
NFA Based Regular Expression Matching on FPGA

Kamil SERT

Electrical and Electronics Engineering

Middle East Technical University, Ankara, Turkey

ksert@metu.edu.tr

Cüneyt F. BAZLAMACCI

Computer Engineering

Izmir Institute of Technology, Izmir, Turkey
cuneytbazlamacci@iyte.edu.tr

Abstract— String matching is about finding all occurrences

of a string within a given text. String matching algorithms have

important roles in various real world areas such as web and

security applications. In this work, we are interested in solving

regular expression matching hence a more general form of

string matching problem targeting especially the field of

network intrusion detection systems (NIDS). In our work, we

enhance a non-deterministic finite automata (NFA) based

method on FPGA considerably. We propose to use a matching

structure that processes two consecutive characters instead of

one in order to yield better memory utilization and provide a

novel mapping of this new architecture onto FPGA. The amount

of digital circuitry needed to represent the NFA is reduced due

to having less number of states and less number of LUTs in the

devised 2-character regex matching process. An evaluation

study is performed using the well-known Snort rule set and a

sizable performance improvement is demonstrated.

Keywords—regular expression matching, regex, string

matching, NFA, network intrusion detection, network security

I. INTRODUCTION

A Network Intrusion Detection System (NIDS) detects
malicious network packets by inspecting and comparing
packet payloads with signatures in a given rule set. A
signature-based NIDS inspects packet payload for any
malicious pattern (signature) hence performing deep packet
inspection (DPI) by generally employing a string matching
technique. Regular expression matching is the general form of
string matching and modern dictionaries such as SNORT
includes regular expresiipons to match. Regular expression
matching implementations on FPGAs are challenging since
they have very limited fast memory. Current research,
including the present paper, aims to increase match (search)
speed and reduce memory to store signatures. FPGAs can
make high-speed computations possible but their internal
memories are currently limited to about tens of megabytes.
We therefore aim to use this limited memory more effectively
in order to reach higher throughput on the same size device.

Our objective is to obtain an NFA-based high-throughput
memory-efficient regular expression matching engine
(REME) targeting state-of-the-art FPGAs. We propose an
NFA architecture and its associated circuits, which makes it
possible to represent two consecutive characters as one state.
We also present a possible mapping of the proposed
architecture onto FPGA circuits. The new architecture
requires less number of flip-flops to store the same number of
regexes in comparison to previous studies. LUT usage in this
new approach is also less than the previous approaches even
in the worst case.

We evaluate the performance of our proposal by using
regexes extracted from the Snort IDS ruleset and by
comparing the observed test results with a previous study [7],
which shows that the new approach performs considerably
well.

978-1-6654-4913-7/21/$31.00 ©2021 IEEE

The present work makes the following contributions: i)
RE-NFA architecture proposed by Yang et al. [7] is modified
and a different NFA, which includes additional transitions
corresponding to 2-stride inputs, is constructed ii) six different
circuit modules are created to easily translate the architecture
onto FPGA circuits and algorithms to create HDL codes are
developed for mapping the circuits onto FPGA [15] iii)
centralized character classification, proposed originally in [8],
is adopted in order to better utilize BRAM resources of the
FPGA, which in turn helps in improving also the overall
resource efficiency.

The rest of the paper is organized as follows. We discuss
the background and previous works about regular expression
matching (REM) in Section 2. We review the base architecture
proposed by Yang et al. [7] in Section 3. Section 4 presents
our novel 2C-NFA architecture and defines the corresponding
circuit modules. Performance evaluation of the 2C-NFA
architecture and the comparison of it with its original form [7]
is provided in Section 5. Section 6 concludes the work.

II. BACKGROUND & LITERATURE REVIEW

Early deep packet inspection (DPI) techniques relied on
exact string matching for attack detection [8]. Then other
techniques followed that use regular expression matching
(REM) [9] because regexes are more flexible in representing
complex string patterns. Relevant REM works can be broadly
categorized as NFA-based, DFA-based and hybrid designs.
NFA-based implementations use less memory but their
matching speeds are slow. Previous researchers have focused
on utilizing parallelism to increase the matching performance
of NFA based designs [10][11]. Hybrid techniques combine
the benefits of DFA and NFA [12].

The study in [4] is the first practical NFA implementation
on reconfigurable hardware. A character-comparator circuit, a
FF and an AND gate are combined to implement a single
character NFA match module and using this module union,
concatenation and Kleene-Star operators are easily
constructed. Other realizations exist [13][14].

