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Abstract— String matching is about finding all occurrences 

of a string within a given text. String matching algorithms have 

important roles in various real world areas such as web and 

security applications. In this work, we are interested in solving 

regular expression matching hence a more general form of 

string matching problem targeting especially the field of 

network intrusion detection systems (NIDS). In our work, we 

enhance a non-deterministic finite automata (NFA) based 

method on FPGA considerably. We propose to use a matching 

structure that processes two consecutive characters instead of 

one in order to yield better memory utilization and provide a 

novel mapping of this new architecture onto FPGA. The amount 

of digital circuitry needed to represent the NFA is reduced due 

to having less number of states and less number of LUTs in the 

devised 2-character regex matching process. An evaluation 

study is performed using the well-known Snort rule set and a 

sizable performance improvement is demonstrated. 

Keywords—regular expression matching, regex, string 

matching, NFA, network intrusion detection, network security 

I. INTRODUCTION

A Network Intrusion Detection System (NIDS)  detects 
malicious network packets by inspecting and comparing 
packet payloads with  signatures in a given rule set. A 
signature-based NIDS inspects packet payload for any 
malicious pattern (signature) hence performing deep packet 
inspection (DPI) by generally employing a string matching 
technique. Regular expression matching is the general form of 
string matching and modern dictionaries such as SNORT 
includes regular expresiipons to match. Regular expression 
matching implementations on FPGAs are challenging since 
they have very limited fast memory. Current research, 
including the present paper, aims to increase match (search) 
speed and reduce memory to store signatures. FPGAs can 
make high-speed computations possible but their internal 
memories are currently limited to about tens of megabytes. 
We therefore aim to use this limited memory more effectively 
in order to reach higher throughput on the same size device.  

Our objective is to obtain an NFA-based high-throughput 
memory-efficient regular expression matching engine 
(REME) targeting state-of-the-art FPGAs. We propose an 
NFA architecture and its associated circuits, which makes it 
possible to represent two consecutive characters as one state. 
We also present a possible mapping of the proposed 
architecture onto FPGA circuits. The new architecture 
requires less number of flip-flops to store the same number of 
regexes in comparison to previous studies. LUT usage in this 
new approach  is also less than the previous approaches even 
in the worst case.  

We evaluate the performance of our proposal by using 
regexes extracted from the Snort IDS ruleset and by 
comparing the observed test results with a previous study [7], 
which shows that the new approach performs considerably 
well. 

978-1-6654-4913-7/21/$31.00 ©2021 IEEE

The present work makes the following contributions: i) 
RE-NFA architecture proposed by Yang et al. [7] is modified 
and a different NFA, which includes additional transitions 
corresponding to 2-stride inputs, is constructed ii) six different 
circuit modules are created to easily translate the architecture 
onto FPGA circuits and algorithms to create HDL codes are 
developed for mapping the circuits onto FPGA [15] iii) 
centralized character classification, proposed originally in [8], 
is adopted in order to better utilize BRAM resources of the 
FPGA, which in turn helps in improving also the overall 
resource efficiency. 

The rest of the paper is organized as follows. We discuss 
the background and previous works about regular expression 
matching (REM) in Section 2. We review the base architecture 
proposed by Yang et al. [7] in Section 3. Section 4 presents 
our novel 2C-NFA architecture and defines the corresponding 
circuit modules. Performance evaluation of the 2C-NFA 
architecture and the comparison of it with its original form [7] 
is provided in Section 5. Section 6 concludes the work. 

II. BACKGROUND & LITERATURE REVIEW

Early deep packet inspection (DPI) techniques relied on 
exact string matching for attack detection [8].  Then other 
techniques followed that use regular expression matching 
(REM) [9] because regexes are more flexible in representing 
complex string patterns. Relevant REM works can be broadly 
categorized as NFA-based, DFA-based and hybrid designs. 
NFA-based implementations use less memory but their 
matching speeds are slow. Previous researchers have focused 
on utilizing parallelism to increase the matching performance 
of NFA based designs [10][11]. Hybrid techniques combine 
the benefits of DFA and NFA [12].   

