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Abstract: In a recent advance, zirconium triselenide (ZrSe3) nanosheets with anisotropic and strain-
tunable excitonic response were experimentally fabricated. Motivated by the aforementioned
progress, we conduct first-principle calculations to explore the structural, dynamic, Raman response,
electronic, single-layer exfoliation energies, and mechanical features of the ZrX3 (X = S, Se, Te) mono-
layers. Acquired phonon dispersion relations reveal the dynamical stability of the ZrX3 (X = S, Se,
Te) monolayers. In order to isolate single-layer crystals from bulk counterparts, exfoliation energies
of 0.32, 0.37, and 0.4 J/m2 are predicted for the isolation of ZrS3, ZrSe3, and ZrTe3 monolayers,
which are comparable to those of graphene. ZrS3 and ZrSe3 monolayers are found to be indirect gap
semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV, whereas the ZrTe3 monolayer yields
a metallic character. It is shown that the ZrX3 nanosheets are relatively strong, but with highly
anisotropic mechanical responses. This work provides a useful vision concerning the critical physical
properties of ZrX3 (X = S, Se, Te) nanosheets.

Keywords: ZrSe3; electronic; mechanical; exfoliation energy; phonon dispersion

1. Introduction

After the experimental isolation of graphene [1–3] reported in 2004, two-dimensional
(2D) nanomaterials have been extending continuously, owing to their exceptional physical
and chemical properties. High surface-to-volume ratios in 2D systems can not only evolve
to exceptional electronic and optical features, but are also highly appealing for practical
chemistry-related applications, such as sensing and energy storage. In recent years, several
2D crystals with interesting physical properties have been fabricated, such as MoSi2N4 [4,5],
fluorinated diamane [6], penta-palladium phosphide selenide (PdPSe) [7], niobium ox-
ide diiodide (NbOI2) [8], penta-palladium phosphide sulfide (PdPS) [9], graphene-like
BC2N [10], and penta-nickel diazenide (NiN2) [11] nanosheets. Highly bright prospects for
the application of 2D nanomaterials in critical technologies and their outstanding physical
and chemical features act as a continuous driving force for experimental endeavors to
design and fabricate novel crystals. In line with continuous experimental accomplishments
in the field of 2D nanomaterials, most recently Li et al. [12] succeeded in the exfoliation
of the zirconium triselenide (ZrSe3) nanosheets. Experimental observations and theoreti-
cal calculations confirm highly anisotropic and strain-tunable semiconducting excitonic
effects in ZrSe3 nanosheets [12]. This experimental advance also highlights the appeal-
ing possibility of the exfoliation of zirconium trisulfide and tritelluride (ZrS3 and ZrTe3)
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nanosheets, also with anisotropic and strain-tunable electronic and optical properties. As
a novel class of synthesizable 2D materials, which have been already predicted to yield
appealing thermoelectricity [13,14], the objective of this study is to theoretically explore the
structural, phonon dispersion relations, Raman spectra, single-layer exfoliation energies,
and mechanical features of ZrX3 (X = S, Se, Te) nanosheets by employing density functional
theory (DFT) calculations.

2. Computational Methods

DFT calculations were carried out using the Vienna Ab-initio Simulation Package [15,16]
with the GGA/PBE and DFT-D3 [17] vdW dispersion correction. The plane wave and
self-consistent loop cutoff energies were set to 400 and 10−6 eV, respectively. In order to
find optimized geometries, atomic positions were relaxed using a conjugate gradient algo-
rithm until Hellman–Feynman forces dropped below 0.001 eV/Å [18] with an 11 × 11 × 1
and 9 × 9 × 5 Monkhorst–Pack [19] K-point grid for the monolayer and bulk systems,
respectively. The stress-free structures were acquired by isotropically changing the in-
plane lattice dimensions. Periodic boundary conditions were considered in all directions,
with a 23 Å box-size along the out-of-plane direction of the monolayers to avoid artificial
interactions. Moment tensor potentials (MTPs) [20] were fitted to evaluate the phonon
dispersion relations, using the same approach as that employed in our recent work [21].
Phonon dispersions on the basis of trained MTPs were acquired in conjunction with the
PHONOPY [22] code over 4 × 5 × 1 supercells, as elaborately discussed in our previous
work [23]. For the investigation of Raman activities of each phonon mode, firstly, the
zone-center phonon vibrations were calculated in terms of the phonon frequencies and the
vibrational displacements. For each optical phonon mode, the derivative of the macroscopic
dielectric tensor with respect to the normal mode of each vibration was investigated using
the finite-difference method.

