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Abstract—Change impact analysis analyzes the changes that
are made in the software and finds the ripple effects, in
other words, finds the affected software components. In this
study, we analyze the bug fix change patterns to have a better
understanding of what types of changes are common in fixing
bugs. To achieve this, we implemented a tool that compares two
versions of codes and detects the changes that are made. Then,
we investigated how these changes are related to change impact
analysis. In our case study, we used 13 of the projects and 621
bugs from Defects4J to identify the common change types in
bug fixed. Then, to find the change types related to cause an
impact in the software, we performed an impact analysis on
a subset of projects and bugs of Defects4J. The results have
shown that, on average, 90% of the bug fix change types are
adding a new method declaration and changing the method body.
Then, we investigated if these changes cause an impact or a
ripple effect in the software by performing a Markov chain-
based change impact analysis. The results show that the bug
fix changes had only impact rates within a range of 0.4%–5%.
Furthermore, we performed a statistical correlation analysis to
find if any of the bug fixes have a significant correlation on the
impact of change. The results have shown that there is a negative
correlation between caused impact with the change types adding
new method declaration and changing method body. On the other
hand, we found that there is a positive correlation between caused
impact and changing the field type.

Index Terms—change impact analysis, bug fix, change detection

I. INTRODUCTION

Change is a continual and integral part of the process of

the software evolution process. A source code change can be

performed for enhancing software or fixing a bug. However,

source code changes can also introduce bugs into the system.

These bugs can be originated due to the ripple effects caused

by small changes. In other words, the bugs introduced by a

change can be related due to a dependency within the source

code. When a bug (issue) is reported in a repository, it is not

easy to localize when or how the bug is introduced through

which commit. However, bug fixes are relatively easier to

localize, if the version control system is used effectively. For

instance, Just et. al [1], prepared a collection of real bugs for

researchers, which contains the commit hash values when the

bug report was entered and the commit hash value when the

bug was fixed.

The type of changes made in the software has an important

role in the likelihood to introduce an error [2]. For instance,

changes that are made in the software that are mostly related

to dependency-based changes are more likely to cause a ripple

effect. These types of changes could be changes that are

made in superclasses, methods that rely on call relationships,

deletion/addition of classes, and methods. These types of

changes were classified as changes to cause a ripple effect

in software [3]. Therefore, knowing the types of changes in

the software can have a critical part in detecting changes

that might cause an impact on other software components.

Furthermore, popular software version control systems like

Github are able to provide the changes that are made in the

software, however, they do not provide any information on

what type of changes are made in the software, which could

reduce the time for code reviews.

In addition, the ideal way of using version control

systems is to push small commits, rather than pushing

large commits. Since large commits contain too much

information of changes, this could be a very long task for

the code reviewer to analyze the changes that are made,

and find possible impacts or ripple effects that might

cause in the software. Sometimes, commits contain only code

relocations. An example (https://github.com/apache/commons-

csv/commit/c203896177b295c2f5319e8c34b9d8bb9f58564e)

we found is that some commits in repositories show code

changes, however, when code is carefully reviewed there

are actually no changes made in the software. In the given

example, only some of the methods in the class are just

repositioned (method moved on top of the class or moved

to the bottom of the class). Even though there is actually

no code change in the repository, when the code is being

reviewed on Github it could easily mislead the code reviewer

to make wrong conclusions such as (methods have been

added and removed).

Nevertheless, detecting change patterns plays an important

role in many other fields of software engineering. For instance,

change pattern information has been used in training neural

networks [4], [5] for automatic bug fixing, for understanding

bug fixes and for automatic program repair [6], detecting

readability improvements [7], and in fault localization [8], [9].

In this study, we first share our novel approach and archi-

tecture on detecting change types of a given commit that are

related to cause an impact on the software. Then, we detect

change types for the commits with bug fixes from Defects4J
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Fig. 1: Experimental design for RQ2. Commit A is the bug fix

commit, where Commit B is the parent commit of Commit A.

and investigate the relation between change types that are

likely to cause an impact on other software components.

Therefore, we develop the following research questions and

answer them in the discussion section.

RQ1: What are the most common bug fix change patterns?
To answer this question we analyze all the bugs from Defects4J

on 13 projects and overall 621 bugs. We identify the change

types that are made in the bug fix commits and find the

commonly performed change action in these bug fix commits.