III. COMPACT ARCHITECTURE FOR HIGH-THROUGHPUT

REGULAR EXPRESSION MATCHING ON FPGA

In this part, Yang et al. [7] is reviewed since it forms the
basis for the work in the present paper. Yang et al. [7] have
already modified the original RE-NFA conversion approach
used in [4] in order to get a modular structure to help in
translating an NFA into FPGA circuits easily. They also
suggested a simple way of using FPGA BRAM resources for
the task in hand. In the present paper, we pick up the
advantageous Yang et al. [7] approach and using further
optimizations and enhancements aim to get a search engine
with higher throughput and less hardware resources. Yang et
al. [7] implemented their regular expression matching engine
(REME) on FPGA in three steps. First, a regex is parsed into
a tree to perform a post-order traversal of the regex; second, a
modular NFA architecture is constructed using the modified

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r,

In
fo

rm
at

io
n

an
d

Te
le

co
m

m
un

ic
at

io
n

Sy
st

em
s (

C
IT

S)
 |

97
8-

1-
66

54
-4

91
3-

7/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

IT
S5

26
76

.2
02

1.
96

18
42

6

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 07:05:56 UTC from IEEE Xplore. Restrictions apply.

McNaughton-Yamada construction algorithm and third, the
resulting NFA is mapped into HDL for FPGA
implementation.

An example NFA constructed by McNaughton-Yamada
algorithm is shown in Figure 1. Given a regex, original
McNaughton-Yamada NFA construction algorithm generates
an NFA, which has many intermediate nodes and unnecessary
(є)-transitions, as shown as white circles and dashed lines
respectively, in the figure. Yang et al. [7] modified the
McNaughton-Yamada algorithm to eliminate unnecessary
nodes and є-transitions to reduce the memory cost and obtain
a highly modular architecture that is easy to map onto an
FPGA. The NFA constructed by the modified McNaughton-
Yamada algorithm is shown in Figure 1. In the resulting NFA,
shaded elliptic areas (basic state blocks) are identical and these
blocks can be implemented as a single module, e.g. an entity
in VHDL, having one OR gate, one AND gate and one state
register . In order to translate the NFA into a circuit, all we
need is to connect basic state blocks in accordance with state
transitions.

In [4], character match signals were obtained via 8-bit
comparators which requires two 16x1 look-up tables (LUTs)
and one AND gate for its implementation. If such comparators
are used for all states, LUT usage increases dramatically.
Therefore, storing character match signals on BRAMs instead
of comparators (hence LUTs) is preferable, which also does
not affect clock frequency badly. For example, to implement
\d character class (i.e. any digit), we need ten 8-bit
comparators. Such an implementation in practice requires
huge number of LUT resources and the associated clock
frequency may be very low.

In [7] character classes are implemented by storing
character match signals directly in BRAM instead. To
implement the regex in Figure 1, we need five different
character match signals (character classes) for a,b,c,# and
[ac]. Hence in the associated BRAM, there are 5 columns,
each corresponding to a unique regex and 256 rows for each
ASCII characters, and a 5-bit output to be used in the circuit.
For example; in order to implement character class [ac], 1 is
stored at row 97 and 99 of the column corresponding to
character class [ac]. If BRAM input is a or c then BRAM
outputs 1 from its [ac] column indicating the match results.

a b
Figure 1: NFA representation of b*c(a+b)*[ac]# for a) original b)

modified McNaughton- Yamada construction

In order to get higher throughput, Yang et al. finally
proposed a multi-character input matching architecture.
Multi-character inputs are also known as strides in the
literature. In Figure 2, a 2-stride character matching circuit is
shown. In comparison to single character matching, this
approach requires nearly the same amount of LUTs but half
the amount of state registers and one extra BRAM unit in order
to obtain the character match signal for the second character.
In the combined circuit, the first and second (blue and black
lines in Figure 2, respectively) characters are processed by the
lower and upper parts of the 2-stride matching circuit,
respectively.

Figure 2: Yang’s 2-stride matching circuit for b*c(a+b)*[ac]#

IV. 2C-NFA ARCHITECTURE FOR FAST REGULAR EXPRESSION

MATCHING

In this section, we first discuss the main idea of our
proposal and then present the design steps of the
corresponding search mechanism to be constructed for
finding all occurrences of strings that match the specified set
of regular expressions and present six modules that are
needed to implement the NFA-based circuit for this problem.

