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ABSTRACT 

 

FUNCTION GENERATION SYNTHESIS OF PLANAR MECHANISMS 

AS A MIXED PROBLEM OF CORRELATION OF CRANK ANGLES 

AND DEAD-CENTER DESIGN 

 

Kinematic synthesis of mechanisms is generally divided into three groups. One of 

them is function synthesis. In function synthesis, the design of correlation of crank angles 

and dead dead-center position stand out. These problems have been clearly defined and 

solved separately. But in some cases, problems may be encountered that require both 

correlation of crank angles and dead dead-center design. Such problems are called mixed 

function generation problems. In this thesis, an overview of these mixed function 

generation problems has been given and many problems have been solved analytically or 

semi-analytically. The solutions of all problems including three positions for the four-bar 

mechanism and the solution of a problem including four positions for a four-bar 

mechanism have been addressed. A problem including 3 positions and a problem 

including 4 positions for a slider-crank mechanism have been addressed. All solutions 

have been reduced to univariate equation and a fast solution has been found. Thus, link 

lengths can be found quickly by changing the problem inputs. Numerical solutions of all 

problems have been demonstrated using Excel.   
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ÖZET 

 

KRANK AÇILARI KORELASYONU VE ÖLÜ-KONUM 

TASARIMININ KARMA PROBLEMİ İÇİN DÜZLEMSEL 

MEKANİZMALARIN İŞLEV SENTEZİ 

 

Mekanizmaların kinematik sentezi genellikle üç gruba ayrılır. Bunlardan biri işlev 

sentezidir. İşlev sentezinde krank açılarının korelasyonu ve ölü konum tasarımı öne 

çıkmaktadır. Literatürde bu problemler ayrı ayrı açıkça tanımlanmış ve çözülmüştür. 

Ancak bazı durumlarda hem krank açılarının korelasyonu hem de ölü konum tasarımını 

gerektiren problemler ile karşılaşılabilir. Bu tür problemlere karma işlev sentezi 

problemleri denir. Bu tezde, bu karma işlev sentezi problemlerine genel bir bakış 

yapılmıştır ve analitik ya da yarı analitik olarak birçok problem çözülmüştür. Dört-kol 

mekanizması için üç konum içeren tüm problemlerin çözümleri ve dört-kol mekanizması 

için dört konum içeren bir problemin çözümü sunulmuştur. Krank-biyel mekanizması için 

bir tane 3 konum içeren problemin ve bir tane 4 konum içeren problemin çözümü 

sunulmuştur. Tüm çözümler tek değişkenli bir denkleme indirgenmiş ve hızlı bir çözüm 

bulunmuştur. Böylece problem girdileri değiştirilerek bağlantı uzunlukları hızlı bir 

şekilde bulunabilir. Tüm problemlerin sayısal çözümleri Excel kullanılarak gösterilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Machines are comprised of several mechanisms. A mechanism is a constrained 

system of bodies designed to convert motions of, and forces on, one or several bodies into 

motions of, and forces on, the remaining bodies (IFToMM, 2022). 

This thesis study issues function generation synthesis of planar mechanisms as a 

mixed problem of correlation of crank angles (CCA) and dead-center design. In the 

following subsections, kinematic synthesis of mechanisms is briefly presented. Then 

function generation synthesis is explained. After that motivation and aim of the thesis are 

stated. Finally, the outline of this thesis is presented. 

 Kinematic Synthesis of Mechanisms 

Kinematics of mechanisms can be studied under two main categories: kinematic 

analysis and kinematic synthesis. In kinematic analysis, the motions of links (position, 

velocity and acceleration) are determined for given inputs to the mechanism when the 

structure and all link lengths of the mechanism are known. In kinematic synthesis, the 

structure and all link lengths of the mechanism are determined when the motions of links 

typically for given inputs to the mechanism are known. Kinematic analysis and kinematic 

synthesis are reverse problems. There are some steps of kinematic synthesis such as type 

synthesis, number synthesis and dimensional synthesis. 

Type synthesis is the choice of elements to constitute the mechanism, such as 

gears, linkages, belts, pulleys, etc. Number synthesis is used in the selection of number 

of links and joints. Type synthesis and number synthesis form constitute the structural 

synthesis. 

After all these steps, it is necessary to determine the link dimensions of the 

mechanism according to the desired motion. Determining link dimensions is called 

dimensional synthesis. There are different tasks for dimensional synthesis: function 

generation, path generation, and motion generation (or rigid body guidance). In simple 
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terms, function generator mechanisms produce a desired function. In function generation, 

the desired motion usually contains one parameter (e.g., angle of rocker link). Path 

generator mechanisms have a point that travels on a given path. In path generation of 

planar mechanisms, the desired motion contains two parameters (e.g., x and y coordinate 

of coupler point). Motion generator mechanisms follow a given rigid body motion. In 

motion generation of planar mechanisms, the desired motion typically contains three 

parameters (e.g., x and y coordinates of a coupler point and angle of the coupler link).  

 Function Generation Synthesis 

In function synthesis, the goal is to design a mechanism that generates a desired 

function. In other words, the mechanism is designed such that the input and output of the 

mechanism approximately generate a desired input/output (I/O) relationship. The 

mechanisms synthesized in this way are called function generators. Planar four-bar 

mechanisms are widely used as function generators. Function generation synthesis of 

mechanisms is generally divided into two methods: CCA problems and dead-center 

design.  

 Motivation of the Thesis 

In some applications, a mechanism may be required to provide both some I/O 

relationships and to provide one or both dead-center position (DCP). Nowadays, although 

such a problem can be quickly solved using a CAD program, an analytical or semi-

analytical solution is very useful when the function generation problem is merely a small 

part of the design of a multi-loop mechanism. As you change the problem variables using 

an analytical or semi-analytical solution, the result can be displayed quickly. Thus, its 

effects on the multi-loop mechanism can be displayed. As an example, the design of a 

four-bar loop connected to the bucket of a loader mechanism of a construction machine 

is such a problem. The problems involving only CCA and only dead-center design have 

been clearly defined separately in literature. But the problems involving CCA and dead-

center design together are not sufficiently worked out and their solutions are not 

presented. 
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 Aim of the Thesis 

The aim of this thesis is to examine the function generation synthesis of planar 

mechanisms as a mixed problem of CCA and dead-center design, to identify possible 

problems and to present a solution to some of them. 

 Outline of the Thesis 

This thesis consists of 5 chapters: Introduction, Literature Survey, Mixed Function 

Generation Synthesis Problems for Planar Mechanisms, Numerical Examples and 

Conclusions. In Chapter 2, literature review about the birth of kinematic synthesis of 

mechanisms, CCA, dead-center design and mixed function generation synthesis problems 

are presented. In Chapter 3, mixed function generation synthesis problems for four-bar 

and slider-crank mechanisms for 3 and 4 positions are studied. In Chapter 4, numerical 

examples of problems in Chapter 3 are presented. The conclusions of the thesis are 

presented in Chapter 5. The results of the thesis are stated and possible problems for future 

studies are discussed.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

In this chapter, first a brief review on kinematic synthesis of mechanisms is 

presented. Then, literature survey on CCA, dead-center design and mixed function 

generation synthesis problems is presented. 

 Kinematic Synthesis of Mechanisms 

In early ages, people achieved mechanical motion by their own muscle forces, but 

then the muscle power began to be insufficient. This situation has prompted people to 

invent and use tools and mechanisms by using their creativity. 

The invention of the external combustion steam engine created a revolution in 

mechanization. The machine built by Thomas Savery, the first commercial example, is 

called the Savery Engine (Figure 2.1) (Savery, 1702). The area of use of this machine was 

to throw water out of a mine. It was not used for long periods because its efficiency was 

very low, but it led to future studies.  

 

Figure 2.1. Savery engine (Source: Savery, 1702) 
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In the 1700s, Thomas Newcomen developed a new steam engine (Figure 2.2) 

(ASME, 1981). Although it had some mechanical advantages and a relatively safer steam 

engine, it did not achieve the desired efficiency and fuel consumption did not decrease.  

 

Figure 2.2. Newcomen's engine (Source: ASME, 1981) 

While repairing a Newcomen’s engine, as a result of his reviews, James Watt 

decided that he could improve the engine (ASME, 1986). Watt made a two-room design, 

one constantly hot and one constantly cold (Figure 2.3). Watt wanted to convert rotational 

shaft motion into translating motion and he invented Watt's straight-line motion 

mechanism. 

 

Figure 2.3. Watt's engine (Source: ASME, 1986) 
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After this straight-line mechanism by Watt, the subject began to attract the 

attention of some mathematicians. Scientists wanted to find mechanisms that follow 

straight-line. Perhaps this can be regarded as the birth of kinematic synthesis (Ceccarelli, 

2008). Richard Roberts invented Robert’s mechanism, which follows an approximate 

straight line (Figure 2.4).  

 

Figure 2.4. Robert’s straight-line mechanism (Source: Artobolevsky, 1975) 

Franz Reuleaux, Alexander B. W. Kennedy, and Ludwig E. H. Burmester worked 

on the analysis and synthesis of mechanism using geometry. Reuleaux made models of 

many mechanisms (Figure 2.5). Kennedy translated Reuleaux’s book into English.  

 

Figure 2.5. Robert’s straight-line mechanism from Reaulaux's Collection in Cornell 

University (Source: ASME, 2004) 
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Franz Grashof created a mathematical model that found under what conditions 

four-bar mechanisms would be crank-rocker, double-crank or double-rocker. Pafnuty L. 

Chebyshev developed analytical methods for the analysis and synthesis of mechanisms. 

Chebyshev Polynomials are used to provide optimal spacing of precision points for 

function and path generation. Samuel Roberts and Chebyshev developed the theorem 

stating that there are three four-bar mechanisms that produce the same coupler curve. 

Later on, based on Chebyshev’s work Artobolevskii (1944) and Levitskii (1946, 1950) 

have developed many methods for function and path generation synthesis. 

Ferdinand Freudenstein created the algebraic model known today as Freudenstein 

equation for the synthesis of functions of the planar four-bar mechanism in his doctoral 

dissertation. Freudenstein and his student George N. Sandor were pioneers of computer-

aided mechanism synthesis. They performed computer-aided calculations of link lengths 

to perform function, path and motion generation. In light of his work and the academic 

family he left behind, Freudenstein is known as the “Father of Modern Kinematics” 

(Ceccarelli, 2011).  

Richard Hartenberg and his student Jacques Denavit found the Denavit-

Hartenberg (DH) Representation and its parameters (Denavit & Hartenberg, 1964). In the 

following years, Arthur G. Erdman and his team and J. Michael McCarthy and his team 

made computer-aided programs to synthesize and analyze mechanisms.  

 Correlation of Crank Angles 

As mentioned in Chapter 1.2, function generation synthesis of mechanisms can 

be divided into two: CCA problems and dead-center design. 

If the problem is modeled in such a way that the input and output links of the four-

bar mechanism must provide certain angle values relative to the fixed link, Söylemez calls 

the problem as CCA (Söylemez, 2018). Early methods of function generation pertaining 

to CCA have been graphical (Burmester, 1888) (Koestsier, 1989) (Hain, 1967) (Svoboda, 

1948) (Beyer, 1953). The developed geometric synthesis procedures were time-

consuming and required some skill. With the development of computers, analytical 

solutions became available very quickly. At mid-20th century, Levitskii Freudenstein and 

many others opened a new era in kinematic synthesis by solving the problem of CCA 

analytically (Levitskii, 1946) (Levitskii, 1950) (Freudenstein, 1954). 
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 Dead-Center Design 

In four-bar mechanisms of crank-rocker and double-rocker proportions, the output 

rocker link oscillates between two angle limits. The positions of the four-bar mechanism 

when the rocker is at a limit are called the DCP. The four-bar mechanism has two DCPs: 

the folded DCP (FDCP) and extended DCP (EDCP). The crank and coupler become 

collinear in both DCPs in extended form or folded on top of each other (Söylemez, 2018). 