RQ2: Is there a relationship between the bug fix change
patterns and the impact caused by change? To investigate if

there is a relation between bug fix changes and impact causing

changes, we perform a change impact analysis using a Markov

chain and program slicing-based approach. We simply perform

a change impact analysis between two commits, which are the

bug fix commit, and the parent commits of a bug fix that is

demonstrated in Fig. 1. Once we obtained the change impact

analysis results, we divide the impacted methods by the total

methods (impact rate). Then we analyze the overall impact for

each project from our case study and we perform a statistical

analysis to find a correlation between the caused impact and

the change type.

This paper makes the following main contributions:

(i) Method: We present an empirical study that analyzes

the relation between the bug fix change patterns and changes

that causes an impact on other software components. We try

to provide a better understanding of bug fix preference, due

to its low impact. To evaluate the impact of the bug fixes, we

use a Markov chain and program slicing based impact analysis

tool called CODE CHANGE SNIFFER [10]1.

Furthermore, we provide a novel approach to detecting

change types between two commits related to cause an impact

on software components, while other studies [11]–[13] focus

on statement-level (fine-grained) changes. Our novel approach

is based on the ANTLR parser, which generates a parse tree

and compares two trees for detecting the changes. Using parse

trees can be more effective than abstract syntax trees, due to

its capability of containing keywords, which makes it easy to

detect changes like type changes, modifier changes, etc.

(ii) Tool: We developed a tool called CHANGE INSPECTOR

JAVA (CIJ)2 and made it publicly available for detecting code

changes. The tool uses PyDriller [14] for mining Github repos-

itories, and CIJ detects the changes that are made implements

the end-to-end pipeline for predicting future code changes with

the Markov chain.

1https://github.com/ekincanufuktepe/code-change-sniffer
2https://github.com/ekincanufuktepe/change-instepector-java

(iii) Dataset: We provide our detected change type dataset

to other researchers and practitioners to provide a better

reproducibility of our study. Our dataset contains:

• The change types detected by CIJ for the corresponding

bug fix commits from Defects4J.

• The probabilities of methods of being impacted by the

bug fixes.

The manuscript is organized as follows. Section II provides

the background on change impact analysis. In Section III,

the change detection architecture is presented with the change

types that are used. Section IV explains the case study of our

and evaluation. Section V outlines threats to validity in our

study and answers the research questions introduced in Section

I. In Section VI, related work on change type prediction is

presented. Section VII concludes the paper.

II. BACKGROUND

In this section, we provide the essential background to

provide a better understanding of our study. In the following

section, we provide a running example of the change impact

analysis technique and tool called CODE CHANGE SNIFFER

[10], which we used in our study.

A. Change Impact Analysis

In the 1980s, studies [15], [16] mentioned the difficulties

that software evolution has brought into software maintenance.

One of these difficulties is the ripple effects that are caused by

changes in the source code. On the other hand, evolution in

software development had been considered to be inevitable,

and should be accepted that change is an intrinsic part of

software development lifecycle [15]. Nowadays, it is still true

however changes are more rapid due to advancements in

technology and user expectations. Lehman and Belady [17]

supported this fact in their five laws on software evolution,

where they stated the first law as “change is continual”. In

such a rapidly evolving software environment, developers need

mechanisms and tools to keep up the pace with better resource

utilization.

Previous studies have mentioned [18]–[20] that software

maintenance consumes the majority of resources in many soft-

ware organizations. Nevertheless, a rapidly evolving software,

due to the changes that are made in the software, is more

likely to introduce faults and errors [21]. An example of fast-

evolving software was introduced by Kumar [22], which stated

that Google was committing 20 code changes per minute, and

approximately 50% of their code was changing monthly. In a

rapidly evolving software development environment, predict-

ing future code changes related to the current changes could

reduce the effort spent on software maintenance. For instance,

predicting code changes can reduce the time on finding the

code sections that need to be changed, or highlight codes that

require a change to fix the possible errors that are introduced

by modifications.
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B. Running Example of Code Change Sniffer

CODE CHANGE SNIFFER is a change impact analysis tool

that uses the Markov chain to calculate the probabilities of im-

pacted methods in the software. The probabilistic information

is computed by analyzing the software with static analysis.

The diff information between two commits (or versions) is

used as an initial vector, while the transition matrix is filled

with probabilistic information acquired from forward slicing.

In the following paragraphs of this section, we provide a small

running example of how CODE CHANGE SNIFFER works.