A. Main Idea

Our aim is to reduce the number of state registers and the
number of AND/OR gates. Our idea is to represent compact
state transitions for multiple consequtive characters in order to
to reduce the number of state registers required in
implementing the NFA. In this study, we propose a method to
represent state transitions correspond to two consequtive
characters, which is a case study for the above idea. Hence we
represent the arrival of two consecutive characters in one state
so that register usage will be reduced by at least 50% for a 2-
stride matching circuit. This method combines registers 1-2,
3-4, and 5-6 into new ones in Figure 2. As a result we need 3
registers for the new case. This approach also prevents to use
one extra OR gate for each of the regexes.

In the most general sense, Yang’s architecture processes
two characters at a time and for each character it needs one
state register. On the other hand, our processes processes two
characters at a time and for each two-characters it needs only
one state register.

State transitions on finite automata corresponds actions
triggered by a single character. For example; let a regex be
kl(mn|op)qr, this expression can be matched by using the
NFA in Figure 3. The automata goes from initial state S0 to
S1 via single character k, from S1 to S2 via l, and so on. To
store this regex on FPGA, we need eight state registers except
the initial one. Our idea is to represent transitions as functions
of two concatenated characters, that is transition from Si to Sj
can be triggered by a 2-stride. For example S0 to S2 transition
occurs by receiving kl. In this way, number of state registers
required to store a regex on FPGA can be reduced by half.
This approach will be referred as 2C-NFA in the rest of the
paper. 2C-NFA representation for the example regex given
above is redrawn in Figure 3 by renaming inputs and states.
To implement it, we now need only four state registers except
the initial one.

a b

Figure 3: a) Traditional and b) 2c-NFA for ‘kl(mn|op)qr’

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 07:05:56 UTC from IEEE Xplore. Restrictions apply.

B. Structural Construction of 2C-NFA

In this part, we develop the methodology to structurally
construct the search mechanism that use 2C-NFA approach on
FPGA. 2C-NFA architecture can be implemented in three
steps as follows:

1. Given a regular expression, split it into sub-expressions
using (,), and | as delimiters.

2. Split each sub-expression into groups such that each group
is composed of two non-star characters and including their
following *’s, if exists.

3. Construct NFAs and their associated circuit corresponding
to each group (hereafter modules) and combine them to
form the final circuit.

1) Step 1
Any regex can be represented as composed of simpler sub-

expressions. In this step, we identify (,), and | as delimiters
and label the remaining parts of the regex as sub-expressions.
Let example regex RE be cde*f*(g*hij|kl*m*)nop. RE can be
re-written as the concatenation of the following sub-
expressions having delimiters also in place.

RE=RE1(RE2|RE3)RE4 where:

RE1: cde*f*, RE2: g*hij, RE3: kl*m*, RE4: nop

2) Step 2
In this step, we find groups of character pairs in each sub-

expression. For the given example, the groups are obtained as
follows:

RE1: G1G2 where G1: cd G2: e*f*

RE2: G3G4 where G3: g*h G4: ij

RE3: G5G6 where G5: kl* G6: m*

RE4: G7G8 where G7: no G8: p

Hence RE becomes G1G2(G3G4|G5G6)G7G8. Final group
may be composed of a single character (i.e. G6 and G8).

3) Step 3
We observe that there can be at most 6 different types of

groups for any regex if the above splitting mechanism (steps
1 and 2) is employed. General form of expressions
corresponding to these possible groups are shown below:

 ab type-1 module ‘T1’ (G1, G4, G7)

 a type-2 module ‘T2’ (G8)

 a*b type-3 module ‘T3’ (G3)

 a* type-4 module ‘T4’ (G6)

 ab* type-5 module ‘T5’ (G5)

 a*b* type-6 module ‘T6’ (G2)

The implementation details of the above module library
(T1-T6) is presented in Module Design section. Assuming we
have the necessary modules, we choose the associated Ti for
each group and combine them as illustrated in Figure 4.

Figure 4: Combination of modules to implement a given regex

C. 2-Character Shifted 3-Character Window Search

In order to match a regex anywhere in the input stream
with 2C-NFA approach, i.e. to eliminate false negative
matches, it is necessary to present a new search mechanism
suitable to the new architecture. In order to eliminate false
negatives, we need three characters to check in parallel at
every clock cycle while searching the input stream. Simply
stated, we need to use 3 characters as input and then shift this
3 character window by 2 characters at every iteration since
two input characters are to be consumed by the engine at each
clock. The idea is illustrated in Figure 5.