The design of a mechanism according to the swing angle of the output rocker link 

and usually the amount of crank rotation corresponding to this swing angle is called dead-

center design (Söylemez, 2018). The dead-center design problem is generally 

accompanied by transmission angle optimization. Dead-center design with transmission-

angle optimization of planar four-bar mechanisms was first addressed by Alt, then 

improved by Meyer zur Capellen and Volmer (Alt, 1925) (Meyer zur Capellen, 1956) 

(Volmer, 1957). Freudenstein and Primrose obtained a closed form analytical solution 

which was determined as the root of a degree 3 univariate polynomial equation 

(Freudenstein & Primrose, 1972). Meyer zur Capellen and Volmer studied a similar 

problem for slider-crank mechanisms graphically and the link lengths are expressed using 

the initial crank angle as the parameter. Söylemez obtained a closed form analytical 

solution which yields a unique solution (Söylemez, 2002). 

 Mixed Function Generation Synthesis 

Many classical textbooks do not cover the problem of dead-center design (Sandor 

& Erdman, 1984) (Hartenberg & Denavit, 1964) (McCarthy, 2010). Hall and Norton 

separately consider the dead-center design and the problems of the CCA (Hall & 

Goodman, 1961) (Norton, 2004). Mallik et al. present dead-center design as the fourth 

type of synthesis problem in addition to function, path and motion generation problems 

(Mallik et al., 1994). Pennestrì and Valentini summarized the methods of analytical 

function synthesis for four-bar and slider-crank mechanisms for two and three positions, 

including dead-center design problems (Pennestrì & Valentini, 2009). Mutlu achieved the 

design of the crank-rocker mechanisms via analytical methods, based on a closed-form 

solution for specific design cases (Mutlu, 2021). 
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In certain applications, a function generator needs to be designed to satisfy both 

CCA and DCP design problems. There are a few recent publications that deal with both 

CCA and DCP design together.  Kiper and Erez presented an analytical solution to the 

problem of synthesis of four-bar mechanisms for 2 CCA positions and FDCP as the third 

position (Kiper & Erez, 2019). Kiper et al. have worked on slider-crank mechanism 

design for 3 CCA positions and a DCP (folded or extended), where the problem is reduced 

to a degree 8 univariate polynomial equation (Kiper et al., 2020). Kadak and Kiper have 

presented the necessary formulation for the synthesis of a four-bar mechanism for 3 CCA 

positions and a DCP, where the problem is reduced to the solution of a degree 6 univariate 

polynomial equation (Kadak & Kiper, 2021). 
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CHAPTER 3 

 

MIXED FUNCTION GENERATION SYNTHESIS 

PROBLEMS FOR PLANAR MECHANISMS 

 

In this Chapter, firstly, all possible mixed function generation synthesis problems 

for four-bar mechanism are defined and derivations of common formulas to be used in 

the subsections are presented. Then, solutions of almost all problems for four-bar 

mechanism including 3 positions (Section 3.1), one of the problems for four-bar 

mechanism including 4 positions (Section 3.2), are presented, and finally, a solution of a 

problem for slider-crank mechanism including 3 positions (Section 3.3), and 4 positions 

(Section 3.4), are presented in separated subsections. 

Both the input and output angles of the four-bar mechanism are specified for CCA. 

For DCPs, it is enough to specify only one of the input or output angles. For a DCP, either 

the input or the output link may be aligned with the coupler link. As a result, the link 

lengths of the mechanism are desired. 

For a planar four-bar mechanism, since the link length dimensions can be scaled 

as desired without affecting the I/O relationship between the angles, without loss of 

generality one of the link length values can be assumed, while the remaining three will 

be unknown.  

In problems including 3 positions, generally there are three equations and three 

unknowns, and the problems can be solved quite simply. But in problems including 4 and 

5 positions, the number of unknown link lengths is 3, while the number of equations is 4 

or 5. In these problems, the angle(s) of the reference line from which the input and/or the 

output angle is measured is(are) used as the extra unknowns. Such an extra unknown 

angle shall be called the offset angle. In problems including 4 positions, it is sufficient to 

use an offset angle, while in problems including 5 positions, two offset angles should be 

used. Table 3.1 shows all the problems including 3 positions. 
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Table 3.1. Possible problems including 3 positions 

# Position 1 Position 2 Position 3 

1 CCA CCA CCA 

2 CCA CCA OPT 

3 CCA CCA DCP 

4 CCA DCP OPT 

5 CCA EDCP FDCP 

6 CCA EDCP EDCP 

7 CCA FDCP FDCP 

8 EDCP FDCP OPT 

 

For the 1st problem, where 3 CCA positions are given, the well-known solution 

of Freudenstein gives a fast solution (Freudenstein, 1954). If 2 CCA positions are given, 

either any DCP is given as the third position or optimum transmission angle (OPT) is 

required (2nd and 3rd rows in Table 3.1). In the 3rd problem, any DCP is given regardless 

of FDCP and EDCP, because there is a unified solution as it will be apparent in the 

following sections. If only one CCA position is given, there are two cases. In the first 

case, any DCP is given as a second desired position and OPT is required (4th row in Table 

3.1). In this problem, any DCP is given regardless of FDCP and EDCP. In the second 

case, two DCPs are given as the second and third position (5th, 6th and 7th rows in Table 

3.1). In the 5th problem, different types of DCPs are given, whereas in the 6th and 7th 

problems, same types of DCPs are given. The solutions to the 6th and 7th problems turn 

out to be the same, regardless of whether the DCPs are two EDCPs or two FDCPs. 

Therefore, the solution of the 6th and 7th problems is given in a single section (Section 

3.6). If no CCA is given, 2 DCPs are given and OPT is required (8th row in Table 3.1). 

This last problem is the well-known Alt’s transmission angle optimization problem for 

DCP design (Alt, 1925). It is not possible to talk about OPT in problems where both of 

the same types of DCPs are given. Because in the case where two FDCPs are given, the 

transmission angle will be 0° in one of the two DCPs, or in the case where two EDCPs 

are provided, the transmission angle will be 180° in one of the two DCPs. 
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In problems including a DCP, only one of the input or output angles is specified. 

The solution of the problem is different depending on whether the input angle or output 

angle is given for the DCP. Therefore, the problem has been defined and solved for both 

cases. 

If a problem contains only one DCP (3rd and 4th problems), there are 2 solutions:  

• input angle is given for DCP  

• output angle is given for DCP 

If a problem contains two DCP (5th, 6th, 7th and 8th problems), there are 3 solutions: 

• input angles are given for both DCPs  

• output angles are given for both DCPs 

• input angle is given for a DCP and output angle is given for other DCP 

But in problems where the same type of DCPs are given (6th and 7th), the behavior 

of the two rocker links are the same. Therefore, it is important whether the two angles 

given are given for the same link or a different one. 

Two different methods were used to optimize the transmission angle. Therefore, 

these problems have been defined and solved in two different ways (2nd, 3rd and 8th 

problems). However, in the 8th problem, the two solutions are the same. Totally 18 

problems have been identified and solved for problems including 3 positions. 

In path and motion generation, there is an order of given points or positions 

according to the input joint variable. Since the input joint variable values are well defined 

in function generation problems, there is no order problem.  

There are 2 configurations (or assembly modes) of four-bar and slider-crank 

mechanisms for a given input variable value. In both configurations, the I/O equation is 

the same, so the synthesis method does not distinguish between different configurations. 

After the synthesis is performed, it is necessary to make sure that the desired function is 

generated for the same configuration of the mechanism in all design positions. To avoid 

such a problem, after the synthesis procedure, the mechanism should be analyzed, and 

better simulated, for the desired range of motion. 

Problems for 4 positions are obtained by adding one more CCA position to 

problems for 3 positions (first column in Table 3.2). The above mentioned explanations 

for problems including 3 positions also apply to problems for 4 positions as well. In 

addition, an offset angle should be used here. Adding the offset angle to the input or 

output angle changes the solution to the problem. 
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Table 3.2. Possible problems including 4 positions  

# Position 1 Position 2 Position 3 Position 4 

1 CCA CCA CCA CCA 

2 CCA CCA CCA OPT 

3 CCA CCA CCA DCD 

4 CCA CCA DCP OPT 

5 CCA FDCP EDCP CCA 

6 CCA FDCP EDCP OPT 

7 CCA FDCP FDCP CCA 

8 CCA EDCP EDCP CCA 

 

In Table 3.3, problems for 5 positions are listed by adding one more CCA position 

to problems for 4 positions. In addition, two offset angles should be used here. 

Table 3.3. Possible problems including 5 positions  

# Position 1 Position 2 Position 3 Position 4 Position 5 

1 CCA CCA CCA CCA CCA 

2 CCA CCA CCA CCA OPT 

3 CCA CCA CCA CCA DCD 

4 CCA CCA CCA DCP OPT 

5 CCA CCA FDCP EDCP CCA 

6 CCA CCA FDCP EDCP OPT 

7 CCA CCA FDCP FDCP CCA 

8 CCA CCA EDCP EDCP CCA 

 Common Formulation and Figures 

In the following subsections, some figures and equations that are repetitively 

required in different problems are presented.  
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3.1.1. CCA 

 

Figure 3.1. Notation for CCA 

Note that, for all problems, the link length dimensions can all be scaled with the 

same ratio without affecting the I/O relationship between input angle  and output angle 

, so without loss of generality we may assume |A0B0| = 1.  

For a planar four-bar mechanism (Figure 3.1), the loop closure equations are 

written as follows: 

 ac bc 1 dc ; as bs ds +  = +   +  =   (1) 

where c and s stand for cosine and sine, respectively. The interrelation of the mechanism 

input and output is given by the I/O of the four-bar mechanism which can be obtained by 

eliminating the coupler angle  from the loop closure Eq. (1): 

 ( ) ( ) ( ) ( )
2 22 2

bc bs 1 dc ac ds as +  = +  −  +  −   (2) 

Expanding Eq. (2): 

 ( )2 2 21 a b d 2ac 2dc 2adc 0+ − + −  +  −  −  =  (3) 

Dividing all terms in Eq. (3) to 2ad: 

 ( )
2 2 21 a b d 1 1

c c c
2ad d a

+ − +
−  +  =  −   (4) 

Let 

 
2 2 2

1 2 3

1 a b d 1 1
P ,   P   and  P

2ad d a

+ − +
= = =  (5) 
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3.1.2. DCP where input angle is given 

 

Figure 3.2. Notation for FDCP (input angle is given) 

By using cosine theorem at FDCP (Figure 3.2): 

 ( ) ( ) ( ) ( ) ( )
2 22

F Fd b a 1 2 b a c b a 1 2 b a c= − + − −  −  = − + + −   (6) 

 

Figure 3.3. Notation for EDCP (input angle is given) 

By using cosine theorem at EDCP (Figure 3.3): 

 ( ) ( )
22

Ed a b 1 2 b a c= + + − +   (7) 
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3.1.3. DCP where output angle is given 

 

Figure 3.4. Notation for FDCP (output angle is given) 

By using cosine theorem at FDCP (Figure 3.4): 

 ( )
2 2

Fa b 1 d 2dc− = + +   (8) 

 

Figure 3.5. Notation for EDCP (output angle is given) 

By using cosine theorem at EDCP (Figure 3.5): 

 ( )
2 2

Ea b 1 d 2dc+ = + +   (9) 
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3.1.4. OPT 

When the transmission angle, µ is 90° for a four-bar mechanism where dynamic, 

gravitational and frictional effects are neglected, all the force transmitted from the coupler 

link to the output link is used to rotate the output link. If the transmission angle is 0°, no 

matter how much torque is applied to the input link, the output link cannot be rotated. 

