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Abstract Microbial exopolysaccharides are a class of extracellular carbohydrates
based on biopolymeric materials produced and secreted by bacteria, yeast, molds,
and microalgae. Cellulose, pullulan, xanthan gum, dextran, kefiran, curdlan,
emulsan, alginate, gellan, carrageenans, hyaluronic acid, levan, colanic acid, welan,
glucuronides, succinoglycans, and mutan are the exopolysaccharides (EPSs) of
different microbial origin. Most of the available EPSs are non-toxic, biocompatible,
biodegradable, and obtain from renewable resources. Microbial EPSs display
unique functional properties due to their nature and structural composition. The
demand for natural microbial EPSs utilization in the food industry due to their
unique properties, including emulsifier, gelling agent, and stabilizers. Microbial
EPSs and their derivatives have found a wide range of applications in food systems,
including fermented dairy products, bakery products, cereal-based products, bev-
erages, delivery of active agents, coatings, and films. This chapter will present a
comprehensive overview of the recent developments of EPSs and their potential
utilization in the food industry.
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1 Introduction

Microbial exopolysaccharides (EPSs) attract extensive attention in the food industry
due to the growing interest in renewable sources. EPSs are considered potentially
sustainable alternatives to chemical polymers because they are considered
cost-effective, eco-friendly, non-toxic, high efficient, and biodegradable [119].
EPSs are naturally occurring extracellular polymers that are synthesized during the
metabolic process of microorganisms, including bacteria, yeast, molds, and algae
[12, 43, 45]. EPSs based on their compositions are divided into two groups;
(1) homopolysaccharides and (2) heteropolysaccharides. The homopolysaccharides
are created by a single type of monosaccharide including, D-glucose or L-fructose.
The heteropolysaccharides are composed of several types of monosaccharides,
including D-glucose, L-fructose, D-galactose, D-glucuronic acid, L- glucuronic
acid, D-mannuronic acid [43, 119]. Cellulose, dextran, curdlan, and levan are
examples of homopolysaccharides, while gellan, xanthan gum, and hyaluronic acid
are examples of heteropolysaccharides [55]. The EPS production yield and structure
depend on culture type, inoculum volume, including carbon and nitrogen source,
substrate composition, airflow rate, temperature and pH of cultivating medium,
agitation or mixing speed of incubation condition [41, 119]. Microbial EPSs are
promising hydrocolloids, used as food ingredients such as stabilizing, gelling,
thickening, and binding agents. For instance, pullulan enhanced the pasting and
rheological properties of rice starch [23], xanthan gum improved the egg white
foaming properties [34], xanthan gum addition into potato starch improved the
physicochemical characteristics of gels [42], inulin and xanthan gum in the for-
mulation of custard desserts increased the viscoelastic characteristic of product
[131], xanthan gum in developing of low-fat food preparations [48], xanthan gum
as gluten replacement [114], xanthan gum for development of low glycemic index
food formulations [139], dextran and levan as bacterial EPSs in kefir beverage
formulation [51], curdlan in set yogurt formulation [189], curdlan as fat mimetics
ingredient for meat products [56], and alginate in low-fat mayonnaise fabrications
[101], meat buffers were formulated by using gellan [166], hyaluronic acid and
carrageenans for films or hydrogels preparations [30, 192], levan for nanoengi-
neered structures [40] and welan in emulsion stabilization systems [111].

Prebiotics are the indigestible food ingredients that enhanced beneficial
microorganisms activity and growth in the gastrointestinal tract [86]. Microbial
EPSs are the most promising polysaccharides with prebiotic properties, and pul-
lulan enhanced Lactobacillus and Bifidobacterium viability in low-fat yogurt [94]
as well as; in another study, the prebiotic activity of pullulan were proved in wheat
bread [128]. Antimicrobial agents such as metallic nanoparticles [2], bacteriocins
[158], plant extracts [89], and essential oils [29] can be added or encapsulated into
microbial EPSs for designing food-grade polymers to create an active food pack-
aging system for maintaining food safety and quality during food storage. In
contrast to synthetic polymers, biopolymers have the advantage of sustainability
and environmentally friendly features. Recently, researchers have focused on
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biodegradable polymers [8]. Microbial exopolysaccharides are good candidates for
the fabrication of high-performance non-toxic polymernanocomposites as well [5].
EPSs in polymer matrix resulted in significant improvement of mechanical, thermal,
and barrier properties such as polyvinylalcohol (PVA)-bacterial cellulose
nanocrystals (BCNC) [60], hydroxypropyl methylcellulose (HPMC)-BCNC [59],
Konjac glucomannan-pullulan [181], pullulan-lysozyme nanofibers [153], packag-
ing paper coated with curdlan and chitosan [17] and nanocomposite of cellulose
nanocrystals and kefiran [149] are some examples of engineered nanocomposites
with microbial EPSs.

Microbial EPSs also have the potential to produce biofilms and other bioengi-
neered micro-nano structures for use in food applications [4] such as bacterial cel-
lulose olive oil Pickering emulsions [180], pullulan based cinnamon essential oil
nanoemulsions [29], astaxanthin encapsulated whey protein isolate-xanthan gum
emulsions [15] and probiotics in dextran nanoparticles [86]. Microbial EPSs pro-
duced from bacteria as bacterial EPSs including bacterial cellulose [108], and xan-
than gum [41], and from yeast-like fungus as fungal exopolysaccharide such as
pullulan [155] by fermentation of a wide variety of substrates including organic and
inorganic nutrients. The growth media substrates are expensive and increased the
cost of microbial EPSs production on industrial scale. Alternative low-cost process
substrates have been used for industrial-scale production. Agro-based wastes are
composed of food constituents, which can be economically feasible raw materials in
growth media with or without additional nutrients [72]. Agri-industrial residues
including soya bean oil cake, mustard seed oil cake, rice bran oil cake, and corn steep
liquor were used for pullulan production as growth media substrates [150], citrus
peels including mandarin, orange, grapefruit, and lemon used for bacterial cellulose
[72], waste bread hydrolysate consumed for xanthan gum production [41]. By the
way, using industrial wastes utilization in this way could contribute to the waste
management systems. This chapter provides an overview of the unique properties
and the potential food applications of widely used microbial EPSs in the food
industry. The food applications of microbial EPSs are also presented in Table 1.

2 Cellulose

Bacterial cellulose (BC) (b-1,4 linked, D-glucose) is a natural, edible, non-toxic,
biodegradable, and biocompatible microbial exopolysaccharide [152]. BC can be
produced from different kinds of microorganisms, including Gluconacetobacter
[142], recently named as Komagataeibacter, Aerobacter, Azotobacter,
Achromobacter, Rhizobium, Alcaligenes, Escherichia, Salmonella, Pseudomonas
[123], Sarcinia, and Agrobacterium [32]. Komagataeibacter xylinus has been used
as a model organism for industrial bacterial cellulose production [123]. The choice
of bacterial strain is a significant parameter to produce a high yield of bacterial
cellulose. The other factor was the growth media; Hestrin-Schramm (HS) medium
[70] which was the most used medium for the BC production and alternative carbon
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(sugar, molasses) and nitrogen (peptone, yeast extract, corn steep liquor, peanut
sprout extract) sources were used for the production [32, 162]. The high cost of
growth media limited the BC production on an industrial scale. BC can be produced
from industry by-products wastes for reducing the cost, such as whey protein from
dairy industry [142], wastewater of candied jujube processing industry [105], and
Colombian agro-industry waste pineapple peel and sugar cane juice [33]. BC has
the same molecular formula (C6H10O5)n of plant cellulose, while BC is pure
material without lignin, hemicellulose, and pectin, making the purification easy for
application [8]. BC can be used as a multifunctional food ingredient to improve the
rheology of food, as a thickening, stabilizing, gelling, suspending agent, as well as
in the formulation of low calorie and low cholesterol food product formulations,
and immobilization of enzymes, as a nano carrier for encapsulation of food addi-
tives and food packaging material [152, 167]. BC is considered as “generally
recognized as safe” (GRAS) by the Food and Drug Administration (FDA) in 1992
[167]. The nata de coco was accidentally discovered by Pagsanjan, Laguna in
Luzon, Philippines. The first use of BC in food to manufacturing Philippine’s
traditional sweet candy dessert is called “nata de coco”. It is prepared from coconut
water through a fermentation process by Acetobacter xylinum. Nata de coco is also
produced and consumed in Indonesia as a healthy diet and in East Asian countries
[73]. The Philippines was the primary producer of nata de coco with an interna-
tional market volume of about 6350 tons, with $6.63 billion worth in 2011. The
nata de coco exported to the international markets, the major importing countries
are Japan, the United States, Canada, Malaysia, and other 40 countries, including
the European and Middle East countries [135]. Also, nata de coco industry had
export value chains in Vietnam, Thailand, and Indonesia [134]. BC (nata) has been
used as a fat replacement in different foods. Lin and Lin [109] were investigated the
potential use of BC (nata) as a functional ingredient with Chinese-style meatball.
Meatballs were produced with 10, 20, and 30% nata and 20% fat as control.
Meatballs containing 10% nata had the same sensory and texture acceptability as
control meatballs. A study was carried out by Halib et al. [66], evaluated nata de
coco dessert as a possible source of pure bacterial cellulose for research study. In
this study, the extracted BC characterized by Fourier transform infrared (FTIR)
spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy
(SEM). The purified BC powder possessed similar FTIR spectra and degradation
DTG peak that reported for BC. The food-grade material, nata de coco from local
food industries, could be used as a source of BC.

