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Single-cell RNA-seq (scRNA-seq) is a powerful genomics technology to

interrogate the cellular composition and behaviors of complex systems.

While the number of scRNA-seq datasets and available computational

analysis tools have grown exponentially, there are limited systematic data

sharing strategies to allow rapid exploration and re-analysis of single-cell

datasets, particularly in the cardiovascular field. We previously introduced

PlaqView, an open-source web portal for the exploration and analysis of

published atherosclerosis single-cell datasets. Now, we introduce PlaqView 2.0

(www.plaqview.com), which provides expanded features and functionalities as

well as additional cardiovascular single-cell datasets. We showcase improved

PlaqView functionality, backend data processing, user-interface, and capacity.

PlaqView brings new or improved tools to explore scRNA-seq data, including

gene query, metadata browser, cell identity prediction, ad hoc RNA-trajectory

analysis, and drug-gene interaction prediction. PlaqView serves as one of

the largest central repositories for cardiovascular single-cell datasets, which

now includes data from human aortic aneurysm, gene-specific mouse

knockouts, and healthy references. PlaqView 2.0 brings advanced tools and

high-performance computing directly to users without the need for any

programming knowledge. Lastly, we outline steps to generalize and repurpose

PlaqView’s framework for single-cell datasets from other fields.
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Introduction

Named “Method of the Year” in 2013, single-cell RNA

sequencing (scRNA-seq) technology has now been used in

virtually every field of biology and medicine, including cancer

biology and cardiovascular medicine (1, 2). While scRNA-seq

technologies continue to evolve and multi-modal measurements

become increasingly more common, there has been a rapid

increase in both the number of analysis tools and the complexity

of single-cell data. At the time of writing, scrna-tools.org reports

over 1,000 tools dedicated to single-cell data analysis (3). Despite

the abundance of single-cell analysis tools available, there are

two major challenges that affect the single-cell community as

a whole: (1) there are no standardized methods of single-cell

data sharing, and (2) increasingly complex and large single-

cell data require advanced bioinformatic skills and resources for

comprehensive analysis and interpretation.

The lack of standardized data sharing leads to the omission

of critical metadata needed for reproducible analysis, such as

author-defined cluster and cell-type annotations, and variables

such as sex and age group (4). Despite the existence of public

archives such as the Gene Expression Omnibus (GEO) and

Sequence Read Archive (SRA), there is no uniform requirement

for the deposition of metadata. Even within SRA, some datasets

require specialized cloud computing tools (e.g., Google Cloud

Computing) to access, such as the data from Li et al. (5). A

recent study has found that < 50% of the published figures

from public single-cell data can be reproduced as published

(6). Furthermore, raw sequence files are very large (often

>15 GB per file) and thus have very high computational

resource requirements.

The fact that most tools require users to have significant

programming skills remains a significant barrier to reanalyzing

and exploring single-cell data, particularly across multiple

datasets (7, 8). A few tools, such as the cBioPortal for

Cancer Genomics (www.cbioportal.org), have distilled large

bulk RNA-seq datasets, made them accessible to everyone, and

provided multiple query functions, but none are designed for

single-cell datasets (Supplemental Table 1) (9). Other portals,

such as DISCO, provide real-time data integration and

queries of multiple datasets across different tissues; however,

DISCO currently lacks cardiovascular-specific datasets and

comparison of analysis tools (Supplemental Table 1) (10). As

more datasets emerge, the need for a centralized and domain-

specific repository tailored for single-cell cardiovascular datasets

becomes more pressing. A centralized repository packaged

with tools specific for cardiovascular diseases will facilitate

Abbreviations: CIPR, cell identity predictor; GSEA, gene-set enrichment

analysis; scRNA-seq, single-cell RNA-sequencing; UMAP, uniform

manifold approximation and projection.

the advancement of the field as a whole and support the

democratization and utility of single-cell data.

Previously, we introduced PlaqView, an open-source web

portal focused on the exploration of the data generated by

Wirka et al. (11) and a few other atherosclerosis-related datasets

(12). Here, we introduce PlaqView 2.0, a significantly improved

release with a broader scope to include, among others, datasets

from other areas of the cardiovascular field, including human

aortic aneurysm (13), healthy human heart atlas (14), human

aortic valves (15), mouse models of atherogenesis (16), and

others. We describe improvements to the user interface, new

ad hoc functions to calculate trajectories on cells of interest,

metadata exploration, and the ability to export publication-

ready figures in addition to existing functions such as basic gene

expression query and drug-gene interaction analysis. We also

highlight several backend improvements that allow us to bring

high-performance, reproducible computing environments to lay

scientists via the web browser. Lastly, we outline basic steps to

repurpose the PlaqView programming scaffold for other areas of

single-cell investigation.