 

Figure 3.6. The transmission angle  and the pressure angle  

The transmission angle can be expressed in terms of the input angle and link lengths by 

writing the cosine theorem for AB0 using the triangles A0AB0 and ABB0 and equating 

them (Figure 3.6): 

 
2 2 2d b 1 a a

c c
2bd bd

+ − −
 = +   (10) 

In order to find the minimum and maximum value of the transmission angle, the 

derivative of Eq. (10) with respect to  is taken and equated to zero: 

 
d a

s s 0
d bd


 =  =


 (11) 
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Extremum values of transmission angle occur when sin = 0, that is when  = 0 or  

(Figure 3.7). The extremum values of the transmission angle for the four-bar mechanism 

are as follows: 

 
2 2 2

min

max

d b 1 a a
c

2bd bd

+ − −
 =   (12) 

 

Figure 3.7. Maximum and minimum transmission angle of four-bar mechanism 

After finding the maximum and minimum values of the transmission angle, the one that 

deviates more from 90° is the critical one. Cases where the minimum and maximum 

values are equal to each other are optimal if there are no other conditions. If Eq. (12) is 

examined, equality of the minimum and maximum transmission angle results in 

 
2 2 21 a d b+ = +  (13) 

The four-bar mechanisms satisfying Eq. (13) are called centric four-bar mechanisms. For 

a centric four-bar mechanism, the amount of crank rotation between the DCPs is 180. 

In order to optimize the transmission angle, the mechanism with the least 

deviation of the transmission angle (DTA) from 90 should be selected. In doing so, 

several different methods have been used. To equate the minimum and maximum DTA, 

a centric four-bar can be used. Centric four-bar mechanisms have a better force 

transmission characteristic compared with the other crank-rocker proportions (Söylemez, 

2018). 
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 Three Positions Synthesis for Four-Bar Mechanisms 

Matlab and Mathematica have been used to for the symbolic solutions of some 

problems. Parametric solutions of all problems were applied using Excel. The correctness 

of the solutions has been verified using Solidworks. 

3.2.1. 3-CCA 

A practical solution to this problem was presented by Freudenstein (Freudenstein, 

1954). 3 CCA positions are given (1, 2, 3, 1, 2, 3) and link lengths are desired. 

From Eqs. (4) and (5), 

 ( )1 2 i 3 i i iP P c P c c  for i 1,2,3−  +  =  −  =  (14) 

For given 3 precision points, Freudenstein’s coefficients (P1 P2 and P3) can be found by 

inverting the coefficient matrix: 

 

( )

( )

( )

1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

P 1 c c c

P 1 c c c

P 1 c c c

−
−    −     

    
= −    −     

    −    −        

After P1, P2 and P3 are found, a, b and d can be computed using Eq. (5):  

 2 2

1

3 2

1 1
a ,   d   and  b 1 a d 2adP

P P
= = = + + −  (15) 

3.2.2. 2-CCA with OPT 

In this problem, 2 CCA are given and OPT is required. This problem can be solved 

in 2 ways:  

• Equating the DTA from 90° at given positions  

• Equating the maximum and minimum DTA from 90° 
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3.2.2.1. Equating the DTA from 90° at given positions 

2 CCA positions are given (1, 2, 1, 2) and link lengths are desired for OPT. 

Söylemez was solved this problem by equating DTAs at given two positions (1 and 2 

in Figure 3.8) (Söylemez, 2022). 

 

Figure 3.8. 2 CCA with OPT 

The I/O function is written for given 2 CCA positions as follows: 

 ( )1 2 i 3 i i iP P c P c c  for i 1,2−  +  =  −  =  (16) 

where P1, P2, P3 are as in Eq. (5). Eq. (16) gives 2 equations for 3 unknowns. So, the 

number of unknowns can be reduced to one. Solving P2 and P3 in terms of P1: 

 ( ) ( )2 2 1 2 3 1 1 1

1 1
P T P Q   and  P T P Q= + = +

 
 (17) 

for 1 2 2 1c c c c =   −   , 1 2 1T c c=  −  , ( ) ( )1 1 2 2 2 1 1Q c c c c=   −  −   −  ,

2 2 1T c c=  −  , ( ) ( )2 1 2 2 2 1 1Q c c c c=   −  −   −  . Multiplying Eq. (10) with b/a: 

 
2 2 2b 1 a b d d 1

c c
a 2ad a d

+ − +
 = − + +   (18) 

When  = 1, µ = µ1 –  and when  = 2, µ = µ2 = /2 +  (or µ1 = /2 + , µ2 = /2 – ). 

Then for the two positions: 

 3 3
1 2 1 1 2 2

2 2

P Pb b
s P P c   and  s P P c

a P a P
 = − + +   = − −   (19) 
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Equating the two equations in Eq. (19): 

 ( )3
1 2 1 2

2

2P
2P P c c 0

P
− −  +  =  (20) 

So, a degree 2 univariate polynomial equation of P1 is obtained: 

 2

1 1AP BP C 0+ + =  (21) 

where ( ) ( ) ( ) ( )
2

2
2 2 2 2 2 1 2 2 1 2 1 2 1

Q1
A T T c c ,  B Q P P Q c c ,  C Q c c

2 2

 
=  −  +  = −  −  +  = −  −  +  

 
. 

The two roots of Eq. (21) can be found analytically. Then P2 and P3 can be found by using 

Eq. (17). Then a, b and d can be found using Eq. (15). So, we can synthesize a mechanism 

with input/output angles (1, 1) and (2, 2) also its transmission angle is optimized in 

between these two positions. 

3.2.2.2. Equating the maximum and minimum DTA from 90° 

2 CCA positions are given (1, 2, 1, 2) and link lengths are desired for OPT. If 

the motion range of the mechanism is not limited with the two specified CCA positions, 

the maximum and minimum transmission angle for the whole range of motion can be 

equated. In this case, a centric-four bar mechanism is used, where the maximum and 

minimum transmission angle are equal. The I/O function is written for given 2 CCA 

positions as follows: 

 ( )1 2 i 3 i i iP P c P c c  for i 1,2−  +  =  −  =  (22) 

where P1, P2, P3 are as in Eq. (5). Solving P1 from Eq. (22) in terms of P2 and P3 gives Eq. 

(17). Note that the DTA at the two extreme positions (max and min in Figure 3.7) will be 

equal if Eq. (13) is satisfied. Using Eq. (13) and rewriting Eq. (13) in terms of P1, P2 and 

P3: 

 3 1 2P P P 0− =  (23) 

Substituting Eq. (17) in Eq. (23): 

 ( )2

1 2 1 1 1P Q T P Q 0+ − − =  (24)  

Eq. (24) yields 2 solutions. P2 and P3 can be found from Eq. (17). Then a, b and d can be 

found using Eq. (15).  
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3.2.3. 2-CCA and 1-DCP  

In this problem, 2 CCA and a DCP are given. This problem can be formulated in 

2 ways: 

• Input angle  is given for DCP  

• Output angle  is given for DCP 

3.2.3.1. Given input angle  for DCP 

This problem was solved by Kiper and Erez (2019). 2 CCA positions (1, 2, 1, 

2) and input angle for FDCP or EDCP (F or E) are given. Link lengths are desired. The 

I/O function is written for given 2 CCA positions as follows: 

 ( )1 2 i 3 i i iP P c P c c  for i 1,2−  +  =  −  =  (25) 

where P1, P2, P3 are as in Eq. (5). Eq. (25) gives 2 equations for 3 unknowns. So, the 

number of unknowns can be reduced to one. Solving P2 and P3 in terms of P1: 

 ( ) ( )2 2 1 2 3 1 1 1

1 1
P T P Q   and  P T P Q= + = +

 
 (26) 

for 1 2 2 1c c c c =   −   , 1 2 1T c c=  −  , ( ) ( )1 1 2 2 2 1 1Q c c c c=   −  −   −  , 

2 2 1T c c=  −  , ( ) ( )2 1 2 2 2 1 1Q c c c c=   −  −   −  . By using cosine theorem at FDCP 

and EDCP: 

 
( ) ( ) ( )

( ) ( )

22

F

22

E

d b a 1 2 b a c

d b a 1 2 b a c

= − + − −  − 

= + + − + 
 (27) 

Eq. (27) is simplified, and terms with sign differences are added up on the same side: 

 

2 2 2

F

F

2 2 2

E

E

1 a b d 2ac
b

2a 2c

1 a b d 2ac
b

2a 2c

+ + − − 
=

− 

+ + − − 
− =

− 

 (28) 

The two equations in Eq. (28) are equated to each other by taking the square of both sides. 

Thus, a single equation can be used for both EDCP and FDCP: 

 

2
2 2 2

2 D

D

1 a b d 2ac
b

2a 2c

 + + − − 
=  

−  
 (29) 

Eq. (29) is written in terms of P1, P2 and P3 by using Eq. (15): 
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2

3 1 2 1

2 2

3 3 D 3 2 2 3

P P P 2P1 1 1
1

P 1 P c P P P P

 −
+ = + + − 

−  
 (30) 

Then, Eq. (30) is written in terms of only P1 by using Eq. (17). So, a degree 4 univariate 

polynomial equation of P1 is obtained 

 4 3 2

1 1 1 1AP BP CP DP E 0+ + + + =  (31) 

where 

 

( )

( )
( )

( )( )

( ) ( )( )

( )

2 2 2

1 2 D

2 2

1 2 D 1 2 2 1

2

1 2 2 1 1 2 1 22 2 2 2

D 2 2 D 1 D
2 2

1 2 2 1

2 2 2

1 D 1 2 2 2 1 2 1

3 2 2

D 2 1 2 1 2 1 2 1 1 2

2 2 2 2

1 D 2

2 2

A

2

T T

B 2T T Q T Q T

Q T Q T 2Q Q T T
C s T 2T c T

2Q T 2Q T

Q c Q Q T Q T Q T
2

c Q T Q Q T Q Q T Q T

E Q c Q

s

s

c

D

=



  
 





=  + −

 + +
=  + −  + −  

− −  

  + − − +
 −
  − − + − −
 

= −  +

=


 +



3 2 2 2 2 4

1 D 1 2 2Q c Q Q Q  + − +

 

Eq. (31) yields 4 solutions. P2 and P3 can be found from Eq. (17). Then a, b and d can be 

found using Eq. (15).  

3.2.3.2. Given output angle  for DCP 

2 CCA positions (1, 2, 1, 2) and output angle for FDCP or EDCP (F or E) 

are given. The I/O function is written for given 2 CCA positions as follows: 

 ( )1 2 i 3 i i iP P c P c c  for i 1,2−  +  =  −  =  (32) 

where P1, P2, P3 are as in Eq. (5). Eq. (32) gives 2 equations for 3 unknowns. So, the 

number of unknowns can be reduced to one. Solving P2 and P3 in terms of P1: 

 ( ) ( )2 2 1 2 3 1 1 1

1 1
P T P Q   and  P T P Q= + = +

 
 (33) 

for 1 2 2 1c c c c =   −   , 1 2 1T c c=  −  , ( ) ( )1 1 2 2 2 1 1Q c c c c=   −  −   −  , 

2 2 1T c c=  −  , ( ) ( )2 1 2 2 2 1 1Q c c c c=   −  −   −  . By using cosine theorem at FDCP 

and EDCP: 

 
( )

( )

2 2

F

2 2

E

b a 1 d 2dc

b a 1 d 2dc

− = + + 

+ = + + 
 (34) 

Eq. (34) is simplified, and terms with sign differences are added up on the same side: 
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2 2 2

F

2 2 2

E

1 a b d 2d c
b

2a

1 a b d 2d c
b

2a

− − + + 
− =

− − + + 
=

 (35) 

The two equations in Eq. (35) are equated to each other by taking the square of both sides. 