The study in [4] is the first practical NFA implementation 
on reconfigurable hardware. A character-comparator circuit, a 
FF and an AND gate are combined to implement a single 
character NFA match module and using this module union, 
concatenation and Kleene-Star operators are easily 
constructed. Other realizations exist [13][14].  

III. COMPACT ARCHITECTURE FOR HIGH-THROUGHPUT 

REGULAR EXPRESSION MATCHING ON FPGA

In this part, Yang et al. [7] is reviewed since it forms the 
basis for the work in the present paper.  Yang et al. [7] have 
already modified the original RE-NFA conversion approach 
used in [4] in order to get a modular structure to help in 
translating an NFA into FPGA circuits easily. They also 
suggested a  simple way of using  FPGA BRAM resources for 
the task in hand. In the present paper, we pick up the 
advantageous Yang et al. [7]  approach and using further 
optimizations and enhancements aim to get a search engine 
with  higher throughput and less hardware resources. Yang et 
al. [7] implemented their regular expression matching engine 
(REME) on FPGA in three steps. First, a regex is parsed into 
a tree to perform a post-order traversal of the regex; second, a 
modular NFA architecture is constructed using the modified 
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McNaughton-Yamada construction algorithm and third,  the 
resulting NFA is mapped into HDL for FPGA 
implementation.  

An example NFA constructed by  McNaughton-Yamada 
algorithm is shown in Figure 1. Given a regex, original 
McNaughton-Yamada NFA construction algorithm generates 
an NFA, which has many intermediate nodes and unnecessary 
(є)-transitions, as shown as white circles and dashed lines 
respectively, in the figure. Yang et al. [7] modified the 
McNaughton-Yamada algorithm to eliminate unnecessary 
nodes and є-transitions to reduce the memory cost and obtain 
a highly modular architecture that is easy to map onto an 
FPGA. The NFA constructed by the modified McNaughton-
Yamada algorithm is shown in Figure 1. In the resulting NFA, 
shaded elliptic areas (basic state blocks) are identical and these 
blocks can be implemented as a single module, e.g. an entity 
in VHDL, having one OR gate, one AND gate and one state 
register . In order to translate the NFA into a circuit, all we 
need is to connect basic state blocks in accordance with state 
transitions.  

In [4], character match signals were obtained via 8-bit 
comparators which requires two 16x1 look-up tables (LUTs) 
and one AND gate for its implementation. If such comparators 
are used for all states, LUT usage increases dramatically. 
Therefore, storing character match signals on BRAMs instead 
of comparators (hence LUTs) is preferable, which also does 
not affect clock frequency badly. For example, to implement 
\d character class (i.e. any digit), we need ten 8-bit 
comparators. Such an implementation in practice requires 
huge number of LUT resources and the associated clock 
frequency may be very low.  

In [7] character classes are implemented by storing 
character match signals directly in BRAM instead. To 
implement the regex in Figure 1, we need five different 
character match signals (character classes) for a,b,c,# and 
[ac]. Hence in the associated BRAM, there are 5 columns, 
each corresponding to a unique regex and 256 rows for each 
ASCII characters, and a 5-bit output to be used in the circuit. 
For example; in order to implement character class [ac],  1 is 
stored at row 97 and 99 of the column corresponding to 
character class [ac]. If BRAM input is a or c then BRAM 
outputs 1 from its [ac] column indicating the match results. 

a b
Figure 1: NFA representation of b*c(a+b)*[ac]#  for a) original b) 

modified McNaughton- Yamada construction 

In order to get higher throughput, Yang et al. finally 
proposed  a multi-character input matching architecture. 
Multi-character inputs are also known as strides in the 
literature. In Figure 2, a 2-stride character matching circuit is 
shown. In comparison to single character matching, this 
approach requires nearly the same amount of LUTs but half 
the amount of state registers and one extra BRAM unit in order 
to obtain the character match signal for the second character. 
In the combined circuit, the first and second (blue and black 
lines in Figure 2, respectively) characters are processed by the 
lower and upper parts of the 2-stride matching circuit, 
respectively. 