Results

PlaqView 2.0 includes significant
expansion in data availability

Since our initial publication introducing PlaqView, which

featured 7 datasets from 4 studies (12), PlaqView 2.0 now

features 32 datasets: 23 from human tissues and 9 from

mouse tissues (Figure 1, Supplemental Table 2). New single-cell

datasets made available in this release include those from: mouse

carotid ligation experiments (17), mouse adventitial cell layer

(18), human adult heart compartments (14), human COVID-19

autopsy hearts (19), and human aortic leaflets (15). At the time

of writing, PlaqView now contains over 1.7 million total cells.

PlaqViewwill be actively maintained and we will continue to add

new datasets upon their publication and release to the public.

PlaqView allows rapid query of gene
expression of single cell datasets

Gene expression-based query is the mainstay for single-

cell data exploration. However, this is also one of the most

time-consuming steps because public data are often shared in

various formats that require customized codes to be read and

analyzed. In PlaqView 2.0, each dataset has been systematically

preprocessed from various stages of upstream analysis to allow

efficient querying on-demand. Upon launching the PlaqView

homepage (www.plaqview.com), users can open the scRNA-

seq portal (Figure 2), choose the scRNA-seq dataset of their

interest, and load it into the memory of their dedicated

Frontiers inCardiovascularMedicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.969421
https://www.scrna-tools.org
http://www.cbioportal.org
http://www.plaqview.com
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Ma et al. 10.3389/fcvm.2022.969421

FIGURE 1

PlaqView 2.0 incorporates 32 cardiovascular-related datasets. (A) Major datasets available on PlaqView. PlaqView brings high-performance

computing directly to the browser in order to handle large datasets such as ones from Litvinukova et al., which are atlas-type survey data that

contain tissues from the entire human heart. (B) Species composition of PlaqView’s database.

session. Manually curated information about each dataset is

also available on the portal and on the main homepage.

Once the dataset is loaded, users are directed to the “Gene

Lookup” tab (Figure 3) where they can enter a single gene

or multiple genes, select the plot type they prefer (e.g., Dot

Plot, Feature Plot, or Ridge Plot), and choose from one of the

available cell-labeling methods (see next section) for query. The

Gene Query function is powered by Seurat (7). Gene symbol

capitalizations are automatically corrected based on species of

the dataset selected to conform to Human Gene Nomenclature

Committee (HGNC) orMouse Genome Informatics (MGI) gene

nomenclature conventions (e.g., APOE for humans and Apoe

for mice) (20, 21). The queried gene(s) plots then will appear

alongside the conventional UMAP displaying the cell type, and

users can download high-quality, publication-ready figures in

.pdf format.

To facilitate functional interpretation within a given

single-cell dataset, PlaqView conducts automated Pathway

Enrichment Analysis with the queried genes, powered by

EnrichR (22–24). Although not commonly a part of a

standard single-cell RNA-seq pipeline, pathway enrichments

provide additional insights into the biological importance and

functional consequences. Users can choose their preferred

databases from a list of well-annotated sources such as

ENCODE (Encyclopedia of DNA Elements) and GO (Gene

Ontology). For example, querying the two NADPH oxidase

genes implicated in redox metabolism and atherosclerosis

“CYBB” and “NOX4” (25, 26), in the Li et al. (13) dataset

using the “GO_Biological_Process_2018” database shows the

top function category as “superoxide anion generation,” and

that (FB), macrophages (Mø), and smooth muscle cells (SMCs)

highly express these genes (Figure 3). This information allows

users to quickly assess and generate hypotheses and aid in the

design of future experiments.

Cell labeling and di�erential gene
expression

Cell identity prediction remains one of the most time-

intensive and critical steps in the single-cell analysis pipeline

(27). Previously, we found that the upstream cell-state prediction

step greatly affects downstream analysis such as cell-cell

communication analysis (12), and multiple labeling methods

should be compared for consistency. Automated labeling tools

are great starting points and help eliminate the inherent bias

introduced in cluster-based manual annotation (27). However,

current references may not accurately predict novel cell types

or transitional states, such as the “myofibroblasts” as shown

in Wirka et al. (11). Furthermore, discovery of novel niche

cell-types are difficult and require careful examination of the

differential gene expression patterns.