Thus, a single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D1 a b d 2dc
b

2a

 − − + + 
=  

 
 (36) 

Eq. (36) is written in terms of P1, P2 and P3 by using Eq. (15): 

 

2

1 3 D1

2 2

3 2 2 3 2 3

P P c2P1 1 1
1

P P P P P P

 + 
+ + − = − 

 
 (37) 

Then, Eq. (37) is written in terms of only P1 by using Eq. (17). So, a degree 2 univariate 

polynomial equation of P1 is obtained: 

 2

1 1AP BP C 0+ + =  (38) 

where ( )
22

2 1 DA T T c= −  +  , ( )2

2 2 1 1 D 1 D 2 DB 2 T Q T Q c Q c T c= −  −   +    and 

2 2 2 2

2 1 D 2 DC Q Q c 2Q c=  + −  +   . Eq. (38) yields 2 solutions. P2 and P3 can be found 

from Eq. (17). Then a, b and d can be found using Eq. (15).  

3.2.4. 1-CCA and 1-DCP with OPT 

In this problem a CCA and a DCP are given and OPT is required. This problem 

can be solved in 2 ways:  

• Equating the DTA from 90° at given positions  

• Equating the maximum and minimum DTA from 90° 

3.2.4.1. Equating the DTA from 90° at given positions 

In this problem a CCA and a DCP are given and OPT is required. To optimize the 

transmission angle, DTA from 90° at given positions are equated. This problem can be 

formulated in 2 ways:  

• Input angle  is given for DCP  

• Output angle  is given for DCP 
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3.2.4.1.1. Given input angle  for DCP 

A CCA position (1, 1) and an input angle for FDCP or EDCP (F or E) are 

given. Also, OPT is requested. To optimize transmission angle, the DTAs of given 

positions are equated. The I/O function is written for given a CCA position as follows: 

 ( )1 2 1 3 1 1 1P P c P c c−  +  =  −   (39) 

where P1, P2, P3 are as in Eq. (5). By using cosine theorem at FDCP and EDCP: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 22

F F

22

E

d b a 1 2 b a c b a 1 2 b a c

d b a 1 2 b a c

= − + − −  −  = − + + − 

= + + − + 
 (40) 

Eq. (40) is simplified, and terms with sign differences are added up on the same side: 

 

2 2 2

F

F

2 2 2

E

E

1 a b d 2ac
b

2a 2c

1 a b d 2ac
b

2a 2c

+ + − − 
=

− 

+ + − − 
− =

− 

 (41) 

The two equations are equated to each other by taking the square of both sides. Thus, a 

single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D

D

1 a b d 2ac
b

2a 2c

 + + − − 
=  

−  
 (42) 

Eq. (42) is written in terms of P1, P2 and P3 by using Eq. (15): 

 

2

3 1 2 1

2 2

3 3 D 3 2 2 3

P P P 2P1 1 1
1

P 1 P c P P P P

 −
+ = + + − 

−  
 (43) 

For the two positions, DTA can be found by using Eq. (10) as follows: 

 3 3
1 1 2 1 E 1 2 D

2 2

P Pb b
s P P c   and  s P P c

a P a P
 = − + +   = − −   (44) 

Equating the two equations in Eq. (44). 

 ( )3
1 2 1 D

2

2P
2P P c c 0

P
− −  +  =  (45) 

By using Eqs. (39) and (45) P1 and P3 can be found in terms of P2. 

 

( )( ) ( )

( )

( ) ( )

( )

2

2

1

3

2

3

2 1 D 1 2 1 1 1

1

1

2

2 1 D 2 1 1

3

2 1

c c c 2 c 2c uP P
P

P

P

2 1 c u

c c 2 c u

2 1 c

P

P u
P

  

+

+ +
= =

+

−
= =

+

 +  −



   − 



 (46) 
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Substituting P1 and P2 into Eq. (43) a degree 6 univariate polynomial equation in P2 is 

obtained: 

 ( ) ( ) ( )D D D D

22 2 2 2 2 2

1 2 2 3 2 3 2 1 3 2u P u s u u c u 2P u u c u s+  =   +− + +  (47) 

There is no analytical solution for a degree 6 polynomial equation. But it can be solved 

numerically. There are most 6 real solutions. The root of equation, P2 can be found by 

using "goal seek" in Excel. P1 and P3 can be found by using Eqs. (46) and (47). Then a, b 

and d can be found using Eq. (15).  

3.2.4.1.2. Given output angle  for DCP 

A CCA position (1, 1) and an output angle for FDCP and EDCP (F, E) are 

given. The I/O function is written for given a CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2ac 2dc 2adc+ − + −  +  =  −   (48) 

By using cosine theorem at FDCP and EDCP: 

 
( )

( )

2 2

F

2 2

E

b a 1 d 2dc

b a 1 d 2dc

− = + + 

+ = + + 
 (49) 

Eq. (49) is simplified, and terms with sign differences are added up on the same side: 

 

2 2 2

F

2 2 2

E

1 a b d 2dc
b

2a

1 a b d 2dc
b

2a

− − + + 
− =

− − + + 
=

 (50) 

The two equations are equated to each other by taking the square of both sides. Thus, a 

single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D1 a b d 2dc
b

2a

 − − + + 
=  

 
 (51) 

For two position DTA can be found by using Eq. (10) as follows: 

 
2 2 2 2

21 D
1 D 2

D

1 a b d 2ac s
s    and  c

2bd 1 d 2dc

− − + + +  
 =  =

+ + 
 (52) 

DTA in two positions should be equal. So, by using equality 2 2

1 Ds c 1 +  = , we have: 

 

2
2 2 2 2

1 D

2

D

1 a b d 2ac s
1

2bd 1 d 2dc

 − − + + +  
+ = 

+ +  
 (53) 
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There are have 3 equations (Eqs. (48), (51) and (53)) and 3 unknowns (a, b and d). If a 

univariate equation is obtained using Eqs. (48), (51) and (53), it will be seen that this 

equation has degree 8. Therefore, it is recommended to make a completely numerical 

solution using these equations. The values of a, b and d that satisfy these three equations 

are sought. The solution can be found by using the "Solver" in Excel. 

3.2.4.2. Equating the maximum and minimum DTA from 90° 

In this problem a CCA and a DCP are given and OPT is required. To optimize the 

transmission angle, maximum and minimum DTA from 90° are equated. This problem 

can be formulated in 2 ways 

• Input angle  is given for DCP  

• Output angle  is given for DCP 

3.2.4.2.1. Given input angle  for DCP 

A CCA position (1, 1) and input angle for FDCP or EDCP (F or E) are given. 

Also, OPT is requested. To optimize the transmission angle, a centric four-bar mechanism 

is used. The I/O function is written for given a CCA position as follows: 

 ( )1 2 3P P c P c c−  +  =  −   (54) 

where P1, P2, P3 are as in Eq. (5). Note that the DTA at the two extreme positions will be 

equal if: 

 
2 2 2d b 1 a+ = +  (55) 

Eq. (55) can be written in terms of P1 P2 and P3 as follows: 

 3 1 2P P P=  (56) 

Substitute P3 in Eq. (56) into Eq. (54) solve for P1: 

 
( ) 2

1

2

c P c
P

1 P c

 −  + 
=

+ 
 (57) 

By using cosine theorem at FDCP and EDCP: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 22

F F

22

E

d b a 1 2 b a c b a 1 2 b a c

d b a 1 2 b a c

= − + − −  −  = − + + − 

= + + − + 
 (58) 
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Eq. (58) is simplified, and terms with sign differences are added up on the same side. 

 

2 2 2

F

F

2 2 2

E

E

1 a b d 2ac
b

2a 2c

1 a b d 2ac
b

2a 2c

+ + − − 
=

− 

+ + − − 
− =

− 

 (59) 

The two equations are equated to each other by taking the square of both sides. Thus, a 

single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D

D

1 a b d 2ac
b

2a 2c

 + + − − 
=  

−  
 (60) 

Eq. (60) is written in terms of P1, P2 and P3 by using Eq. (15): 

 

2

3 1 2 1

2 2

3 3 D 3 2 2 3

P P P 2P1 1 1
1

P 1 P c P P P P

 −
+ = + + − 

−  
 (61) 

Substituting P3 and P1 in Eqs. (56) and (57) into Eq. (61) we obtain a degree 6 univariate 

polynomial equation in terms of P2. But this degree 6 polynomial equation can be written 

as multiplication of two equations, one of which has degree 2 and the other has degree 4: 

 ( )( )4 3 2

2 2 2

2

2P 1 0AP BP CP DP E 0+ + + =− =+  (62) 

where 2 2

DA c s= −   , ( ) 2

DB 2c c s= −   −   , ( )2 2 2 2

DC c c c s=  −  −  −   ,  

( )D 2s s= −   −   and ( )2E s= −  −  . From the first equation, P2 = 1 or –1. If P2 = 1, 

P3 = P2P1 = P1 can be found and also it means that a2 = a4 and a3 = a1. If P2 = –1, P3 = –P1 

which means that a = –d and f = –b. These solutions give us kite mechanisms. In FDCP 

of kite mechanisms, input and coupler links are collinear, and fixed and output links are 

also collinear. So, the |P2| = 1 case is not feasible. The second equation is a degree 4 

univariate polynomial equation, so there are at most 4 real solutions. The roots of equation 

can be found analytically. P1 and P3 can be found using Eqs. (56) and (57). Then a, b and 

d can be found using Eq. (15). Finally, there are maximum at most 4 real solutions. 

3.2.4.2.2. Given output angle  for DCP 

A CCA position (1, 1) and output angle for FDCP or EDCP (F or E) are given. 

Also, OPT is requested. To optimize the transmission angle, a centric four-bar mechanism 

is used. The I/O function is written for given a CCA position as follows: 
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 ( )1 2 3P P c P c c−  +  =  −   (63) 

where P1, P2, P3 are as in Eq. (5). Note that the DTA at the two extreme positions will be 

equal if: 

 
2 2 2d b 1 a+ = +  (64) 

Eq. (64) can be written in terms of P1 P2 and P3 as follows: 

 3 1 2P P P=  (65) 

Substitute P3 in Eq. (65) into Eq. (63) solve for P1. 

 
( ) 2

1

2

c P c
P

1 P c

 −  + 
=

+ 
 (66) 

By using cosine theorem at FDCP and EDCP: 

 
( )

( )

2 2

F

2 2

E

b a 1 d 2dc

b a 1 d 2dc

− = + + 

+ = + + 
 (67) 

Eq. (67) is simplified, and terms with sign differences are added up on the same side. 

 

2 2 2

F

2 2 2

E

1 a b d 2d c
b

2a

1 a b d 2d c
b

2a

− − + + 
− =

− − + + 
=

 (68) 

The two equations are equated to each other by taking the square of both sides. Thus, a 

single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D1 a b d 2d c
b

2a

 − − + + 
=  

 
 (69) 

Eq. (69) is written in terms of P1, P2 and P3 by using Eq. (15): 

 

2

1 3 D1

2 2

3 2 2 3 2 3

P P c2P1 1 1
1

P P P P P P

 + 
+ + − = − 

 
 (70) 

Substituting P3 and P1 in Eqs. (65) and (66) into Eq. (70) we obtain a degree 4 univariate 

polynomial equation of P2:  

 4 3 2

2 2 2AP BP CP DP E 0+ + + + =  (71) 

where 2 2 2

Dc c cA  − =  , ( ) ( )( )2 2 2

D DB 2 c c c c c c c=  +   −  −   −   , 

( ) ( )2 2 2 2

D D DC 1 c c 4c c c 4c c c c= −  +  −   −   +   −  −   , 

( ) ( )( )2

DD 2 c s c c c=   −  +  −   −   and ( )2E s=  −  . Eq. (71) yields 4 solutions. 
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P1 and P3 can be found from Eqs. (66) and (65). Then a, b and d can be found using Eq. 

(15).  

3.2.5. 1-CCA and 2 Different Type DCPs  

In this problem a CCA and 2 different type DCPs are given. This problem can be 

formulated in 3 ways:  

• Input angle  is given for DCPs  

• Output angle  is given for DCPs  

• Input angle  is given for one DCP and output angle  is given for the 

other DCP 

3.2.5.1. Given input angles  for both DCPs 

A CCA position (1, 1) and input angles for FDCP and EDCP (F, E) are given. 

