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ABSTRACT 

 

AN INVESTIGATION ON DATA-BASED FAULT DETECTION 

METHODS IN PETROLEUM REFINERIES 

 

The petroleum refineries are complex systems vital for energy and production 

sectors. During production, these complex systems might experience various faults, 

including fluid leaks in unit operations. The detection of leaks is important for a reliable, 

safe, and efficient operation. Among the possible leak detection mechanisms, data-based 

leak detection methods are promising in terms of low investment cost, less human 

intervention, ability to detect small leaks in advance and direct integration capability to 

distributed control systems. The aim of this study is to investigate data-based leak 

detection methods in a heat exchanger in a petroleum refinery. To that end, possible 

leaking problems in petroleum refineries are assessed, multiple leak cases from a real heat 

exchanger in a petroleum refinery are determined, literature studies are searched for 

appropriate data-based leak detection methods, applicability of a set of data-based leak 

detection methods is studied with a literature benchmark data set, and the real cases of 

heat exchanger leaks are studied with the determined leak detection methods. Data sets 

for multiple leak cases of a heat exchanger are obtained from a TUPRAS refinery. The 

benchmark data set is obtained from Tennessee Eastman Process (TEP). Discrete Wavelet 

Transform (DWT), Auto Encoder (AE), and Exponentially Weighted Moving Average 

(EWMA) are selected as the data-based leak detection methods. The selected data-based 

methods are first studied with TEP data set, and good fault detection capability is 

observed. Then, the real leak cases are studied. All three data-based methods are found 

successful in detecting the actual leak cases. For some of the cases, leaks are detected 

with data-based methods in advance of the operation engineers noticing the leak.  
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ÖZET 

 

PETROL RAFİNERİLERİNDE VERİ TABANLI HATA TESPİT 

METOTLARI ÜZERİNE BİR İNCELEME 

 

Petrol rafinerileri, enerji ve üretim sektörleri için hayati önem taşıyan karmaşık 

sistemlerdir. Bu karmaşık sistemler üretim sırasında, temel operasyonlardaki sıvı 

sızıntıları dahil olmak üzere, çeşitli arızalarla karşılaşabilir. Sızıntıların tespiti güvenilir, 

emniyetli ve verimli bir çalışma için önemlidir. Olası kaçak tespit mekanizmalarından 

veri tabanlı kaçak tespit yöntemleri, düşük yatırım maliyeti, daha az insan müdahalesi, 

küçük kaçakları önceden tespit edebilme ve dağıtık kontrol sistemlerine doğrudan 

entegrasyon kabiliyeti açısından umut vericidir. Bu çalışmanın amacı, bir petrol 

rafinerisindeki bir ısı eşanjöründe veriye dayalı kaçak tespit yöntemlerini araştırmaktır. 

Bu amaçla, petrol rafinerilerinde olası sızıntı problemleri değerlendirilmiş, bir petrol 

rafinerisindeki gerçek bir ısı eşanjöründen çoklu sızıntı durumları belirlenmiş, veriye 

dayalı uygun sızıntı tespit yöntemleri için literatür araştırması yapılmış, bir dizi veriye 

dayalı sızıntı tespit yönteminin uygulanabilirliği literatür referans veri seti ile çalışılmış 

ve belirlenen kaçak tespit yöntemleri ile gerçek ısı eşanjörü kaçak durumları 

incelenmiştir. Isı eşanjörünün çoklu kaçak durumları için veri setleri bir TÜPRAŞ 

rafinerisinden alınmıştır. Literatür referans veri seti Tennessee Eastman Process'ten 

(TEP) elde edilmiştir. Kesikli Dalgacık Dönüşümü (DWT), Otomatik Kodlayıcı (AE) ve 

Üstel Ağırlıklı Hareketli Ortalama (EWMA) yöntemleri, veri tabanlı kaçak tespit 

yöntemleri olarak seçilmiştir. Seçilen veriye dayalı yöntemler önce TEP veri seti ile 

çalışılmış ve iyi bir kaçak tespit kabiliyeti gözlemlenmiştir. Ardından gerçek sızıntı 

vakaları incelenmiştir. Her üç veriye dayalı yöntem de gerçek sızıntı vakalarını tespit 

etmede başarılı bulunmuştur. Bazı durumlarda sızıntılar, operasyon mühendisleri sızıntıyı 

fark etmeden önce veriye dayalı yöntemlerle tespit edilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Faults and Leaks in Petroleum Refineries 

Petroleum refineries have an important role in energy market. In petroleum 

refineries (also known as oil refineries), crude petroleum is processed and turned into 

valuable products. Some of the processed petroleum products, such as diesel and gasoline, 

are among the major fuel sources of world.  TUPRAS is one of the largest oil and gas 

refinery in Turkey. It continues its production in 4 different locations, as İzmir, Kırıkkale, 

Batman and İzmit. The petroleum refining is a complex process which require constant 

monitoring of process variables (Rosenfeld and Feng 2011). 

In recent years, the oil and gas industry has been experiencing difficulties in 

meeting the demands of saving energy, trying not to harm the environment, and using 

resources more efficiently in production process (Clavijo et al. 2019). Since the refining 

process is complex, many process faults are encountered during the production. The most 

common faults in the petroleum refining industry are divided into two groups: equipment 

failure and human failure. Shutdowns caused by equipment failure cause great losses. 

Early detection of equipment failures and causes have great importance. Equipment such 

as pumps, compressors and rotating equipment can quickly fail due to wear, which can 

deteriorate product quality (Ohtani 2020). 

It is important to detect faults for a reliable and safe production. Fault can be 

defined as non-admitted change of a feature of the system from appropriate and ordinary 

conditions (Miljković 2011). Commonly encountered faults in oil and gas industry 

include turbine trips, heat exchanger contamination, and leaks. Leaks are important 

because of the economic, health, environmental and structural problems they cause. Most 

leaks are found to be sourced in connectors, valves, compressors and heat exchangers by 

Environmental protection Agency (EPA) (Leak Detection and Repair, 2021). 

Oil and gas industry consists of many complex units and pipelines. If leaks occur 

in visible points such as pipelines, they can be easily noticed. However, detecting leaks 

in invisible point such as equipment will take time and cause product losses. Therefore, 
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it is important to detect leaks in a timely manner. Leaks that have negative effects on the 

environment, human health and economy should be determined as quickly as possible. 

For this reason, interest in leak detection methods and applications is increasing day by 

day. 

The records kept in the USA are the main sources to investigate the reason of leaks 

on all pipeline systems.  The percentages of causes of leaks that have occurred in the last 

20 years are shown in Figure 1.1. By looking at the chart, it can be said that excavation 

damages are major causes of leaks, followed by material failures and corrosion (Bolotina 

et al. 2017). 

 

 

 

Figure 1.1. Causes of leaks 

(Source: Bolotina et al., 2017) 

 

 

It is also important to examine the damage caused by the leaks. The economic and 

health aspects of these leaks are quite painful. The best example of this is the results of 

the leak that occurred in the BP Alaska pipeline in March 2006. 4,800 barrels of oil were 

recorded as lost within 5 days. In addition, Prudhoe Bay was phased out and a fine of $20 

million was also imposed (Penner et al., n.d.). To give another example, approximately 

600,700 tons Volatile Organic Compound leakage (VOC) in a year is leaked from valves, 

compressors and connection point as reported by EPA (Leak Detection and Repair, 2021).  

Another event in the USA (in 1999) is undetected the chemical leaking into the 

groundwater for years. This situation lasted for a long time, as no leak monitoring method 

was implemented. It was noticed at a much later stage with the samples taken from the 

lake by the US Geological Survey. This situation greatly harmed the aquatic organisms 
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and contaminated the soil and the groundwater so leaks have to detect in a timely manner 

(Rosenfeld and Feng 2011). 

The leaks can occur at visible points on pipelines or in places that can not be seen 

with the naked eye, such as underground pipelines. Considering a petroleum refinery, 

there are many pipeline systems through which products are transferred, and the leakage 

might occur due to mechanical and material related causes, such as pipe corrosion. Since 

the oil and gas industry is a high-risk industry, leaks should be constantly monitored by 

the operators and extra monitoring should be provided by detectors.  According to 

investigations in the literature and at the TUPRAS refinery, leaks occurring at visible 

points such as pipes, flanges and valves are more common. They are detectable and easy 

to respond to the failure. Heat exchangers are in the first place in terms of leakages 

experienced in equipment. It has been noted in the literature that a leak occurs between 

the first 3-5 years of their life. It is very difficult to detect the leaks in these areas and 

their costs are quite high (Clover et al. 2010). Therefore, it is important to study methods 

to monitor leaks in petroleum refineries. 

 Heat Exchanger Types 

Since heat exchangers are major points of leaks, a brief overview of the heat 

exchangers will be given in this section. Heat exchanger is the process equipment used 

for transferring heat between two fluids. It is one of the main process units in many 

industries such as oil and gas refinery, steam power station, plants of chemical processing, 

etc. (Zohuri 2016). There are several types of heat exchangers. These are compablock, 

shell and tube, plate, fluidized bed and storage type heat exchangers (Zohuri 2016; Shah 

1983). In oil and gas industry, shell and tube heat exchangers are the most commonly 

used heat exchanger types because of their robust geometry and easy repair. These type 

of heat exchanger are classified into four groups within themselves as u-tube, fixed tube, 

floating head and kettle type heat exchangers (Kundnaney and Kushwaha 2015). A brief 

explanation of these types is given below.  

Figure 1.2 shows a u-tube heat exchanger. This type of heat exchangers generally 

is not preferred in oil and gas industry because it is difficult to clean in case of any 

leakage.  
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Figure 1.2. U-tube Heat Exchanger  

(Source: Kundnaney & Kushwaha, 2015) 

 

 

Figure 1.3 shows a fixed tube heat exchanger.  This is the type of heat exchanger 

that is mostly preferred in refineries due to its ease of operation, low cost, and easy repair 

capability.  

 

 

 

Figure 1.3. Fixed Tube Heat Exchanger 

(Source: Kundnaney & Kushwaha, 2015) 

 

 

Figure 1.4 shows a floating head heat exchanger. Since they have the floating head 

that improves the heat transfer between fluids, floating head is known as an efficient heat 

exchanger type for oil and gas industry. In contrast to u-tube heat exchangers, floating 

head heat exchangers are easier to clean. 
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Figure 1.4. Floating Head heat Exchanger 

(Source: Kundnaney & Kushwaha, 2015) 

 

 

Figure 1.5 shows a kettle type heat exchanger. It is a special heat exchanger type 

used in cases where high pressure gases are present. Shell part is suitable to encounter 

expansion of gas in the system.  

 

 

 

Figure 1.5. Kettle Type Heat Exchanger 

(Source: Kundnaney & Kushwaha, 2015) 

 

 

Now, heat exchangers, the equipment where most leaks in petroleum refineries 

occur, are introduced. We can continue with the leak detection methods. 

 Leak Detection Methods 

The main purposes of leak detection are indication of leak and improvement of 

system reliability. These methods are mainly classified into three groups as hardware, 
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software and biological methods, as schematically shown in Figure 1.6. The requirement 

of external sensor installations is essential for detection of leaks in pipeline with 

hardware-based methods. Biological methods are based on the senses of humans or 

animals. Software-based methods are data-based methods. Software-based methods are 

used online, or they utilize historical data to detect leaks. While sensors and devices are 

important for the hardware based methods, data based and computational approaches are 

important for software based methods (Mujtaba et al. 2020). 

 

 

 

Figure 1.6. Classification of methods 

(Source: Mujtaba et al., 2020) 

 

 

If these methods are examined in more detail, in some sources, methods are 

divided into three groups as direct, indirect and external methods, as shown in Figure 1.7  

(Zaman et al. 2020). While hardware-based methods are classified as a direct method, 

software methods are classified as an indirect method. Software-based methods are 

further classified as data-based and model-based methods. Data-based methods are 

separated based on data type, data source and technique. Based on the data type, there are 

supervised and unsupervised methods (Tutkan, Ganiz, and Akyokuş 2016).  While 

supervised technique is based on the principle of training the machine with the labeled 

data, unsupervised technique uses unlabeled data. In addition, data based methods are 

classifed acording to the data source such as pressure, flow, demand and flow-

pressure/demand pressure. Depending on the tehnique, data-based methods are separated 

into classification, prediction classification, statistical and signal processing groups.  
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Figure 1.7. Leak Detection Methods 

(Source: Zaman et al., 2020) 

 

 

In the next sections, we will briefly overview the leak detection methods.  

 Hardware Based Leak Detection 

Some additional and special sensors are used to detect leaks in the class of 

hardware-based leak detection techniques. These sensors consist of acoustic detectors, 

fiber optic sensors, ultrasonic technologies, infrared thermograph, and radiotracers. 