The probabilistic information obtained from forward slicing

is encoded into the Markov chain’s edges along with the

change information based on the type of the model, namely,

call graph (CG) and effect graph (EG). However, it is im-

portant to mention that we used call graphs in this study

to analyze the impacts. On the other hand, the initial vector

is encoded with change information, which applies to both

models. Starting with encoding the edges, we construct a

transition matrix, which is similar to an adjacency matrix.

Another property of the Markov chain is that summation

of the outgoing edge probabilities of a node should be equal

to 1. Therefore, the probability summation of each row in

the transition matrix should be equal to 1. However, a row

summation could be less than or greater than 1 depending on

the probabilities obtained from forward slicing. For instance,

on the left side of Fig. 2, let us assume that we encode

the Markov chain model with probabilistic information with

forward slicing and change information. We can see that some

of the nodes’ summation of outgoing edges are less than 1

or greater than 1. To satisfy the properties of the Markov

chain, we weight each node’s outgoing edges, by dividing the

summation of outgoing edges to each outgoing edge of that

node. On the right-hand side of Fig. 2, we obtain the updated

Markov chain after weighting the edges. Furthermore, assume

that the filled methods (m0, m1, m2, m3, m4) are the changed

methods.

Fig. 2: Markov chain model construction with weighted edges

After the weighting process is completed, we construct the

transition matrix of the Markov chain model below. According

to the graph model in Fig. 2, there is no outgoing edge

from methods m2, m3, and m4. Therefore, in the transition

matrix, we would expect to have the entire row filled with 0s.

However, we have a single 1 that are placed to itself such

as m2 → m2, m3 → m3, m4 → m4. According to the

Markov chain’s properties, the summation of the columns for

each row should be equal to 1. Thereby, for a row where the

sum of column values is equal to 0, we set the mi → mi edge

probability to 1. If the method mi is not changed, setting the

probability will not affect the overall impact calculation, since

that it will be multiplied with 0.

m0 m1 m2 m3 m4⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

m0 0 1 0 0 0

m1 0 0 0 0.21 0.79

T = m2 0 0 1 0 0

m3 0 0 0 1 0

m4 0 0 0 0 1

To calculate the impact vector, in other words, the vec-

tor that contains the probabilities of predicted methods that

will change, an initial vector should be multiplied with the

transition matrix. We encode the initial vector with change

information we have collected from diff calculations. The

change information represents the likelihood of a method that

could affect itself by the changes that are made for the current

method. Therefore, as the amount of change increases the

probability of being affected by changes will be higher. In

Fig. 2, let’s assume the filled nodes (methods) m0, m1, m2

and m3 in the Markov chain are the changed methods with

given probabilities; m0 = 0.5, m1 = 0.71, m2 = 0.78
and m3 = 0.33. The four given change probabilities are

encoded into the initial vector below. Previously, to satisfy the

properties of the Markov chain in the transition matrix, we

weight the edges of each node’s outgoing edges. Similarly,

we also need to weight the initial vector values as well.

According to the Markov chain’s properties, the summation

of the probabilities in the initial vector should be equal to

1, where the sum of the probabilities in our initial vector is

greater than 1.

I = [ 0.5 0.71 0.78 0.33 0 ]

We weight the initial vector by dividing each value in the

vector by the summation of the probabilities in the vector.

Thereby, we have updated our initial vector I to Iw, which is

given below.

Iw = [ 0.216 0.306 0.336 0.142 0 ]

Finally, we obtain the final forms of our initial vector and

transition matrix, and by using the final forms of the initial

vector and transition matrix, we calculate the impact vector in

Equation 1, which is predicted to be changed methods. Since

our initial vector and transition matrix is weighted, we expect

to calculate the impact vector, where the summation of its

probabilities is equal to 1.

Iw x T = [ 0.156 0.181 0.336 0.181 0.146 ] (1)

Based on the Markov chain model in Fig. 2 and calculation

in Equation 1, the probabilities of the methods being affected

by the changes are calculated as m0 = 0.156, m1 = 0.181,
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m2 = 0.336, m3 = 0.181, and m4 = 0.146. With respect

to the probabilities, m2 is the method that has the highest

likelihood of being affected by the changes.

III. CHANGE DETECTION ARCHITECTURE

In this section we introduce the details of our change

detection tool and architecture CHANGE INSPECTOR JAVA

given in Fig. 3.