3. Results and Discussion

Figure 1 depicts different views of the crystal structure of the ZrX3 (X = S, Se, Te)
monolayers. According to Figure 1, a ZrX3 monolayer includes a rectangular primitive unit
cell with a P21/M (No. 11) space group and highly anisotropic atomic arrangement along
the x and y directions. A ZrX3 monolayer can basically be considered laterally aligned
(along the x direction) and alternatively inverted triangular prismatic ZrX3 chains, which
are connected through Zr-X bonds in the zx plane (la

Zr−X). The inter-chain Zr-X bonds (laZr−X)
were found to be longer than the Zr-X bonds within the chain (lbZr−X). This observation
was expected to lead to anisotropic mechanical, optical, and electronic properties in the
ZrX3 monolayers. Table 1 summarizes the optimized lattice constants, bond lengths, and
calculated band gap properties of each ZrX3 monolayer. Our predicted lattice constants
for ZrX3 monolayers agree well with previous data: a = 5.138 Å and b = 3.619 Å for ZrS3,
a = 5.423 Å and b = 3.745 Å for ZrSe3, and a = 5.942 Å and b = 3.909 Å for ZrTe3 [12]. For
the bulk structures the box size along the out-of-plane direction for the ZrS3, ZrSe3, and
ZrTe3 monolayers were found to be 9.01, 9.46, and 10.14 Å, respectively, with excellent
agreement with corresponding experimental values of 8.98 [24], 9.43 [24], and 10.10 Å [24],
respectively. In the Supplementary Materials document, the complete crystal data for the
single-layer and bulk ZrX3 systems are given. According to spin-polarized calculations,
we found that these systems are not magnetic. Looking carefully to the crystal structure
of a ZrX3 monolayer, two different types of X atoms can be identified: surface X atoms,
which exist in pairs (X2), and the internal ones, which contribute to the inter-chain binding
and only coordinate with the Zr atom. Our calculated bond lengths for X2 were 2.07, 2.38,
and 2.83 Å, which are only slightly different than the typical values for single covalent S-S,
Se-Se, and Te-Te bonds [25,26]. According to Bader charge analysis, Zr atoms are positively
charged and transfer electrons to the surface and internal chalcogen X atoms, indicating
that electrostatic interactions play a key role in keeping the structural integrity of ZrX3
monolayers. The amount of charge exchange decreased as the electronegativity of chalcogen
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X atoms decreased: 1.77 e for ZrS3, 1.61 e for ZrSe3, and 1.33 e for ZrTes3. Although all
chalcogen atoms were negatively charged, it was found that surface X atoms yielded almost
twice the charge as those of the internal counterparts. The electron localization pattern
along the Zr-X bonds shown in Figure 1b also supports the idea of the dominance of ionic
interaction within the ZrX3 monolayers. The electron localization maps also show the
gradual increase in electron localization in between adjacent surface X2 moieties from ZrS3
to ZrTe3 monolayers. For the case of ZrTe3, an appreciable electron localization was found
in between adjacent surface Te2 moieties (find Figure 1d), indicating interactions between
them. It is worth noting that our calculated distance between surface Te2 moieties in the
ZrTe3 monolayer was 3.05 Å, which is only slightly larger than Te-Te bonds calculated for
experimentally synthesized 2D α- and β-Te: 3.02 Å [27]. Therefore, surface Te2 moieties
in the ZrTe3 monolayer can actually be considered infinite Te2 chains extended along the
x direction. In other words, by comparing the ELF contours for the over-surface non-
bonded X-X bonds, around the center of the Te-Te pairs (Figure 1d), the ELF values were
considerably higher than those in the corresponding S-S (Figure 1b) and Se-Se (Figure 1c)
pairs, which reveals the formation of stronger Te-Te interactions in the ZrTe3 monolayer.
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Figure 1. (a) Crystal structure of the ZrX3(X = S, Se, Te) monolayers. The primitive cell, first Brillouin
zone, a prismatic chain of ZrX3 (red dashed-line rectangle), surface X2 moieties, and Zr-X bonds in
zx and zy planes (la

Zr−X , lb
Zr−X ) are also distinguished. (b–d) Contour maps of electron localization

function (ELF) for the ZrX3 monolayers. The regions in between surface X2 moieties are shown by
red dashed-line ellipses. In this figure, green, yellow, orange, and dark yellow circles indicate Zr, S,
Se, and Te atoms, respectively.