1.3.1.1. Acoustic Leak Detection 

This method uses acoustic detectors to detect leak and leak localization. A basic 

representation of the set-up is shown in Figure 1.8. Acoustic sensors are placed along the 

pipeline. These sensors include auscultation sticks, aqua phones, and ground 

microphones. These devices give the acoustic map of the system (Odusina 2008).  
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Figure 1.8. Acoustic leak detection set up (a) external (b) in-pipe measurement  

(Source: Khulief et al., 2012) 

 

1.3.1.2. Fiber Optic Sensing Leak Detection 

This technique gives an information about leak based on the measurements of 

fiber optic probes. Figure 1.9 shows the basic set-up and representative result obtained 

upon a leak (Nikles et al. 2004). Temperature change gives an information about 

occurrence of a leak. Since these probes analyze the temperature change of leakage area, 

they have to be carefully placed to touch both pipe and soil. 

 

 

 

Figure 1.9. Fiber Optic Sensing Leak Detection 

(Source: Nikles et al., 2004) 
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1.3.1.3. Infrared Thermography 

Infrared Thermography (IT) method is useful for the pipeline leakage. Infrared 

cameras are important to notice sudden temperature change caused by leak. Experimental 

set up of IT is shown in Figure 1.10. Any anomaly can be detected with the color based 

on the warm and cool environment. This method is user friendly and has a quick response 

time (Adegboye, Fung, and Karnik 2019).  

 

 

 

Figure 1.10. Set up of Infrared Thermography method 

(Source: Adegboye et al., 2019) 

 

1.3.1.4. Radiotracer 

Radiotracer detector can be used for open and closed systems. Also, it is preferred 

to detect leaks both in underground pipeline network and shell and tube type heat 

exchangers. There are two types of detectors: injection detector known as inlet detector 

and leak detector known as output detector. These detectors are located at tube input and 

shell output, respectively, as shown in Figure 1.11 (Pipelines and Radiotracers 2009). 

Injection pulse is monitored using injection detector. If any leakage occurs in the heat 

exchanger, response peaks are observed from leak detectors, 
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Figure 1.11. Location of Detectors 

(Source: Pipelines&Radiotracers, 2009) 

 

 

Table 1.1 below shows a summary of hardware-based leak detection methods. 

Each method has its strengths and weaknesses according to its working principles. In 

addition, these methods are costly because they require new hardware. This narrows their 

usage areas even though they have high accuracy. 

 

 

Table 1.1. Summary of Hardware Based Methods 

(Source: Adegboye et al., 2019 & Adedeji et al., 2017) 

Methods Cost Leak 

Localization 

Principle Strengths Weakness 

Acoustic High Yes Collect the 

signal from 

where leak 

occur 

Easy to install 

and provides 

early detection 

Affected by 

environment

al conditions 

Insufficient 

for small 

leaks 

Fiber Optic High Yes Takes 

advantage of 

temperature 

changes 

caused by 

leak 

Can act as 

sensor and 

transmission 

medium 

High cost 

and low 

durability 

 (cont. on the next page) 
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Table 1.1 (cont.) 

Methods Cost Leak 

Localization 

Principle Strengths Weakness 

Infrared 

Thermography 

High Yes Uses infrared 

imaging 

techniques to 

detect 

temperature 

changes 

High power to 

visualize 

images, easy 

to use 

Not suitable 

for small 

leak 

detection 

Radiotracer High No Use the 

impulse and 

response 

peaks 

Sensitive for 

leak, suitable 

for open and 

closed systems 

High cost 

 

 Biological Based Leak Detection 

Professional people and animals are required for visual or biological methods. On 

the pipeline, occurrence of any leaks can be detected by an experienced person. This 

detection can be supplied with visual and/or olfactive observation of leakage point. In 

addition, noise and vibration caused by leakage can give information about the presence 

of leak and leak location. Trained animals such as dogs and pigs also play an active role 

in leak detection. Strong sense of smell of dogs can sometimes give better results than 

human. Although this is the case, these trained dogs could be used for constant monitoring 

(Adegboye, Fung, and Karnik 2019). 

 Software Based Leak Detection 

Software base leak detection methods are investigated into two groups as model-

based and data-based methods. In software-based methods, operational parameters such 

as pressure, flow rate, temperature, density, volume are used to detect anomalies. 
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1.3.3.1. Model Based Techniques 

1.3.3.1.1. Mass-Volume Balance 

The principle of this method is mass conservation. This method is generally 

applied for pipeline leakage cases. Mass inflow and outflow values must be in balance in 

the absence of leaks. Any differences in flow values give an information about anomaly 

in the pipe. The mass balance is given in Equation 1 (Adegboye, Fung, and Karnik 2019). 

 

�̇�𝑙(𝑡) − �̇�𝑜(𝑡) =
𝑑𝑀𝐿

𝑑𝑡
                                          Eqn 1. 

 

where 𝑡 is time, and �̇�𝑖(𝑡) and �̇�𝑜(𝑡)values show inlet and outlet mass flow rates, 

respectively, and 𝑀𝐿 is the mass stored in the pipeline length L. Along the pipeline, stored 

mass amount changes and this changing can be represented with Equation 2. 

 

𝑑𝑀𝐿

𝑑𝑡
=

𝑑

𝑑𝑡
∫ 𝜌(𝑥)𝐴(𝑥)𝑑𝑥

𝐿

0
= ∫

𝑑

𝑑𝑡
< 𝜌(𝑥)𝐴(𝑥) > 𝑑𝑥

𝐿

0
            Eqn 2. 

 

where 𝐴 is cross-sectional area of the pipe and 𝜌 is the density of the fluid. If 𝜌 

and 𝐴 are assumed constant in Equation 2, 
𝑑𝑀𝐿

𝑑𝑡
 will be zero. In that case, we obtain: 

 

�̇�𝑖(𝑡) − �̇�𝑜(𝑡) = 0                                         Eqn 3. 

 

Also, according to assumption that 𝜌 is constant, we obtain as Equation 4 

 

�̇�𝑖(𝑡) − �̇�𝑜(𝑡) = 0                                         Eqn 4. 

 

where �̇�𝑖(𝑡) and �̇�𝑜(𝑡) are inlet and outlet volumetric flowrates, respectively.  

Any imbalances in Equation 5 represented as �̇�, gives an information about 

existence of leak considering the threshold, �̇�𝑡ℎ. 
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�̇�(𝑡) = �̇�𝑙(𝑡) − �̇�𝑜(𝑡)                                          Eqn 5.  

�̇� = {
< �̇�𝑡ℎ  𝑖𝑛 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑙𝑒𝑎𝑘

> �̇�𝑡ℎ   𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑘
 

 

The main disadvantage of this method is inability to determine leak location. 

Additionally, this method is affected by random disturbance and pipeline dynamics. 

1.3.3.1.2. Negative Pressure Wave 

Basic representation of the setup for negative pressure wave method is  shown in 

Figure 1.12 (Adegboye, Fung, and Karnik 2019). Occurrence of leak causes pressure drop 

and reduction of flow rate in pipe. These changes create a negative pressure wave (NPW) 

at the leakage point and this wave spread towards the ends of the pipe. Arrival time of the 

wave to a detector gives an information about location of leak (Sheltami, Bala, and 

Shakshuki 2016). 

 

 

Figure 1.12. NPW representation 

(Source: Sheltami et al., 2016) 

 

 

The arrival time of the wave is calculated by Equations 6, Equations 7, Equations 

8, and Equations 9. In these equations, 𝑡𝑜 is the leakage time, 𝑡1 is the wave arrival time 

to upstream sensor, 𝑡2 is the wave arrival time to the downstream sensor, 𝑉 is liquid 
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velocity, 𝑋 is the distance between leak point and upstream sensor, 𝑎𝑥 is propagation 

velocity of NPW, 𝜌 is liquid density, 𝐾 is liquid bulk modulus, 𝐸 is  elasticity modulus, 

𝐶 is correction factor due to constraints of pipeline, 𝐷 is the diameter of pipeline, and 𝑒 

is the thickness of pipeline.  

 

𝑡1 − 𝑡𝑜 = ∫
1

𝑎𝑥−𝑉
𝑑𝑋

𝑋

0
                                               Eqn 6. 

 

𝑡2 − 𝑡𝑜 = ∫
1

𝑎𝑥+𝑉
𝑑𝑋

𝐿

𝑋
                                               Eqn 7. 

 

∆𝑡 =
𝑋

𝑎𝑥−𝑉
−

𝐿−𝑋

𝑎𝑥+𝑉
                                                  Eqn 8. 

 

𝑎𝑥 = √
𝐾/𝜌

1+(𝐾/𝐸)(𝐷/𝑒)𝐶
                                              Eqn 9. 

 

1.3.3.1.3. Pressure Point Analysis 

The pressure point analysis (PPA) takes into consideration pressure values taken 

from certain points on the pipeline. If the measured value falls below the threshold values 

which are determined according to the average of the previous measurements (Adedeji et 

al. 2017) or the trend of the old measurements (Adegboye, Fung, and Karnik 2019), it 

indicates the leakage that has occurred on the pipeline. 

This method is based on the principle of pressure drop that will occur in the event 

of a leak. It is one of the easy and inexpensive methods to apply. It is used to detect the 

leak, but it is not appropriate for detecting the leak location (Adegboye, Fung, and Karnik 

2019). 

1.3.3.2. Data Based Techniques 

The main source of data-based methods is data acquired from sensors. These 

methods can be applied by using online or historical data. The complexity of the pipeline 
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or process does not affect the applicability of these methods. Generally, variables such as 

flow, pressure, temperature, vibration are used. Among the possible leak detection 

mechanisms, data-based leak detection methods are promising in terms of low investment 

cost, less human intervention, ability to detect small leaks in advance and direct 

integration capability to distributed control systems. As stated in the Introduction section, 

data-based methods are examined in three groups according to data type, data source and 

technique (Wu and Liu 2017), (Zaman et al. 2020). When methods are investigated 

according to the technique, the methods according to the classification are support vector 

machine, Bayesian network, rule-based and neural network methods. Statistical methods 

include principal component analysis (PCA), independent component analysis, 

exponentially weighted moving average (EWMA). Signal processing methods include 

fast Fourier transform (FFT) (signal based), discrete or continuous wavelet transform 

(DWT or CWT) (wavelet based) (Ahmed, Naser Mahmood, and Hu 2016). Autoencoder 

(AE) is a kind of artificial neural network (Mirsky et al. 2018). Considering the studies 

in the literature, DWT, AE, PCA and EWMA methods are used in this study and the 

detailed explanations of the methods are given in methods section (Perera, Rajapakse, 

and Jayasinghe 2007), (Chen et al. 2018), (Ye, Borror, and Zhang 2002). 

 Aim of Thesis 

The aim of this thesis is to investigate data-based leak detection methods on a real 

unit operation in a petroleum refinery. The real leak cases are extracted from a heat 

exchanger in the TUPRAS Izmit Refinery. The data-based methods extracted from 

literature are first validated on a literature benchmark data set, and then applied on the 

real leak cases.  

 Thesis Organization 

This thesis comprises of six chapters. In chapter 1, brief information is given about 

the leaks in refinery and leak detection methods. Also, types of heat exchangers are 

explained. In Chapter 2, studies using data-based anomaly detection methods in the 

literature and leak detection in heat exchangers are included. Detailed information about 

DWT, EWMA and AE is given in Chapter 3. In Chapter 4, the benchmark dataset and 
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chemical process are briefly explained, and the results of the data-based methods applied 

on benchmark dataset are provided. In Chapter 5, TUPRAS cases are explained, the 

methods are applied on each case and the obtained results are presented. In chapter 6, the 

obtained results are briefly summarized, and future work and recommendations are given. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1. Literature Search Criteria 

In the literature, there are many methods for detecting leaks or anomalies that may 

occur in heat exchangers. Most of these include additional sensors placed in the system 

or offline detection mechanisms. In order to focus on the aim of applying data-based 

methods to detect leaks in heat exchangers, the following criteria have been followed in 

the article selection from the literature: 

• Leaks occur in heat exchanger. 

• Studies are carried out online. 

• Only real cases are studied which includes either operational industrial equipment 

or pilot scale equipment.  

• Only data-based methods are studied. 

• Studies in which only physics-based models (i.e., first principle-based models) 

are utilized in leak detection are excluded. 

When the literature is searched according to the criteria, only a few studies are 

found.  In the next section, the studies of Panday et al., Guillen et al., and Habibi et al. are 

summarized briefly (Panday et al. 2021), (Guillen et al. 2020), (Habbi, Kinnaert, and 

Zelmat 2009). 

2.2. Literature Studies Satisfying the Criteria 

Panday et al.  carried out studies aimed to detect heat exchanger leaks in a with 

300 MW coal-fired power plant. The purpose of their work was to reduce the number of 

unit shutdowns because of leaks in the tubes of heat exchanger. For this purpose, they 

carried out detection studies by applying data-based methods with the time-series data 

they had taken collected from the process (Panday et al. 2021). 
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The boiler part of the plant where data collected is shown in the Figure 2.1. Mass 

balance was made around the steam drum (shown in the form of a balloon in Figure 2.1) 

with collected the time-series data. The most important parameter for leakage was 

determined as the ratio of feed water mass flow rate to steam mass flow rate. Here, �̇�𝑠is 

steam mass flowrate, �̇�𝑓 is feed water flowrate, �̇�𝑤 is water mass flowrate, �̇�𝑏𝑑 is 

blowdown rate, �̇�𝑠𝑏 is sootblowing rate, �̇�𝑖𝑛  is the heat obtained from the furnace and is 

used to heat the water in the boiler walls. �̇�𝑤 �̇�𝑠⁄  ratio was calculated and threshold was 

determined based on this ratio. 