PlaqView enables users to run and compare several methods

of cell annotation and compare them against other databases,

as well as exporting the entire differential gene expression

matrix for manual exploration of rare cell types. In many areas

of the application and specifically under the “Cell Labeling”

tab, users have the ability to explore the cell identities as

provided by the original authors (when available), by SingleR

(28), and by Seurat V4 “label transfer” using the Tabula

Sapiens atlas (7, 29). To demonstrate this, we explored the

Livinukova et al., annotation (Figure 4A) against the annotation

provided by Seurat’s label transfer using the Tabula Sapiens

reference (Figure 4B) (7, 29). These identity predictions are

pre-run during the data processing stage and stored within

each data object. By running the cell identity prediction during

the preprocessing stage (see Methods) and not on-demand,

PlaqView can rapidly display results with little downtime. To

allow additional flexibility, transparency and further exploration

of the differentially expressed genes in each cell type, we
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FIGURE 2

PlaqView 2.0 homepage facilitates selection and loading of relevant datasets. The homepage allows users to browse dataset details and load

selected datasets into their dedicated session for further exploration.
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FIGURE 3

Gene query page allows rapid visualization of gene expression, UMAP embeddings, and facilitates automated GSEA. PlaqView 2.0 supports

visualization of a single gene or multiple genes via feature, dot, and ridge plots, as powered by Seurat. Users can also choose their preferred

annotation methods and download high-quality pdfs for publication. This instance is a demonstration using the Li et al. dataset.
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FIGURE 4

Annotation explorer page facilitates cell-level annotation comparison. Users can compare pre-computed cell identity annotations as well as

author-provided labels (when available). Using the Litvinukova et al. dataset, we demonstrate the di�erence between the annotation from the (A)

original authors and (B) Seurat label transfer using the Tabula Sapiens reference.

provide precomputed tables of the differentially expressed genes

based on labeling methods in downloadable .csv format. By

precomputing these tables during the preprocessing stage, we

cut down hours of computing time for the end-user. These tables

provide users the opportunities to review genes or cell groups of

interests, and serve as starting points for downstream analysis

such as drug-gene interaction analysis.

In PlaqView 2.0, we have incorporated a new interactive

feature named Cell Identity PRedictor, or CIPR (Figure 5)

(30). CIPR provides an additional opportunity for users to

interact with the data and further explore and compare

the cell annotations. CIPR calculates, in real-time, cluster-

based gene expression similarity index scores against known

references, such as the Database of Immune Cell Expression

(DICE), Immunological GenomeProject (ImmGen), and the

Human Primary Cell Atlas (30). To run CIPR on the loaded

dataset, users need to select the starting labeling method

(default is the unlabeled Seurat clusters) and the reference

to benchmark against (default is ImmGen Mouse). CIPR

was designed to be able to run against human and mouse

references interchangeably. PlaqView will output an interactive

CIPR plot where users can select the cluster(s) of interest and

explore the top similar cell types, their descriptions, identity

scores (calculated as a function of fold-change dot-product)

and percent of genes that are similarly co-expressed. For

example, when running the COVID-19 heart autopsy data

from Delorey et al. (19) using the pre-sorted human RNAseq

reference provided by CIPR, we noted a high concordance

between the author-labeled “CD8 + T-cells” with the reference

cluster “Effector memory CD8 T cells”, with a 75.5% precent

positive correlation in gene signature (Figure 5). Lastly, users

can download a full table of the CIPR results in .csv format as

well as the CIPR plot in .pdf format for publication.

PlaqView enables users to explore
unstructured metadata

Currently, no systematic convention exists in sharing

single-cell metadata that are essential for reproducible analysis

and future meta-analysis. These important metadata, such

as sex, age, sample location, and author-provided cell-type

annotations, are often omitted when submitting data to

public repositories. It is estimated that fewer than 25% of

current single-cell studies have provided cell-level metadata

(4). PlaqView 2.0 aims to provide a platform for easier

standardization and sharing of cell-level metadata in three

ways: (1) we curate and reformat existing metadata and

append them into the Seurat object, (2) we require new

submissions to have pre-embedded metadata, and (3) we

developed features to explore all existing available metadata in

their unabridged format.

