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Abstract: A systematic process analysis was conducted to study the effect of the main variables in an
industrial electrostatic desalter, such as electric field intensity, wash water content, droplet size, and
oil viscosity, on the efficiency of the separation of water from oil. The analysis was assessed through
an already published and validated CFD multiphase numerical model that considers the expression
of the frequency of collisions as a function of the mentioned process variables. Additionally, the
study allowed the formal optimization exercise of the operation to maximize the separation efficiency.
The most significant variables were the initial water content and the electric field intensity, while
the temperature (oil viscosity) had an effect to a lower extent. An increase in the electric field and
temperature and a decrease in the water content improved the water separation from oil. Optimum
values suggested from the factorial experimental design and the optimization implemented in this
work indicated the use of an electric field of 3 kV/cm, water content of 3%, and an oil viscosity of
0.017 kg/ms. At the same time, the droplet size showed no significant effect under the conditions
explored in this work.

Keywords: electrostatic desalting; computational fluid dynamics; multiphase fluid flow; vari-
ance analysis

1. Introduction

Although the green new deal [1,2] involves the elimination of fossil fuels as soon as
possible, by looking at the sources of energy currently used in the world, fossil fuels are by
far the major contributors to energy production and outnumber the production of clean
energies, so the world production of oil has shown an increasing trend recently [2]. More-
over, crude oil is often associated with saline water in the range of 0.8–2%, which must be
eliminated early in the oil refinement if the level of salt is over 9 kg per 100 barrels [3] as this
saline water may cause corrosion, scale formation, and diminish the catalyst efficiency in
the subsequent stages of crude refinement [4,5]. Salty water comes along with the crude oil
in a water-in-oil (W/O) emulsion due to the shear associated with the oil transportation [4].
Electrostatic desalting units are commonly employed to remove the water and salt from
the crude by adding wash water and demulsifying agents; controlling temperature and the
electrostatic features, such as the type of electric field, its intensity, and the geometry and
arrangement of the electrodes; controlling the fluid flow in that unit to form a water-in-oil
(W/O) emulsion; promoting forces acting on the water droplets (gravity, buoyancy, elec-
trophoresis, dipolar, drag, etc.) causing high-frequency collisions of droplets and eventually
flocculation and coalescence, resulting in the separation of water from oil. The factors that
break the emulsion are: (a) demulsifier additions, (b) temperature increment, (c) presence of
an electric field, (d) residence time of the droplets, (e) water addition, and (f) mixing [3–6].
The emulsion may be stable depending on the oil’s density and electric conductivity, water
content, droplet size distribution, presence of asphaltenes, pH of water, surface tension, and
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age of the emulsion, among other parameters, which give us an idea of the considerable
complexity of this separation. The electric field could be AC, DC, or AC/DC pulsed, which
exerts different forces on the droplets [5,7]. Unfortunately, the process is highly complex
to monitor as it involves high-pressure and high-temperature operation conditions with
high electric fields, so it is almost impossible to perform industrial trials to understand
and optimize the operation of such units. Therefore, the remaining analysis tools are
experimental trials at the laboratory and pilot plant scales under controlled conditions
and mathematical modeling. Several process analyses have been performed in the past,
where the main design and operational variables effects were determined on the separation
efficiency. In all these studies, the main variables explored were the content of freshwater,
pressure drop at the inlet valve, amount of demulsifier, temperature (viscosity of the oil),
density of the oil, and electric field [4–6,8–12] (see Table 1).

Table 1. Summary of research works on process analysis of the electrostatic desalting.

Researchers Nature Variables Conclusion

Abdul-Wahab et al. [5] Laboratory scale model
(bottle test)

Temperature, mixing time,
residence time, chemical dosage,

water content

Most important variables obtained are
temperature, water content, and

residence time

Ali Khairan Alshehri [4] Numerical model
Oil temperature, water content,

voltage, initial water content, oil
flow rate, demulsifier flow rate

Minimization of wash water and final
salt content.