Figure 2: Yang’s 2-stride matching circuit for b*c(a+b)*[ac]# 

IV. 2C-NFA ARCHITECTURE FOR FAST REGULAR EXPRESSION 

MATCHING 

In this section, we first discuss the main idea of our 
proposal and then present the design steps of the 
corresponding search mechanism  to be constructed for 
finding all occurrences of strings that match the specified set 
of regular expressions and present six  modules that are 
needed to implement the NFA-based circuit for this problem. 

A. Main Idea

Our aim is to reduce the number of state registers and the
number of AND/OR gates. Our idea is to represent compact 
state transitions for multiple consequtive characters in order to 
to reduce the number of state registers required in 
implementing the NFA. In this study, we propose a method to 
represent state transitions correspond to two consequtive 
characters, which is a case study for the above idea. Hence we 
represent the arrival of two consecutive characters in one state 
so that register usage will be reduced by at least 50% for a 2-
stride matching circuit. This method combines registers 1-2, 
3-4, and 5-6 into new ones in Figure 2. As a result we need 3
registers for the new case. This approach also prevents to use
one extra OR gate for each of the regexes.

In the most general sense, Yang’s architecture processes 
two characters at a time and for each character it needs one 
state register. On the other hand, our processes processes two 
characters at a time and for each two-characters it needs only 
one state register.  

State transitions on finite automata corresponds actions 
triggered by a single character. For example; let a regex be 
kl(mn|op)qr, this expression can be matched by using the 
NFA in Figure 3. The automata goes from initial state S0 to 
S1 via single character k, from S1 to S2 via l, and so on. To 
store this regex on FPGA, we need eight state registers except 
the initial one. Our idea is to represent transitions as functions 
of two concatenated characters, that is transition from Si to Sj 
can be triggered by a 2-stride. For example S0 to S2 transition 
occurs by receiving kl. In this way, number of state registers 
required to store a regex on FPGA can be reduced by half. 
This approach will be referred as 2C-NFA in the rest of the 
paper. 2C-NFA representation for the example regex given 
above is redrawn in Figure 3 by renaming inputs and states. 
To implement it, we now need only four state registers except 
the initial one. 

a b

Figure 3: a) Traditional and b) 2c-NFA for ‘kl(mn|op)qr’ 
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B. Structural Construction of 2C-NFA 

In this part, we develop the methodology to structurally 
construct the search mechanism that use 2C-NFA approach on 
FPGA. 2C-NFA architecture can be implemented in three 
steps as follows: 

1. Given a regular expression, split it into sub-expressions 
using (, ), and | as delimiters.  

2. Split each sub-expression into groups such that each group 
is composed of two non-star characters and including their 
following *’s, if exists. 

3. Construct NFAs and their associated circuit corresponding 
to each group (hereafter modules) and combine them to 
form the final circuit. 

1) Step 1 
Any regex can be represented as composed of simpler sub-

expressions. In this step, we identify (, ), and | as delimiters 
and label the remaining parts of the regex as sub-expressions. 
Let example regex RE be cde*f*(g*hij|kl*m*)nop. RE can be 
re-written as the concatenation of the following sub-
expressions having delimiters also in place.   

RE=RE1(RE2|RE3)RE4  where: 

RE1: cde*f*, RE2: g*hij, RE3: kl*m*, RE4: nop 

2) Step 2 
In this step, we find groups of character pairs in each sub-

expression. For the given example, the groups are obtained as 
follows: 

RE1: G1G2  where G1: cd G2: e*f* 

RE2: G3G4  where G3: g*h G4: ij 

RE3: G5G6  where G5: kl* G6: m* 

RE4: G7G8  where G7: no G8: p 

Hence RE becomes G1G2(G3G4|G5G6)G7G8. Final group 
may be composed of a single character (i.e. G6 and G8). 