 

 

 

Figure 2.1. Basic representation of boiler part 

(Source: Panday et al., 2021) 

 

 

In this study, three different sets were examined as set A, set B, and set C. Each 

set had different load conditions (i.e., electrical energy output requirement conditions). 

The loads were calculated according to the general mass balance of the system. In Figure 

2.2, set A shown with blue diamonds refers to the condition where load is changed 

between 50 and 99% of the full load, set B shown with green circles refers to the condition 

where load is changed between 48 and 100% of the full load conditions and set C shown 

with orange triangles to the condition where load is changed between 57 and 93% of the 

full load case. Here, set A and set B belong to fault free data while set C belongs to faulty 

data. The deviation of each set from the regression line is also shown in the Figure 2.2. 
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These sets deviate from the regression line at low load conditions since the power 

plant was designed for load conditions that require mass flowrates above 1.5 million 

lbm/hr. The slope of the graph is equal to the ratio ṁw/ṁs. When the slopes were 

compared for each set, the slopes of set A and set B were equal and a 1% larger slope was 

observed with set C. The authors interpreted this difference as the indication of leak.  

 

 

 

Figure 2.2. Comparison of �̇�𝑠 and  �̇�𝑓 

(Source: Panday et al., 2021) 

 

 

Here, an optimal exponential moving average (EMA) method was proposed by 

Panday et al. The EMA equation is given in Equation 10 below: 

 

�̂�(𝑘 + 1) = �̂�(𝑘) + 𝛼(𝑦(𝑘) − �̂�(𝑘))                         Eqn 10. 

 

where, 𝑦(𝑘) is the present measurement, �̂�(𝑘)is the previously computed value, 

�̂�(𝑘 + 1) is the exponentially weighted mean between the 𝑦(𝑘) and �̂�(𝑘), and 𝛼 is the 

smoothening constant (smaller 𝛼 ignores recent data, and larger 𝛼 ignores past data). In 

general, 𝛼 is set to a value ranging between 0.05 and 0.20 in the literature. Panday et al. 

instead derived the optimal value of 𝛼 by equating the derivative of mean squared error 

with respect to 𝛼 to zero. This equation then becomes the Kalman filter, which is suitable 
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for minimizing the mean squared difference between the current value and the measured 

value. 

In this study, Kalman filter (optimal EMA) and simple EMA filter were compared 

as shown in Figure 2.3. In the graph, the black line shows the Kalman based filter result, 

the purple line shows the EMA result, the gray line shows the actual measurement values, 

and the green dashed line represents the upper control limit (UCL) which was determined 

by using the nominal plant conditions. When the results are examined, the authors 

concluded that the optimal EMA (Kalman) filter responds quicker than simple EMA filter 

(8 hours in advance of the simple EMA filter). 

 

 

 

Figure 2.3. Result of proposed method and Kalman filter 

(Source: Panday et al., 2021) 

 

 

In another study, Guillen et al. created a model of fan coil units (FCU) in an 

operational nuclear power plant. The FCU unit consists of a heat exchanger and a fan, as 

shown in Figure 2.4. The nitrogen is cooled down by river water in the heat exchanger 

and fan moves the cooled nitrogen. The nitrogen is then used to cool down various parts 

of nuclear reactor. There were four FCUs in the nuclear power plant under investigation. 

FCUs are known to cause problems due to equipment failures. To detect failures, a 

thermal model of the FCU was created using Reactor Excursion and Leak Analysis 

Program (RELAP) to predict the normal operating temperatures of the fluids in FCU. For 
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RELAP to work, the inlet nitrogen temperatures collected by sensors were used. 

However, these sensors fail frequently. For that reason, the authors suggested using a long 

short-term memory (LSTM) method to predict inlet nitrogen temperatures using various 

sensor tags in the nuclear power plant. LSTM is an artificial neural network technique 

commonly used in machine learning applications. The anomaly in FCUs were determined 

by comparing the actual nitrogen outlet temperatures with those predicted by RELAP 

only (using measured inlet nitrogen temperature) and RELAP supported with LSTM 

(Guillen et al., 2020).  

 

 

Figure 2.4. Representation of FCU (In energy balance, �̇�𝑤 is mass flowrate 

                       of coolant, 𝑐𝑝 is coolant specific heat, 𝑇𝑤,𝑖𝑛𝑙𝑒𝑡 is inlet temperature of 

                       coolant, 𝑇𝑤,𝑜𝑢𝑡𝑙𝑒𝑡 is outlet temperature of coolant, and 𝑞𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is the is the 

                       heat removed by the river water from nitrogen.) (Source: Guillen et 

                       al., 2020) 

 

 

A novel contribution of the study was the implementation of the LSTM. The 

LSTM method was fed with a dataset consisting of 33 different variables. Each variable 

affects the FCU outlet temperatures that are being tried to predict. The data set was 

divided into three groups as training, validation, and test set. In order to decide the epoch 

number, the trend of the validation and training data sets and the loss function values 

according to the epoch number were examined. The results are shown in Figure 2.5. As 

the epoch number increases, the loss function decreases, and a good learning is achieved 

with the LSTM method. Authors determined the epoch number as 100. 
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Figure 2.5. Loss function of LSTM 

(Source: Guillen et al., 2020) 

 

 

Comparison of measured and predicted outlet nitrogen temperatures is shown in 

Figure 2.6 for each FCUs. In the absence of any anomalies, the measured and predicted 

values are quite similar, as seen in FCU B and FCU D. However, on May 11, an anomaly 

occurred in FCU A and FCU C. As seen, both RELAP predictions whether using 

measured inlet nitrogen temperature and LSTM predicted inlet nitrogen temperature can 

identify the anomaly. Moreover, RELAP prediction with LSTM predicted inlet nitrogen 

temperature is more closely matching the measured outlet temperature, thus enabling a 

better representation of the actual operation and equipment failure detection. 
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Figure 2.6. Comparison of measured and predicted outlet temperature values for each   

                   FCU (Source: Guillen et al., 2020  

 

                                 p  

In another study, a fuzzy logic model-based leak detection method was developed 

for a pilot heat exchanger by Habbi et al. The authors discussed that first-principle based 

models are very complex, difficult to drive and accurate values of heat transfer 

coefficients are generally unknown. The pilot heat exchanger is a co-current gas-liquid 

heat exchanger where the water is heated using hot air that shown in Figure 2.7. The 

system includes electric heater E, air recycling valve Vr, and air evacuation valve Ve, and 

variable speed pump SP. The leaks were simulated using a bypass valve. A Takegi-

Sugeno (TS) fuzzy model-based approach was used in leak detection algorithm. This 

model aims to develop IF-THEN rules for description of the system behavior. The 

relevant parameters are selected to be P, Vr, Ve, T16, and T34 (see Equation 11) for 

definitions of variables) based on the recommendation and process knowledge of pilot 

equipment operator. To develop the fuzzy model, Q and Qa were held constant, P, Vr and 

Ve (assumed to be dependent on Vr) were changed in a wide range and the resulting T34 

were collected without any leaks introduced in the heat exchanger (i.e., leak-free 

operation). A mean square error metric was considered to describe the discrepancies 

between model and actual measurements. The obtained TS fuzzy model for a rule i is 
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conceptually shown in Equation 11 where ai and bi are the rule-consequent parameters.  

 

𝐼𝐹 𝑃(𝑘) 𝑖𝑠 𝐴𝑖
1 𝑎𝑛𝑑 𝑉𝑟(𝑘) 𝑖𝑠 𝐴𝑖

2 𝑎𝑛𝑑 𝑇16(𝑘) 𝑖𝑠 𝐴𝑖
3 𝑎𝑛𝑑 𝑇34(𝑘) 𝑖𝑠 𝐴𝑖

4           

𝑇𝐻𝐸𝑁 𝑇34(𝑘 + 1) = 𝑏𝑖 + 𝑎𝑖
1𝑃(𝑘) + 𝑎𝑖

2𝑉𝑟(𝑘) + 𝑎𝑖
3𝑇16(𝑘) + 𝑎𝑖

4𝑇34(𝑘) 

Eqn 11. 

 

 

Figure 2.7. Pilot heat exchanger 

(Source: Habbi et al., 2009) 

 

 

The developed fuzzy model was found to perform well to describe the system 

behavior, as shown in Figure 2.8. 

 

 

 

Figure 2.8.Fuzzy model performance (red: process value, blue: fuzzy model)  

(Source: Habbi et al., 2009) 
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The leak detection was determined from the calculation of the residual of T34 as 

given in Equation 12 as: 

 

𝑟(𝑘) = 𝑇34(𝑘) − 𝑇34̂(𝑘)                                             Eqn 12. 

 

where T34̂ is the estimated value, T34 is the actual measured value and r is the 

residual at data point k. Threshold values were used to identify residuals as leaks.  

The developed fuzzy model was then tested using leaks with magnitude of 25%, 

30% and 40%. The residuals between the actual process values and the estimated data 

were examined, as shown in Figure 2.9. Figure 2.9 (a) shows the results for the fault-free 

situation, while Figure 2.9 (b), Figure 2.9 (c) and Figure 2.9 (d) show the results obtained 

in the presence of leaks with the magnitudes of 25, 30 40%, respectively. In the fault-free 

condition, the residual values are almost zero. Deviations in residual values were 

successfully captured by the fuzzy model for all leak values. The time delays for each 

size of leakage were 40s, 12s and 0s for leakages with 25, 30 and 40% magnitude, 

respectively. As the leak magnitude increased, detection became easier. 

 

 

 

Figure 2.9. Residual behavior (a) fault-free, (b) 25% leakage, (c) 30% leakage, (d) 40%    

                   leakage  
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2.3. Lessons Learned from the Literature 

• There are only a few studies investigating data-based leak detection in heat 

exchangers.  

• There are various data analysis techniques to detect leaks in the literature sources.  

• Data-based models are relatively easier to implement compared to physics-based 

models.  

• Consultations with operation engineers are very valuable and necessary during the 

leak detection mechanism construction, and identification of relevant parameters 

in the system.  

• For evaluating the performance of leak detection mechanism, error metrics, such 

as mean square error, should be used. 

• Threshold values are useful to differentiate between leaks and random noises.  

• It is easier to detect large leaks compared to small or slowly developing leaks. 
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CHAPTER 3 

 

MATERIALS AND METHODS 

3.1. Real Industry Case 

3.1.1. Process Description 

The leak case studied throughout the project is in the Integrated Unicracking 

Processing Unit (IUPU) at İzmit TUPRAS Refinery. The unit feed consists of a 

combination of Coker Naphtha (CN), Heavy Coker Gas Oil (HCGO), Light Coker Gas 

Oil (LCGO), Heavy Vacuum Gas Oil (HVGO), Light Vacuum Gas Oil (LVGO) supplied 

from different units throughout the refinery. IUPU unit is used for producing kerosene 

and diesel in accordance with certain specifications to meet the restrictions on the sulfur 

content in fuel oil due to its environmental effects.  

The unit is designed in an integrated manner to collect the products from 

Hydrocracker (HCU), Naphtha Hydro-Treater (NHT) and Diesel Hydro-Treater (DHT) 

reactor sections in a single fractionator column and separate them into final products. The 

major parts of the unit consist of reactor and separator parts. Heat exchangers and furnace 

play a role for the heating of the feed or intermediate products in the unit.  

There are three reactors in reactor part, a diolefin reactor and two hydrotreating 

reactors. Coker naphtha is fed into the diolefin reactor. The diolefin reactor is a single bed 

reactor in which dienes are converted mainly to mono-olefins. The LVGO and LCGO 

feeds and the heated recycle gas are combined with the naphtha which comes from the 

diolefin reactor, and combined feed is sent to the hydrotreating reactor. In this reactor, 

sulfur and nitrogen are removed from the feed. Since the reaction in the reactors is 

exothermic, outlet stream temperature of reactor will be higher than that at the rector inlet. 

Outlet stream is sent to a heat exchanger to reduce its temperature. Cooled stream is sent 

to the hot separators to separate the by-products from the desired main product. The 

distillate hot separator stream coming out of the separator is sent to the heat exchangers 

to be cooled. Figure 3.1 is basic representation of small part of the process. The heat 
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exchanger where the leakage occurs is the first heat exchanger to which the recycle gas 

and light hydrocarbon (HC) mixture stream is sent. This heat exchanger is circled in 

Figure 2.1.  After the reactor effluent is cooled, it is sent to the separator where the heavy 

hydrocarbons are separated from recycle gas and light hydrocarbons. The top output 

stream of the separator (1) contains recycle gas and light hydrocarbons. It passes through 

the tube sections of the heat exchanger (with leakage). Liquid hydrocarbon from distillate 

flash drum passes through the shell part and is used to cool the flow in the tubes. 