After an effective analysis of the structural and bonding characteristics of the ZrX3
monolayers, we next examined their dynamic stability by evaluating phonon dispersion
relations. The predicted phonon dispersion along highly symmetrical points for the ZrS3,
ZrSe3, and ZrTe3 monolayers are illustrated in Figure 2. As the first important finding, the
phonon modes were free of imaginary frequencies, confirming the dynamic stability of
these systems. By increasing the atomic number of chalcogen atoms in the ZrX3 nanosheets,
it was clear that although preserving the general form of dispersions, the phonon modes
showed narrower frequency ranges, which indicates lower group velocity. It is noticeable
that all acoustic and optical modes appeared with considerable intersections, stimulating
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the scattering and reducing the lifetime for modes with higher frequencies. With generally
lower group velocity and lifetime, it was expected that by increasing the atomic number of
chalcogen atoms in ZrX3 nanosheets, they would show lower lattice thermal conductivity,
which is consistent with recent theoretical results for the ZrS3 [13] and ZrTe3 [14] systems.

Table 1. Structural and electronic properties of ZrX3 (X = S, Se, Te) monolayers.

Lattice a,b (Å) 1 la
Zr−X, lb

Zr−X (Å) 2 lintra
X−X (Å) 3 linter

X−X (Å) 4 Q(Zr,Xsurface,Xinternal)
(e) 5

EPBE
g /EPBE+SOC

g / EHSE06
g /

EHSE06+SOC
g (eV) 6

ZrS3 5.13,3.63 2.72, 2.61 2.07 3.06 1.77,−0.41,−0.95 1.06/1.06/1.93 (Γ-X)→Γ/1.93

ZrSe3 5.41,3.76 2.87, 2.74 2.38 3.03 1.61,−0.38,−0.85 0.33/0.27/1.01 Γ→X/0.93

ZrTe3 5.89,3.92 3.16, 2.98 2.83 3.05 1.33,−0.34,−0.64 Metal/Metal/Metal/Metal
1 PBE optimized lattice parameters along x and y directions, respectively (Figure 1). 2 Bond lengths of those Zr-X
bonds that are in the xz and yz planes, respectively (Figure 1). 3 Bond length of covalently bonded X2 moieties
(Figure 1). 4 Distance between adjacent X2 moieties. 5 Average Bader charges on each of the Zr atoms, X atoms of
X2 moieties (Xsurface), and internal X atoms (Xinternal), respectively (Figure 1). 6 Band gaps using PBE functional
(EPBE

g )/PBE functional with inclusion of spin-orbit coupling (SOC) effect/ HSE06 functional (EHSE06
g )/HSE06

functional with inclusion of SOC effects (EHSE06+SOC
g ). For ZrS3 and ZrSe3, K-points at which valance band

maximum and conduction band minimum occurs are shown in parentheses.
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The Raman spectrum of each ZrX3 monolayer is shown in Figure 3. Apparently, due
to the same crystal symmetry of each monolayer ZrX3, the number of Raman active modes
was the same in all structures. It is seen that there existed three prominent Raman active
phonon modes for each monolayer structure. The three prominent peaks are labeled I, II,
and III, as shown in the figure. As the chalcogenide atom changed from S to Te, which
means the atomic radius increased, the frequency of each prominent peak displayed red
shift due to the larger atomic mass. In addition, the motion of individual atoms showing the
vibration of the corresponding phonon mode is also given in the right panel of the figure.
The phonon mode I was calculated to be at the frequencies 522, 292, and 151 cm−1 for ZrS3,
ZrSe3, and ZrTe3 monolayers, respectively. Apparently, mode I arose from the in-plane
vibration of the outermost chalcogenide atoms against each other. On the other hand,
modes II and III stemmed from the out-of-plane vibration of the Zr and chalcogenide atoms.
The frequencies of modes II/III were calculated to be 321/274, 220/171, and 74/62 cm−1