Bacterial cellulose is a natural microbial extracellular polysaccharide. It has
unique properties including low density, large surface area, high aspect ratio, high
crystallinity, high purity, high water holding capacity, high tensile strength and
nanoscale dimension, unique morphology, and 3D nanofibrillar cellulosic network
[156, 184], these properties enable BC in a wide range of specific applications in
food packaging and food-grade emulsion formulations specifically Pickering
emulsions. Pickering emulsions are formed from solid colloidal particles, irre-
versibly attached at the between oil-water interface [80], depending on the solid
particles wettability properties. Pickering emulsions can be either oil-in-water (o/w)
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or water-in-oil (w/o) emulsions [26]. Several investigations have reported the use of
bacterial cellulose nanofiber (BCNF) and bacterial cellulose nanocrystals (BCNC)
for stabilization of Pickering emulsions [79, 80, 180] and also Pickering emulsions
of BC with other polymers such as BCNC-gelatin for cinnamon essential oil [140].
Bacterial cellulose nanocrystals can be produced from BC nanofibers under con-
trolled acid hydrolysis conditions by chemical treatments [3] and by enzymatic
treatments as green nanomaterials [60, 144]. Acid hydrolysis favors the removal of
amorphous regions, provides crystal regions, and changes nanocrystals charge
density [3]. Hydrochloric acid treatment results in weak surface charge, sulfuric
acid-treated samples result in negatively charged sulfate esters on the crystal sur-
face; this charge density affects formation of stable colloidal suspensions and the
wettability of nanocrystals at oil-water interface [80].

The BCNCs amphiphilic character, hydrophilicity and hydrophobicity balance,
nanocrystals wettability at the oil-water interface, emulsifying properties, crystals
morphology, crystallinity, and size variation strongly affect the stability of
Pickering emulsions [80, 133]. The emulsifying performance of hydroxypropyl
methylcellulose (HPMC), carboxymethyl cellulose (CMC), and bacterial cellulose
(BC) for extra virgin olive oil Pickering emulsions formulations were tested via
using high shear mixer and ultrasound methods [133]. The BC and extra virgin
olive oil Pickering emulsions showed better stability than the other commercial
cellulose and were not affected by pH, temperature, and ionic strength changes.
However, HPMC and CMC extra virgin olive oil Pickering emulsions were more
sensitive to environmental stresses [133].

In another study, the possible use of BC and BCNCs in the stabilization of olive
oil Pickering emulsion were evaluated [180]. Regarding this study results, the
BCNCs with 259.6 nm particle size, −34.8 mV zeta potential, and 89.6% crys-
tallinity index were hydrolyzed with sulfuric acid, acid treatment followed by the
hydrogen peroxide oxidation. The olive oil Pickering emulsion formation with BC
and BCNCs was proved by optical and fluorescence microscope. The BC oil
Pickering emulsions showed better stability than the BCNCs towards the change of
pH and ionic strength. Results proved that BC and BCNCs particles could be
adsorbed at the oil and water interface to form the Pickering emulsions. The formed
particle-stabilized emulsions showed better colloidal stability against the coales-
cence [180].

Apart from the BC fibers and crystals outstanding unique properties, BC was
non-toxic, edible, available from renewable sources, biocompatible, and
biodegradable polymer for encapsulation purposes. The BC engineered structures
can be used as delivery systems for the encapsulation of bioactive substances and
provide stability against environmental degradation, improving the stability of
encapsulated food ingredients for food applications [8]. The BC and BCNCs as
carriers for bioactive agents as Pickering emulsion could be used directly into the
food matrix to produce functional foods and into the films and coatings solutions
for food packaging applications. BC has great potential to use as the support
material for films [49], foams, coatings, and rapid and simple sensing devices [92],
due to its three-dimensional nanostructure, the high specific surface area, high water
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holding capacity, high tensile strength, besides bacterial cellulose films has the
characteristic of transparency, flexibility, and hydrophilicity. In addition to BCs
renewability and sustainability, its appealing characteristics such as high crys-
tallinity and high mechanical strength enable to use BC as reinforcing agents in
high-performance nanocomposite materials and eco-friendly materials for various
applications, especially food packaging applications [9].

Most microbial contamination and deterioration reactions occur on the food
surface [63]. Food packaging materials should exhibit good barrier and mechanical
properties for preserving food quality and safety. Biobased polymers have not
fulfilled these requirements, such as commercially available plastic packagings. BC
and BCNCs are used as nanofiller, nano reinforcements with a wide range of
polymers to develop nanocomposites to improve the polymers barrier and
mechanical properties for packaging materials [8, 28]. George et al. [60] developed
a reinforced Polyvinylalcohol (PVA) matrix with BCNC to generate polymer
nanocomposites. BCNC was manufactured from enzyme hydrolysis with desirable
properties, 100–300 nm length, and 10–15 nm diameter. BC-PVA nanocomposite
display improved thermal stability and mechanical properties [60]. BCNC obtained
by hydrochloric acid hydrolyzes is used as reinforcing hydroxypropyl methylcel-
lulose (HPMC) polymer material. BCNC resulted in remarkable improvement in
the tensile strength and modulus of HPMC, while the incorporation of 2–4% BCNC
reduced the elongation properties [59]. The nanocomposite of bacterial cellulose
nanofibrils (BCNs) supported zein nanoparticles (ZN) was developed by Li et al.
[102]. The resulting BCN-ZN nanocomposites possessed improved mechanical and
thermal properties. The incorporation/encapsulation/embedded antimicrobials into
the food packaging polymers can reduce or retard the spoilage or pathogenic
microorganism [2].

