream hydrograph as close as possible. 
The basic continuity equation-based reverse flood routing 
(Zucco et al 2015) method also requires not only discharge 
hydrograph but also cross-sectional area measurements.

This study proposes a new method coupling the continu-
ity equation with the kinematic wave approximation of the 
momentum equation. The method first averages the depth-
averaged kinematic wave equation along the channel length 
and it then performs the temporal averaging of the resulting 
equation. A two-parameter gamma distribution is assumed 
to describe the upstream hydrograph. The spatially averaged 
flow depth and lateral flow are related to the downstream 

flow stage. The optimal values of parameters are obtained 
by the genetic algorithm by producing the downstream flow 
stage hydrograph as close as possible. The flood routing 
equation developed in this study is just a function of flow 
stage whose measurement is fairly inexpensive and easy 
(Moramarco et al 2005; Perumal et al. 2007; Spada et al 
2017;). The model requires data of downstream flow hydro-
graph, mean channel width, mean channel length, mean 
channel slope and mean roughness for a channel reach. In 
other words, only downstream stage measurement is needed 
and other data can be obtained from available satellite obser-
vations (Bjerklie et al. 2003, 2005).

Reverse flood routing model

The reverse flood routing model is based on the continuity 
equation:

and the kinematic wave approximation

where A is cross-sectional area, Q is flow rate, ql is unit 
lateral flow, u is flow velocity, h is flow depth, � = Cz

√
So , 

and β = 1.5 if Chezy’s equation is used, Cz is the Chezy’s 
coefficient, and So = Sf, So is channel bed slope and Sf is fric-
tion slope (energy gradient).

Assuming that river cross section is almost rectangular 
and channel width is constant, equation can be written as

Substitution of Eq. (2) into Eq. (3) results in the depth-
averaged kinematic wave equation:

The kinematic reverse flood routing equation starts with 
spatially averaging Eq. (4) along a channel reach length (L) 
at a fixed time (t) as follows:

where Lu and Ld are the upstream and downstream station 
locations, respectively, i.e., L = Ld—Lu. Applying the Liebniz 
integral rule to the first term on the left-hand side of Eq. (5) 
and recalling that α and β are constant parameters,
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where hd is flow depth at the downstream section and hu is 
the flow depth at the upstream station.

Assuming that the channel length (L) does not change 
spatially at the station locations, i.e., dL

dx

|||L=Ld = 0 and 
dL

dx

|||L=Lu = 0 , then Eq. (6) becomes

where h =
1

L

Ld∫
Lu

hdx is spatially averaged mean flow depth and 

ql =

(
1

L

Ld∫
Lu

qldx

)
 is spatially averaged mean unit lateral flow.
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The spatially averaged flow depth,h(t) , and the spatially 
averaged lateral flow, q(t) , are expressed as power functions 
of flow stage at the downstream station as:

where η and δ are coefficients whose optimal values are to 
be estimated. Similarly,

When Eqs. (11–14) are substituted into Eq.  (10), the 
result is:
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Equation (7) is now averaged over a time period of Δt, 
i.e., from t to t + Δt, as follows:

This averaging operation would result in the following 
equation:

where the symbol ⟨.⟩ stands for temporally averaged term, 
i.e., term that is averaged over time Δt. The temporally-
averaged terms in Eq. (9) are approximated by assuming that 
each term averaged-over time Δt is approximately equal to 
the arithmetic mean of the corresponding terms at time t and 
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employed in storage routing (PULS) and Muskingum flood 
routing methods (Henderson 1989). Equation (9) can thus 
be written as follows:
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Solving Eq. (15) for hd(t + Δt), the result is the following 
reverse flood routing equation:

The two-parameter gamma distribution (Pearson Type 
III distribution) (Moramarco et al. 2008) is proposed for 
describing the upstream flow stage hydrograph:

where hb is the flow depth at base flow, hp is the peak depth 
value of the distribution, tpu is the time to peak when the 
peak value of the distribution occurs, and γ is the distribu-
tion shape parameter, which assumes values in [1–2] (Mora-
marco et al. 2008). In Eq. (17), there are three parameters to 
be estimated, namely hp , tpu and γ. Note that the peak value of 
the upstream flow depth is the summation of hb and hp , i.e., 
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hpu = hb + hp. In a similar fashion, the upstream hydrograph 
at (t + Δt) can be expressed as:

Zucco et al (2015) also employed the same distribution 
(Pearson Type III) for expressing the upstream flow dis-
charge hydrograph. Equation (16) is the basic reverse flood 
routing equation, while Eqs. (17–18) are the auxiliary ones. 
The reverse flood routing equation uses flow stage at the 
downstream station and mean values of channel length, 
channel width, channel bed slope and channel roughness 
coefficient. It has basically five parameters (η, δ, hp , tpu and 
γ) whose optimal values were estimated by the genetic algo-
rithm. Note that in the basic equation (Eq. 16), � = Cz

√
So 

and β = 1.5 and once the flow depth is obtained, then it is 
easy to generate the upstream and downstream flow dis-
ch a rge  hy d ro g ra p h s  a s  Qu(t) = B

(
�h�

u
(t)
)
 a n d 

Qd(t) = B
(
�h

�

d
(t)
)
.

Genetic algorithm and its implementation

Genetic algorithm (GA)

GA is an evolutionary search algorithm which has three 
basic units (bit, gene and chromosome) and five operations 
(initial gene pool generation, chromosome fitness evaluation, 
chromosome selection, cross-over and mutation). The initial 
gene pool can be generated using some random functions. 
The chromosome fitness is evaluated in two steps by first 
substituting each chromosme into the objective function to 
find the respective value and then by dividing its value to the 
total value. The selection procedure is randomly performed 
by using either the roulette wheel method or by employing 
the ranking procedure. After the selection stage, the par-
ent chromosome is formed before subjecting them to the 
crossover operation to generate new off-springs. After the 
crossover operation, the mutation can also be used to obtain 
diverse off-springs by simply reversing about 5% of the bits. 
Details on GA basics and operations can be obtained from 
Goldberg (1989), Sen (2004), Tayfur (2012, 2015).

For this study, the GA was employed to obtain the opti-
mal values of the reverse flood routing model parameters by 
minimizing the mean absolute error (MAE) as an objective 
function:
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where N is the number of observations, hdmodel
 is the model-

produced downstream flow stage, and hdmeasured
 is the meas-

ured downstream flow stage.

GA model implementation

GA is applied to obtain the optimal values of model parame-
ters by minimizing the mean absolute error (MAE), Eq. (19). 
To start the iterations, random values are assigned within the 
search space for each parameter. The search space for the 
following parameters is decided based upon the information 
on the downstream stage hydrograph for each flood event as:

hb ≤ hp ≤ hpd , where hpd is downstream hydrograph peak 
stage and trd ≤ tpu ≤ tpd , where trd is the time when the stage 
hydrograph starts rising at the downstream station and tpd is 
the time when the peak rate occurs at the downstream sta-
tion. The optimal values of other parameters are searched 
within [0—1] for δ, η and [1—2] for γ in agreement with 
(Moramarco et al. 2008).

GA has employed 80 chromosomes in the initial gene 
pool, 80% cross-over rate and 4% mutation rate and 2000 
iterations. The evolver GA solver for Microsoft Excel (Pali-
sade Corporation, 2012) package program, which employs 
the Recipe Solving Method to minimize the objective func-
tion under specified constraints, is employed. It takes a very 
short CPU time, in the order of seconds, to run the program 
for thousands of iterations with 80 chromosomes in the gene 
pool.

Reverse flood routing procedure

The reverse flood routing procedure can be simply summa-
rized as follows:

1.	 Initial values are randomly assigned for hp , tpu γ, η, δ 
within the search space for each parameter.

2.	 Upstream flow stage hydrographs hu(t) and hu(t + Δt) are 
computed using Eqs. 17 and18.

3.	 Downstream flow stage hydrograph hd(t + Δt) is com-
puted using Eq. 16.

4.	 Mean absolute error for model produced downstream 
flow stage hydrograph and measured downstream flow 
stage hydrograph is computed using Eq. 19.

5.	 Current values of parameters ( hp , tpu γ, η, δ) are then 
updated.

6.	 Minimization of the error function (Eq. 19) is continued, 
while trying to reach the optimal values of parameters 
by performing steps from 2 to 5.