for the ZrS3, ZrSe3, and ZrTe3 monolayers, respectively. The mode II phonon represents the
out-of-plane vibration of the internal chalcogenide atoms against Zr atoms, whereas the
outermost chalcogenide atoms made little contribution to the vibration. Finally, the mode
III phonon arose from the out-of-phase vibration of each atomic level with respect to each
other, that is, the outermost chalcogenide atoms vibrated against each other, and Zr atoms
also moved out of phase. The three characteristic phonon peaks were quite important for
the detection of the ZrX3 monolayers.
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Worth mentioning is that to prepare 2D materials, the common approaches include
mechanical exfoliation, chemical vapor deposition (CVD), and liquid-phase exfoliation. The
mechanical exfoliation of bulk 2D materials into single or multiple layers can be achieved
by using external driving forces [28–30]. Before analyzing the electronic properties, it is thus
very useful to investigate the mechanical exfoliation energy required for the isolation of
the ZrS3, ZrSe3, and ZrTe3 monolayers from their native bulk structures. For this purpose,
we first acquired the energy-minimized six-layer slabs of the ZrX3 nanosheets, with the
same stacking pattern as that of their bulk systems. In the next step, the last layer was
steadily separated toward the out-of-plane vacuum direction, with a small step of 0.25 Å.
The change in the energy of the systems was subsequently calculated and the cleavage
energy was recorded. As shown in Figure 4, the relative energies showed sharp initial
increases and later reach converged values. According to our DFT-D3 simulations, the
exfoliation energies of 0.32, 0.37, and 0.40 J/m2 were predicted for the isolation of the ZrS3,
ZrSe3, and ZrTe3 monolayers, which are comparable to that of graphene: 0.37 J/m2 [31].
These findings reveal that the separate layers in these systems showed relatively weak
interactions and moreover highlight that by increasing the atomic number of chalcogen
atoms, the exfoliation energy increased, consistent with earlier studies [32]. We remind
that Li et al. [12] synthesized ZrSe3 nanosheets via the mechanical exfoliation method.
Taking into account our predictions for the exfoliation energies and the aforementioned
experimental achievement, the experimental isolation of ZrS3 and ZrTe3 monolayers from
their bulk structures is very bright.

To explore the electronic characteristics of the ZrX3 monolayers, we calculated elec-
tronic band structures using PBE and the more accurate HSE06 functional. The effect of
spin-orbit coupling (SOC) on band gap properties of ZrX3 monolayers was also exam-
ined. Figure 5 depicts the HSE06 band structures of the ZrX3 monolayers without and
with the inclusion of SOC effects. The corresponding PBE results are also given in Figure
S1 in the Supplementary Materials. Band-gap values as well as transition k-points for
HSE06 results are listed in Table 1. According to results shown in Figure 5 and Table 1,
the ZrS3 and ZrSe3 monolayers were indirect gap semiconductors with HSE06 band gaps
of 1.93 and 1.01 eV. In the ZrS3 monolayer, VBM was located at a k-point on the Γ-X path
(0.184210 k1 + 0 k2, k1 and k2 are lattice vectors of reciprocal space) and CBM was located
at the Γ point. The direct gap at the Γ point in ZrS3 was only 0.08 eV larger than the indirect
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gap, indicating that ZrS3 may behave as a quasi-direct gap semiconductor. VBM and CBM
in the ZrSe3 monolayers, were, however, located at the Γ and X points, respectively. Both
band gap values and transition k-points are in good agreement with previous data (1.92 eV
for ZrS3 and 0.92 eV for ZrSe3) [33]. It can be seen that for each of the ZrS3 and ZrSe3
monolayers, PBE and HSE06 band structures looked similar, except the PBE band gaps,
as expected, were underestimated. It was also observed that the inclusion of SOC did not
yield a detectable effect on the band structure of the ZrSe3, but it reduced the HSE06 (PBE)
band gap of the ZrSe3 monolayer by 0.08 (0.06) eV (find Figures 5 and S1). Unlike the ZrS3
and ZrSe3 monolayers, the ZrTe3 monolayer exhibited a metallic character irrespective of
the functional used, which is also in agreement with a previous report [33].
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tion distance.