BC was used in a wide range of applications because of BCs outstanding
properties, whereas BC has no antimicrobial property. Gao et al. [57] developed an
antimicrobial BC film with nisin via the co-culturing method with nisin producing
strain Lactococcus lactis. Jebel and Almasi [75] described a novel monolayer and
multilayer of BC films with zinc oxide (ZnO) nanoparticles. Bacterial
cellulose-containing antimicrobial composite films were also developed with a wide
range of organic and inorganic antimicrobial agents such as PVA-BC with potas-
sium sorbate [77] and silver nanoparticles incorporated chitosan-BC [146]. The
bacterial cellulose films with antimicrobial properties are obtained with silver
nitrate (AgNO3). BC matrix was used for the stabilization of silver nanoparticles
(AgNPs). An antimicrobial nanocomposite of bacterial cellulose silver extended
tomatoes shelf-life up to 30 days [2]. The efficacy of nisin immobilized bacterial
cellulose (BC) films was tested on processed meat [126]. Bacterial cellulose films
were obtained by Gluconacetobacter xylinus K3 with Corn Steep Liquor-mannitol
medium. BC-nisin composite films were prepared to immerse BC films into nisin
solution for the absorption of nisin into the films. Nisin incorporated bacterial
cellulose films that possessed antimicrobial activity on agar media and significantly
reduced the artificially inoculated L. monocytogenes population on frankfurters as a
food model. In addition, Zhu et al. [191] fabricated BC embedded e-polylysine
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(e-PL) casing for sausage packaging. The composite of BC/e-PL was obtained
soaking of BC into e-PL solution to allow absorption of e-PL through cellulose
film. The composite film had remarkable antimicrobial activity against E. coli and
S. aureus on agar media and sausages. The population of bacteria on sausage
samples treated by BC/e-PL was significantly lower than the BC films during
18 days storage at 4 °C. Bandyopadhyay et al. [11] fabricated films from BC and
guar gum (GG) based polyvinyl pyrrolidone-carboxymethyl cellulose (PVP-CMC).
The films were tested for shelf-life analysis of berries. Berries were packed with
PVP-CMC, PVP-CMC-BC, PVP-CMC-GG, and PVP-CMC-BC-GG films. The
weight loss of berries packed with PVP-CMC-BC-GG films was lower than the
other films due to the least water vapor permeability (WVP) and oxygen perme-
ability (OP) values. Yordshahi et al. [183] developed antimicrobial BC film as a
carrier for postbiotics lactic acid bacteria. The antimicrobial effect of nanopaper
with BC and postbiotics lactic acid bacteria tested on ground meat, lactic acid
bacteria immobilized BC films decreased the L. monocytogenes growth on ground
meat and total mesophilic and psychrophilic count during 9 days of storage at 4 °C.
Because of BC outstanding properties with the high specific area and high porosity,
BC would be used for intelligent food packaging applications as intelligent labels or
sensors for freshness monitoring. In the study of Kuswandi et al. [92], edible pH
sensor developed by BC membrane immobilized red cabbage anthocyanins for
intelligent food packaging systems. The developed system can distinguish fresh
milk from spoilage. Moreover, Mohammadalinejhad et al. [115] proved that
Echium amoenum anthocyanins immobilized BC films may be used for develop-
ment of novel non-destructive intelligent food packaging systems for monitoring
the freshness or spoilage of shrimp as colorometric pH indicator. There are a wide
range of promising applications for utilization of BC in food industry due to its
purity, biocompatibility, high water holding capacity, mechanical strength,
food-grade material, network structure, and better emulsifying capacity; however,
production yield, quality, and the demand properties of end product, price of growth
medium are the challenges of BC to be overcome for food applications.

3 Pullulan

Pullulan is a non-toxic, biodegradable, biocompatible water-soluble neutral edible,
extracellular exopolysaccharide commercially produced by a yeast-like fungus
Aureobasidium pullulans [21, 67]. Pullulan has a linear glucan structure consisting
of maltotriose repeating units [155]. Pullulan can be produced from other microbial
sources, including Cytaria harioti, Cytaria darwinii, Cryphonectria parasitica,
Teloschistes flavicans, Rhodosporidium paludigenum, and Rhodotorula bacarum
[154]. Pullulan has a potential application for food applications such as a thickener,
stabilizer, binder, dietary fiber, texture improver, prebiotic, low-calorie food
ingredient [94, 155]. Pullulan dietary fiber effects have been tested on fried potato
starch [24] and rice starch digestibility [22]. Pullulan, a natural, odorless, tasteless
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polymer, is used for food packaging applications in developing edible film and
coating formulations. Pullulan films and coatings with antimicrobial agents have
great potential to reduce microbial spoilage and extend food products shelf-life.
Chu et al. [29] prepared antimicrobial pullulan coatings with cinnamon essential oil
nanoemulsion. Pullulan-cinnamon essential oil nanoemulsions coatings signifi-
cantly decreased the total aerobic counts and yeast and mold counts of strawberries
during room storage. Kras niewska et al. [89] manufactured a pullulan coating
enriched with leather bergenia leaves extract. Pullulan-leather bergenia leaves
extract films antimicrobial efficacy was tested on artificially inoculated peppers with
Aspergillus niger and Staphylococcus aureus and apples with Aspergillus niger.
Pullulan-leather bergenia leaves extract coatings showed a high inhibitory effect on
fungal contamination of apples, fungal, and peppers bacterial contamination. In
another shelf-life study, carried out by Kumar et al. [91], chitosan-pullulan com-
posite edible coatings supplemented with pomegranate peel was developed to
enhance the quality and shelf-life of green bell paper at room (23 ± 3 °C, RH: 40–
45%) and cold temperatures (4 ± 3 °C, RH: 90–95%) for 18 days of storage and
no adverse effects were observed on sensory attributes during storage. Wu et al.
[177] used Laminaria japonica-derived oligosaccharides in pullulan coating for
cherry tomatoes preservation. The study performed by Yan et al. [181] improved
strawberries’ qualities during the storage period with Konjac glucomannan and
pullulan composite films.

The efficacy of nisin embedded amaranth protein isolate-pullulan electrospun
nanofibers was assessed on apple juice and fresh cheese as a real food model [158].
Fresh cheese and apple juice artificially inoculated with Salmonella Typhimurium,
L. monoctogenes, and L. mesenteroides. Amaranth protein isolate-pullulan nano-
fibers showed satisfactory antibacterial effects against all bacteria. This study
confirmed that nisin encapsulated amaranth protein isolate-pullulan nanofibers
potential in controlling the post contamination.

Pullulan potential prebiotic properties were investigated in low-fat yogurt. The
viability of Streptococcus thermophilus, Lactobacillus, and Bifidobacterium in the
presence of pullulan at 0.5–2% in low-fat yogurt and pH changes during storage at
4 °C for 28 days were investigated [94]. Pullulan addition to reduced-fat yogurt
enhanced the viability of Lactobacillus and Bifidobacterium, however, had no effect
on the viability of Streptococcus thermophilus. Pullulan addition improved the
texture properties but had an adverse impact on sensory attributes in low-fat yogurt.
This study demonstrated the pullulan protective effect on the viability of probiotic
bacteria for health-promoting properties.

4 Xanthan Gum

Xanthan gum is a charged heteropolysaccharide polymer, which is produced by the
Xanthomonas campestris. The other Xanthomonas strain types such as X. axono-
podis pv. vesicatoria, X. Hortorum pv. pelargonii, X. Axonopodis pv. begoniae and
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X. campestris have been used for xanthan gum production [41]. Global production
of xanthan gum exceeds 50000 tons/year with 600 and 800 million dollars/year
market value [161].

Xanthan gum is an important microbial exopolysaccharide and widely used in
the food industry due to its unique properties, including thickening properties [27],
film-forming properties [90], and other applications, including a stabilizing agent
for emulsions [170], nano-micro carriers for active agents [122] and as functionality
enhancers [139]. Xanthan gum addition to the pasteurized egg white foam with
Persian gum enhanced the foam texture and stability [34].

Edible coatings can be applied in different methods including, dipping, spraying,
and coacervation. The study of Lara et al. [97] investigated the effect of xanthan
gum-based edible coatings in the spraying method to improve the storage stability
of fresh-cut lotus root. Xanthan gum, citric acid, and glycerol contained spraying
solutions that prevent microbial growth, decreased the enzymatic browning, and
enhanced the shelf-life of fresh-cut lotus root post-harvest storage. Cho and Yoo
[27] determined the impact of commercially available food thickeners, including
xanthan gum, guar gum, dextrin, and carboxymethyl cellulose, in cold beverage
preparations. The thickened beverages prepared with xanthan gum possessed
desired rheological properties and improved the swallowing ability. The study of
Espert et al. [48] evaluated the palm oil in vitro digestion in the presence of xanthan
gum. The impact of xanthan gum was significant in vitro digestion system, and the
xanthan gum matrix remarkably reduced fat digestion.

