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Abstract—This paper targets the problem of finding an efficient
distribution of a computational task on a heterogeneous comput-
ing platform. The heterogeneity of the processing elements arise
due to differences in computation speed and memory capacity
of the processors. We first consider using a discrete functional
performance model that integrates processing speed and capacity
of processing elements and then develop a mathematical model
and propose a heuristic mapping algorithm for distributing a
given total workload of size N on p processing elements such
that the total computation time is minimized. Computational
results show that the proposed method provides a significant
improvement in reducing the computation time in comparison to
equal distribution approach.

Index Terms—Heterogeneous Computing Platform, High Per-
formance Computing, Workload Distribution, Task assignment,
Functional Performance Model

I. INTRODUCTION

Many modern computer platforms are built in the form of a
heterogeneous architecture, in which a multi-core CPU system
is integrated with accelerators composed of GPUs, FPGAs,
ASICs, etc. [1]–[3] in order to meet high performance com-
puting applications’ requirements. The heterogeneity arises
from having processing elements of different speed, memory
size, memory access time and communication cost [4]. One
of the significant challenges in the field of parallel computing
is to optimize the performance of a parallel application on
a heterogeneous platform in order to utilize the processing
elements in the best possible way while satisfying certain
conflicting criteria.

Typical parallel software applications consist of computing
routines known as kernels that vary in terms of their indi-
vidual characteristics and requirements [5]. Depending on the
available computing resources, the execution time and memory
usage of such kernels may differ considerably.

This work aims to propose a compile-time efficient mapping
algorithm for parallel applications that will run on a hetero-
geneous platform such that the total execution time of the
overall application is minimized. The success of the algorithm
is measured in terms of the speed-up and cost reduction. The
contributions of the paper can be summarized as follows:

• Functional performance model is used for the purpose of
profiling the tasks on different processing elements.

• A set of workload types based on the profiling step are
generated.

• A priority value is used for each processing element based
on the performance model encountered. Highest priority
indicates the fastest processing element.

• A priority based recursive tree search algorithm is pro-
posed for distributing the existing total workload among
the processing elements using a generated pool of tasks
(kernels).

The rest of the paper is organized as follows: The related
work is discussed in section II. The problem definition and
our proposed method are presented in sections III and IV,
respectively. Computational experiments, evaluation results
and discussions are given in section V. Section VI concludes
and points out some possible future work.

II. RELATED WORK

Workload distribution and task assignment problems have
been investigated widely in the field of parallel and distributed
computing systems research. Different approaches have been
proposed either to tackle a certain aspect of the problem or
to adapt to a certain characteristic of the environment and
the associated hardware. Proposed algorithms and solutions
can be classified as static or dynamic [6]. Static algorithms
require prior information about the parallel program and
the platform. This information is usually assumed to be an
accurate performance model in order to predict the future
execution of the application. The downside of such algorithms
is that the size of the workload is required to be fixed
during run-time and hence they become ineffective if the
load changes over time. Dynamic algorithms, on the other
hand, are more efficient in case the workload changes during
run-time and they tend to move fine-grained tasks between
processors so that balancing can also be achieved (e.g. work-
stealing algorithm). Dynamic algorithms do not require prior
information about the application, however, they may suffer
from communication overhead due to frequent migration of
the data.

Balanced distribution is one of the methods that have been
developed and used widely for the purpose of distributing
the workload on heterogeneous environment [7]. The methods
relies on distributing the workload such that all processing
elements runs and executes their associated tasks using same978-1-6654-4913-7/21/$31.00 ©2021 IEEE20

21
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r, 
In

fo
rm

at
io

n 
an

d 
Te

le
co

m
m

un
ic

at
io

n 
Sy

st
em

s (
C

IT
S)

 | 
97

8-
1-

66
54

-4
91

3-
7/

21
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
IT

S5
26

76
.2

02
1.

96
18

35
3

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 06:40:48 UTC from IEEE Xplore.  Restrictions apply. 



amount of time. Such approaches aim to avoid having under-
loaded or over-loaded processing elements. Another technique
used for distributing the workload is the one proposed by [8],
which is a branch and bound based method adapted for finding
a near optimum solution for the workload distribution problem.

There exist different models that are used to represent
the performance of a processing element while executing a
workload. The simplest model is to use a positive constant
to characterize the application and the computing device; this
number could be task computation time, average execution
time, normalized processor speed, etc. This approach is in-
dependent of the workload size and known as the constant
performance model (CPM) [9]. Another but more advanced
model used for characterizing the performance of a processor
is the functional performance model (FPM) [8], in which the
speed of the processor is modeled as a continuous function of
the problem size.