Otaibi et al. [6] Numerical model

Demulsifier concentration,
temperature, wash water %, salt

content, rate of mixing water
addition

Maximizing the efficiency of water
and salt removal

Bresciani et al. [10] Analytical model
Water content, temperature,

voltage, droplet size (upper and
lower droplets)

Model predicts the displacement of
two droplets and the time for collision

under an electric field

Bresciani et al. [13] Same model as [10] but extended
with cellular automata

Water content, temperature,
voltage, droplet size distribution

Predicted coalescence and validated
with industrial data.

Fetter-Pruneda et al. [11] Experimental model
(industrial scale)

Water content, temperature, crude
density

The optimum temperature for Mayan
crude oil and recommended practices

Wilkinson et al. [12] Numerical model Design of baffle separator in a
gravity separator of water from oil

Best design of baffle enhancing the
water separation from oil

Aryafard et al. [14,15] Numerical model, population
balance model

Pressure drop, electric field,
especially wash water content.

Prediction of coalescence and break
up. Analysis of one and two stages of
desalting processes. Improvement of

separation efficiency from 96.5 to
98.5% when wash water is changed

from 3 to 6% and validated in an
industrial unit.

Kakhki et al. [16] Numerical model, population
balance

Pressure drop, electric field, but
especially wash water content

(similar to [6])

Similar results than in [13]. Increasing
the rate of collision between water

droplets promotes coalescence.

Mahdi et al. [8] Experimental model (laboratory
scale)

Demulsifying agent concentration,
temperature, wash water dilution

ratio, settling time, and mixing
time with wash water

Optimum values of demulsifying
agent concentration 15 ppm,

temperature 77 ◦C, 10% wash water
dilution ratio, settling time 3 min, and

mixing time 9 min.

Vafajoo et al. [17] Experimental model (laboratory
scale), fuzzy logic

Temperature, injected chemicals,
and the pH of the crude oil

associated water

Temperature between 115 to 120 ◦C,
best demulsifiers were C and F at

levels of 50 to 100 ppm, separating
88% for water and 99% for salt. The

pH has to be between 9 and 12

Bansal and Ameensayal [18] Numerical model Design parameters Improve fluid flow features and
increase performance

Shariff and Oshinowo [19] Numerical model Fluid flow analysis Vortices formed at the inlet reduce the
separation efficiency.



Processes 2022, 10, 2118 3 of 16

Table 1. Cont.

Researchers Nature Variables Conclusion

Ilkhaani, S. [5] Thermodynamic model
Adding a second stage of

desalting to one-stage desalting to
meet levels of water and salt

Improve the heat integration of the
desalting process, and optimization of

desalting temperature

Alhajri et al. [20] Numerical model and plant trials Device proposed is a static mixer
at the inlet.

Turbulence is key to enhance
separation of water and salt.

Favero et al. [21] Numerical model

Population balance (CFD + DPM)
to predict droplet size distribution
in a duct that mimics pass over a

globe valve

Good agreement between the
experimental and predicted

droplet sizes.

Wang et al. [22] Numerical model CFD + DPM in an aeroengine
bearing chamber (not desalter)

Coalescence and breakup of oil
droplet increases with the initial

diameter of oil droplet.

Sofos [23] Simulations with molecular
dynamics

Novel electrostatic device
consisting of separation cells

The proposed application could be
exploited for the design of a

desalination device.

Shi et al. [24] Plant trials

Novel desalter with helical
electrodes. Effect of electric field

strength, frequency, water content,
and fluid velocity on the

performance
of coalescence.