A. Change Types

In the context of change impact analysis, the changes in

the source for Java programming language can occur in three

categories: class type changes, method type changes, and field

type changes. These types of changes were introduced by Ren

et al. [2], and Sun et al. [3], in this study we adopted these

change types for our automatic change type detection tool with

slight modifications.

While we classify the change types on source codes, we fo-

cused on the type of changes that occur at a programming lan-

guage level rather than the developer behavior level changes.

For instance, a developer may just change the name of the

class, without modifying the class body. On the developer

side, this change will be interpreted as a Changing the class
name type of change. However, in programming language

level change this will be interpreted as Delete Class and Add
new Class because changing the name of the class affects the

signature of the class. This similarly applies to methods as

well, when a method name is changed, the change reflects as

a Method Deleted, and new Method Added.

The change types for classes, methods, and fields are given

respectively in Tables I, II, III.

TABLE I: Types of Class changes

Type Description
AC Add a new class (new class declaration)
DC Delete a class with all its members

IAC
Increase “accessibility” of the class

(“private” modifier changed to “public”)

DAC
Decrease “accessibility” of the class

(“public” modifier changed to “private”)
AFC Add a “final” modifier to the class
DFC Delete the “final” modifier from the class
ASC Add a “static” modifier to the class
DSC Delete the “static” modifier from the class

AAbC Add a “abstract” modifier to the class
DAbC Delete the “abstract” modifier from the class
APC Add parent class
DPC Delete parent class

B. Automatic Change Type Detection Architecture

In this section, we present our automatic change type detec-

tion architecture. Our change type detection process follows

the order of preprocessing, parse tree generation, extracting

key change features, and detecting change type, which is also

provided in Fig. 3.

TABLE II: Types of Method changes

Type Description
AM Add a new method (new method declaration)
DM Delete a method
CM Change method body

IAM
Increase “accessibility” of the method

(“private” modifier changed to “public”)

DAM
Decrease “accessibility” of the method

(“public” modifier changed to “private”)
AFM Add a “final” modifier to the method
DFM Delete the “final” modifier from the method
ASM Add a “static” modifier to the method
DSM Delete the “static” modifier from the method

AAbM Add a “abstract” modifier to the class
DAbM Delete the “abstract” modifier from the method
CRM Change return type of the method

CNPM Change name of parameters of the method

CPM
Change parameters of the method except for
the change of the names of the parameters

TABLE III: Types of Field changes

Type Description
AF Add a new field (new field declaration)
DF Delete a field

IAF
Increase “accessibility” of the field

(“private” modifier changed to “public”)

DAF
Decrease “accessibility” of the field

(“public” modifier changed to “private”)
AFF Add a “final” modifier to the field
DFF Delete the “final” modifier from the field
ASF Add a “static” modifier to the field
DSF Delete the “static” modifier from the field
CTF Change type of field

1) Preprocessing: The pre-processing phase is where we

first retrieve the changed source codes. Retrieving the changed

source codes is achieved by PyDriller [14]. We simply provide

the bug fix commit hash to PyDriller and extract the changes

with diff. Using diff also provides which source files are

changed and allows us to download the source files as well.

The pre-processing phase allows us to eliminate any redundant

process of parse tree generation or computation, and only

focus on the changed source codes.

2) Parse Tree Generation: For parse tree generation we

used ANTLRv43 [23], and we have used the grammar de-

signed for Java 1.8. In a previous work [13], abstract syntax

trees (AST) were used for change type detection, due to their

compactness and easiness of process. We acknowledge and

justify that parse trees are complex trees compared to AST,

however, they contain details that an AST does not contain. For

instance, AST is also known as a logical description of parse

trees. Therefore, it does not contain any syntactical constructs,

such as braces, parenthesis, white spaces, and keywords.

However, based on the change types we have defined and used

in the context of change impact analysis, we need changes that

are made on the keyword information, such as modifiers, data

types, etc.

3) Extracting key change features: Once we have obtained

the parse tree, we extract the information in three categories:

3https://github.com/antlr/grammars-v4
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Fig. 3: Change Inspector Java Architecture, with multi-threaded change type detection. The Change detection starts with

preprocessing by only extracting changed files, then follows a parse tree generation for each changed file. From parse trees,

key change features are extracted to be used in change type detection. For each change type and its detection, a thread is

generated and reported.

class, method, and field. For each category we have separate

abstract data types defined, and since that we are interested in

particular data in each category we have different information

extracted. For a class we extract: Class name, parent classes,

and modifiers. For a field, we extract field names, modifiers,

and types. Finally, for a method, we extract method name,

modifiers, return type, parameter names, parameter modifiers,

parameter types, and method body.