A. Advanced Performance Model

Within the scope of this work, functional performance
model (FPM) is adapted for the purpose of profiling and
characterizing the performance of the processing elements.
However, instead of using a continuous function of the prob-
lem size, a discrete model is proposed. In order to create
the discrete model, a minimal entity of the workload or the
problem size need to be defined and this minimal workload,
in the rest of the paper, will be named as kernel and denoted
as λ. Other discrete workload sizes are chosen as multiples of
λ. Figure 1 shows the functional performance model for both
ARM A15 and DSP C66 for matrix multiplication application
measured on a TI platform. The application is modeled as two
matrices A and B multiplied with each other yielding matrix C.
Within this setup matrix B is considered as shared data, that is
the whole matrix is accessible to all other processors. While
matrix A is the candidate for partitioning, each processing
element will be assumed to be able to access only a certain
partition of the matrix. The horizontal axis in Figure 1 labeled
as ”A partitions” shows how matrix A is being partitioned, the
partitions being multiples of λ. The minimal workload λ in
this case is chosen as a single row of matrix A. The range of
the workload size goes from one row to all rows of the matrix.
Figure 2 illustrates the partitioning of matrix A. The vertical
access in Figure 1 is the speed measured in terms of MAC
(Multiply-Accumulate) operations per second. The speed of
the i-th processing element is evaluated according to equation
1:

Si(x) =
x

Ti(x)
(1)

• x: Problem size (number of MAC operations)
• Ti(x): Average execution time of size x work on i-th

processing element

It is observed in Figure 1 that FPM monotonically increases
within [λ, nλ] where n is a positive integer, and stays almost
constant after nλ. For example, n = 8 for ARM A15 case.
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Fig. 1. Advanced performance model for matrix multiplication on ARM A15
and DSP C66.

Fig. 2. Example partitioning of matrix A for 3λ

III. PROBLEM DEFINITION

Given a total workload of size N , our aim is to distribute
this workload among a set of processing elements such that
the total execution time is minimized. We assume that the total
workload can be partitioned into smaller sub-tasks, which we
call workload types, of different sizes that can run in parallel.
The following are the definitions of problem variables:

P : set of processing elements
T : set of tasks
W : set of generated workload types
(wi, aij , Di): 3-tuple associated with task ti
wi: workload type of task ti
aij : average execution time of task ti on pj
Di: partition of the workload assigned to ti

uij =

{
1 if ti is assigned to pj

0 otherwise
(2)

Then the problem is to minimize f

f = min (max
j∈P

∑
i∈T

aij · uij ) (3)

subject to ∑
j∈P

uij = 1, i ∈ T (4)

∑
i∈T

∑
j∈P

wi · uij = N (5)

⋂
i∈T

Di = ∅ (6)

Constraint 4 states that each task must be assigned to
a single processing element. Constraint 5 ensures that the
total workload of all assigned tasks sum up to the original
total workload size while constraint 6 ensures that partitions
assigned to tasks do not overlap. uij is a binary utilization
value and the cost function f , aimed to be minimized, is indeed
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the total computation time of the workload based on a certain
assignment.

IV. PROPOSED METHOD

A. Workload Type Generation

Our approach requires a certain number of task types
(workload types) be generated based on apriori timing mea-
surements. Wj is a set of workload types associated with the
j− th processing element and it is made up of entities where
each represents a type (size) of workload. Set Wj is created
using the functional performance model (FPM) of pj . The
set contains all workloads within the range starting from the
minimal workload size up to and including workload having
the maximum speed. This set will then be used later during
the process of dispatching the tasks. When a task is created
as a solution to a partition of the whole task, and dispatched
to a processor, the task’s associated type is to be chosen from
set Wj .

B. Task Distribution Algorithm

In the rest of the paper, the following example is to be
used to demonstrate and clarify the basics of our approach.
Consider N = 16, W = {2, 4, 8}, P = {0, 1} and

A =

2 3
3 4
4 6

 (7)

where rows and columns of the matrix correspond to workload
types and processing elements, respectively and aij is the
average execution time of workload type wi on pj .

First step is to order the workload types for each processing
element based on their speed where speed is found using
equation 1. In the given simple example, let’s assume that the
task categories are ordered as w2, w1, w0 for both processing
elements. A computed priority value is then assigned to each
processing element using the following equation:

priorityj =
maxi∈W Sij∑
j∈P maxi∈W Sij

×N (8)

where Sij is the speed of workload type wi on processing
element pj . In the given example case, N = 16 and the total
number of workload types and processing elements are 3 and
2, respectively. Using equation 8, one can find the priority of
p0 as 9.6 and p1 as 6.4.