 

 

 

Figure 3.1. The scheme of the unit where the heat exchanger with the leak is located  

                                                                                                                                                   

3.1.2. Problem Definition 

As mentioned above, it is important to detect leaks in closed systems, such as a 

refinery, because the leaks are generally difficult to detect and might cause high harm to 

the environment and human health. At the beginning of the project, cooperation was made 

with many units in the refinery such as process and field engineers from different units, 

such as instrumentation and maintenance unit, and technical safety and environment unit 

at the İzmit TUPRAS Refinery. Upon these collaborations, it was noted that leaks on the 

pipelines, valves, connection points and heat exchangers occurred frequently. Leaks were 
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classified as visible and invisible leaks according to where it occurs, and as gas and liquid 

leaks based on fluid type. Although the leakage size might be small, it is much easier to 

detect visible leaks than invisible leaks. When liquid leaks occur, they can be observed 

clearly, and actions can be taken in a short time. Gas leaks are difficult to detect and 

therefore there are gas detectors in the field to detect leaks. If a leak in a heat exchanger 

is not noticed in time, it causes a sudden and dangerous shut down of the process unit. 

Sudden interruption of the unit feed causes coking on the catalyst. At the same time, the 

sudden increase in temperature during startup of the unit also causes approximately 3-4 

month decrease in catalyst lifespan. When the long-term effect is examined, the catalyst 

replacement means an extra 10-day downtime for the unit. Also, the downtime of a 

particular process unit affects other process units in the refinery. 

The heat exchanger where leakage occurs is one of the shell and tube heat 

exchangers in the unit. While light hydrocarbon and recycle gas pass through the tube 

part of the heat exchanger, liquid hydrocarbon passes through the shell part. The liquid 

hydrocarbon passing through the shell contains H2S which is a corrosive chemical. H2S 

potentially causes formation of holes on the surface of the tubes and leads to 

contamination in the heat exchanger. Since the pressure of the fluid passing through the 

tube is high, leakage occurs from the tube side to the shell side. The increase in the 

pressure of separator (2) is generally accepted as a sign of leakage in the heat exchanger. 

The valve opening values of the valve that controls the separator (2) pressure are shown 

in Figure 3.2. The trend in normal operational interval and leakage is shown in the figure. 

As a leak occurs from the tube to the shell, an increase is observed in the valve opening.  

 

 

 

Figure 3.2. Valve opening values for real case 
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Numerical values are not real process values due to proprietary nature of the 

refinery process, instead they are symbolized in a way that does not change the trend. 

3.1.3. Data Preparation 

As mentioned above, the presence of leakage was noticed by the pressure increase 

in the separator (2). The valve opening (%) that controls the separator (2) pressure has 

increased during this time. Because of the complexity of refinery processes, we 

communicated with operation engineers throughout the study so that we could use the 

relevant variables for this study. There are seven variables that we can use in this case 

such as inlet and outlet temperatures for the tube and shell sides (°C), stripper column 

pressure (kg/cm2), total flowrate of the unit (kg/h) and the valve opening (%) that controls 

the pressure of separator (2) (for example, valve opening % is shown in Figure 3.2). These 

variables have been decided upon by consultation with process engineers responsible for 

the related units. In addition to variables above, logarithmic mean temperature difference 

(LMTD) was also calculated as shown in Equation 13 (Utamura, Nikitin, and Kato 2008). 

 

𝐿𝑀𝑇𝐷 =
[(𝑇ℎ−𝑇𝑐)1−(𝑇ℎ−𝑇𝑐)2]

ln(
(𝑇ℎ−𝑇𝑐)1
(𝑇ℎ−𝑇𝑐)2

)

                                         Eqn 13. 

 

In Equation 13, 𝑇ℎ and 𝑇𝑐 represent temperature value of hot and cold stream, 

respectively. Endpoints of heat exchanger are shown as Point 1 and 2. 

There have been four different leakage cases on this heat exchanger in 3 years and 

this is one of the reasons why we work on this heat exchanger. In the second year, there 

were two different leakage cases with an interval of three months. A leakage case has 

been experienced in each of the other years. The data preparation part differs according 

to the applied methods. Since there is no model training process in applying the DWT 

method, 1-year data on per minute basis is taken from the TUPRAS historian database. 

While applying the AE and EWMA methods, the data set is divided into training and test 

datasets. Since the training data set will be used to train the model, it was tried to choose 

the date range when the unit normally operates. In this process of dataset selection, the 

support of operation engineers was received. The test data set includes other dates include 
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anomaly in a year except the training set interval. For the application of AE and EWMA, 

1-year data on per minute basis is taken from the TUPRAS historian database. 

3.2. Applied Methods 

3.1.4. PCA 

Statistical methods are in the class of Statistical Process Control (SPC) which are 

important for safe and reliable operation in industry (Ahsan, Mashuri, Kuswanto, and 

Prastyo 2018). These methods can show the trend of the process and indicate an anomaly. 

Principal Component Analysis (PCA) which is used to reduce dimensionality of data and 

detect the anomalies and Exponentially Weighted Moving Average (EWMA) which is 

used to detect the anomalies are examples of such statistical methods.  

The PCA method is a statistical method applied for data classification and 

compression. In some studies, PCA is also used as an anomaly detection method. Outlier 

data (anomaly) can be determined by classification (Huang et al. 2007). In some studies 

PCA is applied as a preprocessing method (Ahsan, Mashuri, Kuswanto, Prastyo, et al. 

2018). 

In this thesis study, the PCA method is used to create a small number of principal 

components (PC) with high variation among all variables. The datasets which are used in 

this study contain many variables. PCA is used to select the variables that have the most 

impact on PCs. 

In PCA, the first step is to calculate the mean value of the data. Given X is the 

dataset, X1, X2, …, XN are individual data samples and N is the number of data samples, 

mean value of data samples is calculated in Equation 14 as: 

 

�̅� =
𝑋1+𝑋2+⋯+𝑋𝑁

𝑁
                                              Eqn 14. 

 

The first and second principal component (Y1 and Y2) shown in Equation 15 & 

Equation 16 is defined by combining variables X1, X2.. and XN linearly: 

 

𝑌1 = 𝑎11𝑋1 + 𝑎21𝑋2 + ⋯ 𝑎𝑁1𝑋𝑁                                 Eqn 15. 
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𝑌2 = 𝑎12𝑋1 + 𝑎22𝑋2 + ⋯ 𝑎𝑁2𝑋𝑁                                 Eqn 16. 

 

All principal components (PCs) are calculated in a similar manner. There are as 

many PCs as the total number of variables. Therefore, the properties of the data are not 

lost. Generally the conversion of original data to PC is shown below. 

 

𝑌 = 𝐴𝑋                                                          Eqn 17. 

 

Here, A is the eigenvector matrix, X is the variable vector. Each row of the A 

gives the aij values which are loadings for PC in the Equation 17. These values explain 

the effect of each variable on PCs. Each loading is calculated by using Equation 18.  

 

𝑎2
11 + 𝑎2

12 + ⋯ + 𝑎2
1𝑁 = 1                                     Eqn 18. 

 

Higher values mean stronger interaction. Finally, covariance matrix of the PC is 

calculated by using Equation 19.  

 

𝐶𝑌 = 𝐴𝐶𝑋𝐴𝑇                                                    Eqn 19. 

 

𝐶𝑋 in Equation 19 is calculated by the Equation 20 below: 

 

𝐶𝑋 =
1

𝑁−1
(𝑋 − �̅� )(𝑋 − �̅�)𝑇                                  Eqn 20. 

 

Here, Cx is the covariance matrix of the original data, XT is the transpose of the 

X, Cy is  the covariance matrix that gives an information about variances and covariance 

of the PCs. Results are given visually using a scree plot where percentage of variance (%) 

is plotted against PC number (Jollife and Cadima 2016). In this thesis study, these 

calculations were carried out by usin R programming language. 

3.1.5. Discrete Wavelet Transform 

Discrete wavelet transform (DWT) is a signal processing method. It is generally 

preferred to detect small changes in dataset and to reduce noise in the data (Jiang and Liu 
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2011), (Xu and Huang 2008). The signal is decomposed into levels. Each level consists 

of a series of coefficients that describe the time evolution of the signal. These coefficients 

correspond to a certain frequency band. In this method, a mother wavelet known as basis 

function is used for decomposition of signal into different frequency bands known as 

multi-level analysis. This method is used to clearly observe the sudden changes in the 

signal. It provides information in both the time domain and the frequency level. 

The method for which the mathematical representation is given below is actually 

a linear transformation created by shifting and scaling the mother wavelet. It is important 

to choose the mother wavelet so that it most closely resembles the data signal being 

studied. Common mother wavelet types are shown in Figure 3.3 (Faust et al. 2015). 

 

 

 

Figure 3.3. Mother wavelet types 

(Source: Faust et al., 2015) 
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Various metrics have been used in the literature for mother wavelet selection. 

These are peak signal to noise ratio (PSNR) in Equation 21, mean square error (MSE) in 

Equation 22, mean absolute error (MAE) in Equation 23 and cross correlation (Galya 

Georgieva-Tsaneva 2014). The high PSNR value indicates the suitability of the selected 

wavelet and ensures a well reconstructed signal. It is also expected that the MSE and 

MAE values will be low for a suitable mother wavelet (Kricha, Kricha, and Sakly 2018). 

 

𝑃𝑆𝑁𝑅 = 10 log10
255

1

𝑁
∑ |𝑠(𝑛)−�̃�(𝑛)| 𝑁

𝑛=1

                                 Eqn 21. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑠(𝑛) − �̃�(𝑛))

2
 𝑁−1

𝑛=0                                    Eqn 22.   

   

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑠(𝑛) − �̃�(𝑛)| 𝑁

𝑛=1                                      Eqn 23. 

 

In these equations, 𝑠(𝑛) represents the original signal, �̃�(𝑛) represents the denoised 

signal and N represents the number of data samples.  

DWT is applied in this study to separate the signal into different frequency levels 

in order to see the information contained in the signal clearly. For a multi resolution 

analysis, the signal is passed through high and low pass filters. These filters can be 

thought of as a means to process the signals. Calculation of DWT is carried out with 

Mallat-tree decomposition which is shown in Figure 3.4 for a 3-level decomposition 

(Laaksonen 2013). The g and h represent high pass and low pass filters, respectively. The 

time and frequency resolution of the signal changes at each level. d1[n], d2[n], d3[n] are 

called detail coefficients and a1[n], a2[n], a3[n] are called approximation coefficients. 
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Figure 3.4. Three-level decomposition tree 

(Source: Baghbidi, 2011) 

 

 

Frequency band with respect to level shown in Figure 3.5. In figure, fs is the 

sampled frequency (Amolins, Zhang, and Dare 2007). It can be seen that increase of level 

decreases the frequency. 

 

 

 

Figure 3.5. Frequency band based on each level 

(Source: Amolins et al., 2007) 

 

 

In Equation 24 and Equation 25, g and h represent high pass filter and low pass 

filter, respectively, as mentioned above. In the filters, detail and approximation 

coefficients are calculated by down sampling by two “2 and down arrow” in Figure 3.4 

represents this “downsampling by 2” operation.  Down sampling means reducing the 

sampling rate or removing some samples from the signal (such as dropping the middle 

sample between among three samples). With down sampling, the scale of the signal is 

changed. Low pass filter cleans the high frequency components from the signal and the 
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output of the low pass filter give an approximation of the original signal. High pass filter 

cleans the low frequency component from signal, and it gives detail information about 

the signal. The high and low pass filter equations are given in equations as: 

 

𝑎[𝑛] = 𝑦𝑙𝑜𝑤[𝑛] = ∑ 𝑥(𝑘)𝑛 𝑔[2𝑛 − 𝑘]                                  Eqn 24. 

 

𝑑[𝑛] = 𝑦ℎ𝑖𝑔ℎ[𝑛] = ∑ 𝑥(𝑘)𝑛 ℎ[2𝑛 − 𝑘]                                 Eqn 25. 

 

where 𝑛 is the number of samples, 𝑥(𝑘) is the original signal, 𝑘 is sampled digit 

which is in the range of 0< 𝑘 < 𝑛/2-1 or 𝑛/2< 𝑘 < 𝑛-1, 𝑦ℎ𝑖𝑔ℎ is output of the high pass 

filter and 𝑦𝑙𝑜𝑤 is output of low pass filter (Orea-flores, Gallegos-funes, and Arellano-

reynoso 2019). 

The digital representation of DWT is shown in Equation 26 below. Here, a is the 

scaling factor, b is the translation factor, k refers to the number of samples in the signal 

𝑔∗(𝑘) refers to mother wavelet. m and n are the integer parameters of a (𝑎 = 𝑎0
𝑚 ) and 

b (𝑏 = 𝑛𝑏0𝑎0
𝑚

).  Mother wavelet is scaled and shifted along the signal (Barros, Diego, 

and De Apraiz 2012).  

 

𝐷𝑊𝑇(𝑚,𝑘) =
1

√𝑎
∑ 𝑥(𝑛)𝑔∗

𝑛 (
𝑘−𝑏

𝑎
)                                 Eqn 26. 