Figure 5: 2-character shifted 3-character window search

Match results will be obtained from BRAMs in our
architecture, the same way as in Yang [7], but we need three
replicated BRAMs to obtain the required character match
signals. For every character match result, we need a
corresponding 1-bit signal. BRAM outputs will be connected
to the corresponding character match inputs of the state logic.

D. Module Design

1) T1 Module
T1 implements CxCx+1 type patterns (i.e. Cx and Cx+1

characters form a stride). With our search mechanism, we
search for string CxCx+1 in a 3-character window. CxCx+1Cany
and CanyCxCx+1 are two patterns to search by T1. NFA
representation and the circuitry of T1 is shown in

Figure 6.

Cany means any character. When implementing
CxCx+1Cany, if successor module is available, we need a
connection from it’s left character (Cx+2) match signal. In such
a case, CxCx+1Cany is implemented as CxCx+1Cx+2. Otherwise,
CxCx+1Cany is implemented as CxCx+1Cnone. Cnone means no
connection is available. When implementing CanyCxCx+1, if
predecessor module is available, we need a connection from
it’s right character (Cx-1) match signal. In such a case,
CanyCxCx+1 is implemented as Cx-1CxCx+1. Otherwise,
CanyCxCx+1 is implemented as CnoneCxCx+1. The explanations
for Cany and Cnon is valid for all modules.

a b

Figure 6: a) NFA representation of T1 b) T1 circuitry

2) T2 Module
T2 implements a single character Cx. T2 is similar to T1,

but it can only be a final module (i.e. final state of a regex or
sub-expression). CxCnoneCnone and CanyCxCnone are the two
patterns to search by T1 via proposed search mechanism. NFA
representation and the circuitry of T2 is shown in Figure 7.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 07:05:56 UTC from IEEE Xplore. Restrictions apply.

a b

Figure 7: a) NFA representation of T2 b) T2 circuitry

3) T3 Module
T3 implements Cx*Cx+1 type regular expressions. Using

Cx*Cx+1 we can derive CxCx and CxCx+1 strides and Cx+1
character. T3 has to search for them. Any string that finishes
with CxCx stride should activate the Si, therefore, CanyCxCx
pattern should be searched by T3. In order to find CxCx+1 stride
normally we search for CanyCxCx+1 and CxCx+1Cany as in T1.
But for T3 we have to search for CnoneCxCx+1 instead of
CanyCxCx+1. Due to *, we need such a regulation. In order to
find Cx+1 character CanyCx+1Cany and Cx+1CnoneCnone patterns
should be searched. CanyCx+1Cany pattern also contains
CxCx+1Cany, therefore we can combine them as CnoneCx+1Cany.
Due to the nature of 3-character window search mechanism
transition from predecessor of Si (say Sh) to Sj is possible.
Assuming that Cm and Cm+1 are character classes of Sh, then
there is a transition from Sh to Sj with CmCm+1Cx+1. NFA
representation and the circuitry of T3 is shown in Figure 8.

a b

Figure 8: a) NFA representation of T3 b) T3 circuitry

4) T4 Module
T4 implements Cx* type regular expression and is similar

to T3. NFA representation and the circuitry of T4 is shown in
Figure 9. We need to convert some transitions of T3 to
implement T4. Sh to Sj via CmCm+1Cx+1 transition is converted
into Sh to Sj via CmCm+1Cnone. Si to Sj via CnoneCxCx+1 transition
is converted into Si to Sj via CnoneCxCnone. If Si is an active state
then Sj becomes an active state without any character match.
This can be implemented by connecting output of Si directly
to OR gate of Sj.

a b

Figure 9: a) NFA representation of T4 b) T4 circuitry

5) T5 Module
T5 implements CxCx+1* type regular expression. Using

CxCx+1*, we can derive CxCx+1 stride and Cx character. Any
string that finishes with Cx+1Cx+1 stride should activate Sj,

therefore, Cx+1Cx+1Cnone pattern should be searched by T5. To
find CxCx+1 stride, we have to search for CxCx+1Cnone instead
of CxCx+1Cany. Due to *, we need such a regulation. Due to our
new search mechanism transitions from predecessor of Si to Sj
and from Si to successor of Sj are possible. NFA representation
and the circuitry of T5 is shown in Figure 10.