4) Change Type Detection: The change type detection is

performed based on comparing two abstract data types. Each

change rule is defined as a sub-class of ChangeRule, where

every change rule overrides two methods getCategory and

isChangeCategory. This design allows developers to easily

define new change rules. During the change type detection

phase, if the related change is found, the getCategory method

returns the change type, which is triggered and determined by

the method isChangeCategory. Each change type has its own

unique implementation and definition of change rule. This type

of design allows us to implement our architecture in multi-

threaded to achieve better performance.

Each change rule class receives two parse trees as inputs,

one derived from bug fix changes, and the other is derived from

the parent commit of the bug fix changes. For each change

type, the parse trees are parsed separately and only target the

interested key features. For instance, as demonstrated in Fig.

4, to check if a method’s accessibility is increased (IAM),

we first search for the method. We search for the method

based on its signature which are: method name, return type,

and parameter types (order sensitive). Thereby, we are not

interested in the method body or the name of the parameters,

thus this information is not extracted from the parse tree. Once

the method is found, we check if the method had a private
access modifier before the bug fix, and if the modifier has

been changed to a public access modifier in the bug fix, then

an IAM change is detected.

IV. CASE STUDY

Our case study is composed of two phases. The first

phase is identifying the common change types among 13

Java projects and 621 bug fixes from Defects4J. The second

phase is performing a change impact analysis on a subset of

projects and bug fixed from Defects4J. Some of the commits

had missing source files, which prevented us to compile and

perform change impact analysis. These projects and commits

were discarded from our change impact analysis. Therefore,

we performed change impact analysis only on 8 Java projects

and 232 bug fixes from Defects4J, which is a subset of our

phase one analysis.

TABLE IV: Selected project and bug fix information

Project Number of bugs fixed
Change Type

Analysis
Change Impact

Analysis
closure-compiler 174 -

commons-cli 39 31
commons-codec 18 18

commons-collections 4 -
commons-compress 47 8

commons-csv 16 16
commons-jxpath 22 -

gson 18 18
jackson-core 26 23

jackson-databind 108 -
joda-time 26 25

jsoup 93 93
mockito 30 -

A. Change Type Analysis Results

In our case study of the change type analysis, we used

13 Java projects and 621 bug fixes from Defects4J [1]. The

selected projects and bugs are given in Table IV. The bugs are

collected from the active bugs, which contain the two commit

hash information. The first commit hash value corresponds to

the commit when the bug was first reported, and the second

commit hash value corresponds to the commit when the bug
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Fig. 4: An example of Increase Accessibility of Method(IAM) change detection, where first method signatures (green sections)

are matched. Once signatures are matched modifiers are compared for change type detection (red).

fix was made. In this study, we only focused on the bug

fix commits, since we cannot locate when the bug was first

introduced among the past commits.

Our change type analysis results for 13 projects are given in

Figure 5. The results in Figure 5 indicate the type of changes

involved per commit. They do not represent the number of

changes that are made per change type in a commit. However,

these results can also be obtained in our repository as well.

For instance, in Figures 5k and 5h, both have a value of 1 for

change type CM, which indicates that in every bug fix commit

there was at least one CM type of change. The change types

defined in Table I, II, and III, but do not exist in Figure 5

indicate that those change types did not exist in any of the

bug fix commits for the corresponding project. According to

the results, there are two types of changes that are commonly

and consistently made while fixing bugs: changes made in

the method body (CM), and adding a new method declaration

(AM). We also would like to highlight that, although there

are change types defined in class-level and field-level, both

common change types that are found in bug fixes are method-

level changes.

Ren et al. [2] reported that, in Java programs, CM and AM
change types are found failure-inducing changes. By checking

the bug fix changes we found that the types of changes

for failure-inducing and bug fixing are exactly the same.

Therefore, there might be a strong and positive correlation

between bug fix and failure-inducing changes.

We have also evaluated the run-time performance of our

automatic change type analysis that is given in Table V. Our

run-time is evaluated based on the average time spent change

type analysis per commit. The results have shown that per

each commits our change type analysis ranges between ∼1–6

seconds, which is a reasonable time for aiding code reviewers.