The texture of the cake, pasta, and bread is considered a critical quality char-
acteristic of these products; hydrocolloids such as xanthan gum are widely used to
formulate bakery products. Milde et al. [114] developed a gluten-free pasta with
cassava starch, cornflour, and xanthan gum. In the pasta formulation, the presence
of 0.6% xanthan gum enhanced pasta dough handling, decreased cooking loss, and
improved physical and textural properties. Mohammadi et al. [116] optimized
gluten-free flatbread formulations, which included rice flour, corn starch, soy flour,
xanthan gum, and also xanthan gum-carboxymethyl cellulose. The highest dough
yield, bread yield, and lowest bread weight loss obtained with xanthan gum and
xanthan gum-carboxymethyl cellulose combination bread formulations. In another
study, the presence of 1% xanthan gum in sponge cake formulation with wheat
flour and corn starch improved the hardness of the product but decreased the overall
acceptance scores for sensory evaluation [130]. The other food applications of
xanthan gum are; Zhao et al. [190] showed the potential of xanthan gum as sodium
salt substitute in the low sodium meat products formulations, Santos et al. [147]
developed food grade Pickering emulsions formulations with zein-xanthan gum,
and sunflower oil, Sharma and Rao [151] developed the xanthan gum embedded
cinnamic acid edible coatings for prevented browning and prolonged the shelf-life
of fresh-cut pears.
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5 Dextran

Dextran (a-1,6-linked glucan) is a homopolysaccharide composed of D-glucose
units [176], produced by Leuconostoc spp, Streptococcus spp, Weissella,
Pediococcus and Lactobacillus genera of lactic acid bacteria [13, 69, 88, 119].
Lactic acid bacteria produced a wide variety of different EPSs, including
homopolysaccharides and heteropolysaccharides. Dextran, levan, kefiran, and
hyaluronic acid are the LAB belonging EPSs [117]. Dextrans texturizing, emulsi-
fying, prebiotics, cloud forming, edible coating properties are the potential appli-
cations of dextrans in the food industry [39, 46, 164]. In the baking industry,
hydrocolloids have been used to enhance the dough and bread-making process
textural and rheological properties [164] and bakery products shelf-life [176, 187].
Microbial EPSs from lactic acid bacteria during sourdough fermentation has the
ability to act as hydrocolloid to improve the rheology, texture, and mouth feel
properties of fermented dairy products and bakery products in the food industry [14,
44, 164].

Many studies have been conducted on the application of dextran in the bakery
industry [13] to determine the prebiotic function of dextran from Weissella cibaria
RBA12 isolated from pummelo, and its potential application in sourdough fer-
mentation [145] tested the dextran as an alternative of commercially available
hydrocolloids in gluten-free bread. Dextran produced by Weissella confusa (W.
confusa) improved quality. It extended the shelf-life of Chinese steam bread with
acceptable sensory attributes [164], and in the study of Wang et al. [174] it was
reported that the improvement of wheat-fab a bean composite bread quality was due
to dextran synthesized in situ Weissella confusa, and also wholegrain sorghum
bread formulations improved with W. confusa [172]. In addition, dextran could be
purified from a wide variety of sources with multifunctional properties in different
kinds of food applications. Du et al. [44] obtained dextran from Leuconostoc
pseudomesenteroides from the homemade vine with antioxidant property.

6 Kefiran

Kefiran is an extracellular polysaccharide from lactic acid bacteria during kefir
production [149]. Kefiran is available in kefir grains and Lactobacillus species such
as L. kefir, L. parakefir, L. kefiranofaciens, L. brevis, and L. delbrueckii
subsp. bulgaricus [95, 118]. Kefiran has potential applications in producing food
products, including edible films [61], a delivery system such as doxycycline
antimicrobial agent embedded kefiran nanofibers [35], and green nanocomposites
with cellulose nanocrystals and kefiran [149].
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7 Curdlan

Curdlan is a water-soluble bacterial linear homopolysaccharide composed of
repeating unit of (1 ! 3)-b-glucan produced by Agrobacterium spp. (formerly
Alcaligenes faecalis var. Myxogenes) [113, 119, 186], Rhizobium spp.,
Cellulomonas spp. are the other curdlan producing microorganisms [58].

Curdlan is widely used in the food industry as a stabilizer, thickener, and tex-
turizer and approved by FDA (Food and Drug Administration) as a food additive
[186]. Due to its unique properties, including high water holding capacity, rheo-
logical, gel-forming, textural improving properties, and freeze-thawed properties,
curdlan has been used as a critical ingredient in the food industry to improve the
quality of the various type of food products [25]. Textural and cooking qualities are
the key quality for the noodles. Gao et al. [58] evaluated the noodle quality that was
prepared with curdlan. Regarding the results, the use of curdlan in noodles for-
mulations significantly improved the eating quality and textural properties. In
another study, the addition of curdlan into potato starch noodles enhanced the
textural properties and increased the syneresis [173]. Liang et al. [106] described
how curdlan addition could minimize the effect of curdlan on the quality of frozen
cooked noodles during frozen storage. The other important food applications are,
curdlan and chitosan coatings improved the mechanical and barrier properties of
packaging paper [17], curdlan has been used as a fortifier in a set of yogurt [189],
the study of the Funami et al. [56] assessed the possibility of curdlan as fat mimetics
ingredient for sausages.

8 Emulsan

Emulsan is an extracellular polysaccharide composed of sugar backbone with fatty
acids produced by Acinetobacter spp., including A. venetianus, A. calcoaceticus
[20, 78]. Emulsan has potential applications as biosurfactants [129] in the food
industry.

9 Alginate

As a popular exopolysaccharide, alginate structure includes two main compounds:
b-D-mannuronic acid units and a-L-guluronic acid units. These acid units are linked
by a-1,4 glycosidic bonds. Alginate is collected from various kinds of brown
seaweeds and species of Pseudomonas and Azetobacter also synthesize alginate as
an exopolysaccharide [68]. Pseudomonas species that are able to produce alginate
are known as P. aeruginosa, P. fluorescens and P. syringae [16].
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Bacteria cells can adhere to solid surfaces and adhesion process occurs easily in
the presence of some EPSs such as alginate. For instance, the attachment of
P. aeruginosa to solid surfaces was improved by alginate synthesized in the
medium. Biofilms created by exopolysaccharide can contribute to overcoming
electrostatic repulsion between the bacteria cells and the surface. Hence, alginate
has a significant function in the development of biofilms by species of
P. aeruginosa [16]. Alginates are purified from these medium created by various
bacteria species and the production of alginate is commercially performed by using
different species of brown algae such as Laminaria digitata, Laminaria japonica,
Ascophyllum nodosum, and Macrocystis pyrifera. Extracts obtained from these
species were treated with alkali solutions such as NaOH. At the end of purification
steps, sodium alginate is obtained in powder form [99].

Alginates are able to produce gels when the medium including divalent cations
such as calcium ions. Interaction between alginate and divalent cations is called
crosslinking and that is prefered between G blocks and divalent cations. Therefore,
guluronate content of alginate is proportional to the gel strength [52]. Alginate has
considerable properties as gelling agent, thickening, stabilizing, emulsifying agents,
and encapsulation. Besides that, it is a biocompatible and biodegradable material
used as a biopolymer, especially for food coating exopolysaccharide [141].

Alginates are commonly used in many industrial processes. In food industry,
alginates have been utilized as thickener, emulsifier, and stabilizing agents. The
applications of alginate in food products are related to its physical properties. These
physical properties come from its unique chemical structure. The a-L-guluronic
acid units known as G blocks and b-D-mannuronic acid units known as M blocks
defined the functional properties of alginate. In terms of gelling property, G blocks
play an important role by binding Ca2+ or H+ binding that results in gel formation.
In the food industry, alginate is well known as thickening agent because of its
ability to form gels, which are heat stable, at low temperature in the absence of
heating or at low pH medium or in the presence of calcium [141]. Ca-dependent
gelation and gel properties of alginate are significantly influenced by intrinsic
factors including molecular weight, guluronic acid percentage, the length and
distribution of Ca-binding blocks, and extrinsic factors such as concentration of
alginate, concentration of calcium ions, ion strength, pH, and temperature. Alginate
having high molecular weight offers more calcium-binding sites that develop rhe-
ological properties of the gels and improve viscosities. Increase in guluronic acid
percentage increased the stability and mechanical strength in terms of Ca-dependent
gels [19].