7.	 Iterations are stopped when the global minimum error 
is reached and the optimal values of parameters are 
obtained.
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Note that a single iteration in GA involves steps from 2 
to 5. At the end of a certain number of iterations (or satis-
fying predetermined tolerance limit), the downstream flow 
stage hydrograph is generated as close to the observed down-
stream flow stage hydrograph as possible. The parameter 
values that result in the best hydrograph are considered as 
optimal values which are employed in Eq. (17) to produce 
the upstream flow stage hydrograph. Once this is achieved, 
the upstream flow discharge hydrograph is produced by 
employing Qu(t) = B

(
�h�

u
(t)
)
.

Calibration and validation of the model

The calibration of the model is performed by simulating the 
measured downstream stage hydrographs as close as possi-
ble by minimizing the error function (Eq. 19) and conse-
quently finding the optimal values of the model parameters 
( hp , tpu γ, η, δ) by the GA. Note that discharge is computed 
by Q =  huB where h is the flow depth, u is the flow velocity, 
and B is the channel width. The flow velocity is computed 
as u = �h�−1 where � = Cz

√
So  , and β = 1.5, Cz is the 

Chezy’s coefficient, and So is the channel bed slope. Flow 
depth at the downstream section is computed by Eq. 16. 
Since, at a river reach, the channel width, the channel slope 
and the roughness coefficient are known, one can easily 
compute the flow discharge by Qd(t) = B

(
�h

�

d
(t)
)

 . The 
observed downstream section flow stage hydrographs are 
simulated as close as possible by minimizing the error func-
tion (Eq. 19) between the observed and model produced 
stage hydrographs using the steps outlined in the “Reverse 
flood routing procedure” section above. Therefore, the simu-
lations of downstream stage hydrographs (and consequently 
the downstream discharge hydrographs), given in the section 
“Reverse flood routing application” are in fact the simula-
tions as a result of the calibration procedure.

During the calibration procedure, at each iteration, the 
GA-based model, at the same time, computes the upstream 
stage hydrograph by Eq. 17. That is, while simulating the 
observed downstream stage hydrograph as close as possible 
by minimizing the error function (the calibration procedure), 
the model at the same time produces the upstream stage 
hydrograph by Eq. (17), as presented in the “Reverse flood 
routing procedure” section above. The upstream section 
flow stage and hydrograph simulations given in the section 
“Reverse flood routing application” are in fact the simula-
tions as a result of the validation procedure. Note that the 
model only minimizes the error between observed down-
stream flow stage and model-produced downstream flow 
stage hydrographs (Calibration Stage) while generating the 
upstream stage hydrographs (consequently the upstream 
discharge hydrographs) (Validation Stage). The comparison 

between the observed upstream stage hydrographs (and 
discharge hydrographs) and the model-produced upstream 
stage hydrographs is in fact the simulations as a result of the 
model validation procedure.

Reverse flood routing application

River reaches

The model was applied to reverse flood routing in four 
different reaches on Tiber River in central Italy. Figure 1 
shows the location of the hydrometric stations while Table 1 
summarizes the main characteristics of the selected river 
reaches. Each gauged section is equipped with a remote 
ultrasonic water-level gauge, and velocity measurements are 
carried out by current meter. Several accurate flow measure-
ments were available which allowed the estimation of the 

Fig. 1   Gauging stations and river reaches in Tiber River Basin
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rating curve for each section (Moramarco et al. 2005, Tayfur 
2007). As summarized in Table 1, the drainage area size var-
ies 935 km2 (S. Lucia) to 5280 km2 (M. Molino), the reach 
length varies from 20 km (P. Felcino-P. Nuovo reach) to 
65 km (S. Lucia-P. Nuovo reach), average Chezy roughness 
coefficient value varies from 24 m0.5/s (S. Lucia-P. Felcino 
reach) to 31 m 0.5/s (P. Nuovo- M. Molino reach), mean slope 
varies from 0.0016 (S. Lucia-P. Felcino reach) to 0.0009 (P. 
Nuovo- M. Molino reach), mean channel width varies from 
35 m (S. Lucia- P. Felcino reach) to 50 m (P. Nuovo- M. 
Molino reach), and mean travel time varies from 1.5 h (P. 
Felcino-P.Nuovo) to 5.5 h (S. Lucia-P.Nuovo) (Moramarco 
et al 2005; Tayfur et al 2007, 2009; Tayfur and Moramarco 
2008; Zucco et al 2015).

