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Abstract

Any city-scale visual localization system has to over-
come long-term appearance changes, such as varying il-
lumination conditions or seasonal changes between query
and database images. Since semantic content is more ro-
bust to such changes, we exploit semantic information to
improve visual localization. In our scenario, the database
consists of gnomonic views generated from panoramic im-
ages (e.g. Google Street View) and query images are col-
lected with a standard field-of-view camera at a different
time. To improve localization, we check the semantic sim-
ilarity between query and database images, which is not
trivial since the position and viewpoint of the cameras do
not exactly match. To learn similarity, we propose training
a CNN in a self-supervised fashion with contrastive learn-
ing on a dataset of semantically segmented images. With
experiments we showed that this semantic similarity estima-
tion approach works better than measuring the similarity at
pixel-level. Finally, we used the semantic similarity scores
to verify the retrievals obtained by a state-of-the-art visual
localization method and observed that contrastive learning-
based pose verification increases top-1 recall value to 0.90
which corresponds to a 2% improvement.

1. Introduction

Visual localization can be defined as estimating the po-

sition of a visual query material within a known environ-

ment. It has received increasing attention [1,7,12,17,28,40]

in the last decade especially due to the limitation of GPS-

based localization in urban environment (e.g. signal failure

in cluttered environment) and motivated by many computer

vision application areas such as autonomous vehicle local-

ization [42], unmanned aerial vehicle localization [11], vir-

tual and augmented reality [21].

Visual localization technique that we employ is based on

Figure 1. The image on top-left was taken in 2008, the image on

top-right was taken in 2019 (source: Google Street View). Ob-

serve illumination differences, viewpoint variations and changing

objects. Bottom row shows their semantic segmentation results.

Semantic similarity can help to verify/deny the localization result.

image retrieval, where query images are searched within

a geo-tagged database. Location of the retrieved database

image serves as the estimated position of the query im-

age. Both query and database images are represented

with compact and distinguishable fixed size set of features

[1, 3, 12, 29, 30, 44]. In recent years, features extracted with

convolutional neural networks (CNNs) [1, 12, 30] outper-

formed hand-crafted features [2, 17, 27].

In our work, query images are collected with a standard

field-of-view camera [51], whereas database consists of per-

spective images (gnomonic projection) generated from a

panoramic image dataset (downloaded from Google Street

View). The reason for using the panoramic image database

is that it presents a wide field-of-view (FOV) which helps

to correctly localize the query images where standard FOV

cameras fail due to non-overlapping fields of view.

Long-term visual localization remains a challenging re-

search area since the images taken from the environment
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can drastically change over time. Any city-scale visual lo-

calization system has to handle appearance changes due to

weather conditions, seasonal and illumination variations, as

well as structural changes such as building facades. Numer-

ous studies have addressed the aspects of long-term local-

ization in the past [23,25,33,34,36,42,43,45]. Since seman-

tic information is more robust to such changes (Fig. 1), in

our study we utilize semantic segmentation as a side modal-

ity at the pose verification step. In other words, we check

semantic similarity to verify the poses (retrievals) obtained

with the approach that use only RGB image features.

To measure semantic similarity, we mainly propose an

approach based on self-supervised contrastive learning. We

train CNN models [6, 18] using a dataset of unlabeled se-

mantic masks. In our case, unlabeled refers to not knowing

if two semantically segmented images belong to the same

scene or not. We also have a limited size of labeled dataset

(query and database images for the same scene) which is

used for fine-tuning and testing purposes. We retrieve top S
candidates from the panoramic image database with RGB-

only approach and update their similarity scores with se-

mantic features. We showed that, this score update with se-

mantic information improves the performance of a state-of-

the-art CNN-based visual localization method (SFRS, [12]).

We also conducted experiments by measuring the seman-

tic similarity at pixel-level, referred to as pixel-wise simi-

larity in the rest of the paper. Since it is the naive approach

and easy to implement, we consider it as a baseline. We ob-

served that the pixel-wise similarity can also improve the re-

sults of RGB-only approach but when compared to the self-

supervised learning with large dataset its gain is marginal.

We summarize our main contributions as follows:

• We adopted self-supervised contrastive learning to rep-

resent semantic masks. The trained model is used to

estimate similarity scores between the semantic con-

tents of different images.

• Previous visual localization works utilized semantic

information for feature point elimination or for per-

forming localization directly by semantic content. In

this work, we take a state-of-the-art image-based lo-

calization method and improve it using the proposed

semantic similarity estimation approach.