TABLE V: Run-time evaluation of change type analysis

Project Number
of commits

Average run-time
per commit (sec.)

closure-compiler 174 5.5287
commons-cli 39 1.0789

commons-codec 18 3.2222
commons-collections 4 4.5
commons-compress 47 1.5319

commons-csv 16 2.125
commons-jxpath 22 1.3182

gson 18 3
jackson-core 26 2.24

jackson-databind 108 2.1574
joda-time 26 3.3462

jsoup 93 3.5591
mockito 30 0.7

B. Change Impact Analysis Results

For change impact analysis, we utilized a recently proposed

Markov chain-based tool to perform a change impact analysis

[10]. The change impact analysis approach uses forward

slicing for data dependency to find affected statements after a

change and uses call graph information to find the dependency

relationship between methods. However, as mentioned in Sec-

tion IV and given in Table IV, we were only able to perform

the change impact analysis on a subset of the change type

analysis due to incomplete commits. Some of the analyzed

projects were not compilable due to missing source files.

Therefore, we have performed our change impact analysis on

232 of the 621 bug fix commits.

Our change impact results are given in Table VI. We

measure the impact based on the impacted methods, where

their probability is over 0.1. We have selected the 0.1 threshold

due to the change impact analysis tool we used and its related

study [10], [24] having shown that using the threshold 0.1

provides higher f-measure and recall results. To calculate the
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Fig. 5: Change types per commit for each project. The change types are ordered alphabetically in a clockwise direction. For

each project, change types CM and AM are found common change types in bug fixes.

impact rate we divide the impacted methods by the total

methods. According to our change impact analysis results,

project gson has the maximum impact rate with 5%, and

project joda-time has the lowest impact rate with 0.4%. The

results show that the bug fix changes do not seem to have

an high impact on other software components. However, to

have a better understanding the relationship between change

types and impact, in Section IV-C, we performed a statistical
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correlation analysis.

TABLE VI: Change Impact Analysis Results

Project Name Avg. Impacted
Methods

Avg. Total
Methods

Avg.
Impact Rate

jsoup 3.82 596.65 0.7%
joda-time 7.84 2210.28 0.4%

gson 68.94 1230.61 5%
commons-csv 1.56 373.06 0.5%

commons-codec 3.72 374.83 1.2%
jackson-core 7.39 891.74 0.8%

commons-compress 2.75 277.38 1%
commons-cli 4.35 278.39 1.7%

In Table VII, we present the run-time evaluation for change

impact analysis. The change impact analysis run-time repre-

sents the average run-time per bug fix in seconds. The average

run-times in our case study ranged between ∼16–186 seconds.

However, we remark that this study does not propose a change

impact analysis approach, and uses change impact analysis to

find any correlation between bug fix changes and the impact

that it causes. Therefore, the run-time in Table VII does not

reflect any performance related to change type analysis.

TABLE VII: Run-time analysis for Change Impact Analysis

per each bug fix

Project Name Average run-time
per bug fix (sec.)

jsoup 35.1445
joda-time 185.32

gson 30.812
commons-csv 15.44

commons-codec 25.746
jackson-core 28.675

commons-compress 24.758
commons-cli 32.9825

C. Correlation between bug fix changes and change impact
analysis

To investigate if there is a correlation between any of

the bug fix change types causing an impact in the software,

we perform a statistical correlation analysis. For statistical

correlation, we use the Pearson correlation coefficient which

is a widely used measure for linear relationships between

two normally distributed variables. In Equation (2), cov(X,Y )
is the covariance of random variable pairs (X,Y ), while

σx and σy are respectfully the standard deviation for X
and Y . Based on the value obtained from Equation 2, the

value of 1 represents a perfect positive relationship, -1 is a

perfect negative relationship, and 0 indicates the absence of a

relationship between variables.

ρ =
cov(X,Y )

σxσy
(2)

We apply the correlation calculation (rxy) on our sample

by using the following Equation (3), which is also known as

the sample Pearson correlation coefficient. The Equation (3)

is simply obtained by substituting estimates of the covariances

and variances based on a sample from the Equation (2), where

n refers to the sample size. It is important to mention that the

Pearson correlation coefficient works on numerical samples,

and since that we had only information on the presence of

change types (categorical data) corresponding to the caused

impact rate (numerical data), we represent our change types in

numerical format (Present-1, Absent-0). Finally, the calculated

correlation coefficients are given in Table VIII. In Table VIII,

we only included the change types that were only detected in

bug fixes.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(3)