The I/O function is written for the given CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a c 2d c 2ad c+ − + −  +  =  −   (72) 

By using cosine theorem at FDCP and EDCP: 

 ( ) ( )
22

Ed b a 1 2 b a c= + + − +   (73) 

 ( ) ( )
22

Fd b a 1 2 b a c= − + + −   (74) 

Subtracting Eq. (74) from Eq. (73) and solving for b: 

 ( ) ( )
( )

( )
E F

E F

E F

a c c
2ab c b a c b a b

2a c c

 − 
=  + +  −  =

−  + 
 (75) 

Substituting d2 in Eq. (73) into Eq. (72) and solving for d using Eq. (75): 

( )

( )

( )( ) ( )( )

( )( )( )

2

1 E E F 1 E F

1 1 1 1 1 1 E F

1 a ab ac b a c 2a a c a c 1 ac 2a c c
d

ac c ac c 2a c c

+ + −  − +  −  −  + −  −  − 
= =

 −  −   −  −  −  − 
 (76) 

Substituting Eq. (76) in Eq. (74) we obtain a degree 6 univariate polynomial equation in 

terms of a: 

( )( )

( )( )
( ) ( )

( )( )

( )
22 2 22

1 1E F E E F

1 E F 1E E F F

ac2a a c a c 4a c a 2a c c

1 ac 2a c c c4a c a 2a c c c

   −  −  −    − + −  − 
=      + −  −  −  − +  − −  −      

 (77) 
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This is a degree 6 polynomial equation, so there are most 6 real solutions. The roots of 

the equation can be found numerically by using “goal seek” in Excel. b and d can be found 

by using Eqs. (75) and (76).  

3.2.5.2. Given output angles  for both DCPs 

A CCA position (1, 1) and output angles for FDCP and EDCP (F, E) are 

given. The I/O function is written for the given CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a c 2d c 2ad c+ − + −  +  =  −   (78) 

By using cosine theorem at FDCP and EDCP: 

 ( )
2 2

Eb a 1 d 2d c+ = + +   (79) 

 ( )
2 2

Fb a 1 d 2d c− = + +   (80) 

Subtracting Eq. (80) from Eq. (79) and solving for b: 

 ( )E F

d
b c c

2a
=  −   (81) 

Substituting b in Eq. (81) into Eq. (79) and substituting b2 in Eq. (79) into Eq. (78) and 

solving for d: 

 
( )

( )

1

E F
1 1 F 1

a a c
d

c c
a c c c

2

− 
=

 − 
 −  +  −  +

 (82) 

Substituting b and d in Eqs. (81) and (82) into Eq. (80) a degree 4 univariate polynomial 

equation in terms of a is obtained: 

 
4 3 2Aa Ba Ca Da E 0+ + + + =  (83) 

where  

( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )( )
( ) ( )

2

1 1 1 1 1

2 2 2

F 1 F 1 1 1 1 1 1

F 1 1 1 1 1 F F

2 2 2 2 2

1 F 1 F 1 F 1 1

E E

E E E

E E E

A 4s   ,  B 8s s

C 4 c c c c c c c c c

D 4 c 2c c c c c c c 2c c

E 4c c c c c 2 3 c s c 4c c s

 −  =   − 

=   −   +   −  −  +  −  + 

=  −  +   −  +    +  −  

= −   +  +   +  +   +  +

=

 

 

The roots of the equation can be found analytically. b and d can be found using Eqs. (81) 

and (82). 
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3.2.5.3. Given input angle  for one DCP and output angle  for other 

DCP 

A CCA position (1, 1) and input angle for one of DCPs and output angle are 

given for other DCP (E, F or F, E). There are two possible cases: 

i) Input angle  is given for EDCP and output angle  is given for FDCP  

ii) Input angle  is given for FDCP and output angle  is given for EDCP 

The solution of both cases turns out to be identical. The I/O function is written for the 

given CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2ac 2dc 2adc+ − + −  +  =  −   (84) 

For given input angle  in EDCP and output angle  in FDCP, using cosine theorem: 

 ( )
2 2

Fb a 1 d 2dc− = + +   (85) 

 ( ) ( )
22

Ed b a 1 2 b a c= + + − +   (86) 

Subtracting Eq. (85) from Eq. (86) and solving for b: 

 F E

E

dc 1 ac
b

2a c

 + − 
= −

− 
 (87) 

Substituting b2 in Eq. (84) into Eq. (85) and solving for d by using Eq. (87).  

 
( )

( )
( ) ( ) ( )

2

1

1 1 F 1

2

D 1 1 D

2

1 1 1 1 1 D D D 1 D

a ac ba
d

ac c c

a 2a 2ac 2ac c c 1

2a c 2ac ac c ac c c c

−  −
=

 −  +  − 

−  −  +   +
=

 −  −  −  −   −  +   − 

 (88) 

For given input angle  in FDCP and output angle  in EDCP, using cosine theorem: 

 ( )
2 2

Eb a 1 d 2dc+ = + +   (89) 

 ( ) ( )
22

Fd b a 1 2 b a c= − + + −   (90) 

Subtracting Eq. (89) from Eq. (90) and solving for b: 

 E F

F

dc 1 ac
b

2a c

 + − 
=

− 
 (91) 

Substituting b2 in Eq. (84) into Eq. (89) and solving for d by using Eq. (91). 
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( )

( )
( ) ( ) ( )

2

1

1 1 F 1

2

D 1 1 D

2

1 1 1 1 1 D D D 1 D

a ac ba
d

ac c c

a 2a 2ac 2ac c c 1

2a c 2ac ac c ac c c c

−  +
=

 −  +  − 

−  −  +   +
=

 −  −  −  −   −  +   − 

 (92) 

Substituting b and d in Eqs. (87) and (88) into Eq. (86) or substituting b and d in Eqs. (91) 

and (92) into Eq. (90), the solution is unique so, D can be used instead of F or E. We 

obtain a degree 6 univariate polynomial equation in terms of a: 

( )( ) ( )
( )

2

2 D 1 D2 2

2 1 1 1 1 2 1 1

D

ak c k 1 ac
ak 2k c ac ak k 2ac a 1

c 2a

 + −  
  −  −  + + −  + + =     − 

(93) 

where ( ) ( ) ( )2

1 1 1 D D D D 1 1 11 2a c c ck c a c c c 2c −  +  −   +  −   = −  −    and 

( )D2

2

1 1 D 1k 2a 2a c c c c−  +   = + + . The roots of the equation can be found numerically 

by using “goal seek” in Excel. b and d can be found by using Eqs. (91) and (92). a and d 

are the same for the two cases and b has only sign difference. b can never be less than 

zero, so for the common solution the absolute value of b can be used:  

 
( )

D D

D

d c 1 a c
b

2a c

 + − 
=

− 
 (94) 

3.2.6. 1-CCA and 2 Same Type DCPs  

In this problem a CCA and 2 same type DCPs are given. This problem can be formulated 

in 2 ways: 

• two input or two outputs angles are given for both DCPs  

• input angle is given for a DCP and output angle is given for other DCP 

3.2.6.1. Given two output or two input angles for both DCPs 

For a CCA and 2-FDCP the followings are given: a CCA position (1, 1) and 

output angles for each FDCPs (F1, F2). F1 is the output angle when input and coupler 

links are collinear in folded configuration and F2 is the output angle when output and 

coupler links are collinear in folded configuration (Figure 3.9).  
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Figure 3.9. A CCA and 2-FDCP are given when output angles are given for both DCPs 

The I/O function is written for given a CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a c 2d c 2ad c+ − + −  +  =  −   (95) 

By using cosine theorem at each EDCP: 

 ( )
2 2

F1b a 1 d 2d c− = + +   (96) 

 ( ) ( )
22

F2a 1 b d 2 b d c= + − − −   (97) 

For a CCA and 2-EDCP the followings are given: a CCA position (1, 1) and 

output angles for each FDCPs (E1, E2). E1 is the output angle when input and coupler 

links are collinear in extended configuration and E2 is the output angle when output and 

coupler links are collinear in extended configuration (Figure 3.10).  
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Figure 3.10. A CCA and 2-EDCP are given when output angles are given for both DCPs 

The I/O function is written for given a CCA position as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a cos 2d c 2ad c+ − + −  +  =  −   (98) 

By using cosine theorem at each EDCP: 

 ( )
2 2

E1b a 1 d 2d c+ = + +   (99) 

 ( ) ( )
22

E2a 1 b d 2 b d c= + + + +   (100) 

By using Eqs. (95),  (96) and (97) or Eqs. (98), (99) and (100), d can be found as the root 

of a degree 4 univariate polynomial equation: 

 
4 3 2Ad Bd Cd Dd E 0+ + + + =  (101) 

where 

( ) ( )( ) ( )

( )( ) ( )( )

( )( ) ( )

( ) ( )

2

1 D1 D2 D1 1 D1 D1 D2

2 2

1 D2 D1

1

D2 D2 1 D2 D1

2

D

2 2

1 1 1 1 D1 D2 F1 1 D1 D2 D1

1

1 1

1 11 D2 1 D1 1 D2

c

A c 1 c 1 2c c c

c

c c 2c c c 1 c c c

2 c c c c c s c cB c

c 1 s c c

2 s

c

c c c

1

  −   +  + +  −   − 
 

 +    −  −  +   −  

+  −  −   +



 =  −  −  −  −   +  +   −  +     

− 

=  − 

 −   −  

    ( )

( )

( )

( )

2

1 1 1 1

2 2 2

D2 D1 1

2 2 2

1 D1 1 1 1

2

1 D2 1 1 1 D1

2 2

1 D

2

D1 D2 D1 D2 D1 D2

D1 D D2

D2 D1 D2

2c c c c c c 2c s c

c c 1 2c c c 2 c

c 1 2c c c s s s 2 2

D 2

E

C

s s s s c

s s

{ }

 
 
 
 
 

 
 
 =
 

 

  −    −  +    − 

  +   + +    − +   

 +  −   +  −    −  − 

= −    −  +    

= − 


 





2
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After finding d, a can be found as follows: 

 
( ) ( )( )

( ) ( )

1 D1 1 1 1

2 2 2

1 1 1 1 1 1

d c c d c c
a

d c 2d c c c

 −    +  −  + 
=

 −  −  +   −  + 
 (102) 

where 2

D1d 2d c 1 = +  + . As a common solution for a CCA and 2-FDCP or 2-EDCP. 

 
( )( )

( )

D2 D2

D2 D2

D1

2

D1

d c c d c
b

2d c c c 1

 −   + + 
=

 −  −  +
 (103) 

 Eq. (101) is a degree 4 polynomial equation in terms of d and it can be solved analytically. 

In Eq. (102), there is a term that has   sign and in Eq. (103), there is a term that has  

sign. This means that, in this solution, for each d value, there are two solutions for a and 

b. Actually, for each d value, there is only one solution of a and b but the solution is too 

long to write here. For finding the proper a and b values a verification is needed. Two 

solutions of a and b should be found and substituted into Eq. (95). Then one of the 

solutions satisfies Eq. (95). 

The same formulation can be used in the case where two input angles are given 

for both DCPs. The symmetry of the mechanism with respect to the y-axis can be 

considered. Thus, d is used instead of a, and a is used instead of d in the formulation.  – 

1 is used instead of 1,  – 1 is used instead of 1,  – D2 is used instead of D1,  – 

D1 is used instead of D2. 

3.2.6.2. Given input angle for a DCP and output angle for other DCP 

In this problem there are two possible cases: 

• Input angle is given for DCP where input and coupler links are collinear and 

output angle is given for the other DCP where output and coupler links are collinear. 

• Input angle is given for DCP where output and coupler links are collinear and 

output angle is given for the other DCP where input and coupler links are collinear. 