Increasing the electric field strength
could contribute to the growth of

small water droplets and coalescence.
The study may be used for

optimization

As seen in Table 1, there have been only a few attempts to simulate the process based
on CFD modeling. For example, Aryafard et al. [14,15] and Kakhki et al. [16] developed
numerical models to simulate the desalting in electrostatic units in one stage [15], two
stages [14], and a simplified inlet and drum of a desalting process, using a population
balance model to model the W/O emulsion. They found that the efficiency could be
improved by 2% if wash water was increased from 3 to 6% at the inlet, a result validated by
plant data, while Kakhki et al. [16] stated that the increment in the collision rate promotes
the coalescence of droplets, improving the separation.

Recently, a new design of a high-efficiency static mixer located at the inlet of the
desalting unit was modeled by CFD techniques and field trials by Alhajri et al. [20] in
a Saudi Arabia refinery. They concluded that enhancing turbulence is the key to saving
wash water and improving water and salt removal efficiency. Favero et al. [21] used a CFD
model using the Eulerian multiphase approach that includes a mass population balance
to account for the coalescence and breakout of water-in-oil emulsion that passes in a duct
with an element that mimics the pass of such an emulsion through a globe valve as in a
desalter unit. The results indicated good agreement in the droplet diameter with data from
the literature. Sellman et al. [25] conducted a review in which they explained difficulties
associated with separating salt from a blend of oils, particularly difficulties when the
oil blend contains suspended solids that stabilizes the emulsion. They revised how the
desalting units have been improved in the past, the role CFD plays in understanding the
process, and the industry’s benefits from such studies. Wang et al. [22] simulated the
droplet size population of oil droplets using CFD under the Euler–Euler approach and
using the population balance model (CFD-DPM). However, the system was an aeroengine
bearing chamber, not a desalter, giving insight into a very complex system. Another
attempt to simulate the separation of droplets was presented by Sofos [23], but again, not in
a desalter but a novel electrostatic device consisting of separation cells. Molecular dynamics
performed the simulation. Shi et al. [24] also proposed a novel electrostatic desalter device
with helical electrodes, and the performance was tested with experimental trials.

Recently, our research group published an article [26] and presented [27] CFD mod-
eling based on an industrial desalting unit in México. The study employed a correlation
for the frequency of collisions between droplets, obtained from Bresciani’s modeling ap-
proach [10,13]. The correlation, which includes the effect of the primary process variables,
was used in Ansys Fluent with the multiphase mixture model to evaluate the separation
of the salty water from the oil in the presence or the absence of an electric field. The
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merit of that research was to provide a tool for process analysis based on first principles.
In this work, the earlier study already published was extended to perform a systematic
process analysis to assess the effect of the primary process variables (electric field intensity,
temperature through the oil viscosity, water content, and inlet valve pressure through
the initial droplet size) on the separation efficiency. In addition, we proposed optimum
conditions for maximizing the separation in an industrial desalting unit by using standard
optimization subroutines.

Mathematical Modeling

A Eulerian frame of reference was used using the mixture multiphase approach to
simulate the numerical isothermal fluid flow separation of the W/O emulsion through
the 3D industrial unit desalting from Pemex (Mexico) shown in Figure 1, including inlets,
outlets, and internal electrode plates.
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Figure 1. Schematic of the desalting unit used in this study.

The mixture algorithm involves the calculation of the physical properties of the mixture
with the volume fraction of water and oil phases. It also accounts for the continuity and
momentum conservation equations, while the breakup (STI) and coalescence (SRC) of
droplets are determined through the interfacial area concentration conservation equation,
a sort of population balance expression. Continuity and momentum equations use the
drift velocity, vd,i. To account for the relative displacement of one phase to the mixture of
phases and in the case of the water drift velocity, it results from a force balance between
drag, turbulent dispersion, and buoyancy forces. Moreover, this slip velocity brings out
additional terms in the continuity and momentum equations.

The critical feature of the interfacial area concentration is the source term related to
the successful collisions producing coalescence of droplets. This term uses the correlation
of the frequency of collisions, fc developed in our previous study [26], which in turn is a
function of the primary process variables, such as the electric field E0, water content aw, oil
viscosity µo (temperature), and droplet size dw. Finally, to consider the turbulence in the
system, the k-ε realizable turbulence model was used.