The paper is organized as follows. In Section 2, we re-

view the related works. In Section 3, we explain the dataset

preparation and demonstrate how we compute and use se-

mantic similarity for pose verification. We present experi-

mental results in Section 4 and conclusions in Section 5.

2. Related Work
Localization with RGB images. Before the era of CNN,

visual localization was mostly performed by representing

images with Bag of Visual Words [27], using SIFT-like

hand-crafted descriptors [4, 20]. VLAD (Vector of Locally

Aggregated Descriptors) [17] does the same task with com-

pact representations that enabled us to use large datasets.

In recent years, CNN-based methods showed great per-

formance on visual localization and image retrieval tasks.

One of the first CNN-based approaches was proposed by

Razavian et al. [31]. They applied the max-pooling function

on the last convolution layer of CNN and produced a com-

petitive image representation. Tolias et al. [44] improved

the previous idea and applied max-pooling to different lo-

cations of the convolution layers under different scales. Yi

et al. [47] proposed the LIFT (Learned Invariant Feature

Transform) CNN model that consists of detector, orienta-

tion estimator, and descriptor parts. Arandjelovic et al. [1]

proposed NetVLAD that works on geo-tagged images. The

proposed model consists of several convolutions and learn-

able VLAD layers. SFRS [12], adopted the backbone of

NetVLAD and proposed a training regimen to handle the

cases with limited overlap. Instead of using database im-

ages as a whole during the training, images are divided into

parts and similarity scores are calculated on these parts. By

doing so, effect of weakness in GPS labels (position errors)

was also alleviated and SFRS outperformed previous works

on visual localization.

While the majority of localization methods were applied

on standard FOV cameras, there are a few previous works

on localization with panoramic images [15, 16, 25, 35, 50],

but these did not exploit semantic information.

Semantic-based outdoor localization. Semantic infor-

mation is more robust to changes over time and the idea of

exploiting semantic content for outdoor visual localization

task is not new. We can broadly categorize semantic vi-

sual localization methods into 3D structure-based and 2D

image retrieval based methods. 3D methods mostly rely

on building a 3D model of a scene with structure-from-

motion. Stenborg et al. [38] performed localization based

on the query image’s semantic content when the environ-

ment is 3D reconstructed and semantically labeled. In an-

other example, 2D-3D point matches are checked if their

semantic labels are also matching [43]. In our work, we

took the 2D approach which retrieves the most similar im-

age to the query. It arguably performs as well as 3D based

methods [34] and less expensive.

Among 2D approaches, Singh and Košecká [37] utilized

semantic layout and trained classifier using semantic de-

scriptor to detect intersection points of the streets. Yu et
al. [48] proposed a method that utilizes semantic edge fea-

tures (extracted with CASENet [49]). These edges (e.g.

sky-building, building-tree) were converted to vector repre-

sentation and used for localization. Cinaroglu and Bastan-

lar [8, 9] trained a CNN model with triplet loss on seman-

tic masks and showed that visual localization can solely be

done with semantic features. Seymour et al. [36] proposed
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an attention-based CNN model for 2D visual localization

by incorporating appearance and semantic information of

the scene. Proposed attention module guide the model to

focus on more stable regions. Mousavian et al. [22] used

semantic information to detect man-made landmark struc-

tures (e.g. buildings). Feature points not belonging to man-

made objects are considered as unreliable and eliminated.

In a similar fashion, Naseer et al. [24] applied a weight-

ing scheme on semantic labels (e.g. increasing weights for

buildings since they are more stable in long term).

These previous works either performed localization only

with semantic labels or they used the semantic features to

locate where to focus and eliminate unstable regions. Dif-

ferently, we check the semantic content in images to val-

idate the retrievals of a state-of-the-art image-based local-

ization method.

Contrastive learning. Although its origins date as back

as 1990s, contrastive learning has recently gained popu-

larity due to its achievements in self-supervised learning,

especially in computer vision [19]. Supervised learning

usually requires a decent amount of labeled data, which

is not easy to obtain for many applications. With self-

supervised learning, we can use inexpensive unlabeled data

and achieve a training on a pretext task. Such a training

helps us to learn good enough representations. In most

cases, a smaller amount of labeled data is used to fine-tune

the self-supervised training.