3) Step 3 
We observe that there can be at most 6 different types of 

groups for any regex if the above splitting mechanism (steps 
1 and 2) is employed.  General form of expressions 
corresponding to these possible groups are shown below: 

 ab type-1 module ‘T1’  (G1, G4, G7) 

 a type-2 module ‘T2’ (G8) 

 a*b type-3 module ‘T3’ (G3) 

 a* type-4 module ‘T4’ (G6) 

 ab* type-5 module ‘T5’ (G5) 

 a*b* type-6 module ‘T6’ (G2) 

The implementation details of the above module library 
(T1-T6) is presented in Module Design section. Assuming we 
have the necessary modules, we choose the associated Ti for 
each group and combine them as illustrated in Figure 4. 

 

Figure 4: Combination of modules to implement a given regex 

C. 2-Character Shifted 3-Character Window Search 

In order to match a regex anywhere in the input stream 
with 2C-NFA approach, i.e. to eliminate false negative 
matches, it is necessary to present a new search mechanism 
suitable to the new architecture. In order to eliminate false 
negatives, we need three characters to check in parallel at 
every clock cycle while searching the input stream. Simply 
stated, we need to use 3 characters as input and then shift this 
3 character window by 2 characters at every iteration since 
two input characters are to be consumed by the engine at each 
clock. The idea is illustrated in Figure 5. 

 

Figure 5: 2-character shifted 3-character window search 

Match results will be obtained from BRAMs in our 
architecture, the same way as in Yang [7], but we need three 
replicated BRAMs to obtain the required character match 
signals. For every character match result, we need a 
corresponding 1-bit signal. BRAM outputs will be connected 
to the corresponding character match inputs of the state logic. 

D. Module Design 

1) T1 Module 
T1 implements CxCx+1 type patterns (i.e. Cx and Cx+1 

characters form a stride). With our search mechanism, we 
search for string CxCx+1 in a 3-character window. CxCx+1Cany 
and CanyCxCx+1 are two patterns to search by T1. NFA 
representation and the circuitry of T1 is shown in  

Figure 6. 

Cany means any character. When implementing 
CxCx+1Cany, if successor module is available, we need a 
connection from it’s left character (Cx+2) match signal. In such 
a case, CxCx+1Cany is implemented as CxCx+1Cx+2. Otherwise, 
CxCx+1Cany is implemented as CxCx+1Cnone. Cnone means no 
connection is available. When implementing CanyCxCx+1, if 
predecessor module is available, we need a connection from 
it’s right character (Cx-1) match signal. In such a case, 
CanyCxCx+1 is implemented as Cx-1CxCx+1. Otherwise, 
CanyCxCx+1 is implemented as CnoneCxCx+1. The explanations 
for Cany and Cnon is valid for all modules. 

a b
 

Figure 6: a) NFA representation of T1 b) T1 circuitry 

2) T2 Module 
T2 implements a single character Cx. T2 is similar to T1, 

but it can only be a final module (i.e. final state of a regex or 
sub-expression). CxCnoneCnone and CanyCxCnone are the two 
patterns to search by T1 via proposed search mechanism. NFA 
representation and the circuitry of T2 is shown in Figure 7. 
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a b
 

Figure 7: a) NFA representation of T2 b) T2 circuitry 

3) T3 Module 
T3 implements Cx*Cx+1 type regular expressions. Using 

Cx*Cx+1 we can derive CxCx and CxCx+1 strides and Cx+1 
character. T3 has to search for them. Any string that finishes 
with CxCx stride should activate the Si, therefore, CanyCxCx 
pattern should be searched by T3. In order to find CxCx+1 stride 
normally we search for CanyCxCx+1 and CxCx+1Cany as in T1. 
But for T3 we have to search for CnoneCxCx+1 instead of 
CanyCxCx+1. Due to *, we need such a regulation. In order to 
find Cx+1 character CanyCx+1Cany and Cx+1CnoneCnone patterns 
should be searched. CanyCx+1Cany pattern also contains 
CxCx+1Cany, therefore we can combine them as CnoneCx+1Cany. 
Due to the nature of 3-character window search mechanism 
transition from predecessor of Si (say Sh) to Sj is possible. 
Assuming that Cm and Cm+1 are character classes of Sh, then 
there is a transition from Sh to Sj with CmCm+1Cx+1. NFA 
representation and the circuitry of T3 is shown in Figure 8. 

