Correction to: "Curved space and particle physics effects on the formation of Bose-Einstein condensation around a Reissner-Nordstrøm black hole"

Recai Erdem ${ }^{\text {a }}$ (D) Betül Demirkaya ${ }^{\text {b }}$, Kemal Gültekin ${ }^{\text {c }}$

Department of Physics, İzmir Institute of Technology, Gülbahçe, Urla, 35430 İzmir, Turkey

Received: 13 April 2022 / Accepted: 7 July 2022
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Correction to: Eur. Phys. J. Plus (2021) 136:972

https://doi.org/10.1140/epjp/s13360-021-01973-0

We have noticed that $\frac{-18}{5}$ in γ_{2} in Eq. (24) in our paper [1] should be replaced by $\frac{-9}{5}$. After correction, γ_{2} is replaced by

$$
\begin{equation*}
\gamma_{2}=2\left[\frac{-9}{5}+\frac{63}{40}\left(\frac{M}{Q}\right)^{2}\right] M \tag{1}
\end{equation*}
$$

Hence, Eqs. (25)-(27) in [1] are replaced by

$$
\begin{gather*}
\left(m^{2}-\omega^{2}\right)-\frac{M^{2}}{9 Q^{4}}\left(\frac{9}{5}-\frac{63}{40} \frac{M^{2}}{Q^{2}}\right)^{2}=0 \tag{2}\\
-\frac{3 M^{2}}{Q^{2}}\left(\frac{9}{5}-\frac{63}{40} \frac{M^{2}}{Q^{2}}\right)+\left(\frac{9}{5}-\frac{9}{20} \frac{M^{2}}{Q^{2}}\right)\left(\frac{4}{5}-\frac{9}{20} \frac{M^{2}}{Q^{2}}\right)+\left(q^{2}-m^{2}\right) Q^{2}=0, \tag{3}\\
\frac{2 M}{3 Q^{2}}\left(\frac{9}{5}-\frac{63}{40} \frac{M^{2}}{Q^{2}}\right)\left(\frac{9}{5}-\frac{9}{20} \frac{M^{2}}{Q^{2}}\right)-2\left(q Q \omega-m^{2} M\right)=0 \tag{4}
\end{gather*}
$$

Accordingly, the solutions (29)-(33) for m, ω, and q given in the paper [1] get the following revised forms:

$$
\begin{array}{cc}
m_{1}^{2}=-\frac{9\left(7 M^{4}+2 M^{2} Q^{2}\right)}{40 Q^{6}}, & m_{2}^{2}=\frac{9\left(7 M^{2}-8 Q^{2}\right)^{2}\left(4 Q^{2}-3 M^{2}\right)}{1600 Q^{6}\left(Q^{2}-M^{2}\right)}, \\
\omega_{1,2}=\mp \frac{3 i M\left(7 M^{2}+12 Q^{2}\right)}{40 Q^{4}}, & \omega_{3,4}=\mp \frac{3 i\left(7 M^{4}-22 M^{2} Q^{2}+16 Q^{4}\right)}{40 \sqrt{Q^{8}\left(M^{2}-Q^{2}\right)}}, \\
q_{1,2}=\mp \frac{3 i\left(17 M^{2}-8 Q^{2}\right)}{20 Q^{3}}, & q_{3,4}= \pm \frac{3 i M Q\left(27 M^{2}-28 Q^{2}\right)}{40 \sqrt{Q^{8}\left(M^{2}-Q^{2}\right)}}, \tag{7}
\end{array}
$$

where $\left\{m_{1}^{2}, \omega_{1,2}, q_{1,2}\right\}$ and $\left\{m_{2}^{2}, \omega_{3,4}, q_{3,4}\right\}$ are two different sets of solutions. We notice that $q_{1,2}$ are imaginary, so $\left\{m_{1}^{2}, \omega_{1,2}, q_{1,2}\right\}$ are not physical solutions. Therefore, only the set $\left\{m_{2}^{2}, \omega_{3,4}, q_{3,4}\right\}$ corresponds to physical solutions with the requirement $|Q|>M$. It is evident that these solutions cover a much wider ranges of m^{2}, ω, q than those in [1]. The new ranges are $1.44<m^{2} Q^{2}<\infty$, $1.2<\omega Q<\infty, 0<q Q<\infty$ where $m^{2} Q^{2}$ and ωQ are in the order of 1 for most of the values of M and $Q . q Q$ is in the order 10^{-1} for most of the values of M and Q.