When available, PlaqView separates the metadata

into “Factor-Type” (Figure 6A) and “Continuous-Type”
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FIGURE 5

CIPR integration allows further exploration and interaction with cell-level annotation. Users can benchmark pre-computed annotations with

existing single-cell references, and interactively compare and visualize identity scores and percent correlations with the top candidate reference

identities. Light blue box indicates selected groups for detailed tables.

variables (Figures 6B,D). Examples of factor-type metadata

include sex, age-group, biological individuals, and disease

type, whereas continuous-type metadata include percent

mitochondrial reads, age, and p-values of singleR annotations.

PlaqView will output appropriate feature maps when

these data are available. Furthermore, we introduce the

ability to query gene expression based on factor-type

variables. We demonstrate its use by querying the genes

APOE, COL1A1, FBLN1, and FBLN2 in the Tucker et al.

(31) dataset using the “chamber” variable (Figure 6C).

Interestingly, fibulins (FBLN1 and FBLN2) are more highly

expressed in the right atrium (RA) and left atrium (LA),

compared to ventricular samples, most likely due to the

differential behavior of atrial and ventricular fibroblasts (32).

However, further interrogation using the “experiment” and

“biological.individual” variables show significant variation

of fibulin expression among the atrial samples as well as

among individuals sampled (Supplemental Figures 1A,B).

This particular example demonstrates the critical need for

better metadata sharing as well as the utility of the metadata

explorer feature.

Cell trajectories and re-clustering

RNA trajectory analysis, in conjunction with

pseudotemporal ordering, has been widely used as a method

to reconstruct cell fate, differentiation, and transition events

(12, 33–35). In terms of cardiovascular data, RNA trajectories

have been useful in studying the fate and transitions of

fibroblasts, immune cells, smooth muscle cells and other

intermediate cell types (12, 35–37). In PlaqView 2.0, we provide

additional functionality in RNA trajectory estimation with

Monocle3 (33) by integrating high-performance calculation

steps directly within the browser. Upon opening the “Trajectory”

page, the full pre-calculated RNA trajectory using the entire

dataset is displayed. Now, users can select cells of interest

and subset these cells for re-clustering and re-calculation

of their RNA-trajectory (Figures 7A-C). This interactive

feature allows supervised input and selection of relevant

cells that can help reduce trajectory “noise.” Furthermore,

this feature is helpful because RNA trajectories may not

always be applicable to every cell type in the study, such

as those that are post-mitotic or slow-dividing. Depending
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FIGURE 6

Metadata Explorer enables visualization and query of unabridged cell-level metadata. When available, cell-level metadata are divided into (A)

factor-type such as cells separated by “biological_individuals,” and (B) continuous-type such as percent mitochondria by seurat cluster for

visualization. (C) Users can also query gene expression based on factor-type metadata such as the heart “chamber” in the case of Tucker et al.

(31). (D) We embed the metadata during the preprocessing stage and PlaqView sorts the metadata and runs calculations in response to the user

selection to generate corresponding UMAPs and Violin plots.

on the number of selected cells, ad hoc calculation of RNA-

trajectory can take up to 10–15min, which is longer than

a typical shiny application timeout rule (Figure 7D). We

made custom services rules in the backend container to

ensure that RNA-trajectories are calculated in the most

time-efficient manner possible and modified any timeout

rules typically applied to reliably deliver RNA-trajectory

results. To handle larger datasets in the future, we will

implement a notification and ticketing system to allow users

to return to the same session when calculations are complete.

This new interactive feature allows users to focus on their

cell types of interest to better develop future hypotheses

and experiments.

Druggable genome and cell targeting

Lastly, to enable researchers to rapidly explore current

drug databases in the context of relevant single-cell datasets,

we integrated the Drug Gene Interaction Database (DGIdb

v4) with PlaqView (38, 39). In the “Druggable Genome” tab,

users can input a gene of interest to simultaneously query the

gene expression within the loaded single-cell dataset as well

as display potential drug interactions (Supplemental Figure 2).