Solutions and formulation of these two cases are different. 
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3.2.6.2.1. Given input angle for DCP where input and coupler links are 

collinear and output angle for the other DCP where output 

and coupler links are collinear 

For a CCA and 2-FDCP the following are given: a CCA position (1, 1), the 

input angle for the FDCP where input and coupler links are collinear (F1) and output 

angle for the other FDCP where output and coupler links are collinear (F2) (Figure 3.11).  

 

Figure 3.11. Given input angle for FDCP where input and coupler links are collinear 

and output angle for the other FDCP where output and coupler links are 

collinear 

The I/O function is written for given CCA as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a cos 2d cos 2ad cos+ − + −  +  =  −   (104) 

By using cosine theorem at each folded DCPs: 

 ( ) ( ) ( )
22

F1d b a 1 2 b a cos 180= − + − −  −  (105) 
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 ( ) ( )
22

F2a 1 b d 2 b d cos= + − − −   (106) 

For a CCA and 2-EDCP, the following are given: a CCA position (1, 1), the 

input angle for the EDCP where input and coupler links are collinear (E1) and output 

angle for the other EDCP where output and coupler links are collinear (E2) (Figure 3.12).  

 

Figure 3.12. Given input angle for EDCP where input and coupler links are collinear 

and output angle for the other EDCP where output and coupler links are 

collinear 

The I/O function is written for given crank angle correlations as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a cos 2d cos 2ad cos+ − + −  +  =  −   (107) 

By using cosine theorem at each extended DCPs: 

 ( ) ( )
22

E1d b a 1 2 b a cos= + + − +   (108) 

 ( ) ( ) ( )
22

E2a 1 b d 2 b d cos 180= + + − +  −  (109) 

By using Eqs. (104), (105) and (106) or Eqs. (107), (108) and (109), d can be found as 

the root of a degree 4 univariate polynomial equation: 

 4 3 2Ad Bd Cd Dd E 0+ + + + =  (110) 

where 
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( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

( )( ) ( )

2 2

1 1 1 1

1 1 1 1 1 1

1 1
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D1 D1 D1 1 D2 1 D2 D1

2

D1 D2

D2 D2 D2

D1 2 2

D2 D2

2

1 1 1

1 1 1 1 1

1

A c 1 c 1 2c c 2c c c 2c c s

c c 1 c c 1 c c

c c 2c 3c c 2 c c
2 c

+ c
B

c c 1 2c c c 1

c c



 = − −  +  −   −  −   +     

  −  − + − +    

 

 −   − 

 − 

−

 −  

 −    
=

 −    

+  − − 
 
  + + + −



 + +
 

+  ( ) ( )( )

( )( ) ( )( ) ( )

( )( )( )

( )( ) ( )

1

2 D2

2

D1 D2 1 D2 D2 D2

2 2

1

1 1 1 1 1 1

1 1 1 1

1 1

1 1 1

1 D2 D2 D1 1 D2

2 2

1 D2 D2 1

D1

c c c c c

c 2 c 2 3 c 3c c c 2c c
2c

c c cos(y) c c c 2c c 1

c c c 1 c c 2 2c
2c

1

c
C

 −    −  − 

 −  

 
 
 
 


−


 
   − −  −    

  −  + +   +  − 
 − −
 +   +

− 


 − +  +   −  −
 

−  − −  + − 


 
=

+ ( ) ( )( )( )
( )( )

( ) ( )( ) ( ) ( )( )

( )( )( ) ( ) ( )

 

1 D2

D2 1

2 2

D1 D2 1 D2 D2 1 D2

22 2 2 2 2

D2 1 1 D

1

1 1

1 1

1 1 D2 D1

D1 1

1

1

1 D2

1 1 1

1 1 1 1

2c c c 1
c 4 c c

c 2c c c c 1 c c 4c c 1

c c 1 c 2c c 1 c 2c c c 1

c c c c c c
D 2

 
 
 
 
 

 
   −   −   − +   
 

−  



 +  + − −   +  − 
 
 + 

 − 
 − 

 −  

+− +  − +  + +   + 
 





 + 

− 

 −   − 

+ 
=

( )

   
( )

 ( )

D2 D2

D1 D2 D1 D2

1 D1 D2 D1 1 D2

2

1

1 1

1 D1 D2 D1 D2

1 c
c c c c c 1

s s c c c c c 1 c

E 1 c c c c c

  + − 
 +  −   −    

+   + +


  −    −  

= −   + 



 +

After finding d, a can be found as follows: 

 
  ( )( )  ( )

( )( )

2

D2 D1 D1 D2 D1 D2 D2

2

D1 D2 D2 D2

d c 1 c d c c c 1 c 2d c
a

2 c c d dc 1 c

 +  +  +    +  +  +  + 
 =

  + +  + + 

 (111) 

where 2 2

D1d c 1 = +  − . As a common solution for a CCA and 2-FDCP or 2-EDCP: 

 

( )( ) ( )

( )( )( )
( )( )

2 2 2

D1 D2 D1 D2 D1 D2

D1 D2

2

D1 D2 D2 D2

d 1 c c c c 1 c d c

c c d 1
b

2 c c d

d d

dc 1 c

1

  +  −  +  −  + 
 
   +  + + =

  + 

+

+ +

+

+ 
 (112) 

Eq. (110) is a degree 4 polynomial equation in terms of d and it can be solved analytically. 

In Eq. (111), there is a term that has   sign and in Eq. (112), there is a term that has  

sign. This means that, in this solution, for each d value, there are two solutions for a and 

b. Actually, for each d value, there is only one solution of a and b but the solution is too 

long to write here. For finding the proper a and b values a verification is needed. Two 

solutions of a and b should be found and substituted into Eq. (104). Then one of the 

solutions satisfy Eq. (104). 
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3.2.6.2.2. Given input angle for DCP where output and coupler links 

are collinear and output angle for the other DCP where 

input and coupler links are collinear 

For a CCA and 2-FDCP, the following are given: a CCA position (1, 1), the 

input angle for the FDCP where output and coupler links are collinear (F1) and output 

angle for the other FDCP where input and coupler links are collinear (F2) (Figure 3.13).  

 

Figure 3.13. Given input angle for FDCP where output and coupler links are collinear 

and output angle for the other FDCP where input and coupler links are 

collinear  

The I/O function is written for given crank angle correlations as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a cos 2d cos 2ad cos+ − + −  +  =  −   (113) 

By using cosine theorem at each folded DCPs: 

 ( )
2 2

F1b d a 1 2a cos− = + −   (114) 

 ( ) ( )
2 2

F2b a 1 d 2d cos 180− = + −  −  (115) 
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For a CCA and 2-EDCP, the following are given: a CCA position (1, 1), the 

input angle for the EDCP where output and coupler links are collinear (E1) and output 

angle for the other EDCP where input and coupler links are collinear (E2) (Figure 3.14). 

 

Figure 3.14. Given input angle for EDCP where output and coupler links are collinear 

and output angle for the other EDCP where input and coupler links are 

collinear  

The I/O function is written for given crank angle correlations as follows: 

 ( )2 2 2

1 1 1 11 a b d 2a cos 2d cos 2ad cos+ − + −  +  =  −   (116) 

By using cosine theorem at each extended DCPs: 

 ( )
2 2

E1d b a 1 2a cos+ = + −   (117) 

 ( ) ( )
2 2

E2a b 1 d 2d cos 180+ = + −  −  (118) 

By using Eqs. (113), (114) and (115) or Eqs. (116), (117) and (118), d can be found as 

the root of a degree 2 univariate polynomial equation: 

 
2Ad Bd C 0+ + =  (119) 

where 
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After finding d, a can be found as follows: 

 
( ) ( )( )( )2

D2 D1 D2 D1 D2

2

D1 D1 D2

d c d dc dc 1 1 c c
a

2dc c 2dc 1

 +  +  +   +  + 
=

 −  +  +
 (120) 

where 2 2

D2d 2c 1 = +  + . As a common solution for a CCA and 2-FDCP or 2-EDCP: 

 
( ) ( ) ( )

 

2 2

D2 D1 D1 D1 D2

2

D1 D2 D1

d 1 dc 1 c 1 c 1 d d c c
b

2d c c c 1

 +  +   −  + +  +     =
 +  −  +

 (121) 

Eq. (119) is a degree 2 polynomial equation in terms of d and it can be solved analytically. 

In Eq. (120), there is a term that has   sign and in Eq. (121), there is a term that has  

sign. This means that, in this solution, for each d value, there are two solutions for a and 

b. Actually, for each d value, there is only one solution of a and b but the solution is too 

long to write here. For finding the proper a and b values a verification is needed. Two 

solutions of a and b should be found and substituted into Eq. (113). Then one of the 

solutions satisfy Eq. (113). 

3.2.7. 2 Different Type DCPs with OPT 

In this problem 2 different type DCPs are given and OPT required. This problem 

can be formulated in 3 ways:  

• Input angle  is given for DCP  

• Output angle  is given for DCP  

• Input angle  is given for one DCP and output angle  is given for the 

other DCP 
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3.2.7.1. Given input angles  for both DCPs 

Two input angles of both FDCP and EDCP (E, F) are given and OPT is required 

(Figure 3.15). The same problem can also be described given the amount of input rotation 

and input angle in DCP. But here the formulation is formed over the input angles of the 

two DCPs. 

 

Figure 3.15. Two different type DCPs are given with OPT and input angle  is given for 

both DCPs 

Let the transmission angle at EDCP be µE and at FDCP be µF. Writing sine theorem in 

triangle A0BEB0 at EDCP and triangle A0BFB0 at FDCP: 

 
( )FE E F

ss s s
    and    

1 d 1 d

 −   
= =  (122) 

Dividing the two equations to each other: 

 E E

F F

s s

s s

 
= −

 
 (123) 

E and F are given parameters so, sinE/ sinF is constant then we can say there is a linear 

proportion between sµE and sµF. To optimize DTA, µ should be equal to /2 at EDCP or 

FDCP, in which case the other µ will have a minimum value. In other problems which 
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have OPT requirement, a centric four-bar is used or DTAs in given positions are equated 

to each other. But in this problem, it’s impossible, because amount of input rotation is a 

constant parameter. There are 3 possible cases about amount of input rotation: 

i) If F – E > 180, then µE should be 90 

Writing sine theorem in triangle A0BEB0 at EDCP: 

 
( )E EE E

E E

ss s
  b a c   and  d s

d 1 b a

 − −  
= =  + =  = 

+
 (124) 

Writing sine theorem in triangle A0BFB0 at FDCP: 

 
( ) ( )( )F FF 2 2F

F E F

sss
  b a c s s

1 d b a

 − −  −  − 
= =  − = −  −  − 

−
 (125) 

So, 

 

2 2 2 2

F E F F E FE E
E

c s s c s sc c
a ,   b   and  d s

2 2 2 2

 +  −   +  −  
= + = − =   (126) 

ii) If F – E < 180, then µF should be 90 

Writing sine theorem in triangle A0BFB0 at FDCP: 

 
( ) ( )( )F FFF

F F

sss
  d s   and  b a c

1 d b a

 − −  −  − 
= =  = −  − = − 

−
 (127) 

Writing sine theorem in triangle A0BEB0 at EDCP: 

 
( ) ( )E E E E 2 2E E

E F E

E

s ss s
  b a c s s

d 1 b a s

 − −   +  
= =  + = =  +  − 

+ 
 (128) 

So, 

 

2 2 2 2

E F E E F EF F
F

c s s c s sc c
a ,  b   and  d s

2 2 2 2

 +  −   +  −  
= + = − + = −   (129) 

iii) If F – E =180, it means that the mechanism is a centric four-bar. In this 

situation, minimum feasible input link length gives the minimum DTA. 

As seen above, the solutions in cases 1 and 2 are very similar to each other. Only b and d 

have a sign difference. 
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3.2.7.2. Given output angles  for both DCPs 

Two output angles of DCP (E, F) are given and OPT is required (Figure 3.16). 