 

Original signal can be reconstructed with the summation of all detailed 

coefficients (d1[n], d2[n], d3[n]) and last level approximated coefficient (a3[n]) (Souza, 

Cruz, and Pereira 2000). This process is called as inverse DWT (Emmanuel 2012). 

Wavelet toolbox used for this method in MATLAB2021a. The procedure of DWT 

is presented given below as: 

• Data is taken from TUPRAS Historian Database. 

• The mother wavelet is selected which is suitable for the data set we use. 

o For this, data is denoised using different mother wavelets and evaluation 

metrics are calculated (Equation 21, Equation 22 and Equation 23). 

• Then, the data is decomposed, and the detail and approximation coefficients are 

calculated. Reconstructed data is obtained with the sum of these coefficients. 
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3.1.6. Auto Encoder 

Auto encoder (AE) is an artificial neural network technique that is used to reduce 

dimensionality of dataset (Sakurada and Yairi 2014). It is an unsupervised technique 

which uses unlabeled input and output data meaning that there is no labeling that give 

information about what the anomaly is (Tutkan, Ganiz, and Akyokuş 2016). As this 

technique is used for size reduction, it can be used to extract features, denoise and 

recognize images (Sakurada and Yairi 2014). The neural network of AE is shown in 

Figure 3.6.  AE has five hyperparameters in total, which are bottleneck (code layer), 

encoder, decoder, loss function and epoch number. First, input is sent to encoder and 

compressed here (Sublime and Kalinicheva 2019). The compressed data is stored in the 

bottleneck. Decoder reconstructs the data comes from bottleneck (Mirsky et al. 2018). 

Bottleneck is the important part of the AE, compressed data is taken place here. Each part 

includes hidden layers, and each layer consists of nodes. These nodes represent features 

and are connected with other nodes. Epoch number represents how many times the 

algorithm will run. When deciding on the epoch number, a graph of MSE with respect to 

epoch number is plotted. This graph is called the learning curve (Elbattah et al. 2021). 

 

 

 

Figure 3.6. Architecture of AE 

(Source: Sublime & Kalinicheva, 2019) 
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Mathematical representation of data compression is given in equations below. In 

the Equation 27, x is the input, W is the weight matrix, b and b’ are bias vectors, z is the 

bottleneck dimension, 𝜎 and 𝜎′ are the activation functions , and x’ is the output (Sagheer 

and Kotb 2019).  Equation 27 represents the encoding network. Equation 28 belong to 

decoding network of AE. This calculation is repeated in each node. 

 

𝑧 = 𝜎(𝑊𝑥 + 𝑏)                                                Eqn 27. 

 

𝑥′ = 𝜎′(𝑊′𝑧 + 𝑏′)                                              Eqn 28. 

 

AE layers are created considering the structure used in a study in the literature 

(Tavakoli et al. 2020). The encoding part consists of 3 layers and the layers are ordered 

according to the decreasing number of nodes. These layers are created by decreasing node 

number as 100, 50, 20 in accordance with the purpose of AE and can compress the data 

while preserving the important features. The code layer can contain as many nodes as our 

variable number. In order to decide on the number of nodes, training accuracy values are 

examined, and the results are given in the Figure 3.7. Maximum accuracy is achieved 

with 6 nodes. Decoder network is a mirror image of encoder part, and layers are 

incrementally built up to 20, 50, and 100 nodes. The input and output layers also consist 

of an equal number of nodes and are equal to the number of variables. 

 

 

 

Figure 3.7. Training Performance based on number of nodes in code layer 
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Another important part is the activation function selection. The activation function 

is responsible for transmitting the sum of the weights calculated in the node to the other 

node. Basic representation for one node is shown in Figure 3.8.  

 

 

 

Figure 3.8. The role of activation function 

(Source: Theodoridis, 2020) 

 

 

Non-linear functions are generally preferred for AE networks because 

nonlinearity overcomes backpropagation problem. The meaning of backpropagation is 

adjusting of weights repeatedly in order to minimize the loss function. Because of that 

linear activation functions are not preferred for AE. Two kinds of non-linear activation 

functions are generally used for AE. One of them is Rectified Linear Unit (ReLU) and 

the other is sigmoid. ReLU is usually selected as a default function (Kumaresan et al. 

2021). Sigmoid function has a disappearing gradient problem, The meaning of this 

problem that loss function closes to zero. It causes reducing the training performance of 

network. ReLU can overcome this problem and provides easy learning. In this study, 

ReLU is used as an activation function (Theodoridis 2020). 

Finally, reconstruction error is calculated as a loss function which is used as the 

outlier score. Mathematical representation of reconstruction error is shown in Equation 

29. (An et al., 2015).  
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𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = √
∑ (𝑥𝑖−𝑥′

𝑖)2𝑛
𝑖=1

𝑛
                           Eqn 29. 

 

where n refers to number of samples, 𝑥𝑖 is the original data sample and 𝑥′
𝑖 is the 

reconstructed data sample. 

The procedure of AE is given below as: 

• Data is taken from TUPRAS Historian Database. 

• LMTD values are calculated by using temperature values. 

• The data is split as training and test dataset (training set: normally operated 

time period; test set: the dataset which has a probability of including 

anomalies). 

• Model hyperparameters are determined and the model is trained. 

• Test data set is fed to the model as an input. 

• Reconstruction error is calculated using x and x'. 

When another dataset containing anomaly is given to the model, the difference 

between the input and the reconstructed data will be high, since the trend of the data will 

be different from the training dataset. While this error is small for normal data samples, 

it is expected to be high for data with anomaly. 

3.1.7. Exponentially Weighted Moving Average 

EWMA is a statistical anomaly detection method. EWMA analyzes historical data 

to determine any deviation in data. This method uses three control limits, namely upper 

control limit (UCL), center line (CL) and lower control limit (LCL). UCL and LCL play 

an important role to determine the control region. EWMA method detects the anomalies 

based on these limits. EWMA can be given as in Equation 30: 

 

𝑍𝑖 = 𝜆𝑋𝑖 + (1 − 𝜆)𝑍𝑖−1                                      Eqn 30. 

 

where Zi is the EWMA at time i, λ is the weighting factor (0 < λ < 1) and Xi is the 

residual of the variable to be predicted at time i. Residuals are differences between the 
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predicted and measured values. In order to predict desired variable and to consider effect 

of other variables, Multiple Linear Regression (MLR) method is used and it is shown in 

Equation 31 (Zhao, Wang, and Xiao 2013).  

 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥1𝑖  +  ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝜀                            Eqn 31. 

 

Here, p is the number of independent variables, 𝑥1𝑖, 𝑥2𝑖 , … , 𝑥𝑝𝑖  are independent 

variables, 𝛽0, 𝛽1, … , 𝛽𝑝 are the regression coefficients, ε is the random error (residual) 

term, and 𝑦𝑖 is the predicted variable. Residuals of the model was used to detect small 

changes in dataset (Zhou and Tang 2016).   

λ is important to consider for detecting anomalies in time series information. λ can 

be calculated with the equation of λ=1-θ. The θ is the coefficient of the Autoregressive 

Integrated Moving Average (ARIMA) model. ARIMA is a model used for time series 

forecasting (Ye, Borror, and Zhang 2002). The general notation of ARIMA is ARIMA 

(p,q,d). The p,q,d are parameters of ARIMA where p is the number of autoregressive, d 

is the degree of differencing, and q is the order of the moving average. ARIMA (0,1,1) is 

proposed in the literature for detecting small shifting in dataset (Kandananond 2014). 

Also, selection of weighting factor depends on user. A λ value of 1 indicates that the 

weights of the last measurements are more dominant. Conversely, a λ value close to zero 

means that the old data has a weight (Zhou and Tang 2016). 

Referring back to UCL and LCL, the control limits are defined in Equation 32, 

Equation 33, and Equation 34 as:  

 

𝐿𝐶𝐿𝑖 = 𝜇0 −  𝐿𝜎√
𝜆

(2−𝜆)
[1 − (1 − 𝜆)2𝑖]                        Eqn 32. 

 

𝐶𝐿 = 𝜇0                                                       Eqn 33. 

 

𝑈𝐶𝐿𝑖 = 𝜇0 + 𝐿𝜎√
𝜆

(2−𝜆)
[1 − (1 − 𝜆)2𝑖]                         Eqn 34. 

 

where σ is the standard deviation of data, 𝜇0 is the target value and L is the number 

of standard deviations from the CL.  

The procedure of EWMA is presented below as: 
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• Data is taken from TUPRAS Historian Database  

• The data set is divided into two groups as training and test set. 

• UCL, CL and LCL values are determined using the training set. 

• MLR is applied to predict variables. 

• Residual values are calculated. 

• ARIMA coefficient θ and weighting factor λ are determined. 

• The EWMA control chart is created. 

• The area between both UCL and LCL is defined as the control limits. 

• Values outside these two lines are defined as anomaly. 

R programming language was used to implement this method. 
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CHAPTER 4 

 

BENCHMARKING OF THE METHODS USING TEP 

 

4.1. General Overview of Benchmarking Studies 

In this chapter, the methods were applied on the Tennessee Eastman Process 

(TEP) benchmark data series given in the literature in order to check the applicability of 

the three methods explained in Chapter 3, namely DWT, AE and EWMA. Data is divided 

into two groups as training and test datasets. In Section 4.2, the flow diagram of the 

chemical process and the variables are explained. For the system with 73 process 

variables, the PCA method is applied to determine the variables that may be related to the 

fault. The results of the applied DWT, AE and EWMA methods are given in Chapter 3. 

4.2. Benchmark Dataset 

Tennessee Eastman Process (TEP) benchmark dataset is an important data source 

for the field of fault detection and diagnosis, alarm management or control loops. It has 

been published by Down and Vogel in 1993 (Ricker 1996). The basic process diagram of 

TEP is shown in the Figure 4.1 below. As it can be seen in Figure 4.1, this proses consists 

of 5 main units, namely, a reactor, a condenser, a stripper, a separator, and a compressor. 

There are 73 process variables (PVs) such as volumetric flowrate (F), pressure (P), 

temperature (T), level (L) and concentration (A). In addition to PVs, 12 manipulated 

variables (MVs) are given. Description of PVs and MVs are shown in Table 4.1 & Table 

4.2, respectively (Gianluca Manca, n.d.), (Reinartz, Kulahci, and Ravn 2021), (Kiss, 

Genge, and Haller 2015). The data set of TEP is shared as open source. This data set 

consists of faulty free and faulty data set.  
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Figure 4.1.TEP model 

(Source: Kiss et al., 2015) 

CWS: Condenser water supply, CWR: condenser water return 

 

 

Table 4.1. Description of Process Variables 

(Source: Reinarts et al., 2021) 

Variable Description unit Variable Description unit 

XMEAS(1) A Feed (stream 1) kscmh XMEAS(12) Product 

Separator 

Level 

% 

XMEAS(2) D Feed (stream 2) kg/hr XMEAS(13) Product 

Separator 

Pressure 

kPa 

gauge 

XMEAS(3) E Feed (stream 3) kg/hr XMEAS(14) Product 

Separator 

Underflow 

(stream 10) 

m3/hr 

XMEAS(4) A and C Feed 

(stream 4) 

kscmh XMEAS(15) Stripper 

Level 

% 

(cont. on the next page) 
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Table 4.1 (cont.) 

Variable Description unit Variable Description unit 

XMEAS(5) Recycle Flow 

(stream 8) 

kscmh XMEAS(16) Stripper 

Pressure 

kPa 

gauge 

XMEAS(6) Reactor Feed 

Rate (stream 6) 

kscmh XMEAS(17) Stripper 

Underflow 

(stream 11) 

m3/hr 

XMEAS(7) Reactor Pressure kPa 

gauge 

XMEAS(18) Stripper 

Temperature 

deg C 

XMEAS(8) Reactor Level % XMEAS(19) Stripper 

Steam Flow 

kg/hr 

XMEAS(9) Reactor 

Temperature 

deg C XMEAS(20) Compressor 

Work 

kW 

XMEAS(10) Purge Rate 

(stream 9) 

kscmh XMEAS(21) Reactor 

Cooling 

Water 

Outlet 

Temperature 

deg C 

XMEAS(11) Product Sep 

Temp 

deg C XMEAS(22) Separator 

Cooling 

Water 

Outlet 

Temperature 

deg C 

(kscmh: kilo standard cubic meter per hour) 
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Table 4.2. Description of Manipulated Variables 

(Source: Reinarts et al., 2021) 

Variable Description Variable Description 

XMV(1) D Feed Flowrate (stream 2) XMV(7) Separator Pot Liquid 

Flow (stream 10) 

XMV(2) E Feed Flowrate (stream 3) XMV(8) Stripper Liquid Product 

Flow (stream 11) 

XMV(3) A Feed Flowrate (stream 1) XMV(9) Stripper Steam Valve (%) 

XMV(4) A & C Feed Flowrate (stream 

4) 

XMV(10) Reactor Cooling Water 

Flowrate 

XMV(5) Compressor Recycle Valve 

(%) 

XMV(11) Condenser Cooling 

Water Flowrate 

XMV(6) Purge Valve (stream 9) XMV(12) Agitator Speed 

 

 

In this simulated process, A, C, D, & E components (in gas phase) are called as 

feed for the system. Recycle stream of the system and A, D, E are fed to the reactor and 

liquid G and H are obtained. The reactions taking place in the reactor are shown below 

(Park et al. 2019). The reactions are exothermic, irreversible reactions with first order 

reaction kinetics with respect to concentration of reactants. 