To distinguish if there is a significant correlation between

two variables (impact and change type), we use Equation 4 to

calculate the minimum threshold that a significant relationship

exists between the change type and the caused impact. The

variable |r| is the absolute value of variable r (correlation

coefficient) from Equation 3, and the variable n is the size

of the sample. Since that our sample size is n = 232, our

minimum threshold is calculated as 0.1313.

if |r| = 2√
n

, then relationship exists (4)

According to the results in Table VIII, we only see that

there are two change types that have a significant relationship

with the impact caused in the software. We observe that there

is a negative correlation between the change types CM and

AM with the caused impact in the software, which indicates

that whenever a new method is added or whenever a change

in the method body occurs, the impact decrease. On the other

hand, there is a positive correlation between change type CTF
with the impact caused in the software. This indicates that

whenever a type of field is changed it is likely to cause and

increase the impact on the software.

In Table VIII, it is also possible to extract information

on co-changes in bug fixes. For instance, we observe that

there are strong positive correlations between DC and DF,

AC and AF which are meaningful. These changes indicate

that whenever a new class is declared, a change of adding a

new field follows. Similarly, whenever a class declaration is

deleted, a change of field deletion follows. We also see that

there is an exceptionally high correlation between APC and

DPC, this correlation is a strong indicator that during bug

fixes there have been changes in parent classes, by replacing

a parent class with another class.

V. DISCUSSION

A. Answering Research Questions

RQ1: What are the most common bug fix change patterns?
To answer RQ1, we performed a change type analysis on

13 Java projects and on 621 bug fix commits. We have

observed that there are two commonly performed changes: CM
- Change in the method body, and AM - Adding a new method
declaration. For change type CM, the maximum change type

per commit is 1, while the minimum is 0.5. On the other hand,
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TABLE VIII: Correlation Results between caused impact and change types.

Imp. CM AM AF AC DM APC CPM DPC CNPM CRM CTF DC DF IAM
Imp. 1
CM -0.449 1
AM -0.304 0.258 1
AF 0.017 0.154 0.141 1
AC 0.021 0.086 0.156 0.413 1
DM 0.066 0.126 0.153 0.146 0.110 1
APC -0.027 0.024 0.030 0.131 0.189 -0.022 1
CPM 0.018 0.074 0.031 0.065 0.002 0.078 -0.013 1
DPC -0.027 0.024 0.030 0.131 0.189 -0.022 1 -0.013 1

CNPM -0.033 0.035 0.042 0.069 0.118 -0.032 -0.006 -0.019 -0.006 1
CRM 0.033 0.068 0.075 0.023 -0.136 0.075 -0.026 0.184 -0.026 -0.037 1
CTF 0.236 0.042 0.051 -0.058 -0.040 0.086 -0.008 0.175 -0.008 -0.011 0.067 1
DC 0.096 0.024 0.030 0.131 0.189 0.194 -0.004 -0.013 -0.004 -0.006 -0.026 -0.008 1
DF 0.023 0.079 -0.018 0.157 -0.005 0.137 -0.014 -0.043 -0.014 -0.020 0.166 -0.024 0.310 1

IAM -0.021 0.035 -0.083 -0.047 -0.032 0.121 -0.006 -0.019 -0.006 -0.009 0.100 -0.011 -0.006 0.210 1

the maximum change type per commit for AM is also 1, while

its minimum is 0.73.

We have also observed that among our 35 defined change

types, only 14 of them were found. The changes that were not

found were mostly related to class and field-based changes.

Most of the changes are mostly made in a method-level

granularity.

RQ2: Is there a relationship between the bug fix change
patterns and the impact caused by change? To answer RQ2,

we have followed two steps. The first step was to find the

impacted software components and calculate the impact rate.

Then, in the second step, we perform a statistical analysis,

where we find the correlation between change types and the

caused impact. During our change impact analysis, we have

not found high impact rates, in which our impact rates ranged

between 0.4%–5%. However, we did realize that there was a

significant gap between our lowest and highest impact rates.

Therefore, we used the Pearson correlation coefficient to find

the correlations between change types and impact results. The

correlation results have shown that there was a significant

correlation between the change types AM, CM, and CTF with

the caused impact. However, we found that the correlation

between change type CTF and caused impact was positive,

while it was found negative for change types AM and CM.