Implemented with Siamese networks, contrastive learn-

ing approaches managed to learn powerful representations

in a self-supervised fashion. In recently proposed methods,

two augmentations of a sample are feed into the networks.

The goal of contrastive learning is to learn an embedding

space in which similar sample pairs stay close to each other

while dissimilar ones are far apart. While MoCo [14] and

SimCLR [5] use the negative examples directly along with

the positive ones, BYOL [13] and SimSiam [6] achieved

similar performance just with the positive examples (differ-

ent augmentations of the same sample). According to the

results, not only image classification, but also object detec-

tion and semantic segmentation as downstream tasks benefit

from self-supervised contrastive learning.

In our work, we train a CNN model with a contrastive

learning approach to learn similarity scores between seman-

tically segmented images. We have a limited size localiza-

tion dataset (query and database images with known loca-

tions), however it is easy to obtain a large dataset of se-

mantic segmentation masks with unknown locations. Thus,

we exploited the power of self-supervised learning to learn

from a large unlabeled (no location info) dataset. We mainly

used SimCLR [5] approach of using both positive and neg-

ative samples. To learn similarities in semantic masks, aug-

mented versions of the anchor are taken as positive, samples

belong to different scenes are taken as negative (Fig. 2).

Figure 2. Self-supervised contrastive learning for measuring se-

mantic content similarity. The positive sample is an augmented

version of the anchor (we used random crops and small rotations),

whereas negative samples belong to different scenes.

3. Methodology and Dataset
3.1. Dataset

Our dataset consists of images captured in Pittsburgh,

PA. Panoramic images in our dataset were obtained from

Google Street View (images of 2019) and downloaded with

Street View Download 360 application1. Query images

were taken from UCF dataset [51] at locations correspond-

ing to the panoramic images. These queries were also col-

lected via Google Street View but before 2014. This time

gap results in seasonal and structural changes (e.g. change

of a facade of a building) in addition to illumination vari-

ances. Also, a wide camera baseline between the database

and query images conforms better to the long-term localiza-

tion scenario [23, 33, 43].

To assess the localization performance, we formed a

test set consisting of query and database images collected

from 123 and 222 different locations respectively. Every

query image has a correspondence in the database but not

vice versa, i.e. database covers a larger area geographi-

cally. Query set consists of 123x4=492 non-overlapping

perspective images (90° FOV each). Database consists of

222x12=2674 images (each panoramic image is represented

with 12 gnomonic images). Each gnomonic image also has

90° FOV and it overlaps 60° with the next one. Please see

Fig.3 for examples.

3.2. Searching perspective query images in a
panoramic image database

We search query images in the 12-gnomonic image

database that is generated from equirectangular panoramic

1iStreetView.com
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Figure 3. An example set of query and database images taken from the same location. For each location, dataset has one panoramic image

(top-left) and four 90° FOV perspective query images (top-right), captured at different times. To localize, we compare each query image

with 12 gnomonic images (bottom two rows) generated from the equirectangular panoramic image. Both query and gnomonic database

images are 500×400 pixels.

images. Images collected from the same location at differ-

ent times not only contain appearance changes but also may

suffer from limited view overlap due to position and orien-

tation shifts. Even though we use 12 consecutive gnomonic

projections on the database side to increase the chance of a

good overlap between query and database (there is a 15°

viewpoint difference in worst case and 7.5° on average),

we can not guarantee a perfect overlap. Several successful

methods were proposed to cope with both appearance and

viewpoint changes. [1, 12, 44]. Most recently, SFRS [12]

outperformed other methods on visual localization bench-

mark datasets taking advantage of image-to-region similar-

ities. Thus, without loss of generality, we take SFRS [12]

as the state-of-the-art image-based method and we verify its

retrieval results using semantic similarity.

3.3. Computing Semantic Similarity

We first automatically generate a semantic mask for each

image in our dataset using a well-performing CNN model

[39]. The model we employed was trained on Cityscapes

[10], which is an urban scene understanding dataset consists

of 30 visual classes, such as building, sky, road, car, etc.

Given a semantic mask, obtaining the most similar re-

sult among the alternatives is not a trivial task. SIFT-like

features do not exist to match. Moreover, two masks of the

same scene is far from being identical not only because of

changing content but also due to camera position and view-

point variations. We have tried geometric methods [32] to

fit one image into the other one prior to computing semantic

similarity, however they did not succeed. Thus, we propose

a trainable semantic feature extractor for pose verification

which is trained using correct and incorrect pose matchings.