 

𝐴(𝑔) + 𝐶(𝑔) + 𝐷(𝑔) → 𝐺(𝑙𝑖𝑞), 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 1                          Eqn 35. 

 

𝐴(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙𝑖𝑞), 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 2                          Eqn 36. 

 

𝐴(𝑔) + 𝐸(𝑔) → 𝐹(𝑙𝑖𝑞), 𝐵𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡                                Eqn 37. 

 

3𝐷(𝑔) → 2𝐹(𝑙𝑖𝑞), 𝐵𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡                                   Eqn 38. 

 

After the reactions occur, liquid product stream composed of G, H and F is fed to 

the condenser to cool down and then fed to a vapor-liquid separator. While condensed 

products are fed to the stripper column, uncondensed product is fed back to the reactor. 
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Product mixture of G and H is separated from each other in the stripper. The inert (B)  

and byproduct (F) are removed from the process (Park et al. 2019).  

In the simulation, various disturbances are created in order to study the faulty 

characteristics of TEP. Created disturbance types are shown in Table 4.3. The 

disturbances are numbered and listed based on the type of disturbance as step, random 

variation, slow step and sticking. Sticking fault is encountered on sticking valves. This 

type of fault is noticed on the sudden change in the values of sticking of valves (Reinartz, 

Kulahci, and Ravn 2021). 

 

 

Table 4.3. Process Disturbances in TEP 

(Source: Park et al., 2019) 

Variable Description Type Variable Description Type 

IDV(1) A/C Feed 

Ratio, B 

Composition 

Constant 

(stream 4) 

Step IDV(11) Reactor 

Cooling 

Water Inlet 

Temperature 

Random 

Variation 

IDV(2) B 

Composition, 

A/C Ratio 

Constant 

(stream 4) 

Step IDV(12) Condenser 

Cooling 

Water Inlet 

Temperature 

Random 

Variation 

IDV(3) D Feed 

Temperature 

(stream 2) 

Step IDV(13) Reaction 

Kinetics 

Slow Drift 

IDV(4) Reactor 

Cooling Water 

Inlet 

Temperature 

Step IDV(14) Reactor 

Cooling 

Water Valve 

Sticking 

IDV(5) Condenser 

Cooling Water 

Temperature 

Step IDV(15) Condenser 

Cooling 

Water Valve 

Sticking 

(cont. on the next page) 
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Table 4.3. (cont.) 

Variable Description Type Variable Description Type 

IDV(6) A Feed Loss 

(Stream 1) 

Step IDV(16) Unknown Unknown 

IDV(7) C Header 

Pressure Loss - 

Reduced 

Availability 

(Stream 4) 

 

 

Step 

IDV(17) Unknown Unknown 

IDV(8) A, B, C Feed 

Composition 

(stream 4) 

Random 

Variation 

IDV(18) Unknown Unknown 

IDV(9) D Feed 

Temperature 

(Stream 2) 

Random 

Variation 

IDV(19) Unknown Unknown 

IDV(10) C Feed 

Temperature 

(Stream 4) 

Random 

Variation 

IDV(20) Unknown Unknown 

 

 

As shown in Table 4.3, 20 different disturbances had described by manipulated 

variables in simulation. Among these disturbances, to continuously see the effect of the 

disturbance on process variables, random variation type disturbance has been chosen.  At 

the same time, IDV (12) was chosen as the variation in cooling water temperature among 

the 20 disturbances in order to be parallel to the case studied at TUPRAS. The data set in 

the selected disturbance was obtained by creating sudden changes in the cooling water 

temperature. In our study, measured process values and manipulated variables are taken 

into account in the PCA method. The PCA method is applied to determine the variables 

most affected by the disturbance. Composition values (XMEAS_23 to XMEAS_41) 

related to the measured product composition are considered as laboratory values (they are 

not continuous process measurements) and are not taken into account in PCA 

calculations. PCA method is implemented using the process variables such as XMEAS_1 

to XMEAS_22 and manipulated variables such as XMV_1 to XMV_11. R programming 
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language is used for the application of PCA. The obtained results are shown in Figure 

4.2. The dots denoted by dark navy blue and orange colors show the high positively and 

negatively correlated variables with each other, respectively. 

 

 

 

 
Figure 4.2. Correlation matrix for variables 

 

 

In addition, percentages of variation for each principal component (PC) are shown 

in Figure 4.3. As seen, the PC1 and PC2 are the principal components with the two highest 

percentage variances with PC1 being the PC showing the highest variance, as expected. 
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Figure 4.3. PCA cumulative variance plot 
 

 

Table 4.4 contains the standard deviation and proportion of variance values of 

PC1 and PC2.  A total of 58% variation was observed with both components. Selection 

of PC has high variance is important because PCs with high variance can represent the 

pattern of data (Cureton and D’Agostino 2019). 

 

 

Table 4.4. Standard deviation and proportion of variance of PC1 and PC2 

 Principle Component 1 

(PC1) 

Principle Component 2 

(PC2) 

Standard Deviation 4.698 2.907 

Proportion of variance 0.42 0.16 

 

 

Figure 4.4 and Figure 4.5 show the most effective variables on PC1 and PC2 that 

have high variation. XMEAS_6 to XMEAS_11 (Reactor Feed Rate (stream 6), Reactor 

Pressure, Reactor Level, Reactor Temperature, Purge Rate (stream 9), Product Separator 

Temperature, respectively),  XMEAS_13 (Product Separator Pressure), XMEAS_15 

(Stripper Level), XMEAS_16 (Stripper Pressure), XMEAS_18 (Stripper Temperature), 

XMEAS_19 (Stripper Steam Flow), XMEAS_21 (Reactor Cooling Water Outlet 

Temperature) & XMEAS_22 (Separator Cooling Water Outlet Temperature), and 

XMV_1 to XMV_6 (D Feed Flow (stream 2), E Feed Flow (stream 3), A Feed Flow 
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(stream 1) ,  A and C Feed Flow,  Compressor Recycle Valve, Purge Valve (stream 9), 

respectively ) were chosen as variables with high impact. 

 

 

 
Figure 4.4. Weight/loading for PC1 

 

 

 
Figure 4.5. Weight/loading for PC2 

 

 

A dataset consisting of 82,500 data samples was created by taking the 30,000 data 

samples from the training data set and 52,500 data samples from the test data set. The 

graphs for XMV_6 (purge valve), XMEAS_6 (reactor feed rate), XMEAS_7 (reactor 
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pressure) and XMEAS_22 (separator cooling water outlet temperature) variables are as 

shown in the Figure 4.6. In each plot, x axis shows the number of samples and y axis 

shows the value of process variables. The anomaly caused an increase in the data 

amplitude TEP benchmark is the data set which is known to consist of faulty data. As 

mentioned above, a faulty data set was created with 20 different disturbance types.  

 

 

 

Figure 4.6. Process Variables (Blue: XMV_6, red: XMEAS_6, yellow: XMEAS_7,   

                   black: XMEAS_22)  

 

 

In this study, the sudden changes in the sensor read values due to the disturbance 

in the cooling water temperature that cools the separator are called anomalies. The 

applicability of the methods was checked in the data set with known anomalies. Three 

different anomaly detection methods were applied on this data set. These are DWT, AE 

and EWMA methods. In the DWT method, the data sets without and with anomaly were 

combined. While applying the AE and EWMA method, the data set was grouped as 

training and test data sets, and the models were trained with the training set. Detailed 

explanations and the obtained results are given in the following sections. 
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4.2.1. DWT 

The DWT method is preferred in most studies to reduce the noise in the signals 

and thus to obtain clearer information from the data. An important point in DWT is the 

selection of the appropriate wavelet for the dataset. These wavelets are haar, sym 4-12, 

Db 4-12 as mentioned above (section 3.3.2). Selected wavelets are determined as 

wavelets with good reconstruction feature in the literature (Emmanuel 2012). This 

wavelet selection is evaluated according to the PSNR, MSE, MAE and cross correlation 

metrics.  Results of the PSNR, MAE and MSE values with respect to wavelet type are 

shown in Table 4.5 While applying the AE and EWMA method, the data set was grouped 

as training and test data sets, and the models were trained with the training set. Detailed 

explanations and the obtained results are given in the following sections (Horé and Ziou 

2010).  

 

 

Table 4.5. Performance metrics for wavelet type 

Wavelet Type MSE MAE PSNR Cross correlation 

Haar 2.988 1.359 30.620 0.948 

Sym4 2.310 1.209 31.734 0.959 

Sym6 2.274 1.201 31.808 0.960 

Sym8 2.264 1.198 31.825 0.960 

Db4 2.280 1.202 31.795 0.960 

Db8 2.269 1.195 31.816 0.960 

Db12 2.264 1.194 31.825 0.960 

 

 

When the values in the table are examined and the studies in the literature are 

taken into consideration, we can say that the most suitable wavelet type for the TEP 

benchmark data set is Db 12 with the highest PSNR and lowest MSE & MAE (Payan and 

Antonini 2006), (Kricha, Kricha, and Sakly 2018), (Galya Georgieva-Tsaneva 2014).  

In order to decide the number of levels, the same metrics (PSNR, MAE, MSE) 

were calculated for each level as shown in the Table 4.6. These metrics are used for the 
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comparison of the reconstruction performance of the DWT. The level selection was done 

by considering the high PSNR and low error values, which corresponds to the fifth level. 

 

 

Table 4.6. Performance metrics for each level 

Number of Level MSE MAE PSNR Cross correlation 

Level 1 2.264 1.193 31.825 0.960 

Level 2 1.878 1.086 32.637 0.967 

Level 3 1.517 0.975 33.565 0.973 

Level 4 1.009 0.795 35.334 0.982 

Level 5 0.356 0.465 39.861 0.993 

Level 6 0.356 0.521 39.755 0.990 

 

 

Figure 4.7 shows the spectra of data with respect to level number. Here, x axis 

represents the number of samples and y axis represent the level number of DWT. The 

first 30,000 samples contain anomaly free data. The next 52,500 data samples belong to 

faulty data. There is a decreasing frequency from level 1 to level 5 (from bottom to top). 

It can be seen that it is easier to understand information from time series data on the low 

frequency layer. Wan et al. also carried out anomaly detection studies using the DWT 

method (Wang et al. 2018). Visually, it can be observed in the Figure 4.7 that level 5 

gives clearer information about the presence of anomaly. As the number of levels 

increased, the presence of faulty data becomes more obvious. This also supports the 

performance metrics of level 5 in Table 4.6.  It can be also said that with the increasing 

decomposition level (from level 1 to level 5), frequency resolution increase, a situation 

in agreement with uncertainty principle (Vošvrda and Schürrer 2015).  
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Figure 4.7. Spectra of data based on level number 

 

 

After the selection of level and wavelet type, multilevel decomposition was 

performed. The multilevel decomposition results are shown in Figure 4.8. In Figure 4.8, 

d1, d2, … dn are the detail coefficients and an is the approximation coefficient in the 

highest level. (Souza, Cruz, and Pereira 2000). As seen in Figure 4.7, we can say that the 

peaks occurring from anomalies are visually observed clearly at the fifth level. 

 

 

 

Figure 4.8. Five level decomposition with MATLAB 
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4.2.2 AE 

The next implemented method is AE. For this method, the data set was handled 

as two distinct sets: a training set without any anomaly and a test set containing anomalies, 

and the steps are explained in Section 3.2.3 are followed.  

Learning curve for the TEP dataset is shown in Figure 4.9. Here, x axis refers to 

epoch number and y axis refers to MSE value. Best training performance with the lowest 

MSE values is obtained for epoch number 500.  

 

 

 

Figure 4.9. Learning curve for TEP dataset 

 

 

For this method, 20,000 data samples from TEP are used as a training dataset to 

train the model. Faulty dataset contains 52,500 data samples from TEP. Here, it is 

worthwhile to mention that we use historical data set while working on TUPRAS case for 

which the data can be obtained continuously. On the other hand, in TEP benchmark, the 

data set is shared separately as fault-free and faulty dataset. Because of that, the TEP data 

set is turned in to a continuous data set by combining the fault-free and faulty data sets. 

The purpose of this combination is also to see the difference between the data set with 
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and without anomalies. With this dataset created for the purpose of anomaly detection, 

our aim is to detect an anomaly whose existence is known and to control the workability 

of the model. 

Result of the AE is shown in Figure 4.10. Red line splits the training data from 

test data. Top plot shows the predicted and measured process values, and bottom plot 

shows the reconstruction error due to the difference between measured and predicted 

values. With the occurrence of anomaly, reconstructed MSE values started to increase. 