a b  

Figure 8: a) NFA representation of T3 b) T3 circuitry 

4) T4 Module 
T4 implements Cx* type regular expression and is similar 

to T3. NFA representation and the circuitry of T4 is shown in 
Figure 9. We need to convert some transitions of T3 to 
implement T4. Sh to Sj via CmCm+1Cx+1 transition is converted 
into Sh to Sj via CmCm+1Cnone. Si to Sj via CnoneCxCx+1 transition 
is converted into Si to Sj via CnoneCxCnone. If Si is an active state 
then Sj becomes an active state without any character match. 
This can be implemented by connecting output of Si directly 
to OR gate of Sj. 

a b  

Figure 9: a) NFA representation of T4 b) T4 circuitry 

5) T5 Module 
T5 implements CxCx+1* type regular expression. Using 

CxCx+1*, we can derive CxCx+1 stride and Cx character. Any 
string that finishes with Cx+1Cx+1 stride should activate Sj, 

therefore, Cx+1Cx+1Cnone pattern should be searched by T5. To 
find CxCx+1 stride, we have to search for CxCx+1Cnone instead 
of CxCx+1Cany. Due to *, we need such a regulation. Due to our 
new search mechanism transitions from predecessor of Si to Sj 
and from Si to successor of Sj are possible. NFA representation 
and the circuitry of T5 is shown in Figure 10. 

a b  

Figure 10: a) NFA representation of T5 b) T5 circuitry 

6) T6 Module 
T6 implements Cx*Cx+1* type regular expression. T6 can 

be considered as a combination of T3 and T5 modules. So we 
can create T6 using transitions of T3 and T5. We can combine 
CmCm+1Cx and CmCm+1Cx+1 as an CmCm+1Cnone pattern and 
CmCm+1Cp+1 and CxCpCp+1 as an CnoneCpCp+1 pattern. And also 
we can combine CanyCxCnone and CnoneCx+1Cany as 
Cnone(Cx|Cx+1)Cnone in order to obtain a more compact circuit. 
NFA representation and the circuitry of T6 is shown in Figure 
11. 

a b  

Figure 11: a) NFA representation of T6 b) T6 circuitry 

V. PERFORMANCE EVALUATION 

For evaluating the performance of the proposed 
architecture we extracted regexes from SNORT signatures. 
The aim of this work is to propose a general architecture to 
implement any regex hence all regexes in Snort are not used 
but a sample set is formed and used in our tests. While 
selecting regexes from Snort, we followed the following 
criteria: i) identical regular expressions stored in different 
rules are handled as a single one ii) regexes that are too short 
or containing repetition of one or more characters are avoided 
iii) regexes containing a large number of repetitions of a 
character or character groups are avoided. 

We used 1052 regular expressions from 27 different 
categories of SNORT. State-of-the-art FPGAs has BRAM 
units that has 64-bit output. Since character classifications 
cannot fit in only one BRAM unit, we partition 1052 regexes 
into 11 different sets and we composed 3 different sets of 
regexes containing different number of regexes. 1052-reme 
set contains all regular expressions. x-reme set contains x 
regexes selected randomly. The aim is to see how scalable 2C-
NFA is with respect to regex count. 

We observe that 1052-reme runs with about 260 MHz 
clock and achieves a throughput of 4,16 Gbps. While 
achieving this throughput, we observe 11,3% LUT, 5,8% 
register, 13,3% slice and 12,5% BRAM unit usage. When this 
circuit is replicated 7 times, clock frequency of the circuit 
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decreases to 250 MHz and we obtain 28 Gbps throughput. We 
cannot replicate it one more time because FPGAs slice 
resources are exhausted and are not sufficient for further 
parallelization. 2C-NFA achieves maximum throughput of 
51.5 Gbps when 569-reme set is replicated 14 times. Results 
of 2C-NFA and Yang et al. are given in TABLE 1 and TABLE 

2, respectively.  