Upstream hydrograph predictions

The measured downstream flow stage hydrograph was gen-
erated as closly as possible (i.e., minimizing the global error 

between the model-produced downstream stage data and 
measured downstream stage data), while finding the optimal 
values of the reverse routing model parameters. The figures 
given next involve simulations of measured upstream and 
downstream stage and discharge hydrographs. The measured 
upstream and downstream hydrographs were obtained by 
using the measured values of flow depth (h), flow velocity 
(u) and channel width (B) at the gauging stations (i.e., Q =  
huB) while the simulated discharge hydrographs were com-
puted by Qu(t) = B

(
�h�

u
(t)
)
,Qd(t) = B

(
�h

�

d
(t)
)
 , � = Cz

√
So 

and β  = 1.5 where, along with computed flow stage, the aver-
age values given in Table 1 were used for channel width, 
slope and roughness.

For each river reach, four simulations were performed 
and related performance measures are given in Tables 2, 3, 4 
and 5, while for the sake of brevity only two simulations for 
each river reach are shown in Figs. 2, 3, 4, 5, 6, 7, 8 and 9.

Table 1   Main characteristics of river reaches. Sources: Moramarco et al (2005), Tayfur et al (2007), Tayfur and Moramarco (2008), Tayfur et al 
(2009), Zucco et al (2015)

Reach # Bounded sections Drainage area 
(km2)

Mean reach 
length (km)

Mean Cz rough-
ness (m0.5/s)

Mean slope Mean channel 
width (m)

Mean 
travel 
time (h)

1 S. Lucia 935 45 24 0.0016 35 4
P. Felcino 2035

2 S. Lucia 935 65 26 0.0014 45 5.5
P. Nuovo 4145

3 P. Felcino 2035 20 28 0.0012 47 1.5
P. Nuovo 4145

4 P. Nuovo 4145 31 31 0.0009 50 2.5
M. Molino 5280

Table 2   Optimal values of the model parameters and the perfor-
mance measures for the events observed in S. Lucia-P. Felcino river 
reach (hpu: upstream peak stage, tpu: upstream stage peak time, γ, η, 

δ: parameters, Qd: downstream peak rate, Qu: upstream peak rate, hd: 
downstream stage, hu: upstream stage)

MAE: mean absolute error, EQp(%): peak rate percent error, Etp(%): time to peak percent error
Subscript d stands for downstream station while subscript u stands for upstream station
 + sign for EQp(%) means over estimation and for Etp(%) means late rise
– sign for EQp(%) means under estimation and for Etp(%) means early rise

Event Model parameters MAE Upstream station Downstream 
station

hpu (m) tpu (h) γ η δ × 10–3 Qd (m3/s) Qu (m3/s) hd (m) hu (m) EQp (%) Etp (%) EQp (%) Etp (%)

December1990 4.47 14.2 1.33 0.96 0.414 31.6 82.0 0.020 1.35 0.0 41.6− 10.7− 27.1−
May 1995 1.06 95.5 1.02 0.55 0.488 24.4 10.1 0.033 0.34 10.1− 1.0− 0.0 2.9 + 
June 1997 3.81 37.0 1.07 0.86 0.403 35.2 29.4 0.026 0.50 4.9− 14.1− 7.2− 22.2−
February 2004 1.34 27.1 1.03 0.45 0.449 21.9 14.7 0.018 0.30 28.6 +  10.0− 15.5− 9.5 + 

Mean: 28.3 34.1 0.024 0.62 10.9 16.8 8.4 15.4
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Table 5   Optimal values of the model parameters and the perfor-
mance measures for the events observed in P. Nuovo-M. Molino river 
reach (hpu: upstream peak stage, tpu: upstream stage peak time, γ, η, 

δ: parameters, Qd: downstream peak rate, Qu: upstream peak rate, hd: 
downstream stage, hu: upstream stage)

(MAE: mean absolute error, EQp(%): peak rate percent error, Etp(%): time to peak percent error
Subscript d stands for downstream station while subscript u stands for upstream station
 + sign for EQp(%) means over estimation and for Etp(%) means late rise
– sign for EQp(%) means under estimation and for Etp(%) means early rise.)