Table 2 shows a list of major simplifying assumptions, while Tables 3 and 4 show a list
of governing equations and boundary conditions.
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Table 2. List of simplifying assumptions used in the development of the mathematical model.

Assumption Consequence

Isothermal system There are considered thermal gradients in the desalter

Constant physical properties Both water and oil are Newtonian and incompressible fluids

Steady state The time derivatives are zero

Non-slip and impermeable walls All components of the velocity vector are zero at the boundary and internal
static walls

Oil is the continuous phase Water is the disperse phase in W/O emulsions. Therefore, the reverse
emulsion O/W is not considered to appear in the unit.

Mixture algorithm A single set of equations: continuity, momentum, and one turbulence model to
simulate the multiphase system.

k–epsilon realizable turbulence model To represent the turbulence in the continuous phase. The disperse phase has
no turbulence.

Interfacial area concentration To account for the events of breakup and coalescence of droplets

Collision frequency Coalescence depends directly on the frequency of the collisions between
droplets, as was stated by Ramirez-Argaez et al. [26]

Table 3. Governing equations.

Name Equation

Mixture density ρm =
N
∑

i=1
αiρi

Mixture viscosity µm =
N
∑

i=1
αiµi

Mixture velocity vm = ∑N
i=1 αiρivi

ρm

Continuity ∇·(ρmvm) = 0

Momentum

∇·(ρmvmvm) = −∇pm +∇·(τm + τTm) +∇·τDm + ρmg
where the three tensors are the average viscous stress τm, the turbulence

stress τTm and the diffusion stress τDm due to the phase slip:

τm =
N
∑

i=1
αiτi

τTm =
N
∑

i=1
αiρi v́i v́i

τDm =
N
∑

i=1
αiρivd,ivd,i

where vd,i is the drift velocity, i.e., the velocity of the i− th phase, vi
relative to the mixture velocity, vm:

vd,i = vi − vm
In the case of water droplets, according to the algebraic slip formulation
by [28] where the buoyant, turbulent dispersion and drag forces acting

on the water droplets are balanced:

vw = (ρw−ρm)d2
w

18µo fdrag
g− ηT

PrT

(
∇αw
αw
− ∇αo

αo

)
Drag coefficient (Shiller–Nauman) fdrag =

{
1 + 0.15Re0.687 Re ≤ 1000
0.018Re Re > 1000

Water phase continuity
∇·(ρwvmαw) = −∇·

(
ρwvd,wαw

)
As there are only two phases and the ∑N=2

i=1 αi = 1, αo = 1− αw
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Table 3. Cont.

Name Equation

Interfacial area concentration

∇·(ρwvwχw) = ρw(SRC + STI)
Source due to coalescence SRC:

SRC = − 1
108π

(
αw
χw

)2
nc fcλc

Source due to breakup, STI:

STI =
1

108π

(
αw
χw

)2
nb fbλb

Number of droplets per unit volume of the mixture nc = 108π αw
d3

w

Frequency of collisions [26]
fc =

1
22469.1829α−3.294

w µ0.968
o E−2.007

0 d−0.013
w

with a coalescence probability λc=1.

Number of eddies per unit volume [26] nb = 108π
(1−αw)

d3
w

Frequency of collision due to turbulence fb = 0.264αwε1/3

d2/3
w (αw,max−αw)

Breakup efficiency λb = exp
(
−1.37 σ

ρod5/6
w ε2/3

)
Water droplet diameter dw = 6 αw

χw

Turbulent kinetic energy ∇·(ρmvmk) = ∇·
(

ρm

{
η+ηT
σT,k

}
∇k
)
+ ρm(Pk − ε)

Energy dissipation rate
∇·(ρmvmε) = ∇·

(
ρm

{
η+ηT
σT,ε

}
∇ε
)
+ ρm

(
C1εSε− C2εε2

{k+√voε}

)
where ρmηT = Cµk2/ε, Pk is the production of turbulence, and S is the

strain tensor.