In order to further rationalize the band-gap change trend in ZrX3 monolayers, for
each one, we calculated atom-type projected density of states (PDOS) and charge density
distributions of valance band maximum (VBM) and conduction band minimum (CBM),
as shown in Figure 5. For the three monolayers, VBM was mainly contributed by internal
X-(py,pz) with a minor contribution from Zr-(py,dyz,dxy), representing a shallow bonding
s(Zr-X) state. Considering the fact that the energy position of p orbitals of chalcogen X
atom increased from S to Te, VBM in the ZrX3 monolayers was expected to move upward
in energy from the ZrS3 to ZrTe3 monolayer. This expectation was confirmed by the
absolute energy positions of VBMs of the ZrS3, ZrSe3, and ZrTe3 monolayers, calculated
to be −6.57, −5.68, and −5.21 eV, respectively. CBM in the ZrS3 lattice was made of
Zr-(s,dz2 ,dx2−y2), representing a bonding (Zr-Zr) state propagating along the y direction.
The charge densities of CBMs in the ZrSe3 and ZrTe3 monolayers were, however, almost
exclusively distributed over surface X2 moieties, and they both represented bonding (X-X)
states made of X-(s,px,pz). As our electron localization analysis revealed, the strengths
of interaction between adjacent X2 moiety increased from ZrS3 to ZrTe3. The stronger
the interaction between X2 moieties, the lower the absolute energy position. Putting the
conclusions together, from ZrS3 to ZrTe3, VBM shifted upward in energy whereas CBM
shifted downward, leading to smaller band gaps (Eg(ZrS3) > Eg(ZrSe3) > Eg(ZrTe3)).
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projected density of states. For ZrS3 and ZrSe3, charge density distributions of their VBMs and CBMs
are also shown. For ZrTe3 that exhibits a metallic character, charge density distributions at two
k-points below and above (−0.02 < EK − EFermi < 0.02 eV) its Fermi level are shown. For both ZrS3

and ZrSe3, VBM of HSE06 + SOC calculation is set to 0 and HSE06 band energies are aligned using
vacuum-level calculations.

Finally, we examined the mechanical responses by performing uniaxial tensile sim-
ulations along the x and y directions, as distinguished in Figure 1. Uniaxial stress–strain
responses of the ZrX3 monolayers along the x and y directions are illustrated in Figure 6. In
these results, real volumes of the deformed lattices were considered in the conversion of the
stress values to the standard GPa unit [34–36]. The real area of the deformed nanosheets
can be obtained using the simulation box sizes along the in-plane directions. The real
volume at every strain was calculated by finding the normal distance between boundary
chalcogen atoms plus their effective vdW diameter. According to our geometry-optimized
bulk lattices, the thicknesses of the stress-free ZrS3, ZrSe3, and ZrTe3 monolayers were
predicted to be 9.01, 9.46, and 10.14 Å, respectively, equivalent to the effective vdW dimeters
of 3.05, 3.20, and 3.26 Å for the S, Se, and Te atoms in the ZrX3 monolayers, respectively. The
stress–strain curves plotted in Figure 6 are uniaxial, which means that during the complete
deformation and after the geometry minimization, these kagome monolayers exhibited
a stress component only along the loading direction and showed negligible values along
the two other perpendicular directions. As expected, and stemming from the anisotropic
structure, the stress–strain curves along the x and y directions were considerably different,
confirming highly anisotropic mechanical features. The elastic modulus of ZrS3, ZrSe3,
and ZrTe3 monolayers along the x (y) directions were predicted to be 93 (142), 90 (118),
and 120(56) GPa, respectively. The ultimate tensile strength of the ZrS3, ZrSe3, and ZrTe3
monolayers along the x (y) directions were predicted to be 6.2 (16.5), 4.9 (17.4), and 4.6 (11.8)
GPa, respectively. As expected, due to the existence of more connecting bonds along the y
direction than the x counterpart, these systems showed considerably higher tensile strength
along this direction. The same observation is also consistent for the elastic modulus of
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the ZrS3 and ZrSe3 monolayers. The ZrSe3 monolayers unexpectedly showed a higher
elastic modulus along the x direction, which, as discussed earlier with the ELF results,
was due to the formation of continuous over-surface Te-Te interactions along this direction
in this system. As is clear, due to the multifaceted structural and bonding effects, the
ZrX3 nanosheets showed highly anisotropic and complex mechanical behavior. Worthy to
mention that complex material properties can be explored using MTPs with high accuracy
and accelerated computational costs [37–41].

Energies 2022, 15, x FOR PEER REVIEW 8 of 11 
 

 

nanosheets can be obtained using the simulation box sizes along the in-plane directions. 