Now, users can select multiple databases including Catalog

of Somatic Mutation in Cancer (COSMIC), Food and Drug

Administration (FDA), and DrugBank as described in DGIdb

v4 (40). Additionally, users can download the corresponding
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FIGURE 7

PlaqView 2.0 enables interactive RNA trajectory inference. (A) Full cell trajectory inferences are presented to the user, as demonstrated using the

Alsaigh et al. dataset. (B) Selected cells are highlighted in black. These cells can be subsetted and their (C) trajectories can be re-calculated in

PlaqView as powered by Monocle 3. (D) We pre-compute the overall trajectory during the pre-processing stage, and recalculations of subset

trajectories are done ad hoc as needed by PlaqView as an on-demand function.

UMAP as .pdf as well as the full drug-interaction table as

.csv formats. This feature is invaluable in rapidly formulating

hypotheses and future drug-repurposing experiments.

Goals and future updates

We are committed to bringing the most updated and

relevant cardiovascular datasets to PlaqView. Currently, we plan

to update the PlaqView database at least once monthly as

more datasets and studies are published. Furthermore, we are

currently developing other multi-modal portals suited for data

such as single-cell Assay for Transposase-Accessible Chromatin

(scATAC-seq), spatial RNA-seq, and a separate portal to

compare healthy and diseased tissues in a systematic manner.

Materials and methods

Data formatting

One of the major challenges of reproducible single-cell

analysis is the lack of standardization in data-sharing format.

We have found that the most commonly used methods are:

(1) sharing processed data as matrices (e.g., one file for counts,

one file for metadata, etc.), (2) sharing raw FASTQ files, (3)

sharing processed Seurat objects as .rds files or equivalent, such
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as .h5ad files. We have found that sharing single-cell data as .rds

or equivalent is the most convenient and reproducible method

as the metadata are matched at the cell-level. However, as noted

above, fewer than 25% of published single-cell RNA-seq studies

provide this cell-level metadata.

For PlaqView, each dataset curated or submitted is

standardized and is ready to be read by the application. Although

some efforts have been made to allow interconversions between

file formats, such as sceasy (https://github.com/cellgeni/sceasy),

manual effort is still required to standardize analysis input

for PlaqView. Depending on the incoming file type, they are

converted or updated into the latest Seurat object class in

R, and are saved as .rds files. These processed files, along

with their raw formats, are made publicly available on the

PlaqView homepage at https://plaqview.com/data. Systematic

processing script is available in in the PlaqView DataProcessing

Github page (https://github.com/MillerLab-CPHG/PlaqView_

DataProcessing) and can be used as a reference for other

single-cell applications to readily convert datasets into R-

readable formats.

Data processing steps

Once the datasets are converted into the raw Seurat objects,

we process them in the same manner to generate several output

files to be read by PlaqView (Figure 8). First, we filter out low

quality cells that have <200 or >2,500 features, and those with

>5% mitochondrial reads. Exceptions are made for particular

datasets that evaluate mitochondrial read data, such as data

from Li et al. (13). Then, standard Seurat preprocessing using

the following functions are conducted: FindVariableFeatures(),

NormalizeData(), ScaleData(), RunPCA(), RunUMAP(),

FindNeighbors(), and FindClusters().

To infer cell identity using automatic methods, the scaled

RNA matrix is extracted using the GetAssayData() function and

fed into SingleR as a new singleR object using the SingleR()

function. The identities called by singleR are added into the

metadata slot within the Seurat object.

Similarly, we use Seurat’s label transfer function

FindTransferAnchors() and TransferData() to predict cell

identity using the Tabula Sapiens and Tabula Muris (41)

references, depending on the original species. Identity calls

are added to the metadata column using the AddMetadata()

function. Some longer cell labels, such as “Smooth_muscle_cells”

are shortened to “SMC.” The final Seurat object that contains the

SingleR calls, Seurat calls, Seurat clusters (numbered clusters)

are exported as an .rds file (Figure 8).

To enable trajectory analysis, we used custom scripts to

extract Seurat data and place them into a Monocle3 CDS object

using the new_cell_data_set() function. The new CDS object is

preprocessed using the following functions: preprocess_cds(),

reduce_dimension(), cluster_cells() (33, 34). A custom script is

used to overlay the Seurat UMAP embedding into the Monocle3

object for consistent visualization. Then, starting nodes are

selected automatically based on the closest vertex followed by

learn_graph() and order_cells(). The resulting Monocle3 object

is exported as an _cds.rds file (Figure 8).