Considering the role of alginate in the viscosity properties of foods, diverse food
formulations like ice cream, jam, jellies, mayonnaise, salad dressing, desserts,
cakes, and candies have been produced. In low-fat mayonnaise formulations, fat
reduction affected the textural properties of product and the application of
alginate-based gel systems were investigated as alternatives to produce low-fat
mayonnaise. Li et al. [101] performed the production of low-fat mayonnaise by
emulsifying the oil molecules in the gel medium created by using alginate and
alginate stabilized gel-based emulsion produced by using alginate (2%) and Tween
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80 (0.5%). Fat droplets in these kinds of products have an important structural
function and thus development of low-fat formulation is a challenging issue.
Alginates take part in formulations as an alternative ingredient to reduce the amount
of fat in the product while maintaining the textural properties of the product. Main
advantage of alginate-based gels over other polysaccharide gels is thixotropy,
shear-thinning property, but one disadvantage is the formation of weak hydrogels
[182]. In the study, it was mentioned that mechanical strength of alginate-based gels
was enhanced by using with different polysaccharides such as cellulose, chitosan,
pectin, and others. Thus, alginate was combined with glucomannan in different
ratios in order to produce low-fat mayonnaise. It was investigated glucomannan
addition to alginate at high concentration as 4% considerably enhanced the strength
of alginate-glucomannan matrix that forms a complex gel structure. Moreover, the
prepared low-fat emulsion gels including alginate and glucomannan indicated good
thermal stability after heating at 100 °C for 30 min and freeze-thaw stability after
freezing the gels at −18 °C for 24 h [182]. Alginate is also used to replace milk fat
droplets to obtain low-fat dairy products due to the higher water-binding capacity of
alginate. Sodium alginate was used in the production of Cheddar cheese having
low-fat content and its usage improved textural properties. Four levels of sodium
alginate 0.12, 0.17, 0.18, and 0.23% were investigated as an ingredient to replace
fat content of Cheddar cheese until 91% fat reduction. During ripening of 180 days,
fat reduction by addition of alginate resulted in improved textural properties by
increasing hardness and microstructural properties, but poor color development
[84]. In recent years, low-fat meat products have become more popular and are
preferred by consumers. Alginate is one of the hydrocolloids used in low-fat
emulsion meat products in order to replace fat by maintaining the quality [82]. The
effect of substitution of pork back-fat with alginate solution at 0, 25, 50, 75, and
100% ratios on the quality characteristics, protein conformation, and sensory
attributes of frankfurters were evaluated [82]. When the use of sodium alginate
solution was 25 and 50% ratios, the cooking yield, emulsion stability, and color
values of frankfurters were not significantly different. Texture properties including
hardness, springiness, cohesiveness, and chewiness of frankfurters produced by
50% pork back-fat replacement with sodium alginate solution had significantly
higher values than others [82].

As a gelling agent, alginate forms stable gels at a wide range of temperatures and
low pH conditions. Alginate is widely used in the production of ice cream products
for functions such as thickening, stabilizing, controlling viscosity, shrinkage, and
ice crystal formation [137]. Moreover, alginate has also been used to obtain
hydrogels maintaining viability of probiotic bacteria in low acid medium that
simulates gastric juice. Encapsulation of probiotic bacteria, Bifidobacterium breve,
was carried out by alginate-based capsules and viability of probiotics was enhanced
in various pH environments simulating gastric and intestinal medium [104].
Addition of Lactobacillus rhamnosus and Lactobacillus casei into ice cream in free
and encapsulated form by using alginate and chitosan were investigated.
Encapsulated L. rhamnosus was preserved at low temperatures, but the L. casei
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indicated greater viability during the encapsulation as well as in the gastrointestinal
environment [50].

Alginate is being an attractive polysaccharide used for edible films and coatings
of foods because of its film-forming ability with non-toxicity and low price. Among
the different kinds of alginate salts, sodium alginate is commonly used for pro-
ducing water-soluble, tasteless, odorless, glossy, and flexible edible films with low
permeability to oxygen [165]. Alginate-based biodegradable coatings present an
alternative to substitute synthetic coatings for maintaining the quality of fresh fruit
and vegetables after harvesting. One disadvantage is poor moisture barriers of
edible films produced from alginate due to its hydrophilic structure. However,
addition of calcium ions improves the water-resistance of alginate films [143].
A number of studies in the literature have presented the potential of alginate-based
edible coatings for maintaining quality attributes of fruit and vegetables such as
grapes [87], peach [103], pineapple [7], plum [168], mushroom [76], and arbutus
berry [62]. Alginate based coatings have been commonly used as carriers of active
ingredients to increase shelf-life and improve quality properties of foods [165].
Recent investigations in literature focus on nanoemulsion alginate coatings in
which active ingredients exhibit better properties. Effectiveness of alginate-based
nanoemulsion coatings incorporated with sweet orange essential oil were evaluated
in terms of antibacterial and antibiofilm activity against Salmonella typhi and
Listeria monocytogenes as well as coating effect on quality attributes of tomatoes
during storage at 22 °C. Alginate nanoemulsion indicated antibacterial property
against S. typhi and L. monocytogenes and increased the shelf-life of tomatoes by
delaying spoilage caused by the bacteria. In addition, the coating significantly
enhanced firmness and reduced weight loss of tomatoes by delaying ripening [38].
Application of alginate-based nanoemulsion coating incorporating lemongrass
essential oil at the concentrations of 0.1 and 1% were investigated on fresh-cut
apples stored at 4 °C for 14 days. In terms of the quality parameters including
weight loss, pH, and acidity, formulation incorporating 0.1% essential oil content
was found to have positive effects compared to high essential oil content (1%) [31].
Cinnamon essential oil nanoemulsions were incorporated into alginate-based bio-
composite films [54]. In this study, developed biocomposite films including 20%
cinnamon essential oil nanoemulsion indicated antibacterial activities against
Salmonella typhimurium, Bacillus cereus, Escherichia coli, and Staphylococcus
aureus.

10 Gellan

Gellan is a kind of gum formed by bacterium Sphingomonas elodea (ATCC31461),
also called as Pseudomonas elodea, through aerobic fermentation. Gellan is one of
the EPSs which has ability to form gel in a wide range of conditions such as low
concentrations and acidic medium [110]. Structurally, gellan could be in two dif-
ferent forms which are high acyl (HA) and low acyl (LA) gellan. The structure of HA
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and LA gellan is mainly a linear tetrasaccharide repeat unit of two glucose, one
glucuronate, and one rhamnose units [185]. In the tetrasaccharide repeating sequence
of gellan, three of the four glycosidic linkages have equatorial bonds at first and
fourth carbon atoms of the participating residues. The rest of linkages in the gellan
exhibits a systematic “twist” in direction of the chain which ensures helix structure of
gellan. The water-based solution of anionic polysaccharides such as gellan present
cations which are counter ions to the charged groups of the polymer chains. The
balance of positively-charged ions in the solution is provided by interaction with
negatively-charged polymer chains. Linear polyanion charge intensity and the charge
of individual cations state the strength of this interaction [120].

Gel formation ability of polysaccharides differs from each other. Some of that,
such as carrageenan, gellan, and curdlan, are able to form a gel by means of heating
and then cooling. Others, such as alginate, LA gellan, and high methoxyl pectin,
form a gel at specific conditions including temperature, types of cations, and pH
[185]. Different factors should be considered in terms of gelation mechanisms.
Gelation process takes place by aggregation of double helices of gellan. It is
explained that pH reduction assists aggregation and gelation by means of
decreasing the negative charge on the polymer which results in the decrease in
electrostatic repulsion between the helices. Some of the cations can bind the helices
in defined sites related to carboxylate groups of polymer, and thus decreasing
electrostatic repulsion. Increase in ionic size of cations increases the strength of
binding (Li+<Na+<K+<Rb+<Cs+) [120]. Due to its rheological properties, gellan
has been commonly used in food products. Generally, food gels are classified as
fluid gels, soft gels, and hard gels. Even though xanthan gum is commonly used in
weakly gelled foods, such as salad dressings, gellan is used as a gelling agent to
form soft and firm hydrogels in foods such as beverages, desserts, jams, and jellies.
Low concentration of gellan is applied to form fluid gels in diverse types of fruit
juices and beverages. In order to form soft and firm gels in foods such as desserts
and jellies, higher concentration of gellan are required [185].