Accordingly, ψ_{ω} in (28) in [1] gets the following revised form:

$$
\begin{aligned}
\psi_{\omega}= & \exp \left\{(\frac { \pm 3 M (7 M ^ { 2 } - 8 Q ^ { 2 }) } { 4 0 Q ^ { 4 } \sqrt { Q ^ { 2 } - M ^ { 2 } } }) \left[\left(2 M^{2}-Q^{2}\right)\left(\tan ^{-1}\left(\frac{M-r}{\sqrt{Q^{2}-M^{2}}}\right)-\tan ^{-1}\left(\frac{M-\mathrm{r}_{0}}{\sqrt{Q^{2}-M^{2}}}\right)\right)\right.\right. \\
& \left.-\sqrt{Q^{2}-M^{2}}\left(M \log \left(-2 M r+Q^{2}+r^{2}\right)-M \log \left(-2 M \mathrm{r}_{0}+Q^{2}+\mathrm{r}_{0}^{2}\right)+r-\mathrm{r}_{0}\right)\right]
\end{aligned}
$$

[^0][^1]Fig. $1\left|\psi_{\omega}\right|$ versus \bar{r} graph for $\bar{M}=10, \bar{Q}=17, \bar{r}_{0}=20$

Fig. $2\left|\psi_{\omega}\right|$ versus \bar{Q} graph for $\bar{M}=10, \bar{r}=20, \bar{r}_{0}=30$

$$
\begin{align*}
& +\left(\frac{3\left(6 M^{3}-4 M Q^{2}\right)}{40 Q^{2} \sqrt{Q^{2}-M^{2}}}\right)\left(\tan ^{-1}\left(\frac{M-r}{\sqrt{Q^{2}-M^{2}}}\right)-\tan ^{-1}\left(\frac{M-\mathrm{r}_{0}}{\sqrt{Q^{2}-M^{2}}}\right)\right) \\
& -\frac{3\left(3 M^{2}+8 Q^{2}\right)}{40 Q^{2}}\left(\log \left(-2 M r+Q^{2}+r^{2}\right)-\log \left(-2 M \mathrm{r}_{0}+Q^{2}+\mathrm{r}_{0}^{2}\right)\right) \\
& \left.+3 \log (r)-3 \log \left(\mathrm{r}_{0}\right)\right\} \tag{8}
\end{align*}
$$

After this correction Fig. 1 in [1] is replaced by Fig. 1 above which is essentially the same as the one in [1]. Figure 2 in [1] now becomes irrelevant. Figure 3 in [1] is replaced by Fig. 2 above which is essentially the same as the one in [1].

The essential difference between the original paper and the one after the correction is: The case $|Q|<M$ is excluded after the correction. The allowed ranges of the parameters m^{2}, ω, q after correction for $|Q|>M$ are much wider than those obtained in [1] (and they include the ranges of parameters found in [1] as subcases).

Reference

1. R. Erdem, B. Demirkaya, K. Gültekin, Eur. Phys. J. Plus 136(9), 972 (2021)

[^0]: The original article can be found online at https://doi.org/10.1140/epjp/s13360-021-01973-0.

[^1]: a e-mail: recaierdem@iyte.edu.tr (corresponding author)
 b e-mail: betuldemirkaya@iyte.edu.tr
 c e-mail: kemalgultekin@iyte.edu.tr