Finally, we compute the entire differential expression

for all cell types labeled by different methods (i.e., Seurat

clusters, author-provided, singleR, and Seurat/Tabula Sapiens

annotations) using the FindAllMarkers() function. This is

the most time-consuming and memory intensive part of the

preprocessing pipeline and we use the Future package to

parallelize this step. The full R script for the preprocessing

pipeline is located in our Data Processing Github page (https://

github.com/MillerLab-CPHG/PlaqView_DataProcessing).

Data storage, submission and requests

Raw human sequencing data often require specialized

secured storage both due to their size and institutional review

board (IRB) compliance regulations. Currently, PlaqView 2.0

only requires the downstream count matrices and does not use

any raw sequencing. When data are submitted to PlaqView as

raw sequences (such as FASTQ or BAM files), they are processed

offline in a dedicated high-performance computing platform

and only the count matrices are transferred to PlaqView storage,

which is protected under an institutional firewall (Figure 8).

Nonetheless, most datasets currently on PlaqView are

already open-access and are deposited in different public storage

spaces in various raw formats. All datasets available on PlaqView

have undergone systematic preprocessing and are saved in .rds

formats that can be requested directly on PlaqView.com under

“Data.” Furthermore, researchers can directly and securely

submit their dataset to PlaqView on the PlaqView homepage.

Reproducible computing environment

Various approaches in computer science and within the R

community have been used to create reproducible and stable

computing environments to facilitate faster new user setup,

scalability for larger datasets, and increased stability of web

applications. To our knowledge, popular built-in tools such as

renv does not completely enable a reproducible environment

and only records the versions of tools in an R computing

environment (https://rstudio.github.io/renv/articles/renv.html).

Recently, the combination of Docker and R gave rise to the

Rocker Project (https://www.rocker-project.org/), which utilizes

the image building capability of Docker in conjunction with

R. Essentially, a predetermined set of R tools are installed on

top of a basic operating system, such as Ubuntu. This enables

programmers to capture the entire computing environment-

including the base operating system, R, and all dependent
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FIGURE 8

Overview of data processing and programmatic strategy for PlaqView. Data submitted to PlaqView are processed systematically and stored as

Seurat.rds objects. These objects, along with calculated di�erential gene expression tables and trajectories, are stored in secured storage

provided by the University of Virginia. Additionally, app development and data processes are all conducted in a cataloged, stable Docker RStudio

environment that is registered both on GitHub and DockerHub.

packages- and can be downloaded to any computing platform

reliably and in isolation. This has an advantage over other tools

such as renv in that Docker images contain the actual packages

and operating system, therefore in the event of version changes

or deleted repositories, it will not break with the computing

environment. Based on Rocker, we have built a custom Docker

image that enables users to run the exact analysis pipelines

with all dependencies already installed, and is available via

DockerHub at millerlab/plaqviewmaster. This Docker image

has two major utilizations: as a stable environment for feature

development and as a base for the PlaqView application

deployment, as it contains all the necessary packages and serves

as a backbone for the web application (Figure 8).

Service structure overview

PlaqView is designed to enable researchers to interact

with high-performance computing via the web browser. The

superstructure of PlaqView is to translate user input and
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selection from the browser via Shiny and run calculations in R,

which runs in a clustered container orchestration environment

alongside the University of Virginia High Performance

Computing system (Supplemental Figure 3A). To enable user

interactions with the data without coding knowledge, each

interactive element in PlaqView is coded as Shiny Reactive

elements, which change the underlying R code snippets in

preparation for the analysis. For example, when a user selects

a dataset, the corresponding values of the working directory is

changed to the selected value, and when the user clicks “Load

Dataset”, Shiny monitors and triggers the event to execute the R

code to load the .rds files within the working directories.

Currently, we are using DC/OS (Distributed Cloud

Operating System) to regulate the amount of memory and

processor each user can access. DC/OS also automatically

handles the workload demand to scale up more service

instances in response to increased user access. Furthermore,

this infrastructure allows for isolated, or “sticky,” instances

so each user is given a dedicated R instance and cannot

access other users’ instances. This is commonly referred to

as “stateless programming.” Currently, PlaqView supports up

to 32GB of memory per user (the memory required to access

the largest dataset, and can be scaled up as needed). In the

near future, we plan to further scale up using Kubernetes

on large commercial-grade infrastructures such as Google

Cloud Computing.