Before presenting the trainable approach, we explain

pixel-wise similarity approach which measures the seman-

tic similarity at pixel-level. Since it is the naive approach

and easy to implement, we see this as a baseline method of

semantic pose verification.

Pixel-wise Similarity. In this first approach, we calcu-

late pixel-by-pixel similarity between query and database

semantic masks:

pixel-wise similarity =

m∑

i=1

n∑

j=1

sim(Q(i,j), D(i,j))

m · n (1)

where sim(a, b) is equal to 1 if a = b, 0 otherwise. Q
represents the query image’s mask and D represents the

database image’s mask, both having size m × n, (i, j) ∈
{1, ...,m}×{1, ..., n}. A pixel is considered as a matching

pixel if Q(i,j) = D(i,j) and it increases similarity.
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Figure 4. Illustration of training a CNN model with self-

supervised contrastive loss on a dataset that consists of semanti-

cally segmented masks.

Trainable Feature Extractor. We use self-supervised

contrastive learning approach in our work since large

amount of semantic masks can easily be obtained for a

self-supervised training. In our setting, semantic masks are

obtained with a well-performing segmentation model [39]

from 3484 images randomly taken from UCF dataset [51].

We do not need groundtruth masks, since a successful esti-

mation is enough to compute semantic similarity.

We used SimCLR [5] as our contrastive learning model

and trained a ResNet-18 as the encoder. In our setting, en-

coder network (Fig. 4) produces r = Enc(x) ∈ R512

dimensional features, projection network produces z =
Proj(r) ∈ R2048 dimensional features. We resized seman-

tic mask to 64 × 80 resolution (due to GPU memory lim-

itation) and used two different data augmentation methods

during the training: random resized crop and random rota-

tion. We set lower bound of random crop parameter as 0.6,

which means that cropped mask covers at least 60% area of

the original mask. We set maximum rotation parameter as

3°, since severe rotations are not expected between query

and database images. Augmentation of semantic masks is

visualized in Fig. 4. Following [5,18] we use the contrastive

loss given in Eq. 2. This is a categorical cross-entropy loss

to identify the positive sample amongst a set of negative

samples (inspired from InfoNCE [46]).

Lself =
∑

i∈I

Lself
i = −

∑

i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i)

exp(zi · za(i)/τ)

(2)

N images are randomly taken from the dataset. Thus,

the training batch consists of 2N images to which data aug-

mentations are randomly applied. Let i ∈ I ≡ {1...2N} be

the index of an arbitrary augmented sample, then j(i) is the

index of the other augmentation of the same original image.

τ ∈ R+ is a scalar temperature parameter, · represents the

dot product, and A(i) ≡ I−{i}. We call index i the anchor,

index j(i) is the positive, and the other 2(N − 1) indices as

negatives. The denominator has a total of 2N−1 terms (one

positive and 2N − 2 negatives).

CNN model, trained as explained above, is now ready to

produce a similarity score when two semantic masks (one

query and one database) are given. Similarity score is used

to update the scores of RGB-only method (Section 3.4).

After self-supervised training, same network can be fine-

tuned with a labeled dataset (query and database segmenta-

tion masks for the same scene). For this purpose, we pre-

pared a dataset of 227 query images with their correspond-

ing database panoramic images. Not surprisingly, it is much

smaller than the self-supervised training dataset. Here,

common practice in literature is that the projection head

(Fig.4) is removed after pretraining and a classifier head is

added and trained with the labeled data for the downstream

task. However, since our pretraining and downstream tasks

are the same (estimating similarity of two input semantic

masks), we do not place a classifier head, but we retrain the

network (partially or full).

3.4. Updating Retrieval Results with Semantic Sim-
ilarity

We first normalize RGB-only [12] and semantic simi-

larity (pixel-wise similarity or trainable feature extractor)

scores between [−1,+1] and then merge them with a weight

coefficient (W ) to obtain the updated similarity score:

updated-scorei = rgb-scorei + W · semantic-scorei (3)

where i is the index within the top S candidates for each

query. We do not update the scores of every database image,

but only interested in the top S database candidates for each

query, since these are already obtained by a state-of-the-

art image-based localization method. We set S=10 in our

experiments. A real (successful) example of similarity score

update is shown in Fig.5.

While updating the similarity scores of S candidates, we

also update the similarity scores of gnomonic images com-

ing from the same panorama (neighbours of the retrieved

gnomonic views also have potential to benefit from seman-

tic similarity).