TABLE 1: IMPLEMENTATION RESULTS OF 2C-NFA 

dataset replication LUTs registers slices BRAM 
units 

frequency 
(MHz) 

throughput 
(Gbps) 

1
0
5
2
 

re
m

e 

x1 8916 9120 2618 33 260 4.2 

x7 62166 63841 17643 231 250 28.0 

7
1
9
 

re
m

e 

x1 6603 6717 1939 27 260 4.2 

x10 69446 67289 18689 260 250 40.0 

5
6
9
 

re
m

e x1 4899 5104 1430 18 260 4.2 

x14 68245 71443 18582 252 230 51.5 

TABLE 2: IMPLEMENTATION RESULTS OF YANG ET AL. 

dataset replication LUTs registers slices BRAM 
units 

frequency 
(MHz) 

throughput 
(Gbps) 

1
0
5
2
 

re
m

e x1 9098 13018 3343 22 260 4.2 

x6 54595 78103 18948 132 250 24.0 

7
1
9
 

re
m

e 

x1 7237 10069 2751 18 260 4.2 

x7 50756 70477 18060 126 250 28.0 

5
6
9
 

re
m

e x1 5395 7483 1839 12 260 4.2 

x11 55122 82300 19052 132 243 42.8 

 

We observed that place&route processes affects the 
reachable clock frequency. Synthesizers make optimizations 
to achieve higher clock frequencies when implementing the 
circuitry on a device. We also observed that; while 
implementing circuits, if BRAM units are not sufficient, the 
design tool utilizes from LUTRAMs, and as resource 
consumption increases on FPGA device, the clock frequency 
decreases. Minimum clock frequency, 230 MHz, is obtained 
when implementing 569-reme set with our 2CNFA 
architecture. Firstly, we compare memory costs for both 
architectures and see that LUT usage of 2C-NFA does not 
exceed Yang’s and it nearly halves the number of registers 
required. We then analyzed the number of states that are used 
to represent datasets. Results are given in TABLE 3. 2C-NFA 
needs about 42% less number of states to represent datasets. 

TABLE 3: NUMBER OF STATES TO REPRESENT DATASETS 

 2C-NFA Yang et al. 
569-reme 6222 10975 
719-reme 8141 14368 
1052-reme 10530 18043 

 

Because of the need for a 3-character window search 
mechanism, 2C-NFA needs 3-character match signals, 
therefore it needs 3 BRAM units. On the other hand, Yang’s 
architecture needs 2 BRAM units. We create 11, 9 and 6 
different character classes to implement 1052-reme, 719-reme 
and 569-reme, respectively. Hence to implement only one 
1052-reme circuit, we need 33 and 22 BRAM units for 2C-
NFA and Yang, respectively. 

We may conclude that the limiting factor of 2C-NFA is 
BRAM usage while it is slice usage Yang’s architecture. 2C-

NFA achieves approximately 16%, 42% and 20% higher 
throughput than Yang’s architecture for 1052-reme, 719-reme 
and 269-reme, respectively. 

VI. CONCLUSION & FUTURE WORK 

In this paper, we proposed a novel, modular, compact, 
NFA-based, memory-efficient, high-performance regular 
expression matching engine, which is suitable to be 
implemented on FPGAs. The memory-efficient nature of our 
approach helps us to implement more parallel circuits on a 
given FPGA device and therefore achieves higher throughput. 
2C-NFA does not support runtime updates. While FPGA 
technology is continues to be improved, when more than 6-
input LUTs are common in FPGAs, memory usage for 2C-
NFA will be reduced even further in comparison to Yang’s 
approach and hence larger throughputs will be possible in the 
future.  
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