B. Threats to Validity

Even though we have performed our case study on 13

open source projects by using a well-known bug dataset, it is

important to mention that our case study is only limited to Java

projects. Therefore, the bug fix change type characteristics

may vary on different programming languages.

For change impact analysis, we have used one of the

most recent techniques for finding impacted methods in the

software. However, just as in every proposed change impact

analysis technique, the impact analysis results might contain

false positives and false negatives. During our impact analysis

evaluations, we assumed that all the impacted methods are

correct. Therefore, our impact analysis results might be higher

or lower then it is supposed to be. However, the change impact

analysis we have used [10] has very few false negatives. In

other words, the change impact analysis technique we use has

shown high recall results, and slightly low precision results,

which indicates that the impact analysis results we presented

in this study are slightly high. We can conclude that the impact

caused by bug fixes is actually very low.

For generating parse tree we have used ANTLR, and the

grammar that we used for change type analysis is designed

for Java 1.8 syntax. Therefore, our change type analysis might

have compatibility issues with older versions or newer versions

of Java. However, it is important to remark that the projects

we used in our case study, which are from Defects4J are based

on Java version 1.8. Furthermore, Java 1.8 is still actively used

in the industry.

VI. RELATED WORK

There are successful studies on detecting change types.

These studies started by focusing on adding structural change

information to existing release history data for CVS [25].

Later, a taxonomy of source code changes was built, which

defined source code changes related to tree edit operations

in abstract syntax tree (AST) and classified each change

type [11]. Then, Fluri et al. [12] have proposed an Eclipse

plug-in called CHANGEDISTILLER, where they also proposed

a tree differencing algorithm to find the changes. Thereby,

they were able to extract fine-grained source code changes,

which can get fine-grained change information. Lin et al. [26]

implemented an automatic tool called PYCT which is based on

CHANGEDISTILLER to reduce the effort for change extraction

and classification. They have also introduced a taxonomy of

Python source code changes.

Studies have also focused on investigating the change

types from different perspectives. For instance, Vansics et

al. [9] investigated the bug fix types in a method-level on

JavaScript programs, by using the change types definitions

from Pal et al. [27]. They investigated the relationship between

the effectiveness of popular spectrum-based fault localization

techniques and the bug fix changes. They found that some

bug fix types were difficult and some were trivial to localize

by an algorithm. For instance, changes in operation sequence

tended to be difficult, while it was easier in if condition-
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related bugs. Roy et al. [7], proposed a model for detecting

readability improvements, and used static analysis and change

type analysis tools (COMING [13], CHANGEDISTILLER [12].

e.g.) for extracting change features.

There are also studies that exploited change patterns in train-

ing neural networks to automatically reproduce code changes

implemented by the developers in pull requests of open

source projects [5]. Furthermore, change pattern information

has also been used to train neural networks to learn how to

automatically fix bugs [4].

VII. CONCLUSION AND FUTURE WORK

In this study, we investigated the relationship between

bug fix changes and it’s impacts caused in the software. To

investigate this relationship we have proposed and publicly

shared an automatic change detection tool called CHANGE

INSPECTOR JAVA (CIJ). We analyzed the bug fix change types

from Defects4J with CIJ. We found that there are two common

changes that are made in bug fixes: changing the method body

and adding a new method declaration. Then we performed

change impact analysis on the bug fix changes to analyze

their impact on the software. Among the projects we analyzed,

the impact caused in the software ranged between 0.4%–

5%, which indicated a very low impact. However, wanted to

investigate deeper to find any of the changes have a higher or

lower impact. Therefore, we performed a statistical analysis

using Pearson correlation coefficient to find any correlation

between change types and the caused impact. We have found

that among 14 change types, there were only 3 change types

that had a significant correlation between the caused impact.

The change types, adding a new method declaration, and

changing the method body have shown a negative correlation

with the caused impact, while the change type changing field

type has shown a positive correlation.

Our study was not only limited to finding change types,

and finding any correlation between bug fix changes and

impact analysis. During our research, we have found that in

commits such as given in https://github.com/apache/commons-

csv/commit/c203896177b295c2f5319e8c34b9d8bb9f58564e,

our change detection tool is able to distinguish that there is

no change performed, which could reduce the code reviewing

process when insufficient commit messages are provided.

In future work, we plan to extend our change detection tool

by introducing statement-level change types. Since our results

found that changing the method body is common in bug fixes,

we want to investigate the characteristics of statement-level

changes and their impact caused in the software.
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