Figure 3 shows a snapshot of the search process, the value
at each node represents the remaining size of the unassigned
workload, each edge represents a creation and an assignment
of a task to a processing element. The terminals of the tree
are feasible solutions, the path from the root to a terminal is
the assignment associated with the solution. The value in each
rectangular box is the cost of the corresponding solution. For
this particular example, the root node has a value 16, which
is equal to the total size of the workload.

Our search algorithm picks a processing element and a
workload type and creates a task that is assigned to the selected
processing element. In this step, the processing element with

16

8

0

6

p1 ⇐ t12

4

0

8

p1 ⇐ t21

p1 ⇐ t11

6

2

p1 ⇐ t21

p1 ⇐ t10

p0 ⇐ t02

Fig. 3. Snapshot for the searching process of the algorithm.

the highest priority and the workload type with the highest
speed having capacity fit for the remaining workload are
selected. After assigning the generated task to a processing ele-
ment, the priority of that processing element is decremented. In
figure 3, the notation pj ⇐ tik means that task number i and of
workload type wk is created and assigned to j− th processing
element. For our example, the algorithm creates and assigns
t02 to p0, the remaining workload size is made 8, priority of
p0 is modified by subtracting from it the assigned workload
size hence new priority being 1.6 and the cost accumulated at
that point being 4 (average execution time a02).

Since p1 now has the highest priority, our algorithm creates
and assigns another task t12 with workload 8 to p1. Then
the remaining workload size reduces to 0 and the algorithm
reaches a terminal for which the cost is 6. When a terminal is
encountered, the algorithm backtracks and starts investigating
other possible paths. Eliminating or cutting a branch in the
search tree is also considered in order to reduce the search
space. The case where the algorithm performs the following
assignment, p0 ⇐ t02, p1 ⇐ t10, p1 ⇐ t21 as shown in figure
3, makes the remaining workload size 2, however, the current
cost becomes 7 which is larger than the current global cost,
hence the algorithm may stop expanding that branch.

The pseudo-code of the described tree search is presented
in Algorithm 1. The following are global variables and objects
that needs to be initialized before starting the algorithm:

• RemSize: remaining workload size, initially N .
• P : set of processing elements, InsertProc(pe) adds new

processing element to the set.
• pe: a processing element with three attributes; ID, set of

workload types, initial priority.
• sol: initially empty solution object implemented as a

linked list of nodes, each containing information about
creating and assigning a task to a certain processing
element.

• fsol: initially empty feasible solution corresponding to
minimum cost found so far.

• Cost: Global cost that is updated every time a feasible
solution is reached, initially a large value.

• BackTrack: a variable to control and limit the number
of times the search tree is pruned.

The algorithm works as follows: i) first check the remaining
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size of the workload ii) if the remaining size is larger than zero
then choose a processing element from set P , create a task
and assign it to the chosen processing element iii) otherwise
a feasible solution or a terminal is reached hence update the
global cost and store the current solution.

The function GetProcessor() picks the processing element
with the highest priority from P , if highest priority is negative,
priority values of all processing elements in P gets reset using
ResetPriority(). GetProcessor() returns a processing ele-
ment object pe. The workload types associated with a process-
ing element can be accessed using GetWorkloadTypes(),
which returns a set of workload types suitable to be created
as a new task. The workload types for each processing element
(note that processing elements are heterogeneous) are ordered
in descending order according to the speed of each type. The
algorithm iterates over workload types starting with the highest
speed. Once a workload type is chosen and the remaining size
fits into this type of workload, InsertNode(w.size, pe) is
invoked so that a new task can be created with size w.size
and assigned to pe.

When a task assignment is done, a node carrying this
information will be added to the list of sol object. When a
new node is added to the list, the sol object automatically
updates its cost and compares current cost with the global one
and if the former is larger, then the algorithm removes the
newly added node from the list using RemoveTopNode(),
meaning that the current branch of the solution tree is pruned.
If the current cost is less than the global one then the algo-
rithm proceeds to expand the current branch of the solution
recursively after updating the remaining workload size as long
as the BackTrack is larger than zero.

V. COMPUTATIONAL ANALYSIS

In order to verify our approach, three use case applications
are deployed: Matrix Multiplication, Fast Fourier Transforma-
tion (FFT) and Convolution.