The same problem can also be defined for given amount of output rotation and output 

angle in a DCP. But here the formulation is formed over the output angles of the two 

DCPs. 

 

Figure 3.16. Two different type DCPs are given with OPT and output angle  is given 

for both DCPs 

To optimize the transmission angle, two different methods were applied above. One is to 

equate the DTA in the given positions to each other, the other is to use a centric four-bar. 

In this problem, two methods give the same solution. Because the DTAs in the DCPs of 

the centric four-bar are equal to each other. 
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Figure 3.17. Two different type DCPs are given with OPT and output angle  is given 

for both DCPs when F – E = 180° 

The sine theorem can be written for triangle A0BEB0 (Figure 3.17): 

 
( ) ( )( )E EE E

ss s

1 db a

 −  −  +  −  
=

+
=  (130) 

The sine theorem can be written for triangle A0BFB0: 

 
( ) ( )( )F FF F

ss s

1 db a

 −  −  +  −  
=

−
=  (131) 

There is an isosceles triangle (BFBEB0) so, µE =  – µF and |BEBF| = b + a – (b – a) = 2a. 

By using this triangle µE can be found as follows: 

 E F
E

2

 −  + 
 =  (132) 

By using Eqs. (130), (131) and (132), link lengths can be found as follows: 

 

E F

E F E F

E F E F

c
s s 2

a ,   b s   and  d
2

2c c
2 2

 +  
  −   +    = = = −  −   −     

   
   

 (133) 
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3.2.7.3. Given input angle  for one DCP and output angle  for other 

DCP 

Input angle for one of DCP and output angle for other DCP are given (E, F or 

F, E). To optimize the transmission angle, two different methods were applied above. 

One is to equate the DTA in the given positions to each other, the other is to use a centric 

four-bar. In this problem, two methods give the same solution. Because the DTAs in the 

DCPs of the centric four-bar are equal to each other. There are two possible ways to 

formulate this problem: 

i) Input angle  is given for FDCP and output angle  is given for EDCP 

ii) Input angle  is given for EDCP and output angle  is given for FDCP 

The solution of the two problems turns out to be identical. Let’s consider case (i) first. 

 

Figure 3.18. Input angle  is given for FDCP and output angle  is given for EDCP 

There is an isosceles triangle as seen in Figure 3.18 (BFBEB0) so, µE =  – µF and |BEBF| 

= b + a – (b – a) = 2a. By using this triangle µE can be found as follows: 

 
E F E

2


 = −  −   (134) 
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Using sine theorem for triangle A0BEB0: 

 
( ) ( )E FE

d

s

1a b

ss −   − 

+
= =  (135) 

Using sine theorem for triangle A0BFB0: 

 
( )( ) ( )F F FF

db a

s ss

1

 −  +  − 
=

−

 − 
=  (136) 

By using Eqs. (134), (135) and (136) link lengths can be found as follows: 

 
( ) ( )F E E

F F
F

F

s s
a ,    b c d

ta
  an

n s
d  

 
= = −  = −

 −   − 
 (137) 

 

Figure 3.19. Input angle  is given for EDCP and output angle  is given for FDCP 

For case (ii) there is an isosceles triangle as seen in Figure 3.19 (BFBEB0) so, µE =  – µF 

and |BEBF| = b + a – (b – a) = 2a. By using this triangle µE can be found as follows: 

 E E F
2


 = −  −   (138) 

Using sine theorem at triangle A0BEB0: 

 
( )( )F E E F

s s s

a b 1 d+
=

 −  +   
=  (139) 
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Using sine theorem at triangle A0BFB0: 

 
( )E F F

s s s

b a 1 d

 −   
= =

−
 (140) 

By using Eqs. (138), (139) and (140) link lengths can be found as follows: 

 
( ) ( )

E
E

E F E F

Ea ,   b   a
a

nd  
s s

c
t n s

d
 

= =  = −
 −   − 

 (141) 

As seen in two cases, all link lengths are similar, but have sign differences. 

 Four Positions Synthesis for Four-Bar Mechanisms 

Problems including 4 positions for four-bar mechanism are tabulated by adding 

one more CCA position to problems including 3 positions for the four-bar mechanism. 

So, the number of possible problems is the same. Only a problem including 4 positions is 

solved and presented in this section. 

3.3.1. 3 CCA and 1 DCP 

There are 4 ways to formulate this: 

• Offset is at input angle and input angle is given at the DCP  

• Offset is at input angle and output angle is given at the DCP  

• Offset is at output angle and input angle is given at the DCP   

• Offset is at output angle and output angle is given at the DCP  

But only the problem in which the offset is at output and input angle is given the DCP 

has been solved.  
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3.3.1.1. Given input angle  for DCP and offset at output angle 

 

Figure 3.20. Illustration of offset angle at output angle (Source: Kadak & Kiper, 2021) 

This problem is solved by Kadak and Kiper (2021). 3 CCA positions (1, 2, 3, 

1, 2, 3) and input angle for FDCP or EDCP (F or E) are given (Figure 3.20). Link 

lengths are desired. The I/O function is written for given 3 CCA positions as follows: 

 ( ) ( )1 2 i 3 i i iP P c P c c   for i 1,2, 3−  +  +  =  −  +  =  (142) 

where P1, P2, P3 are as in Eq. (5). Equations for three positions are written in matrix format 

and can be solved as: 

 

( )

( )

( )

( )

( )

( )

1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

P 1 c c c

P 1 c c c

P 1 c c c

−

−   +   −  +     
    

= −   +   −  +     
     −   +   −  +      

 (143) 

The P1, P2, and P3 solved here are in terms of the  angle. For FDCP and EDCP, the 

cosine theorem for triangles A0BB0 is written. 

 
( ) ( ) ( )

( ) ( )

22

F

22

E

d b a 1 2 b a c

d b a 1 2 b a c

= − + − −  − 

= + + − + 
 (144) 

Eq. (144) is simplified, and terms with sign differences are added up on the same side: 

 

2 2 2

F

F

2 2 2

E

E

1 a b d 2a c
b

2a 2c

1 a b d 2a c
b

2a 2c

+ + − − 
=

− 

+ + − − 
− =

− 

 (145) 
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The two equations are equated to each other by taking the square of both sides. Thus, a 

single equation can be used for both EDCP and FDCP. 

 

2
2 2 2

2 D

D

1 a b d 2a c
b

2a 2c

 + + − − 
=  

−  
 (146) 

Eq. (146) is written in terms of P1, P2 and P3 by using Eq. (15): 

 

2

3 1 2 1

2 2

3 3 D 3 2 2 3

P P P 2P1 1 1
1

P 1 P c P P P P

 −
+ = + + − 

−  
 (147) 

Eq. (147) can be written in terms of P1, P2 and P3 after some simplifications as follows: 

 ( ) ( )2 2

1

2

2 3 1 2 3 D 3 2 1D

2 2

3

2

21+P P 2P P P 2 P P P c P P P 1 0s   + −  + + − − − =  

P1, P2 and P3 are expressed in terms of . So, Eq. (147) is a univariate equation in terms 

of . In order to be able to determine the maximum number of solutions for this equation, 

the tangent of the half-angle can be used. 

 

( )

( ) ( ) ( )

2

i i i2 2

2

i i i i i i2 2

1 t 2t
c ψ cψ sψ

1 t 1 t

1 t 2t
c ψ θ c ψ θ s ψ θ

1 t 1 t

−
+  = −

+ +

−
− +  = − − −

+ +  

for  t tan   and  i 1,  2,  3
2


= = . If P1, P2 and P3 are written in terms of t, then a degree 12 

univariate polynomial equation in terms of t is obtained. So, there are at most 12 real 

solutions. It is possible that some solutions give the same mechanism solution.  

In all numerical examples, it has been seen that if the value of  is a solution, the 

value of  + 180 is also a solution. These 180° different solutions of the equation coincide 

with the same solution of the mechanism, since in one solution the rocker length d is 

positive, in the other it is negative. That is, 12 roots correspond to a maximum of 6 

mechanism solutions. 

 Three Position Synthesis for Slider-Crank Mechanisms 

All problems formulated for four-bar mechanisms can also be used for slider-

crank mechanisms, with the exception of 1-CCA and two same type DCPs. Because it is 

not possible to obtain two same types of DCP for the same slider-crank mechanism. A 

solution of some of the problems are given in this section. 
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3.4.1.  2-CCA and 1-DCP 

 

Figure 3.21. Two CCA and a DCP (EDCP or FDCP) are given for a slider-crank linkage 

(Source: Kiper et al., 2020) 

Figure 3.21 shows an arbitrary position, EDCP and FDCP of a slider-crank 

mechanism. Crank length is a, coupler length is b, eccentricity is d. These three unknowns 

(a, b, d) are to be determined for two given general positions expressed in terms of pairs 

(1, q1), (2, q2), and an EDCP or FDCP, where only the output slider displacement, qE or 

qF is specified. For a planar slider-crank mechanism, the loop closure equations are 

written as follows: 

 
( ) ( )

2 22

0 0 i i i

2 2 2 2

i i i i

AB A B A A b q ac d as

b a d 2aq c 2ads q

= −  = −  + − 

 − − +  +  =
 (148) 

Let 2 2 2

1P b a d= − − , P2 = 2a and P3 = 2ad. Then: 

 2

1 2 i i 3 i iP P q c P s q   for  i 1,  2+  +  = =  (149) 

P1 and P3 can be written in terms of P2: 

 

( )

( )

2 2

2 1 1 2 2 1 2 1 2 1 2

1 2

2 2

1 2

2

1

3

2 2 2 1 1

1

P
q s q s P q s c q s c

s s

q q P q
P

c q c

s s

 −    −  



+
=

+

− 

− 


=

− 

− 

 (150) 

Solving for a, d, b2: 
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 2 2 2 2 232
1 1

2

PP
a ,  d ,  b P a d  or b P a d

2 P
= = = + + = + +  (151) 

For the EDCP and FDCP: 

 
( )

( )

2 2 2 2 2 2 2

E E

2 2 2 2 2 2 2

D F

a b q d a b d q 2ab

b a q d a b d q 2ab

+ = +  + − − = −

− = +  + − − =
 (152) 

In order not to have a square root expression, taking square of Eq. (152): 

 ( )
2

2 2 2 2 2 2

Da b d q 4a b+ − − =  (153) 

By taking square of Eq. (152), the solution formulation for the EDCP and FDCP problems 

becomes identical. Writing Eq. (153) in terms of P1, P2, P3 and rearranging: 

 ( )
2

2 2 2 2

1 D 3 D 2P q P q P 0− − − =  (154) 

Substituting P1 and P3 in Eq. (150) into Eq. (154) and: 

 2

2 2AP BP C 0+ + =  (155) 

where 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 22

1 2 1 2 1 2 D 1 2 1 1 2 2

2 2 2 2

2 2 D 1 1 2 2 1 2 1 1 2 2

2 2 3 2

1 1 D 2 1 2 2 1 2 1 1 2

24 4 2 2 2

D 1 2 1 2 2 D 1 1 2

2 2

1 D 2

A q s c q s c q s s q c q c

q c q s s s q c q q s s 1 c
B 2

q c q s s s q s s 1 q c c

q s s q c 2q q s s s
C

2q q s

=   −   −  −  −  − 

    −  +  +   − 
 =
  −   −  +   − +   

 −  −  −  

  + 

 

+
=

 

 −

 ( ) ( )2 4 2

1 2 2 1 2 2 1s s q s s 1 q c

 
 
   −  −  − −  

 

Eq. (155) is a degree 2 polynomial equation in P2. The two roots of the equation can be 

found analytically. a, b and d can be found by using Eq. (151). 