Event Model parameters MAE Upstream station Downstream 
station

hpu (m) tpu (h) γ η δ × 10–3 Qd (m3/s) Qu (m3/s) hd (m) hu (m) EQp (%) Etp (%) EQp (%) Etp (%)

November 1997 2.38 22.6 1.12 0.74 0.858 6.0 69.1 0.014 1.21 3.1− 13.4− 3.2− 3.0−
December 1997 1.70 18.5 1.10 0.79 0.542 4.1 32.4 0.015 0.90 13.6 +  5.1− 0.0 1.9 + 
April 1998 2.64 76.2 1.02 0.99 0.676 8.6 61.9 0.018 1.08 18.2− 6.1− 11.5− 2.3 + 
February 2004 2.40 24.1 1.11 0.98 0.571 22.3 52.8 0.022 0.66 5.7− 2.1 +  6.2− 7.0 + 

Mean: 10.2 54.0 0.017 0.96 10.1 6.6 5.2 3.5

Fig. 2   Flow stage (above) and flow discharge (below) hydrograph simulations for event May 1995 in S. Lucia and P. Felcino river reach
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S. Lucia‑P. Felcino river reach

The length of this reach is about 45 km with, on the aver-
age, 0.0016 slope, 35 m channel width, 24 m0.5/s roughness 
coefficient, and the average travel time is 4 h. Figures 2 and 
3 present generated upstream and downstream flow stage 
and discharge hydrographs for events observed in May 1995 
and February 2004, while Table 2 summarizes the perfor-
mance measures for these plus December 1990 and June 
1997 events. For all these events, the downstream stage 
hydrographs are simulated satisfactorily (Figs. 2 and 3). 
This is because these are used for the calibration of model 
parameters. The optimal values of parameters that have 
resulted in these simulations are summarized in Table 2. 
The downstream flow discharge hydrographs are also cap-
tured satisfactorily. Time to peak, peak rate, rising and reces-
sion limbs are all simulated (Figs. 2 and 3). The primary 

objective of this study is to produce the upstream hydro-
graphs, especially the upstream flow discharge hydrograph. 
As seen in Figs. 2 and 3, these hydrographs are produced 
satisfactorily although the flood volumes are underestimated, 
especially in the case of May 1995 flood event. The rising 
and recession periods are well captured. The model has pro-
duced hydrographs reaching peak values earlier for all the 
events (Figs. 2 and 3, Table 2). The peak rates are slightly 
underestimated (Fig. 2, Table 2) or overestimated (Fig. 3, 
Table 2). Table 2 summarizes the performance measures for 
these simulations. As it can be seen, the time to reach peak 
rates is captured within, on average, less than 10.0% error. 
Only for the December 1990 event, the time to reach peak 
rate takes longer with 42% error. Similarly, for this event, 
MAE = 1.35 m for the upstream flow depth. The average 
error for the other three events is MAE = 0.38 m. The model 

Fig. 3   Flow stage (above) and flow discharge (below) hydrograph simulations for event February 2004 in S. Lucia and P. Felcino river reach
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has produced, on average, MAE = 34.1 m3/s in predicting the 
upstream discharge (Table 2).

S. Lucia‑P. Nuovo river reach

This reach is 65 km long with So = 0.0014, B = 45 m, Cz = 26 
m0.5/s and Tl = 5.5 h. Four events are simulated and related 
parameter values and error measures are summarized in 
Table 3. The model has performed poorly for this reach, 
may be due to longer wave travel time of 5.5 h and longer 
reach length of 65 km. As it can be seen in Fig. 4, the peak 
rate is underestimated at the upstream station, while the peak 
of June 1997 event (Fig. 5) is overestimated. As summarized 
in Table 3, there is, on average, 29% error in estimating the 

upstream peak rate and 15% in estimating the timing of the 
peak value. The overall, MAE = 41.0 m3/s and hu = 0.77 m.