Regarding the food applications of gellan, studies in the literature have investi-
gated the effect of gellan addition in food formulations from different perspectives.
Schelegueda et al. [148] evaluated low-sugar content food model systems developed
by using natural additives having different roles. One of the additives was gellan,
used as gelling agent, xylitol, used as water activity depressor, and natamycin, used
as an antimicrobial agent. Addition of gellan at two different concentrations(0.90 and
1.80 g/100 g) was investigated with the combination of other additives. In the model
food system, growth of Zygosaccharomyces bailii was inhibited by highest gellan
concentration at the beginning of storage. However, consumption of nutrients in the
medium leads to the utilization of gellan as an energy source by yeasts. It was also
explained that higher level of gellan application with natamycin resulted in weak
structure in the gel. Effects of low acyl (LA) and high acyl (HA) gellan on the thermal
stability of anthocyanins in model beverage systems was investigated [179]. It was
indicated that gellan addition maintained thermal stability of anthocyanins during
heat treatment and HA gellan provided significantly higher stability improvement
than LA gellan. It is probably due to higher degree of acylation in the HA gellan. Acyl
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Table 1 Food applications of microbial EPSs

EPS Sources Applications in food industry References

Cellulose Komagataeibacter, Aerobacter,
Azotobacter, Achromobacter,
Rhizobium, Alcaligenes,
Escherichia, Salmonella,
Pseudomonas, Sarcinia,
Agrobacterium, Dickeya,
Rhodobacter

Gelling agent, emulsifying
agents, delivery of bioactive
agents, coatings, and films

[32, 92,
107, 123]

Pullulan Aureobasidium pullulans,
Cytaria harioti, Cytaria
darwinii, Cryphonectria
parasitica, Teloschistes
flavicans, Rhodosporidium
paludigenum, and Rhodotorula
bacarum

Delivery of bioactive agents,
coatings films, and prebiotic
properties

[21, 67,
154]

Xanthan
gum

Xanthomonas axonopodis pv.
vesicatoria,
Xanthomonashortorum pv.
pelargonii, Xanthomonas
axonopodis pv. begoniae and
Xanthomonas campestris

Gelling agent, thickening,
delivery of bioactive agents,
coatings, and films, sodium salt
substitute, gluten-free food
formulations

[41, 47,
98, 151,
190]

Dextran Leuconostoc spp,
Streptococcus, Weissella,
Pediococcus, and Lactobacillus
genera of lactic acid bacteria
(LAB)

Functional food applications,
texturizing, emulsifying,
prebiotics, cloud forming,
edible coating

[13, 39,
46, 88,
164]

Kefiran Lactobacillus species such as
Lactobacillus kefir,
Lactobacillus parakefir,
Lactobacillus kefiranofaciens,
Lactobacillus brevis, and
Lactobacillus delbrueckii subsp.
bulgaricus

Delivery of bioactive agents,
coatings, and films

[35, 61,
95, 118]

Curdlan Agrobacterium sp., Alcaligenes
faecalis var. Myxogenes,
Rhizobium spp, Cellulomonas
spp

Texturizing, emulsifying,
delivery of bioactive agents,
coatings, films, and fat mimetics

[56, 58,
113, 173,
186, 188]

Emulsan Acinetobacter sp, including A.
venetianus, A. calcoaceticus

Adsorption, biosurfactants [20, 78,
129]

Alginate Species of Pseudomonas and
Azetobacter

Gelling agent, thickening,
stabilizing, emulsifying agents,
encapsulation, biodegradable
coating

[68, 141]

Gellan Sphingomonas elodea,
Pseudomonas elodea

Gelling agent to form soft and
firm hydrogels in foods, edible
films for food packaging
applications

[110, 185]

(continued)
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groups in gellan molecules tend to regulation of structure into more extended frame.
Thus, LA gellan molecules showed more strict arrangement. In another study, meat
buffers were formulated by using gellan in order to reduce fat and sodium content
[166]. Texture properties of reduced fat and sodium meat batters were evaluated by
usage of gellan in the study. Hardness of samples was highest in the control samples
while rigid structure decrease with the reduction in fat content and increased gellan
content. Moreover, gellan is newly used gum in edible films developed for the
applications of food packaging. For instance, gellan is used as an edible film matrix
for carrying of ascorbic acid for improving food quality by antioxidant activity.
Ascorbic acid degradation in the developed gellan based edible film indicated a
pseudo-first order kinetics and it was indicated that ascorbic acid 100%-retained in
film matrix after film casting [100]. Production and storage of gellan based edible
films with the gellan concentrations of 0,0.02, 0.04, 0.06, 0.08, and 0.10% were
investigated by Xiao et al. [178] and it was found that concentration of 0.08% gellan
in edible films presented a desirable tensile strength and perfect film barrier prop-
erties. Storage of gellan based films was also investigated under four different con-
ditions including refrigerated conditions at 0 °C, supermarket storage environment at
6 °C, room temperature at 25 °C, and high temperature at 35 °C [178]. Under storage
conditions of room temperature and high temperature, higher water vapor perme-
ability was observed due to the increase in velocity of gellan and other molecules. In
another study, LA and HA gellan based edible coatings were optimized for appli-
cation on ready-to-eat mango bars. As an independent variable, gellan concentration
considerably affected the coating thickness. Gellan coating of mango bars improved
sensory characteristics, color, and volatiles of fruits during storage [37].

Table 1 (continued)

EPS Sources Applications in food industry References

Carragenan Seaweeds of the class
Rhodophyceae

Gelling, thickening, emulsifying
agent, texture enhancers, and
stabilizers in food products

[18]

Hyaluronic
acid

Streptococcus species such as
Streptococcus equisimilis,
Streptococcus pyogenes, and
Streptococcus equi

Hydrating agent in cosmetics
and pharmaceuticals,
biocompatible films, or
hydrogels

[74, 163]

Levan Lactobacillus johnsonii and
Lactobacillus gasserii, Bacillus
subtilis, Aerobacter levanicum,
S. salivarius

Emulsifier, stabilizer, thickener,
encapsulating agent, and carrier
for flavors, inhibition
hyperglycemia induced by
diabetes

[36, 159]

Colanic
acid

E. coli and also other species of
Enterobacteriaceae family

Gelling agent in cosmetics and
personal care products

[132, 160]

Welan Sphingomonas sp., Alcaligenes
sp.

Thickening, binding, and
emulsifying agent in food
products

[83]
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Oil-in-water emulsions including 30% sunflower oil were stabilized by using
HA gellan at different concentrations changing from 0.01 to 0.2%. HA gellan was
effective to stabilize emulsions at concentration above 0.05% and it was compared
with LA gellan at the same conditions. LA gellan was not found to be effective in
stabilization of emulsions. It was suggested that HA gellan can be used as a
potential ingredient to stabilize food emulsions [171]. Gellan was used with
microcrystalline cellulose in order to develop physical and thermal stability of
ginkgo beverages. The stability of ginkgo beverage was evaluated by characteristics
of particle size, size distribution, zeta potential, and rheological properties. The
study indicated that gellan with a small amount of 0.05 or 0.08% contibuted
effectively to beverage stability compared to the larger amount of gellan by
decreasing particle size and increasing zeta potential [127]. In yogurt and
yogurt-based beverages, serum separation is one of the quality defects delayed by
using hydrocolloid stabilizers. In this respect, EPSs can be able to reduce sedi-
mentation rate by increasing the product viscosity. In a yogurt-based Iranian drink,
effects of addition of gellan at the percentages of 0.01, 0.03, and 0.05, alone as well
as its combination with high-methoxy pectin at 0.25% on the quality characteristics
of viscosity, particle-size, and serum separation were investigated. Gellan was
effective against syneresis by forming strong networks, thus serum volume
decreased. Moreover, sensory analysis performed after 1 day of storage at 5 °C
indicated consumer acceptance of yogurt-based drink was not affected by addition
of 0.05% gellan in the presence of high-methoxy pectin at 0.25% while stability of
product was maintained [85].