To decide on W value, we employed a validation set of

query-database image pairs. We selected W values with

the highest localization performance, separately for pixel-

wise similarity and trainable semantic feature extractor ap-

proaches. Effect of altering W was examined with experi-

ments in Section 4.1.

4. Experimental Results
Our self-supervised contrastive learning uses 3484 im-

ages randomly taken from UCF dataset [51] and not co-
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Figure 5. An example set of retrieval results from the database where RGB-only method fails to correctly localize but the method merging

RGB and semantic scores correctly localizes. Green rectangle indicates correct match, which increased to top rank after score update.

incide with the localization test set. We used stochastic

gradient descent optimizer with initial learning rate = 0.05.

Temperature parameter (τ ) was taken as 0.07 and batch size

(2N ) as 174.

With experiments, we compare the localization perfor-

mances of three approaches on the test set explained in Sec-

tion 3.1 (492 query and 2674 database images). First ap-

proach is the state-of-the-art visual localization with RGB

image features [12] without additional training, second ap-

proach is updating RGB-only method’s scores with pixel-

wise semantic similarity, and third is updating RGB-only

method’s scores with the similarity given by trainable se-

mantic feature extractor (with SimCLR [5] self-supervised

training scheme). We also conducted experiments with

models fine-tuned with labeled dataset after self-supervised

training. Those results will be presented in Section 4.1.

Performances of different approaches are compared with

Recall@N metric. According to this metric, a query im-

age is considered as correctly localized if the distance be-

tween the query and any retrieved database images in top-N

is smaller than the metric distance threshold. The thresh-

old was set as 5 meters in our experiments. Since the test

dataset is prepared so that a database image is taken at the

location of each query image, ideally all the queries can be

localized with 5-meter threshold. Results in Fig.7 show that

the semantic pose verification is useful for all cases and it

improves Recall@1 of RGB-only model by %2 when the

proposed trainable semantic feature extractor is trained in

a self-supervised fashion with SimCLR. In addition to Re-

call@N plots in Fig.7, we provide Recall@1 performances

with varying distance thresholds in Fig.8. We observe that

pose verification with trainable feature extractor continues

to outperform RGB-only approach and pose verification

with pixel-wise similarity approach for increasing distance

thresholds. Lastly, Fig.6 shows several examples where the

proposed semantic pose verification improved the results.

4.1. Ablation Study

Results given so far were obtained with self-supervised

contrastive learning without any fine-tuning, minimum crop

ratio was used as 0.6 and W was set to 0.25 as suggested

values. Now, we present our fine-tuning results and addi-

tional experiments to investigate how much our approach is

sensitive to crop ratio and W parameters.

Table 1 compares self-supervised learning results with

alternatives where the model is fine-tuned with a labeled

dataset which corresponds to 227 query semantic masks and

their actual corresponding semantic masks in the database.

Three different fine-tuning schemes were tested: last two

dense layers were retrained, two new dense layers were
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Figure 6. Example retrieval results in which utilizing semantic similarity scores at pose verification improved the localization performance

of the RGB-only model. Query images are in the first column, top-1 retrieval results are in the middle column, and updated top-1 retrieval

results with trainable semantic feature extractor are presented in the last column. Utilizing semantic similarity moved up the correct

candidates in ranking when semantic contents of query and database images are similar. Distinctive objects (e.g. traffic signs) help to

correctly localize query images with semantic information (third row of the figure). In some cases, localization was improved even the

semantic masks of the images contain labeling errors (last row of the figure).

Figure 7. Visual-based localization results of RGB-only method,

pose verification with pixel-wise similarity, and pose verification

with self-supervised learning (SimCLR).

added and trained, all layers of network were trained. None

of them improved self-supervised training and only fine-

tuning all layers kept a similar performance. It should be

noted that our labeled dataset is much smaller than the un-

labeled dataset (227 � 3484). Another reason for not im-

Figure 8. Localization results of three approaches where N=1 with

different distance thresholds.

proving with fine-tuning could be the fact that our main and

downstream tasks are the same, i.e. scoring similarity be-

tween two semantic masks. Whereas, successful examples

of fine-tuning in literature contains placing a classifier head

and training for a different downstream task like image clas-

sification or object detection.
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Table 1. Self-supervised model is compared with fine-tuned models. Results were obtained with semantic score weight W = 0.25.