P. Felcino‑P. Nuovo river reach

The reach length is 20 km with So = 0.0012, B = 47 m, 
Cz = 28 m0.5/s and Tl = 1.5  h. Table  4 summarizes the 
optimal values of model parameters and error measures 
for four events simulations. Figures 6 and 7 show simula-
tions of hydrographs of two events. The model has pro-
duced the hydrographs satisfactorily, capturing the rising 
and recession limbs and as well as peak rates and time to 
reach peak rates although the flood volumes are underes-
timated, especially in the case of December 1995 flood 

Fig. 4   Flow stage (above) and flow discharge (below) hydrograph simulations for event May 1995 in S. Lucia and P. Nuovo river reach
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event. Only in the case of event April 1993, it has overes-
timated the upstream peak discharge by 23.7%. On aver-
age, for the other three events, it has less than 10% error 
in predicting the peak rates of upstream hydrograph. It 
has generally captured the peak rates with no delay or 
early rise. Overall, it has made less than 5% error when 
capturing the time to reach the peak values (Figs. 6, 7, 
Table 4). Overall, MAE = 41.6 m3/s is computed for the 
upstream hydrograph simulation and MAE = 0.62 m for 
upstream stage hydrographs (Table 4). The downstream 
and upstream stage and discharge hydrographs for the Feb-
ruary 2004 event are satisfactorily simulated (Figs. 6 and 
7). This is also true for the downstream hydrograph due 
to the December 1995 event. Yet, the model cannot pre-
serve the volume the upstream hydrograph for December 

1995 event. The observed upstream hydrograph has a wide 
equilibrium segment. In other words, it has a longer equi-
librium period which the model cannot capture.

Nuovo‑M. Molino river reach

The reach is 31 km long with, on average, bed slope of 
So = 0.0009, channel width of B = 50 m, and roughness coef-
ficient of Cz = 31 m0.5/s, and the wave travel time is 2.5 h. 
For this reach, four event hydrographs are simulated and 
the optimal values of model parameters and the related 
error measures are summarized in Table 5. Figures 8 and 9 
show the simulated hydrographs for events that occurred in 
April 1998 and February 2004. The upstream stage and dis-
charge hydrographs of the April 1998 event are satisfactorily 

Fig. 5   Flow stage (above) and flow discharge (below) hydrograph simulations for event June 1997 in S. Lucia and P. Nuovo river reach
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reproduced with slightly early rise and underestimation 
(Fig. 8, Table 5) of peak rate and flood volume. The hydro-
graphs of February 2004 event are reproduced satisfactorily 
in terms of not only the rising and recession limbs but also 
the time to peak and peak rates (Fig. 9, Table 5). The model 
generally has reached the peak rate early and underestimated 
the peak rate with low error for all the four events observed 
in this particular river reach. The model, on average, has 
5% error in timing of the peak rate and 10% error in pre-
dicting the peak rate at the upstream station. These errors 
are lower for the downstream station. It has produced, on 
average, MAE = 54 m3/s and MAE = 0.96 m for upstream 
hydrograph rate and flow depth, respectively.

Discussion of results

The reverse flood routing model has satisfactorily generated 
the upstream stage and discharge hydrographs. In the P. Fel-
cino-P. Nuovo River reach of 20 km and in the P. Nuovo-M. 
Molino reach of 31 km, the model has captured the timing 
of the peak with around 5% error and had, on average, about 
10% error in capturing the peak rate. As the reach length 
becomes longer, the rate of error also increases. Generally, 
as the reach length becomes longer, the model produces 
hydrographs tended to reach the peak rate earlier. While the 
model makes around 10% error in capturing the peak in 20, 
31 and 45 km river reaches, this error has increased to 30% 
in the 65 km river reach.

Fig. 6   Flow stage (above) and flow discharge (below) hydrograph simulations for event December 1995 in P. Felcino and P. Nuovo river reach
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The upstream peak rates of hydrographs observed and 
simulated in all these river reaches with different lengths 
ranging from 20 to 65 km are predicted, on average, with 
less than MAE = 42 m3/s. Similarly, the flow depths at the 
upstream stations of the four gauging sections are also pre-
dicted with, on average, MAE = 0.75 m.

The errors are low for predicting the stage at the down-
stream station since calibration is carried out by minimiz-
ing the error between observed stage and model produced 
stage hydrographs at the downstream station. Accordingly, 
the model has satisfactory simulated flow hydrographs at 
the downstream station. It has caused, on average, less than 
6% error in capturing the peak and 8% error in capturing the 
timing of the peak at the downstream stations.

Considering that no information is used for the upstream 
end, the reverse flow routing model can be considered 

satisfactory for short (20 km) and as well as long river reach 
(up to 45 km) with an intermediate drainage area. This is 
important from a hydrological point of view, considering 
that mainly the stage observed at the downstream end can 
suffice for obtaining satisfactory results in terms of reverse 
flow routing at the upstream end.