 Four Positions Synthesis for Slider-Crank Mechanisms  

Problems including 4 positions for slider-crank mechanism are tabulated by 

adding one more CCA position to problems including 3 positions for slider-crank 

mechanism. Only a problem including 4 positions is solved and presented in this section. 
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3.5.1. 3-CCA and 1-DCP 

 

Figure 3.22. 3 CCA and a DCP (EDCP or FDCP) are given for a slider-crank linkage 

(Source: Kiper et al., 2020) 

This problem was solved by Kiper et al (2020). Figure 3.22 shows an arbitrary 

position, EDCP and FDCP of a slider-crank mechanism. Crank length is a, coupler length 

is b, eccentricity is d and offset angle is . These four unknowns (a, b, d and ) are to be 

determined for 3 given general positions expressed in terms of pairs (1, q1), (2, q2) and 

(3, q3), and an EDCP or FDCP, where only the output slider displacement, qE or qF is 

specified. For a planar slider-crank mechanism, the loop closure equations are written as 

follows: 

 ( ) ( )
2 22

0 0 i i iAB A B A A b q a c d a s a= −  = −  +  + − +         (156) 

Let ( ) ( )i i i ic cos  and s sin=  +  =  +  . Expanding and rearranging Eq. (156): 

 2 2 2 2

i i i ib a d 2aq c 2ads q− − + + =  (157) 

Let P1 = b2 – a2 – d2, P2 = 2a and P3 = 2ad. For given (1, q1), (2, q2) and (3, q3), P1, P2 

and P3 can be linearly solved from Eq. (157) as a function of : 

 

12 2

1 1 1 2 1 3 1 1 1 1 1 1

2 2

1 2 2 2 2 3 2 2 2 2 2 2

2 2

1 3 3 2 3 3 3 3 3 3 3 3

P q c P s P q P 1 q c s q

P q c P s P q P 1 q c s q

P q c P s P q P 1 q c s q

−
 + + =    
    

+ + =  =     
    + + =      

 (158) 
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Using Cramer’s rule: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2

1 2 2 3 3 3 2 2 1 1 3 3 3 1 3 1 1 2 2 2 1

1

2 2 3 3 3 2 1 1 3 3 3 1 1 1 2 2 2 1

2 2 2 2 2 2

3 2 1 1 3 2 2 1 3

2

2 2 3 3 3 2 1 1 3 3 3 1 1 1 2 2 2 1

2 2 2 2 2

2 3 1 1 3 1 2 2 1 2

3

q q c s q c s q q c s q c s q q c s q c s
P

q c s q c s q c s q c s q c s q c s

q q s q q s q q s
P

q c s q c s q c s q c s q c s q c s

q q q c q q q c q q
P

− − − + −
=

− − + + −

− + − + −
=

− − + + −

− + − + −
=

( )2

3 3

2 2 3 3 3 2 1 1 3 3 3 1 1 1 2 2 2 1

q c

q c s q c s q c s q c s q c s q c s− − + + −

 (159) 

Solving for a, d, b2 (expressed as a function of ): 

 2 2 2 2 232
1 1

2

PP
a ,  d ,  b P a d  or b P a d

2 P
= = = + + = + +  (160) 

For the EDCP or FDCP: 

 
( )

( )

2 2 2 2 2 2 2

E E

2 2 2 2 2 2 2

D F

a b q d a b d q 2ab

b a q d a b d q 2ab

+ = +  + − − = −

− = +  + − − =
 (161) 

In order not to have a square root expression, taking square of Eq. (161): 

 ( )
2

2 2 2 2 2 2

Da b d q 4a b+ − − =  (162) 

By taking square of Eq. (161), the solution formulation for the EDCP and FDCP problems 

becomes identical. Writing Eq. (162) terms of P1, P2, P3 and rearranging: 

 ( )
2

2 2 2 2

1 D 3 D 2P q P q P 0− − − =  (163) 

Eq. (163) is an equation in terms of  and can be numerically solved using a root finding 

algorithm. Then the corresponding a, b and d values can be determined using Eq. (160). 

In order to find an upper bound for the number of roots let t tan
2


=  so that: 

 
2 2

i i i i i i2 2 2 2

1 t 2t 1 t 2t
c c sin   and  s s cos

1 t 1 t 1 t 1 t

− −
=  −  =  + 

+ + + +
 (164) 

Substituting Eq. (164) into Eq. (159) and substituting Eq. (159) into Eq. (164) results in 

a degree 8 polynomial in t. So, there are at most 8 real solutions.  
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CHAPTER 4 

 

NUMERICAL EXAMPLES 

 

All problems in Chapter 3 were implemented in Excel. Some macros used for 

mechanism analysis and a macro which solves degree 4 polynomial equations have been 

used. For given parameters, spin buttons are assigned. In problems requiring numerical 

solutions, the "goal seek" macro that use the Newton-Rapshon method was used. This 

macro is assigned to all spin buttons. Thus, even in problems that require a numerical 

solution, a simultaneous solution can be obtained as the spin buttons are used. Finally, a 

simulation has been prepared to visualize the mechanism. 

Being able to obtain the solution instantaneously provides many advantages. 

While obtaining the solution, the ratio of the link lengths of the mechanism or the 

transmission angle can be monitored. As mentioned in the introduction, the solutions to 

these problems can also be a loop of a multi-loop mechanism. In such cases, it is necessary 

to solve these problems instantly for changing problem definitions. 

The numerical solutions of two problems that can be solved analytically and 

solved numerically have been examined in the next sections.   

Table 4.1 lists all numerical examples of problems in this thesis. The column DoE 

indicates the degree of polynomial equation. So, this column is also the number of 

maximum solutions. However only one of the solutions is shown in the table as a sample. 

If the equation has 4 or less roots, there are examples in which all the roots are real in all 

these problems. But some of the mechanisms synthesized with these real roots may not 

be feasible. In some cases, link lengths may be too large or too small. In some cases, the 

mechanism does not provide the given positions in the same configuration. In some 

equations with more than 4 roots, no example has been found where all roots are real. 

However, since the examples are worked out with trial and error, there may be an example 

where all roots are real. 

The given parameters of the problems are indicated by yellow cells and desired 

parameters (link lengths and offset angle in radians) are indicated by green cells.  
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Table 4.1. All numerical examples 

Section DoE Given parameters are yellow, link lengths are green 

3.2.1 1 
1 2 3 1 2 3 a b d   

25 50 80 60 70 90 0.3586 0.9449 0.4696   

 2 
1 2 1 2 a b d     

40 170 80 150 0.4923 0.8736 0.7660     

3.2.2.2 2 
1 2 1 2 a b d     

40 170 100 150 0.3457 0.7807 0.7142     

3.2.3.1 4 
1 2 D 1 2 a b d    

140 100 200 90 40 0.4884 1.3745 0.3462    

3.2.3.2 2 
1 2 1 2 D a b d    

40 120 10 70 100 0.3471 1.5023 0.7774    

3.2.4.1.1 6 
1 D 1 a b d      

60 210 100 0.2275 0.8752 0.5987      

3.2.4.1.2 8 
1 1 D a b d      

60 110 80 0.2823 0.7814 0.2282      

3.2.4.2.1 2+4 
1 D 1 a b d      

60 230 120 0.2857 0.6428 0.8176      

3.2.4.2.2 4 
1 1 D a b d      

45 60 50 0.5836 0.9407 0.6750      

3.2.5.1 6 
1 E F 1 a b d     

80 35 195 120 0.2700 0.7018 0.5935     

3.2.5.2 4 
1 1 E F a b d     

80 120 110 170 0.2726 0.7003 0.5940     

3.2.5.3 6 
1 D1 1 D2 a b d     

80 35 120 170 0.2725 0.7003 0.5938     

3.2.6.1 4 
1 1 F1 F2 a b d     

110 60 140 280 1.2839 1.9545 0.9571     

3.2.6.2.1 4 
1 1 F1 F2 a b d     

110 60 245 280 1.3448 1.9635 0.8741     

3.2.6.2.2 2 
1 1 F1 F2 a b d     

110 60 143 54 1.3643 1.9680 0.8466     

3.2.7.1 1 
E F a b d       

60 210 0.1705 0.3295 0.8660       

3.2.7.2 1 
E F a b d       

140 170 0.2428 0.4226 0.9383       

3.2.7.3 1 
D2 D1 a b d       

60 170 0.3152 0.5000 0.9216       

3.3.1.1 12 
1 2 3 D 1 2 3 a b d  

70 135 260 200 115 140 160 0.3199 0.6415 0.7064 0.0581 

3.4.1 2 
1 2 q1 q2 qD a b d 

35 45 1 0.9 1.1 0.6371 0.4913 0.2520 

3.5.1 8 
1 2 3 q1 q2 q3 qD a b d  

110 60 40 0.5 1 1.2 1.45 0.5944 1.0159 0.7008 0.5410 
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 Numerical Example of 1-CCA and 2 Different Type DCPs when 

Input Angles  Are Given for Both DCPs for Four-Bar Mechanism 

 

Figure 4.1. The numerical solution of 1-CCA and 2 different type DCPs when input 

angles  are given for both DCPs for a four-bar mechanism 

Given parameters (1, 2, F, E) are shown by yellow cells and spin buttons 

change them in Figure 4.1. The computed link lengths are shown by green cells. The cell 

B7 contains Eq. (77). A macro has been written that equates the equation in cell B7 to 

zero by changing the value of a in cell B10 using "goal seek". This macro is assigned to 

all spin buttons. If the macro is run again by changing the initial value of a, different 

values of a can be found. By using selected a value, b and d can be calculated using Eqs. 

(75) and (76). Then, the mechanism is simulated. The black lines in the graph indicate the 

given positions of the mechanism. The green lines are animated using the spin button in 

cell I5. 
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 Numerical Example of 1-CCA and 2 Different Type DCPs when 

Output Angles  Are Given for Both DCPs For Four-Bar 

Mechanism 

 

Figure 4.2. The numerical solution of 1-CCA and 2 different type DCPs when output 

angles  are given for both DCPs for a four-bar mechanism 

Given parameters (1, 2, F, E) are shown by yellow cells and spin buttons 

change them in Figure 4.2. The computed link lengths are shown by green cells.  A, B, 

C, D and E are the coefficients of Eq. (83) which is a degree 4 polynomial equation in a. 

Therefore, there are at most 4 possible real values of a. All solutions can be found by 

using a macro. By using buttons on cells B10, C10, D10 and E10, a value of a is selected. 

By using selected value of a, b and d can be calculated with Eqs. (81) and (82). Then the 

mechanism is simulated. The black lines in the graph indicate the given positions of the 

mechanism. The green lines are animated using the spin button in cell I5. 
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CHAPTER 5 

 

CONCLUSIONS 

 

In this thesis, an overview of mixed function generation synthesis problems for 

planar mechanisms is presented, the problems that can be formulated are listed, and 

analytical or semi-analytical solutions of some of the problems are presented. 

All function generation problems including 3 positions for planar four-bar 

mechanisms as mixed problems of CCA and dead-center design is presented in Section 

3.2. One of the problems for four-bar mechanisms including 4 positions is presented in 

Section 3.3. Mixed function generation problems including 3 positions for planar slider-

crank mechanisms are identified and one of them is solved in Section 3.4. One of the 

problems including 4 positions for slider-crank mechanisms is solved in Section 3.5. 

Solutions are solved and simulated by either analytical or semi-analytical 

methods. In CHAPTER 4, numerical examples are examined. The numerical solutions 

are obtained for all problems. The numerical examples of Sections 3.2.5.1 and 3.2.5.2 are 

examined in detail in Sections 4.1 and 4.2. Thus, function generation synthesis of planar 

mechanisms as a mixed problem of CCA and dead-center design is studied.  

Any problems including 5 positions are not addressed in this thesis. It may be the 

subject of future studies. By taking derivative of the I/O equation with respect to time, 

velocity and acceleration can also be used in the problem definitions. Also, mixed 

function generation problems for other planar crank mechanisms can be formulated. 

Problem definitions and solutions of other crank mechanisms may be the subject of future 

studies. 
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