Development workflow

Typically, PlaqView development occurs in several stages:

edit source code (app.r file), test locally and update Docker

images, deployment, and bug fixes (Supplemental Figure 3B).

The standard development workflow starts with editing the

app.R script, which encompasses the UI (user interface) and

the Server codes (codes that calculate and compute results).

New features and codes are tested locally in the Dockerized

RStudio container for bugs. Final edits are pushed to GitHub

as “commits” and new changes initiate GitHub Actions

to recompile the application from the base Docker image.

Normally, this step involves reinstallation of the base operating

Linux system and its dependencies, R, Shiny, and all dependent

R packages from scratch, and typically takes about 60min.

However, at this stage, we have simplified the building process

by pulling the aforementioned pre-built Docker base image. In

our experience, the typical rebuild takes about 60min whereas

pulling the stable base Docker image from DockerHub takes

only 3–4 min.

Once the app is live, we begin to capture user feedback

and fix any additional bugs. We implement bug fixes and

feature requests via GitHub as well as through internal runtime

log reviews.

Alternative service structure and
adaptation to other fields of research

PlaqView was originally developed for atherosclerosis-

related cardiovascular datasets, but the underlying structure

was designed to be easily adapted to other fields of research.

The entirety of the source-code has been made available

on GitHub. Furthermore, each iteration of PlaqView comes

with a containerized base image hosted on DockerHub

(wfma888/plaqviewmaster), which allows for immediate and

reproducible deployment in virtually any computing structure.

Essentially, there are two major steps to adapt PlaqView to

other fields: minimal processing of the user interface script and

deploying to a suitable service structure.

Due to the size of the single-cell datasets, PlaqView and

adapted versions are best hosted on dedicated, large high-

performance clusters. Commercial solutions that would work

well are Google Cloud Services as Google Run instances or

Amazon Web Services. Shinyapps.io also provides a native

and easy way to deploy Shiny apps for beta testing, however

limitations in memory per instance and slow performance limits

its usefulness in analyzing large datasets.

Discussion

To date, very few single-cell portals like PlaqView exist for

cardiovascular genomics research. ExpressHeart, a single-cell

portal dedicated to non-cardiomyocyte cells, has several single-

cell datasets but has limited scope and features for data re-

analysis (Supplemental Table 1) (42). Other, larger data portals

such as the Broad Single Cell Portal (SCP) have many large

studies but failed to includemany critical cardiovascular datasets

such as Wirka et al. (11) and Xu et al. (15), and lack the focus

on cardiovascular diseases in general. PlaqView aims to bridge

the gap between large, multi-organ portals like SCP and niche

portals such as ExpressHeart and serve as a critical resource for

the cardiovascular field.

PlaqView helps to overcome many modern challenges

in the single-cell field, such as the complex coding and

computational knowledge needed to explore single-cell data

and standardization for data sharing. Since its initial release,

we have registered users from 35 countries, with the top being

U.S., China, Germany, and the Netherlands. To our knowledge,

PlaqView is the most comprehensive single-cell portal dedicated

to cardiovascular research.We are committed to the longevity of

PlaqView and are working on furthering PlaqView’s capability as

multimodal datasets are released, such as spatial and scATAC-

seq data. Our immediate goals are (1) including additional

relevant single-cell datasets, (2) creating a subportal for live

single-cell dataset integration and comparison, and (3) creating

a subportal for multimodal single-cell data visualization.
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Contribution to the cardiovascular field

Single-cell data has always been challenging to share,

analyze, and visualize. Typically, these datasets require

specialized computing knowledge and high-performance

computing tools not readily available. Previously, we

presented PlaqView, a web-portal to allow lay scientists

and benchtop researchers to rapidly view single-cell RNA-seq

data for atherosclerosis. Here, we introduce PlaqView 2.0,

a significant improvement to the PlaqView application. In

this second major release, we introduce many new features,

such as a metadata explorer, cell identity prediction, and

ad hoc RNA-trajectory calculations. We further improved

the usability, speed, stability, and scale of the application.

PlaqView serves both as a repository of single-cell data

for cardiovascular diseases as well as a tool to rapidly

visualize, renalayze, and share scRNA-seq data without the

need to code or have specialized computing knowledge.

PlaqView is an invaluable resource that bridges the gap

between computational and experimental research to advance

cardiovascular medicine.
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