The model has performed very poorly when applied to 
predict the upstream hydrograph of a longer reach of 96 km, 
which is the reach between Santa Lucia and Monte Molino 
sections (see Fig. 1).

At river reach of 45 km of S. Lucia and P. Felcino and at 
20 km reach of P. Felcino and M. Molino, the model tends 
to underestimate the flood volumes. It also tends to reach the 
peak rates earlier. At 65 km river reach of S. Lucia and P. 
Nuovo, the model’s poor performance is observed especially 
in capturing the peak rates. At 31 km reach of P. Nuovo and 

Fig. 7   Flow stage (above) and flow discharge (below) hydrograph simulations for event February 2004 in P. Felcino and P. Nuovo river reach
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M. Molino, the model generally captures and estimates the 
peak rates with less than 5% error. The model cannot simu-
late double (or multiple) peak hydrographs. The model can-
not also satisfactorily simulate hydrographs having longer 
equilibrium periods.

Concluding remarks

The reverse flood routing may be necessary for especially 
estimating flooding areas upstream region of a gauging sta-
tion. For that reason, many reverse flood routing procedures 
are developed, requiring sohpisticated methodologies and 
substantial data requirements. This study developed a simple 
approach requiring easily measurable stage data.

The reverse flood routing model is based on the continu-
ity equation and kinematic wave appoximation. It spatially 
averages the depth averaged kinematic wave equation along 
a channel length (L) at a fixed time, t, and then carries out 
the temporal averaging of the resulting terms over a time 
period of t + Δt to obtain the flood routing equation. The 
model simplifies the natural channel by assuming that the 
channel length and cross-sectional area are spatially con-
stant and by approximating the temporally averaged terms as 
the arithmetical mean of the corresponding terms evaluated 
at time t and t + Δt. The model assumes a two-parameter 
gama distirubtion to define the upstream stage hydrograph 
and relates the spatially averaged lateral flow and mean flow 
depth to the downstream flow stage. The resulting basic rout-
ing equation is thus obtained as a function of only the down-
stream flow stage. Accordingly, the method mainly requires 

Fig. 8   Flow stage (above) and flow discharge (below) hydrograph simulations for event April 1998 in P. Nuovo and M. Molino river reach
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the measurement of downstream flow stage data. In addition, 
one needs to provide mean values for channel length, chan-
nel width, roughness coefficient bed slope and wave travel 
time. The optimal values of the parameters of the basic rout-
ing equation are obtained using the genetic algorithm.

The model is calibrated using the measured dowstream 
hydrographs while it is validated using the measured 
upstream hydrographs. The model is applied to generate 
upstream hydrographs at four different river reaches of dif-
ferent lengths ranging from 20 to 65 km on Tiber River, 
Italy. The model can generate upstream stage and discharge 
hydrographs at river sections whose reach length is not 
longer than 45 km. It can overall capture hydrograph shape, 
time to peak and peak rate with less than 10% error. As the 
reach length becomes shorter (such as 20 km), the capturing 
of time to peak becomes even better. As the reach length 

becomes longer (such as 65 km), the generated upstream 
hydrographs tend to rise to peak rate earlier and the model 
mostly underestimates the peak rate with about 30% error. 
However, the model tends to underestimate the flood vol-
umes. It cannot generate double peak (or multi-peak) hydro-
graphs. It cannot also capture the prolonged equilibrium 
sections of the measured hydrographs. An application to 
a river reach longer than 65 km, such as 96 km between 
S. Lucia and M. Molino, could not reproduce satisfactorily 
the upstream hydrographs. Neverthless, requiring only the 
stage data measurements that are easy and economical to 
measure has important implications for sites having poor 
gauging stations where some water resources projects may 
be developed. The other required information on mean val-
ues of channel slope, roughness, width and length can be 

Fig. 9   Flow stage (above) and flow discharge (below) hydrograph simulations for event February 2004 in P. Nuovo and M. Molino river reach
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easily obtained using the up to date technology, such as the 
satellite observations.

We can restate that this model can be used for the reverse 
flood routing for a river reach of up to 45 km. It may also be 
cautiously used for a river reach up to 65 km, but not longer 
than 65 km.
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