The real volume at every strain was calculated by finding the normal distance between 

boundary chalcogen atoms plus their effective vdW diameter. According to our geometry-

optimized bulk lattices, the thicknesses of the stress-free ZrS3, ZrSe3, and ZrTe3 monolay-

ers were predicted to be 9.01, 9.46, and 10.14 Å , respectively, equivalent to the effective 

vdW dimeters of 3.05, 3.20, and 3.26 Å  for the S, Se, and Te atoms in the ZrX3 monolayers, 

respectively. The stress–strain curves plotted in Figure 6 are uniaxial, which means that 

during the complete deformation and after the geometry minimization, these kagome 

monolayers exhibited a stress component only along the loading direction and showed 

negligible values along the two other perpendicular directions. As expected, and stem-

ming from the anisotropic structure, the stress–strain curves along the x and y directions 

were considerably different, confirming highly anisotropic mechanical features. The elas-

tic modulus of ZrS3, ZrSe3, and ZrTe3 monolayers along the x (y) directions were predicted 

to be 93 (142), 90 (118), and 120(56) GPa, respectively. The ultimate tensile strength of the 

ZrS3, ZrSe3, and ZrTe3 monolayers along the x (y) directions were predicted to be 6.2 (16.5), 

4.9 (17.4), and 4.6 (11.8) GPa, respectively. As expected, due to the existence of more con-

necting bonds along the y direction than the x counterpart, these systems showed consid-

erably higher tensile strength along this direction. The same observation is also consistent 

for the elastic modulus of the ZrS3 and ZrSe3 monolayers. The ZrSe3 monolayers unexpect-

edly showed a higher elastic modulus along the x direction, which, as discussed earlier 

with the ELF results, was due to the formation of continuous over-surface Te-Te interac-

tions along this direction in this system. As is clear, due to the multifaceted structural and 

bonding effects, the ZrX3 nanosheets showed highly anisotropic and complex mechanical 

behavior. Worthy to mention that complex material properties can be explored using 

MTPs with high accuracy and accelerated computational costs [37–41].  

 

Figure 6. True uniaxial stress–strain relations of the (a) ZrS3, (b) ZrSe3, and (c) ZrTe3 monolayers 

elongated along the y and x directions. 

4. Concluding Remarks 

We studied the structural, phononic, electronic, and single-layer exfoliation energies 

and mechanical properties of ZrX3 (X = S, Se, Te) monolayers. The acquired phonon dis-

persion relations revealed the dynamical stability of the aforementioned 2D systems. Ex-

foliation energies of 0.32, 0.37, and 0.40 J/m2 were predicted for the ZrS3, ZrSe3, and ZrTe3 

monolayers’ isolation, which confirms bright prospects for the mechanical isolation of 

ZrS3 and ZrTe3 monolayers from their native bulk structures. ZrS3 and ZrSe3 monolayers 

were found to be indirect gap semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV, 

whereas the ZrTe3 monolayer yielded a metallic character. The elastic modulus of ZrS3, 

ZrSe3, and ZrTe3 monolayers along the x (y) directions were predicted to be 93 (142), 90 

Figure 6. True uniaxial stress–strain relations of the (a) ZrS3, (b) ZrSe3, and (c) ZrTe3 monolayers
elongated along the y and x directions.

4. Concluding Remarks

We studied the structural, phononic, electronic, and single-layer exfoliation energies
and mechanical properties of ZrX3 (X = S, Se, Te) monolayers. The acquired phonon
dispersion relations revealed the dynamical stability of the aforementioned 2D systems.
Exfoliation energies of 0.32, 0.37, and 0.40 J/m2 were predicted for the ZrS3, ZrSe3, and
ZrTe3 monolayers’ isolation, which confirms bright prospects for the mechanical isolation
of ZrS3 and ZrTe3 monolayers from their native bulk structures. ZrS3 and ZrSe3 monolayers
were found to be indirect gap semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV,
whereas the ZrTe3 monolayer yielded a metallic character. The elastic modulus of ZrS3,
ZrSe3, and ZrTe3 monolayers along the x (y) directions were predicted to be 93 (142),
90 (118), and 120(56) GPa, respectively, and the corresponding ultimate tensile strength
values were found to be 6.2 (16.5), 4.9 (17.4), and 4.6 (11.8) GPa, respectively. It is shown that
because of multifaceted structural and bonding effects, ZrX3 nanosheets showed highly
anisotropic and complex mechanical behavior. The presented DFT results provide an
effective overview of the key physical properties of the ZrX3 (X = S, Se, Te) nanosheets,
which can serve as valuable information for their practical application in nanodevices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en15155479/s1, Figure S1: PBE band structures of the ZrX3 monolayers
without (purple solid lines) and with (red solid line) the inclusion of SOC effects.
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