This indicates that AE method can be used to detect the anomalies in the dataset.  

 

 

Figure 4.10. Measured and predicted process value (top), Reconstruction error (bottom) 

for TEP benchmark…………………………………………… 

 

4.2.3 EWMA 

EWMA is a statistical method, unlike DWT and AE. EWMA method is generally 

used to detect small changes in the process (Ye, Borror, and Zhang 2002). Data is 
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separated as training and test datasets similar to AE. Residuals were obtained by using 

MLR.  

The variables which had the largest impact on the IDV 12 disturbance are selected 

using PCA. At the same time, as mentioned above (Section 3.1.7), the value of valve 

opening is predicted with MLR by taking the effect of other variables into account, in 

order to create a similar point for the TUPRAS case. From the data that is separated as 

training and test data set, the training set is used for MLR modeling, and the test data is 

used to calculate residual of the model. Upper and lower control limits are calculated. The 

data set outside the control limits was defined as anomaly. UCL, UCL and LCL are 

calculated based on the training dataset as 3.5, -3.5 and 0, respectively. Firstly, θ was 

calculated with ARIMA and λ is calculated as 0.96. EWMA of the residuals are shown in 

Figure 4.11. Control limits and center line are shown with colored lines. The red dots over 

the UCL and LCL lines are defined as anomaly. As seen, EWMA can detect the anomalies 

in TEP benchmark data set.  

 

 

 

Figure 4.11. EWMA of the residual for TEP benchmark (UCL=3.5, LCL=-3.5, λ =0.96) 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

5.1. General Overview of Results and Discussion Section 

In this thesis, detection of leaks in the heat exchanger is studied using data-based 

methods. This chapter includes the studies on the heat exchanger in TUPRAS Izmit 

Refinery, where more than one case was experienced. Three different data-based methods 

are applied, namely, DWT, AE, and EWMA. Data is taken in per minute basis from the 

TUPRAS Historian Database. For DWT, the data is not divided into separate training and 

test data sets and is used in a continuous manner. Data is divided into training and test 

data sets to apply AE and EWMA methods. To determine the relevant variables in the 

process, technical support is received from operation engineers. The relationship between 

the variables provided by the operation engineers is understood and presented in section 

5.2. In Section 5.3, the results of the DWT, AE and EWMA methods applied for the first 

leak case are given. In Section 5.4, the results of two different leakage cases experienced 

in the same year are provided. In Section 5.5, the results of the last case are represented. 

In summary, in Section 5.6, all the results of each case are interpreted. 

5.2. PCA 

First, PCA is carried out in order to examine the correlation between the variables. 

PCA is applied to the four-year data set containing all the leak cases. As stated in the 

method section 3.2.2, the variables that may be relevant are determined by the operation 

engineers. In addition, the presence of leak in each case was understood by increase in 

the percentage of valve opening. PCA method is applied to understand the relation of 

valve opening with other variables. Valve opening can be accepted as an indicator for the 

leak because the response of the leak on the valve opening is higher than LMTD as can 

be seen from the Figure 5.1.  
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Figure 5.1. Comparison leakage response on LMTD and valve opening 
 

 

Correlation matrix was formed by following the steps described in section 3.3.1. 

The obtained correlation matrix is shown in Figure 5.2. In the correlation matrix, the 

legend shows the strength of the correlation, i.e., the darker the color, the stronger the 

correlation. While strong correlation is observed between LMTD and tube inlet 

temperature, high correlation is observed between tube and shell outlet temperatures, 

LMTD and shell inlet temperature, valve opening and LMTD, and valve opening and 

shell inlet temperature. In addition, a negative correlation is observed between the shell 

outlet temperature and the valve opening. This is expected since the leak occurs from the 

tube to the shell, and in case of leakage, the temperature of the shell fluid will decrease 

because the temperature of the tube fluid is lower compared to that of shell fluid. Based 

on the PCA analysis and consultation with operation engineers, the input for the fault 

analysis using DWT is selected as the valve opening, and the inputs for the fault analysis 

using AE and EWMA are selected as LMTD along with all other variables listed in Figure 

5.2. Compared to TEP benchmark dataset, real industry case data is more complex which 

makes it more difficult to determine any anomaly. For that reason, the DWT, AE and 

EWMA methods are applied for each of the leak cases studied. In the following sections, 

the obtained results are presented. 
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Figure 5.2. Correlation matrix for real case 
 

5.3. CASE 1 

5.3.1. DWT  

Data was taken from TUPRAS historian database. First, mother wavelet selection 

was done using metrics such as PSNR, MAE, and MSE values shown in Table 5.1. Db4 

was selected suitable wavelet type with the highest PSNR, and lowest MSE and MAE 

values.   

 

 

Table 5.1. Performance metrics for wavelet selection (TUPRAS Case 1) 

Wavelet Type MSE MAE PSNR Cross correlation 

Haar 1.783 0.879 37.49 0.993 

Sym4 1.105 0.736 33.908 0.995 

Db4 0.129 0.282 48.903 0.999 

(cont. on the next page) 
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Table 5.1 (cont.) 

Wavelet Type MSE MAE PSNR Cross correlation 

Db8 1.935 0.929 31.474 0.993 

Db12 2.036 0.952 36.912 0.993 

 

 

Similar comparisons were done for the level selection as shown in Table 5.2. As 

in TEP benchmark case, level 5 was selected as the level for anomaly detection because 

this level has higher PSNR value with lower MAE and MSE. 

 

 

Table 5.2. Performance selection for level selection (TUPRAS Case 1) 

Number of Level MSE MAE PSNR Cross correlation 

Level 1 1.779 0.948 37.498 0.993 

Level 2 1.517 0.856 38.190 0.994 

Level 3 1.168 0.755 39.325 0.996 

Level 4 0.626 0.532 42.034 0.998 

Level 5 0.294 0.349 45.312 0.999 

Level 6 0.468 0.450 43.985 0.998 

Level 7 0.493 0.586 42.025 0.996 

 

 

These results are also visually supported by the spectra shown in Figure 5.3. In 

this figure, the horizontal axis represents the number of data samples, and the vertical axis 

represents the level (i.e., frequency band; the lower the level, the wider the frequency 

band and vice versa). The X and Y points indicated in the figure represent the operational 

change and leakage in the unit, respectively. Operational changes can generally be 

flowrate changes, and equipment (i.e. valve, pump) replacements. Leakage can be due to 

corrosion in the tubes of the heat exchanger under investigation, as explained in section 

3.1.2. There has also been a flowrate change in the areas marked with green, which can 

only be observed at level 5 As seen, the method successfully captured operational changes 

as well as leakage. Color bar below the figure represents the frequency scale. In cases 

where there is an anomaly, the color gets the corresponding color of the highest value on 
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the frequency scale. These results obtained here are similar to the results of change point 

detection in study by Lima et al (de Lima, 2020). They observed the point where the 

change occurred in the time dependent data set in the highest level which corresponds to 

lowest frequency band.    

 

 

 

Figure 5.3. Spectra of data based on level number 

 

 

In Figure 5.3, Level 5 belongs to lowest frequency band. These results can be 

understood based on the uncertainty principle that given in Equation 39. Here, t is time 

and 𝜔 is the angular frequency (𝜔 = 2𝜋𝑓). With the increasing of level, frequency 

decreases and in turn ∆𝜔 decreases. This in turn increases the ∆𝑡 in Equation 39. The 

meaning of large ∆𝑡 is bad time resolution and good frequency resolution (Vošvrda and 

Schürrer 2015). 

 

∆𝑡∆𝜔 ≥
1

2
                                                     Eqn 39. 

 

The data sampling rate from TUPRAS Historian Database was one sample per 

minute which corresponds to a sampling frequency of 0.017 samples/sec. Table 5.3 shows 

the frequency bands of each level. Frequency bands belongs to each level in Figure 5.3.  
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Table 5.3. Frequency band which corresponds to each level 

Number of Level Frequency Band 

First detail level 0.0085-0.017 Hz 

Second detail level 0.00425-0.0085 Hz 

Third detail level 0.00213-0.00425 Hz 

Fourth detail level 0.0011-0.00213 Hz 

Fifth detail level 0.0005-0.0011 Hz 

 

 

The 5-level multiple decomposition results are shown in Figure 5.4. Here, s is the 

original signal, a5 is the approximation coefficient of the last level and di is the detail 

coefficient at level i (i=1,2,3,4,5). Changes in the nominal values of the process were 

investigated at different levels. Level 5 corresponds to the low frequency band. At this 

level, sharp peaks showing operational changes and leakage are successfully observed. 

 

 

 

Figure 5.4. 5 level DWT decomposition for Case1 
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Figure 5.5 gives the original signal and the reconstructed signal comparison. Here, 

red line represents the original signal and black line represents the reconstructed signal.  

By comparing the two signals, it can be said that obtained DWT coefficients (detail and 

approximation) can successfully reconstruct the data. 

 

 

 

Figure 5.5. Comparison of original and reconstruction signal for Case 1 

 

5.3.2. AE 

The leak case is also studied using AE method. It is noted that it is more difficult 

to determine the training and test datasets in the real case, unlike the TEP benchmark 

dataset. The data in first two months of a year on minute basis is determined as the training 

set for the leak that took place in the fourth month of the year. For determining the data 

set, operation engineers are consulted. While the first two-month data is determined as 

the training set, the data until the shutdown is determined as the test set.  

First, behavior of the MSE with respect to epoch number is obtained as shown in 

Figure 5.6. The optimum epoch number was determined as 37 based on the MSE value 
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of 3.76e-06 with MATLAB.  After a satisfactory level of error is obtained, MATLAB 

automatically stops the iteration in order to prevent overfitting. 

 

 

 

Figure 5.6. Learning curve of AE for Case 1 
 

 

Then, the test set is fed to the model as an input. The obtained model results are 

compared to the model values, as shown in Figure 5.7. The estimated value according to 

the trained data set and the measured process data is given in the top graph, and RMSE 

values calculated using predicted and measured values are given in the bottom graph. The 

sudden changes observed in the top graph marked with red circles show the flowrate 

change and pump replacement. The operation engineers noticed the leak at the time 

indicated by the red star on the top graph and an immediate shutdown was done. In fact, 

it is observed that the actual process values deviate from the model predictions and RMSE 

values increases even before the operation engineers noticed the anomaly. Based on this 

analysis, it is possible to state that the leak started with a small amount approximately 6 

days ago and grew afterwards until the anomaly is noticed by the operation.



 

67 
 

 

Figure 5.7. Measured and predicted process value (top), Reconstruction error (bottom)  

                  for Case 1 
 

5.3.3. EWMA 

Next, EWMA method is implemented for the leak case. For the implementation, 

a two-month data training set is selected, and the model is trained. Residual calculation 

was made using MLR method. UCL, LCL and CL values are calculated by using Equation 

32, Equation 33 and Equation 34 in method section 3.3.4 as 9, -9, 2 according to the 

training set. λ is calculated as 0.97. λ is close to 1 as expected because weights of last 

measurement are dominant. The obtained residual versus time graph is shown in Figure 

5.8. The region between the UCL and LCL is the control region. Data which is out of the 

control region give us the information about existence of the anomaly in the system. The 

moment when the leak is first noticed by operation engineers is shown on the figure with 

a blue star. The leak probably started earlier than the operation engineers noticed it as the 

purple rectangle in Figure 5.8 shows deviation out of the control region. It is seen that 

EWMA can successfully indicate the leak in the system.  In fact, with this method, a leak-

related early warning mechanism can be possible to implement. 
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Figure 5.8. EWMA of the residual for Case 1(UCL=9, LCL=-9, CL=2, λ =0.97) 

 

5.4. CASE 2 & CASE 3 

Case 2 and Case 3 are two different leak cases that took place in the same year. 

There is a 3-month timeframe between the two leak cases. Therefore, leaks are tried to be 

detected using the same training dataset and results are shared in a single graph. As in 

Case 1, the valve opening is used as the input for DWT, and LTMD along with all other 

inputs are used as inputs for AE and EWMA. Like other leak cases, the leaks in Case 2 

and Case 3 are noticed by the increase in the pressure of the separator (2) and thereby the 

increased opening of the valve that controls the pressure, as outlined in section 3.2.1. As 

in Case 1, DWT, AE and EWMA methods are implemented for the Case 2 and 3. 
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5.4.1. DWT 

For the Case 2 and Case 3, evaluation metrics are calculated and shown on Table 

5.4. Sym 4 is selected as a mother wavelet with respect to PSNR, MAE and MSE values. 

 

 

Table 5.4. Performance metrics for wavelet selection (TUPRAS Case 2 & Case 3) 

Wavelet Type MSE MAE PSNR Cross correlation 

Haar 1.102 0.644 39.576 0.997 

Sym4 0.921 0.701 40.142 0.999 

Db4 1.296 0.707 38.874 0.997 

Db8 1.515 0.750 38.196 0.997 

Sym8 1.324 0.723 38.779 0.997 

Sym3 1.217 0.692 39.147 0.998 

Sym2 1.159 0.668 39.359 0.997 

 

 

The 5-level DWT graph obtained with sym4 mother wavelet is shown in Figure 

5.9. The x-axis represents the sample number, while the y-axis represents the detail 

coefficients, the approximation coefficient at the highest level, and the reconstructed 

signal (from bottom to top). Pattern changes such as unit current changes, downtimes for 

short-term maintenance, and leaks are more prominently observed at level 5, as in the 

DWT result for Case 1. It is seen that the DWT method successfully detects the anomalies 

of both Case 2 and Case 3 in a single run.  
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Figure 5.9. 5-level DWT decomposition for Case 2 and 3 
 

 

5.4.2. AE 

It was difficult to choose a training data set, as there were too many shutdowns 

and flowrate changes during the year. The normal operation values of the unit are decided 

upon consultation with the operation engineers and the model was trained accordingly. 