11 Carrageenan

Carrageenan is one of the gel-forming and viscosifying EPSs, extracted from a
number of seaweeds of the class Rhodophyceae. Carrageenan has a molecular mass
above 100 kDa and is structurally sulfated polygalactan with 15–40% of
ester-sulfate. Its structure contains D-galactose and 3,6-anhydro-galactose units and
the units are linked by the glycosidic linkage of a-1,3 and b-1,4. Based on the
sulfate content, there are different kind of carrageenans such as lambda (k), kappa
(j), iota (i), epsilon (e), and mu (l), changing 22–35% sulphate. Increase in ester
sulfate content results in the decreasing solubility temperature and gel strength
[124]. From a commercial perspective, iota (i), kappa (j), and lambda (k) are
important three main varieties of carrageenans. The j-carrageenan is comprised of
3-linked b-D-galactose 4-sulfate and 4-linked 6-anhydro-a-galactopyranose which
has one negative charge per disaccharide repeating unit while i-carrageenan
includes two sulfate groups per disaccharide repeating unit. In the medium con-
taining cations such as K+, Ca2+, i- and j-carrageenans form highly viscous
aqueous solutions, thus indicate gelling properties. However, k-carrageenan is
incapable to produce gel at all temperatures, and gelation of k-carrageenan is
feasible with trivalent ions [192].
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EPSs have different functional properties and each has various application areas.
Carrageenan is useful to produce gels in the presence of potassium and calcium ions
in certain foods, i.e., meat products, dairy products, and desserts. Gelation of car-
rageenan has resulted from the helix formation that develops when a 3, 6 anhydro
bridge is present on the B unit of the carrageenan molecule [71]. Three main forms
of carrageenan including kappa, iota and lambda differentiate in the number of
sulphate groups as one, two, and three per disaccharide in the structure, respec-
tively. In an aqueous solution, i- and j-carrageenan change form from a
temperature-dependent and disordered structure to ordered helix transition. The
helix structure is related with the gelation property of the carrageenans [96]. Thus,
the carrageenans are used mainly as gelling agents, but also as fat substitutes,
stabilizing, and thickening agents in the food industry. Among three most important
types of carrageenan, except trisulfated k-carrageenan, only monosulfated
j-carrageenan and bisulfated i-carrageenan are able to form gels. Hydrogels
obtained by using j-carrageenan have thermo-sensitive structural and thus,
j-carrageenan is preferred for developing delivery agents in which targeted com-
pounds’ release depends on the temperature. In encapsulation of active compounds
such as antioxidants, enzymes, and probiotics, j-carrageenan hydrogels have been
used to protect compounds during production and storage of the food products [93].

Carrageenans are widely used in food industry for properties of gelling, thick-
ening, and emulsifying. Carrageenans are added as texture enhancers or stabilizers
in many types of food products like frozen desserts, sauces, ice cream, yogurt,
chocolate milk, cheese, and meat products [18]. Synergistic effect of carrageenan
with locust bean gum is applied in order to increase the gel strength and combi-
nation with other hydrocolloids have an effect on gel strength and cohesiveness. In
dairy products, k- and j-carrageenan are commonly used to improve solubility and
texture due to easy combination with milk proteins [124]. In the study performed by
Günter et al. [64], gel microparticles were produced by using pectin and
j-carrageenan. Higher pectin concentration in the microparticle gels resulted in
lower swelling degree in simulated gastric, intestinal, and colonic fluids. Addition
of carrageenan into the gel formulation provided an increase in the swelling degree.
Influence of the carrageenan types including iota, kappa, and lambda on the casein
micelle and carrageenan interactions in milk were studied and all three types of
carrageenan showed adsorption onto casein micelles. The most highly charged form
of carrageenan was found as k-carrageenan which indicates attractive interactions
with casein micelles at the temperature of 60 °C [96]. Hydrocolloids have an
important role in controlling ice recrystallization. The usage of j-carrageenan as a
secondary stabilizer was investigated in terms of stabilization of ice cream during
storage [10]. It was indicated that j-carrageenan significantly reduce the hardness
and iciness and supported the functionality of primary stabilizer. j-carrageenan was
added to lactose-free frozen yogurts as a stabilizer with three different concentra-
tions of 0.05, 0.1, and 0.15%. Quality characteristics of lactose-free frozen yogurts
including acidity, texture, viscosity, overrun, melting properties, and color attri-
butes were improved with 0.15% j-carrageenan addition. Sensory properties were
also better in the yogurt samples incorporated with j-carrageenan [157]. Foerster
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et al. [53] studied on a milk emulsion system in order to determine the optimum
amount of k-carrageenan based on the size of fat globules and stability of emulsion.
Emulsions prepared with a carrageenan concentration range of 0.3 and 0.4%
indicated the highest stability and minimal fat globule size. Moreover, the addition
of carrageenan into milk emulsions also provided stabilization and reduction of
surface fat in powders obtained by spray drying. Thus, the k-carrageenan is to be
useful in powders of dairy-based emulsion by stabilizing emulsions in the presence
of milk protein. In a viscous food model systems containing 10% of sucrose, the
addition of k-carrageenan was investigated in terms of the release of aroma com-
pounds including aldehydes, esters, ketones, and alcohols. The difference between
release of the aroma compounds in water and in viscous k-carrageenan solution was
compared by using dynamic headspace gas chromatography. Mass transfer of
aroma compounds demonstrated a decrease in release rates was changed depending
on the physicochemical characteristics of the aroma compounds, but the effect of
k-carrageenan on decreasing the release rates was observed in the most volatile
compounds [18].

12 Hyaluronic Acid

Hyaluronan is glycosaminoglycan with a highmolecular weight and it is formed from
repetition of disaccharide units which comprise of D-glucuronic acid and
D-N-acetylglucosamine linked by b-1,4 and b-1,3 glycosidic bonds. Dissachharide
units found in the hyaluronan molecule changes in the number of 10000 or more.
Synthesis of hyaluronic acid is provided by internal membrane proteins called as
hyaluronan synthases [125]. Hyaluronic acid was discovered in 1934 and its extrac-
tion was obtained from animal tissue, especially from rooster coombs. However, now
production of hyaluronic acid is performed by recombinant bacteria [121].

Hyaluronic acid has a role as key molecule in the regulation of various cellular
and biological processes. Thus, hyaluronic acid has been used for many biomedical
applications not only due to the biocompatible, biodegradable, and nonimmuno-
genic properties but also because of its biological functions [136]. Synthesis of
hyaluronic acid is occurred by many Streptococcus species such as Streptococcus
equi, Streptococcus equisimilis, Streptococcus pyogenes. Among the species, S.
equi subsp. zooepidemicus achieved industrial production of hyaluronic acid, but
these strains are known as pathogenic. Therefore, a recombinant strain of Bacillus
subtilis was found to be able to produce hyaluronic acid on a laboratory scale [74].
Recently, S. thermophilus isolated from traditional dairy food products was
investigated for production of hyaluronic acid. It was found to be effective to
produce EPSs including hyaluronic acid with a wide range of molecular masses
[74]. Hyaluronic acid is found to be useful natural material in surgery of human eye
due to the compatibility with human immune system. Another property of the
hyaluronic acid which makes it useful is high water-binding capacity. The
water-binding capacity of hyaluronic acid was remarked as up to 6 litres of water

220 D. K. Arserim Ucar et al.



per gram of the polysaccharide, that associated with molecular mass of the
polysaccharide [163].