a b

Figure 10: a) NFA representation of T5 b) T5 circuitry

6) T6 Module
T6 implements Cx*Cx+1* type regular expression. T6 can

be considered as a combination of T3 and T5 modules. So we
can create T6 using transitions of T3 and T5. We can combine
CmCm+1Cx and CmCm+1Cx+1 as an CmCm+1Cnone pattern and
CmCm+1Cp+1 and CxCpCp+1 as an CnoneCpCp+1 pattern. And also
we can combine CanyCxCnone and CnoneCx+1Cany as
Cnone(Cx|Cx+1)Cnone in order to obtain a more compact circuit.
NFA representation and the circuitry of T6 is shown in Figure
11.

a b

Figure 11: a) NFA representation of T6 b) T6 circuitry

V. PERFORMANCE EVALUATION

For evaluating the performance of the proposed
architecture we extracted regexes from SNORT signatures.
The aim of this work is to propose a general architecture to
implement any regex hence all regexes in Snort are not used
but a sample set is formed and used in our tests. While
selecting regexes from Snort, we followed the following
criteria: i) identical regular expressions stored in different
rules are handled as a single one ii) regexes that are too short
or containing repetition of one or more characters are avoided
iii) regexes containing a large number of repetitions of a
character or character groups are avoided.

We used 1052 regular expressions from 27 different
categories of SNORT. State-of-the-art FPGAs has BRAM
units that has 64-bit output. Since character classifications
cannot fit in only one BRAM unit, we partition 1052 regexes
into 11 different sets and we composed 3 different sets of
regexes containing different number of regexes. 1052-reme
set contains all regular expressions. x-reme set contains x
regexes selected randomly. The aim is to see how scalable 2C-
NFA is with respect to regex count.

We observe that 1052-reme runs with about 260 MHz
clock and achieves a throughput of 4,16 Gbps. While
achieving this throughput, we observe 11,3% LUT, 5,8%
register, 13,3% slice and 12,5% BRAM unit usage. When this
circuit is replicated 7 times, clock frequency of the circuit

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 07:05:56 UTC from IEEE Xplore. Restrictions apply.

decreases to 250 MHz and we obtain 28 Gbps throughput. We
cannot replicate it one more time because FPGAs slice
resources are exhausted and are not sufficient for further
parallelization. 2C-NFA achieves maximum throughput of
51.5 Gbps when 569-reme set is replicated 14 times. Results
of 2C-NFA and Yang et al. are given in TABLE 1 and TABLE

2, respectively.

TABLE 1: IMPLEMENTATION RESULTS OF 2C-NFA

dataset replication LUTs registers slices BRAM
units

frequency
(MHz)

throughput
(Gbps)

1
0
5
2

re
m

e

x1 8916 9120 2618 33 260 4.2

x7 62166 63841 17643 231 250 28.0

7
1
9

re
m

e

x1 6603 6717 1939 27 260 4.2

x10 69446 67289 18689 260 250 40.0

5
6
9

re
m

e x1 4899 5104 1430 18 260 4.2

x14 68245 71443 18582 252 230 51.5

TABLE 2: IMPLEMENTATION RESULTS OF YANG ET AL.

dataset replication LUTs registers slices BRAM
units

frequency
(MHz)

throughput
(Gbps)

1
0
5
2

re
m

e x1 9098 13018 3343 22 260 4.2

x6 54595 78103 18948 132 250 24.0

7
1
9

re
m

e

x1 7237 10069 2751 18 260 4.2

x7 50756 70477 18060 126 250 28.0

5
6
9

re
m

e x1 5395 7483 1839 12 260 4.2

x11 55122 82300 19052 132 243 42.8

We observed that place&route processes affects the
reachable clock frequency. Synthesizers make optimizations
to achieve higher clock frequencies when implementing the
circuitry on a device. We also observed that; while
implementing circuits, if BRAM units are not sufficient, the
design tool utilizes from LUTRAMs, and as resource
consumption increases on FPGA device, the clock frequency
decreases. Minimum clock frequency, 230 MHz, is obtained
when implementing 569-reme set with our 2CNFA
architecture. Firstly, we compare memory costs for both
architectures and see that LUT usage of 2C-NFA does not
exceed Yang’s and it nearly halves the number of registers
required. We then analyzed the number of states that are used
to represent datasets. Results are given in TABLE 3. 2C-NFA
needs about 42% less number of states to represent datasets.