Reference Methods: The performance of our method is
compared with three different methods for workload dis-
tribution: Trivial equal distribution (in which the workload
is distributed equally), balanced distribution and HPOPTA
algorithm proposed by [8].

Test Platform: 66AK2H12, which consists of ARM-Cortex
A15 and DSP C66, is used as a multi-core platform in
our practical experiments. ARM and DSP cores runs at 1.4
GHz and 1.22 GHz, respectively. Data is placed on a shared
memory of size 4 MBytes. The algorithm is also tested on
a simulation framework consisting of Intel Haswell multicore
CPU, Nvidia K40c GPU, and Intel Xeon Phi 3120P as three
different processing elements. HPOPTA algorithm in [8] used
FFTW profiles on these three elements as shared data in our
experiments.

A. Experiments and the implementation model

Two different experiments are conducted in order to observe
(i) the execution time for different problem sizes (this test is
conducted as a simulation where the workload is distributed

Algorithm 1: Proposed Tree Search Algorithm

main():
RemSize = N
P = ∅
for i← 0 to k − 1 do

pe(i,WorkloadTypes, Priority)
P.InsertProc(pe)

end
sol = null
fsol = null
Cost =∞
BackTrack = LargeV alue
TS(RemSize)

GetProcessor():
x, PE = max(P )
if x < 0 then

P.ResetPriority()
x, PE = max(P )

end
return PE;

TS(RemSize):
if RemSize > 0 then

pe = GetProcessor()
wt = pe.GetWorkloadTypes()
for w ∈ wt do

if w.Size ≤ RemSize then
sol.InsertNode(w.Size, pe)
if sol.GetCost() > Cost then

sol.RemoveTopNode()
else

if BackTrack > 0 then
TS(RemSize− w.Size)
BackTrack −−

end
sol.RemoveTopNode()

end
end

end
else

Cost = sol.GetCost()
fsol = sol

end

among three processing elements) (ii) the speed up (this test
is conducted on 66AK2H12 platform by varying the number
of DSP cores while the problem size is kept constant).

B. Measurements and results

To measure the speed up, both sequential execution time
on a single processing element (in this case ARM core) and
parallel execution time are measured. Each case is repeated
for 100 times and the average of execution time is recorded.
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C. Discussion

It is observed that our approach yields better performance
in comparison to equal distribution and balanced distribution,
and as good as the HPOPTA method. Figure 4 illustrates the
execution time of simulating parallel FFT on CPU, GPU and
Xion Phi, FFTW library is used for creating the performance
model of the processing elements. During the simulation, the
problem size is measured in terms of Multiply-Accumalate
(MAC). In all tested cases it has been shown that the proposed
method yields the smallest execution time in comparison to
other methods. Another observation in figure 4 is that the effect
of using the proposed method becomes more significant for
problems of large size.

Figure 5 shows the speed up for three different functions
(FFT, Matrix Multiplication and Convolution) as the number
of DSP core is varied on TI 66AK2H12 platform. The speed
up for the proposed method is compared with HPOPTA and
equal distribution methods. It is observed that our proposal

has better performance in terms of speed up in comparison to
equal distribution as expected while yielding a speed up that is
as good as HPOPTA. The results show that both the proposed
and HPOPTA methods can exploit the heterogeneity unlike
the equal distribution case. Although our proposal yields a
comparable performance comparable with HPOPTA, the nov-
elty in our approach is that, unlike balanced distribution and
HPOPTA methods, it does not require an execution profile that
spans whole problem sizes. Indeed, our method is designed in
such a way that using only a profile for small problem sizes,
the algorithm should still be able to generate a near optimum
solution for larger problem sizes.

VI. CONCLUSION AND FUTURE WORK

This work introduced a new method for distributing a given
total workload on multi-core heterogeneous devices. Our work
has focused initially on applications that can be modeled
in single program multiple data (SPMD) form. Although
the proposed approach is shown to be promising with an
preliminary evaluation, further evaluations are needed and
planned as follows:

Since we are choosing in all our selections max entries from
ordered sets, our solution is not guaranteed to be optimal.
The mathematical model we developed can be solved exactly
either by i) an exhaustive search (for small problems) or ii)
a suitably designed branch and bound algorithm combining
appropriate upper bounding and lower bounding mechanisms
and branching strategy (for moderate size problems). For
the original problem, the complexity of finding an optimum
solution is in the order of O(np), where n is the number of
workload types and p is the number of processors, hence using
heuristics is reasonable for large problems. As future work, the
complexity and running time of the algorithm will be analyzed
and compared with other methods in literature.
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