Hyaluronic acid is mainly used as a hydrating agent in cosmetics and pharma-
ceuticals, and also used in eye surgery due to its biological properties [163]. The
usage of hyaluronic acid in food industry is limited. Hyaluronic acid is also known
with the ability to form biocompatible films or hydrogels in defined conditions.
Galactomannans are a kind of polysaccharides used to increase the viscosity of food
products and in films/coatings for foods. Combination of galactomannan and
hyaluronic acid was investigated in order to observe physical and chemical char-
acteristics of hyaluronic acid in solution. Two types of galactomannans including
guar gum and locust bean gum improved the viscoelastic behavior in hyaluronic
acid mixture solution compared to pure solution. Synergism between hyaluronic
acid and locust bean gum was obtained successfully at 50% in which hydrogel with
the best viscoelastic behavior and desired properties was obtained [112].
Nano-delivery system based on oligo-hyaluronic acid and loaded with curcumin
and resveratrol was produced successfully and the hyalurosomes containing both
curcumin and resveratrol were suggested to improve stability, bioavailability, and
antioxidant activity of functional compounds used into juice, yogurt, and nutritional
supplements. Coencapsulation of curcumin and resveratrol in hyalurosomes for-
mulation was obtained with the average particle nano-size of 134.5 ± 5.1 nm and
stability observed in vitro gastrointestinal release test [65]. In another study, caffeic
acid as an antioxidant agent was incorporated into biopolymer hydrogels composed
of hyaluronic acid, hydrolyzed collagen, and chitosan. Increase in the amount of
hyaluronic acid resulted in excellent swelling behavior. Release of caffeic acid in
the produced hydrogels was initially 70% within 60 min and followed by a release
of 80% in 480 min [30].

13 Levan

Levan is a homopolysaccharide comprised of fructose, which makes it a unique
carbohydrate. A wide range of microorganisms are capable to produce levan as an
exopolysaccharide while limited plant-based sources are found to be the storage of
levan. Bacterial strains producing levansucrase include Lactobacillus johnsonii and
Lactobacillus gasserii, Bacillus subtilis, Aerobacter levanicum, S. salivarius, etc.
Levansucrase plays a part in catalysation of the transferring D-fructosyl residues
from fructose to yield levan. Thus, levansucrase is a catalyzer of microbial levan
biosynthesis [159]. Among the bacteria, Bacillus subtilis Takahashi is known as the
most efficient strain in terms of levan production. Structurally, levan is a fructose
polymer including b-(2, 6)-linkages and also about 12% branched with b-(1, 2)-
linkages. Its molecular weight is around 2 � 106 Da [169]. Levan can differ from
the molecular weight and the fraction of residues incorporated in side chains
according to the source obtained and conditions produced. It is an exopolysac-
charide with a variety of usage in cosmetics, foods, and pharmaceuticals [1]. In
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terms of solubility, levan is a water-soluble carbohydrate polymer, but insoluble in
all organic solvents like methanol, ethanol, isopropanol, n-propanol, acetone,
toluene, etc. [159]. Intrinsic viscosity of levan is lower than other polysaccharides
having similar molecular weight. Its low intrinsic viscosity is affiliated with the
compact and spherical molecular conformation of the polysaccharide. Intrinsic
viscosity values for levan in water was found in a range of 0.07 and 0.18 dL/g [6].

Levan is an exopolysaccharide used with a variety of usage in cosmetics, foods,
and pharmaceuticals. Potential applications of levan have been mentioned as an
emulsifier, stabilizer, thickener, encapsulating agent, and carrier for flavors. In
addition, it is found efficient in inhibiting hyperglycemia and oxidative stress
induced by diabetes [36]. Rheological properties of the solutions of levan obtained
from Bacillus spp. were investigated at 20 °C and different concentrations. The
intrinsic viscosity of obtained levan was compared with the levans produced by
other bacteria. Viscosity values demonstrated shear-thinning behavior appears at a
higher concentration than for other levans [6]. Levan has been used in the pro-
duction of nanostructured system. Encapsulation of nanoparticles incorporated with
vitamin E was performed by using levan and effect of parameters such as type of
homogenization, speed of homogenization, and concentration of vitamin E on
encapsulation efficiency was investigated. In the study, nanoparticules having
spherical particles between 50 and 100 nm were successfully produced by
homogenizer at the conditions of 16000 rpm speed and vitamin E concentrations
ranging from 2 to 10% [40].

14 Colanic Acid

Colanic acid is an important exopolysachharide in terms of the survival of E. coli for
outside the host. Fundamentally, lipopolysaccharides produced by Gram-negative
bacteria includes O antigen which is a polysaccharide component. Antigens
including total of 173 O, 80 capsular, and K antigens are determined in Escherichia
coli. Among these antigens, colanic acid, in other words M antigen, is widely found
exopolysaccharide produced by E. coli and also other species of Enterobacteriaceae
family [160]. Colanic acid is found as a major component in sugar composition of
EPSs obtained from isolated bacteria including Enterobacter sp., Klebsiella sp.,
Enterobacter amnigenus, Citrobacter sp., Enterobacter cloacae [138]. Different
factors based on genetic and environmental conditions such as membrane integrity,
cell envelope stress, osmotic shock, metabolic stress, growth pH, or temperature are
determined to activate the synthesis of colanic acid in cells [175].
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Colanic acid is important forms of EPSs located on the cell surface of
Escherichia coli, Shigella spp., Salmonella spp. and Enterobacter spp. In the lit-
erature, any information has not been found in the applications in food products.
Applications of colanic acid are mentioned in cosmetics and personal care products
with its gelling property [132].

15 Welan

Welan is an exopolysaccharide produced by Sphingomonas sp. which is also known
as Alcaligenes sp. and gram-negative bacteria. The production of welan is carried
out by submerged fermentation from Alcaligenes species and using a medium
including glucose, ammonium nitrate, di-potassium hydrogen phosphate, magne-
sium sulphate, and ferrous ions. The yield of welan depends on the factors such as
source of carbon, source of nitrogen, temperature, agitation speed, pH, and others
[83]. Welan and gelan have similar structures with same repeating unit. However,
welan has a single glycosyl side-chain substituent that can be an
a-L-rhamnopyranosyl or an a-L-mannopyranosyl unit linked (1 ! 3) to the
4-O-substituted b-D-glucopyranosyl unit in the main structure [81].

Welan is well known with its high viscosity even at very low concentrations and
its high viscosity retained stable at high temperatures for long time. For instance,
compared to xanthan which is another thermostable polysaccharide, while viscosity
of xanthan solutions disappear at 135 °C, viscosity of welan solutions maintained
up to 163 °C [81]. Rheological properties of welan solutions were explained in
fresh water, sea water, and 3% KC1 solutions. The rheological properties obtained
by welan ensure higher penetration rates, lower formation damage, and good sus-
pensions as an advantage. It has also an important role to prevent phase separation
in cementitious products. Welan gum has been used as thickening, binding, or
emulsifying agent in food products such as jellies, beverages like citric acid based
drinks, dairy products like ice creams, yogurt, and salad dressings [83]. However, in
the literature, studies focused on the rheological properties of welan gum solutions
and applications in food products were limited. Effect of welan gum addition on
viscoelastic properties, flow behavior, droplet size distribution, and physical sta-
bility of thyme oil in water emulsions was investigated by Martin-Piñero et al.
[111]. While emulsion without welan gum indicated Newtonian behavior, emul-
sions including welan gum showed a weak gel-like behavior with greater viscosity.
It was pointed out that welan gum played an important role as a rheological
modifier for thyme oil in water emulsions. Thus, it is a natural polysaccharide
which can control the rheological properties of these kinds of emulsions by
Martin-Piñero et al. [111] (Table 1).

Exopolysaccharides in Food Processing Industrials 223



16 Conclusion

The microbial polysaccharides can open up new opportunities in the food industry
that are environmentally friendly, sustainable, and multifunctional. Microbial EPS
are used in the food industry due to their unique characteristics such as emulsifier,
stabilizer, thickener, texturizer, encapsulating and carrying of bioactive agents, and
coating and film-forming ability. Microbial EPSs have the potential to be utilized as
food additives and functional food ingredients. Microbial EPSs structural com-
plexity, low production yield, and production cost are the most critical challenges
for microbial polysaccharides utilization in the near future; however, agro-industrial
wastes could be considered as an alternative for reducing the microbial polysac-
charides production cost. The new microbial EPSs engineered structures with
multifunctional properties have the potential to broaden the food applications.
Considering the utilization of microbial EPSs as the introduction of green tech-
nology in the food industry offers great potential for clean label products and
promotes health benefits.
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