TABLE 3: NUMBER OF STATES TO REPRESENT DATASETS

 2C-NFA Yang et al.
569-reme 6222 10975
719-reme 8141 14368
1052-reme 10530 18043

Because of the need for a 3-character window search
mechanism, 2C-NFA needs 3-character match signals,
therefore it needs 3 BRAM units. On the other hand, Yang’s
architecture needs 2 BRAM units. We create 11, 9 and 6
different character classes to implement 1052-reme, 719-reme
and 569-reme, respectively. Hence to implement only one
1052-reme circuit, we need 33 and 22 BRAM units for 2C-
NFA and Yang, respectively.

We may conclude that the limiting factor of 2C-NFA is
BRAM usage while it is slice usage Yang’s architecture. 2C-

NFA achieves approximately 16%, 42% and 20% higher
throughput than Yang’s architecture for 1052-reme, 719-reme
and 269-reme, respectively.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a novel, modular, compact,
NFA-based, memory-efficient, high-performance regular
expression matching engine, which is suitable to be
implemented on FPGAs. The memory-efficient nature of our
approach helps us to implement more parallel circuits on a
given FPGA device and therefore achieves higher throughput.
2C-NFA does not support runtime updates. While FPGA
technology is continues to be improved, when more than 6-
input LUTs are common in FPGAs, memory usage for 2C-
NFA will be reduced even further in comparison to Yang’s
approach and hence larger throughputs will be possible in the
future.

VII. REFERENCES

[1] Y. E. Yang and V. K. Prasanna, "Robust and scalable string pattern
matching for deep packet inspection on multicore processors," IEEE
Trans. on Parallel and Distributed Systems, vol. 24, no. 11, pp. 2283-
2292, 2013.

[2] C. L. Lee and T. H. Yang, “A flexible pattern-matching algorithm for
network intrusion detection systems using multi-core processors,”
Algorithms, vol. 10, pp.58-71, 2017.

[3] O. Erdem, “Tree-based string pattern matching on FPGAs,” Computers
and Electrical Engineering, vol. 49, pp. 117-133, 2016.

[4] R. Sidhu and V. K. Prasanna, "Fast regular expression matching using
FPGAs," 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM'01), pp. 227-238, 2001.

[5] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal and H. Noyes,
"An efficient and scalable semiconductor architecture for parallel
automata processing," IEEE Trans. on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3088-3098, 2014.

[6] K. Peng, S. Tang, M. Chen and Q. Dong, "Chain-based DFA deflation
for fast and scalable regular expression matching using TCAM,"
Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pp. 24-35, 2011.

[7] Y. H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact architecture
for high-throughput regular expression matching on FPGA,” Fourth
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, pp. 30-39, 2008

[8] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
IEEE INFOCOM, pp. 2628-2639, 2004.

[9] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
“Algorithms to accelerate multiple regular expressions matching for
deep packet inspection,” Computer Communication Review, pp. 339-
350, 2006.

[10] H. J. Kim and S.W. Lee, “A hardware-based string matching using state
transition compression for deep packet inspection,” ETRI Journal, pp.
154-157, 2013.

[11] J. Yang, L. Jiang, Q. Tang, Q. Dai, and J. Tan, “PiDFA: A practical
multi-stride regular expression matching engine based on FPGA,”
IEEE International Conference on Communications, pp. 1-7, 2016.

[12] Y. Xu, J. Jiang, R. Wei, Y. Song, and H. J. Chao, “TFA: A tunable
finite automaton for pattern matching in network intrusion detection
systems,” IEEE Journal on Selected Areas in Communications, pp.
1810-1821, 2014.

[13] D. Pao, N. L. Or, and R. C. Cheung, “A memory-based NFA regular
expression match engine for signature-based intrusion detection,”
Computer Communications, pp. 1255-1267, 2013.

[14] T. T. Hieu, T. N. Thinh, and S. Tomiyama, “ENREM: An efficient
NFA-based regular expression matching engine on reconfigurable
hardware for NIDS,” Journal of Systems Architecture, pp. 202-212,
2013.

[15] K. Sert, “NFA based regular expression matching on FPGA,” MSc
Thesis, Middle East Technical University, 2018.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on October 27,2022 at 07:05:56 UTC from IEEE Xplore. Restrictions apply.