The MSE value with respect to the epoch number is shown in Figure 5.10 below. The 

most suitable epoch number for training this model was determined as 500 with the MSE 

value of 0.0012. This value is quite high compared to Case 1 due to using a dataset with 

the shorter time interval to train the model for both Case 2 and Case 3. 
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Figure 5.10. Learning curve for Case 2 &3 
 

 

It was observed that the variables changed a lot because of the operational changes 

during the year in which the Case 2 and Case 3 took place. This situation is discussed in 

detail with the operation engineers.  While determining the training dataset, we try to 

focus on more stable time periods where the change in data is small. The AE results are 

as shown in Figure 5.11. Although the change in the variables is very high during the 

year, these changes are not as much as the variation in the signal before the leak. As seen 

in Figure 5.11, it is possible to detect the leaks in both Case 2 and Case 3 in a single run 

using AE. 
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Figure 5.11. Measured and predicted process value (top), Reconstruction error (bottom)  

                     for Case 2 & 3 

 

5.4.3. EWMA 

Finally, the EWMA method is applied. The model is trained with the selected 

training set and the results are shown in the Figure 5.12 below. UCL, CL and LCL values 

were calculated as 7.23, 0 and -7.23, respectively. λ value was determined as 0.968. This 

value is close to 1 and indicates that the last measurements are dominant. This behavior 

is similar to Case 1. Accordingly, the dataset we train the model with belongs to the days 

just before the test dataset. A control region was determined with UCL and LCL lines, 

and points outside this area are accepted as anomalies or shutdown. It is seen that the 

leaks in both Case 2 and Case 3 are easily detected using EWMA in a single run. 
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Figure 5.12. EWMA of the residual for case 2&3 (UCL=7.23, LCL=-7.23, CL=0,   

                    λ=0.968)  

 

 

While applying all these methods, datasets corresponding to shutdown dates could 

be filtered; however, filtering was not done in this study. The valve opening can increase 

and reach 100% levels both in leakage and shutdown situations. Operation engineers and 

operators will be able to make the distinction between shutdown and leak cases easily 

because they already have control over the shutdown. 

 

5.5. CASE 4 

Finally, a different leakage case occurred in the same heat exchanger. This leakage 

was also noticed by the increase in the valve opening that controls the pressure of 

separator (2), as outlined in section 3.2.1. DWT, AE and EWMA methods that are applied 

on the above cases are also applied for this case. As in the other cases analyzed so far, the 

valve opening is used as the input for DWT, and LMTD along with all other inputs are 

used as inputs for AE and EWMA.  
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5.5.1. DWT 

The DWT results for Case 4 are shown in Figure 5.13 A 5-level decomposition is 

applied and sym 3 mother wavelet is used. Evaluation metrics are calculated and shown 

in Table 5.5.  

 

 

Table 5.5. Performance metrics for wavelet selection (TUPRAS Case 4) 

Wavelet Type MSE MAE PSNR Cross correlation 

Haar 1.147 0.716 39.406 0.996 

Sym4 1.223 0.735 39.127 0.996 

Db4 1.241 0.734 39.061 0.995 

Db8 1.402 0.761 38.531 0.995 

Sym8 1.246 0.738 39.043 0.996 

Sym3 1.210 0.731 39.423 0.997 

Sym2 1.071 0.79 39.924 0.998 

 

 

Changes in the variables occurred frequently this year. At the same time, the 

shutdown that occurs in different units also affect the variables in this unit because the 

unit feed consists of a combination of products from several units. We can detect the leak 

in Case 4 with the DWT method.  
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Figure 5.13. 5 level DWT decomposition for Case 4 

 

5.5.2. AE 

Due to the complexity of the unit, the training set selection for this case is made 

together with the operation engineers. The MSE values are shown in the Figure 5.14 

below and the epoch number is set to 500 with the MSE value of 0.0045. The AE method 

has been applied and the resulting plots are shown in the Figure 5.15. The predicted values 

and the actual measurements are shown in the top, and the reconstruction error graph 

based on the method result is shown at the bottom. The region on the right marked in red 

belongs to the leak case. There is no indication of leakage before the leak is noticed and 

the unit is shutdown by operation engineers. The reason for this behavior might be the 

volume of leakage being large. Although it may seem difficult to distinguish between 

leakage and flowrate changes here, it will not be a problem since the flowrate change is 

already known and controlled by engineers and operators.  
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Figure 5.14. Learning curve for Case 4 

 

 

 

Figure 5.15. AE results for Case 4 (Measured and predicted process value (top), and   

                     reconstruction error (bottom)) 
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5.5.3. EWMA 

In order to reach a decision using a single method is not generally acceptable. It 

should be interpreted with the results of other methods. For that reason, EWMA is also 

implemented on the Case 4. UCL, CL and LCL values are determined as 4.72, 0 and -

4.72, respectively. λ is calculated as 0.96. Points outside the control area are designated 

as anomalies and these are identified as leaks or operational changes and are shown in the 

Figure 5.16. It is seen that EWMA detects the leak successfully in Case 4.  

 

 

Figure 5.16. EWMA of the residual for Case 4 (UCL=4.72, LCL=-4.72, CL=0, λ =0.96) 
 

5.6. Summary of Results 

The methods to be used on the real process data from TUPRAS Historian database 

are tested on a TEP benchmark dataset known to contain anomalies. Training and test 

data sets are shared separately on the web for TEP. Two data sets are combined at the 
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beginning of the study in order to clearly see the difference when there is an anomaly. 

Since there are too many variables in the TEP benchmark dataset, PCA method is applied 

to select the variables that are highly associated with the selected anomaly type. DWT, 

AE and EWMA methods are applied. In the DWT method, the transition between normal 

and anomaly data sets are observed sharply. The 5th-level is the level where leak is the 

most obvious. In the AE method, the selection of the training dataset to be used in model 

training is easy, as the studied TEP dataset had already separate training and test datasets. 

As expected, the difference between the input data and the reconstructed data started to 

increase with the onset of the anomaly. Likewise, the EWMA method also indicated the 

anomaly clearly. Overall, anomaly could be detected with each method applied in TEP 

benchmark dataset. 

The same methods are applied for the leakage cases in TUPRAS. There are four 

different leakage cases in total. All leaks were noticed by the increase in the valve opening 

that controls the pressure of the separator (2) located after the heat exchanger and the 

operation is stopped, as outlined in section 3.1.1. The operator, process and operation 

engineers who are responsible for the unit do not have information about the start time-

date of the leak.  Since the unit under investigation is large and complex, the variables 

that might be related to leakage are decided by the operation engineers and the data 

regarding for those variables is obtained from TUPRAS Historian database. The PCA 

method is applied to understand the relationships between the variables suggested by 

operation engineers. It was seen that there is an opposite relation between valve opening 

and the shell outlet temperature and positive relation between the valve opening and other 

variables.   

First, Case 1 is studied. For DWT method, evaluation metrics as MAE, MSE and 

PSNR are considered for selection of mother wavelet. Db4 is selected as the mother 

wavelet with the highest PSNR and lowest MSE and MAE values. The meaning of high 

PSNR is a good frequency resolution. Similar to the results obtained with the TEP 

benchmark, the 5th-level is the level where the anomaly is clearly observed. The changes 

that can be observed on variables such as leak detection, flowrate change, and equipment 

replacement can also be detected by the method. In AE, the training dataset is selected in 

the normal operating range of the unit. The difference between the test data and 

reconstructed data is examined. An increase in error values is observed with the presence 

of the anomaly. In the EWMA method, data is predicted using the MLR method and the 

residual is calculated by taking the difference between the test and prediction data. 
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Control limits are determined using the training data set, and the points out of these limits 

are indicated as anomalies. All three methods are found to be able to detect anomalies. 

Case 2 and Case 3 are observed in the same year. Therefore, the results are shown 

on the same graphs. With the DWT method, operational changes and leaks can be 

detected, but there was no indication of the presence of the leak a few days ago before the 

leak as opposed to Case 1. While applying the AE and EWMA methods, it is difficult to 

select the training dataset because lots of flowrate change, shutdown and equipment 

replacement situations are encountered during the year. Two different leakage cases 

occurred, and downtimes were experienced due to them. The normal leak-free operating 

time of the unit is limited. With the AE method, an increase in error values was observed 

before the moment when both Case 2 and Case 3 leaks are noticed by the operation 

engineers. In the EWMA method, the detection of the leak can not be noticed beforehand. 

For Case 4, first the DWT method is applied. Similar results are obtained in for 

Case 4 as in other cases. It is difficult to determine the training data set for AE in Case 4 

as in Case 2 and Case 3, since there are operational changes in the timeframe of the 

dataset. Therefore, no leak indications are observed a few days before the leak using the 

AE and EWMA methods. The reason for these is interpreted as the leakage started with 

high volume and is immediately noticed by operation engineers and unit is shutdown. 

Engineers would prefer to receive alerts when data exceeds a certain threshold. 

Among these methods implemented in this study, we can say that EWMA and AE 

methods are more suitable for their requirements. Operational changes in TUPRAS cases 

are also observed as anomalies in method results. Since these changes are already known 

and controlled by the operator and operation engineers, they will not be considered as an 

anomaly. 
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CHAPTER 6 

 

CONCLUSION 

 

In this thesis, it has been investigated whether data-based methods can detect leaks 

in heat exchangers. First, the methods used for leak detection in heat exchangers were 

searched for in the literature. The use of hardware-based methods is common in the 

literature, and they are usually offline detection systems. The aim of this thesis is to create 

a data-based online leak detection mechanism with real process data. For this purpose, 

data-based anomaly detection methods were investigated and DWT, AE and EWMA 

methods are applied. Before working with real data, methods were validated on the TEP 

benchmark dataset to detect anomalies. Then, the validated methods are applied on the 

real process data. Obtained results are shared below. 

• Leakage is one of the most common anomalies or faults in the refinery. 

• While the leaks occurring on the pipelines can be easily noticed, it is very difficult 

to detect the leaks on the equipment. 

• In the literature, data-based studies for the detection of leaks in heat exchanger are 

very limited. 

• DWT, EWMA and AE methods were able to detect leak both in TEP data and real 

process data. 

• The choice of mother wavelet and level are important when applying the DWT 

method. 

• The selection of training datasets is important when training the model for EWMA 

and AE methods. 

• EWMA and AE methods take into account the values of other variables 

determined in the unit. 

• Working with real data increases complexity. The results obtained with the TEP 

benchmark dataset are clearer.  

• Since the real case is complex, it is safer and more conclusive to implement 

several different methods simultaneously. 

The recommendations for further studies can be listed as follows: 
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• Different data-based methods can be used. 

• The methods can be merged with each other. 

• Cross validation can be applied to determine training and test datasets. 

• Results can be supported with different heat exchanger data to test a wider window 

of applicability and accuracy of the methods. 
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ABBREVIATIONS 

 

EPA Environmental Protection Agency 

VOC Volatile Organic Compound 

FFT Fast Fourier Transform 

SPC Statistical Process Control 

PCA Principal Component Analysis 

RCV Remote Control Vehicles 

IT Infrared Thermography 

NPW Negative Pressure Wave 

PPA Pressure Point Analysis 

PCA Principle Component Analysis 

PC Principle Component 

CL Control Limit 

UCL Upper Control Limit 

LCL Lower Control Limit 

IUPU Integrated Unicracking Processing Unit 

CN Coker Naphtha 

HCGO Heavy Coker Gas Oil 

LCGO Light Coker Gas Oil 

HVGO Heavy Vacuum Gas Oil 

LVGO Light Vacuum Gas Oil 

HCU Hydrocracker Unit 

HC Hydrocarbon 

NHT Naphtha Hydro-Treater 

DHT Diesel Hydro-Treater 

LMTD Log Mean Temperature Difference 

PSNR Peak Signal to Noise Ratio 

MAE Mean Absolute Error 

MSE Mean Square Error 

TEP Tennessee Eastman Process 
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PV Process Variable 

MV Manipulated Variable 

IDV Disturbance Variable 

EWMA Exponentially Weighted Moving Average 

Db Daubechies 

Sym Symlet 

ReLU Rectified Linear Unit 

EMA Exponential Moving Average 

FCU Fan Coil Units 

RELAP Reactor Excursion and Leak Analysis Program 

MLR Multiple Linear Regression 
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