Training Methods Recall@N
N=1 N=2 N=3 N=4 N=5

Only self-supervised training 0.900 0.927 0.939 0.947 0.953

Fine-tuning last two dense layers 0.890 0.927 0.937 0.943 0.945

Adding two new dense layers 0.892 0.927 0.935 0.947 0.947

Fine-tuning all layers 0.900 0.925 0.933 0.943 0.945

Table 2. Effect of the minimum crop ratio parameter in data aug-

mentation on localization performance.

Crop
Ratio

Recall@N
N=1 N=2 N=3 N=4 N=5

0.90 0.888 0.921 0.931 0.939 0.939

0.80 0.892 0.927 0.937 0.943 0.947

0.70 0.896 0.931 0.941 0.943 0.947

0.60 0.900 0.927 0.939 0.947 0.953

0.50 0.898 0.929 0.937 0.941 0.943

0.40 0.894 0.931 0.937 0.943 0.947

0.30 0.894 0.927 0.933 0.943 0.947

Table 3. Effect of the weight of semantic similarity score (W ) on

localization performance.

Semantic
Weight

Recall@N
N=1 N=2 N=3 N=4 N=5

0.10 0.884 0.925 0.935 0.945 0.951

0.15 0.884 0.929 0.937 0.943 0.951

0.20 0.892 0.929 0.937 0.949 0.953

0.25 0.900 0.927 0.939 0.947 0.953

0.30 0.902 0.929 0.937 0.945 0.953

0.35 0.902 0.931 0.937 0.943 0.949

0.40 0.900 0.929 0.937 0.945 0.949

0.45 0.888 0.925 0.939 0.945 0.947

0.50 0.882 0.923 0.939 0.945 0.947

We have also evaluated another self-supervised training

approach, SimSiam [6], however its performance was worse

than SimCLR. Thus, we excluded it from our ablation study.

Table 2 presents the effect of minimum crop ratio param-

eter used in data augmentation module. Values fluctuate in

a close range for N={2,..,5}, however, Recall@1 is high-

est for 0.6 and performance gradually drops as we increase

or decrease the minimum crop ratio. This is in accordance

with the finding in [41] that there is a reverse-U shaped re-

lationship between the performance and the mutual infor-

mation within augmented views. When crops are close to

each other (high mutual information, e.g. crop ratio=0.9)

the model does not benefit from them much. On the other

hand, for low crop ratios (low mutual information) model

can not learn well since views look quite different from each

other. Peak performance stays somewhere in between.

Lastly, Table 3 shows the results of the experiments with

different semantic weight coefficient (W ). We understand

that success is not specific to W = 0.25 and pose verifica-

tion works equally well for values between 0.25 and 0.40.

5. Conclusion

In this work, we localize perspective query images in a

geo-tagged database of panoramic images. We take advan-

tage of semantic segmentation masks due to their robustness

to long-term changes. Semantic similarity is measured via

pixel-wise similarity and trainable feature extractors. Ex-

perimental results showed that utilizing semantic similarity

at pose verification step contributed to visual localization

performance of a state-of-the-art method [12]. Gained im-

provement is due to the more stable semantic content and

does not depend on which localization method used to ob-

tain initial retrieval results. Thus, other RGB image based

visual localization methods can be improved in the same

manner.

We also conclude that pose verification with a CNN

model, which exploits self-supervised contrastive learn-

ing, performs better than using pixel-wise similarity be-

tween masks. This confirms the potential of self-supervised

models for representation learning when there is a limited

amount of labeled data.

There are works that search the query image within the

panoramic image instead of using gnomonic views (e.g. [16,

25]). Also, semantic segmentation masks can be obtained

for panoramic images of street views [26]. A future work

may be extending our effort to compute semantic similarity

directly from panoramic semantic masks.
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Sánchez, Patrick Pérez, and Cordelia Schmid. Aggregat-

ing local image descriptors into compact codes. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

34(9):1704–1716, 2011. 1, 2

[18] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020. 2, 5

[19] Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton.

Contrastive representation learning: A framework and re-

view. IEEE Access, 2020. 3

[20] David G Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, 2004. 2

[21] Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse,

Joel Hesch, Marc Pollefeys, Roland Siegwart, and Torsten

Sattler. Large-scale, real-time visual–inertial localization re-

visited. The International Journal of Robotics Research,

39(9):1061–1084, 2020. 1

[22] Arsalan Mousavian, Jana Košecká, and Jyh-Ming Lien. Se-
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