Table 4. Boundary conditions.

Boundary Condition

Non-slip conditions at the internal and external walls Zero velocity of all components, no turbulence (standard wall functions)

Inlets Inlet velocity of the emulsion with a volume fraction of water

Outlets Pressure outlet (gauge pressure equal zero)

The model was implemented in the CFD software Ansys Fluent v2020R2 where the
desalting unit was designed and discretized using a nonuniform mesh, as shown in Figure 2,
with 3,393,218 cells. The numerical solution used the SIMPLEC velocity pressure coupling.
The convection schemes for the continuity momentum and turbulent equations were
second-order, while in the case of the volume fraction and the interfacial area concentration,
the first-order scheme was used. Standard initialization and residual convergence level
were used. A complete factorial design 24 was used to perform the process analysis, where
the four variables: electric field, oil viscosity, water content, and initial droplet size, were
tested. Table 5 shows the low and high levels of variables used, while Table 6 shows the
conditions of 24, i.e., 16, simulations. Factors and their levels were chosen based on real
plant parameters in a Mexican oil refinery. Some process variables were not considered,
such as the amount of demulsifier, as the model cannot predict its effect. In contrast,
other variables such as the pressure drop at the valve and the temperature were indirectly
adopted through the droplet size and oil viscosity, respectively. Finally, the results were
post-processed to obtain the contours of water volume fraction, mixture velocity, and
turbulent kinetic energy to qualitatively analyze the variables’ effect. The separation
efficiency was reported for each simulation, so a multiple linear regression was applied
to the results to correlate the separation efficiency as a function of the main variables
and the significant double interactions between variables. This correlation was employed
to perform an optimization effort using a formal optimization method called genetic
algorithm NSGA-II [29], programmed in MATLAB® to obtain the optimum conditions for
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the desalting that minimizes the water and salt content from the oil. The model is only
valid under the range of selected variables. In addition, we did not include the effect of the
chemical agent (demulsifier), as the collision law does not consider this effect, only applies
for DC electric strength, and is valid for the geometry of study (Pemex desalter). Despite
these constraints, the methodology is valid and easily applied to any desalter unit.
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Table 5. Levels of the parameters used in this study.

Level/Variable E (kV/cm) X µ (kg/ms) D (µm)

(+) 3 0.12 0.071 20

(−) 0.1 0.03 0.017 1

Table 6. 24 full factorial experimental design.

Case Number E X µ D

1 − − − −
2 − − − +

3 − − + −
4 − − + +

5 − + − −
6 − + − +

7 − + + −
8 − + + +

9 + − − −
10 + − − +

11 + − + −
12 + − + +

13 + + − −
14 + + − +

15 + + + −
16 + + + +
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2. Results
2.1. Effect of Electric Field

In this section, the effect of every studied variable on the separation of water from oil
is presented through the comparison of the oil volume fraction contour plots and velocity
vector plots of cases with high and low levels of each variable analyzed, keeping the other
variables fixed. Then, the statistical analysis is shown and, after this quantitative analysis,
the process optimization is presented.

Figure 3 shows the oil volume fraction contours in a longitudinal plane of the desalting
unit, comparing the high electric field of 3 kV/cm (Figure 3a) and the low electric field
of 0.1 kV/cm (Figure 3b). This variable significantly impacts the electrostatic separation
even with a high amount of water (12%). Crude oil with more than 97% of oil is achieved
at 3 kV/cm, while only a separation of 80% at 0.1 kV/cm is achieved. The electric field
promotes the random motion of charged droplets, producing the necessary forces to
approach water droplets and promoting collisions for coalescence and separation.
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(a) (b) 

Figure 3. Effect of the electric field on the oil volume fraction in a longitudinal plane for (a) high
electric field, experiment 11 (D = 1 µm, µ = 0.071 kg/ms, x = 0.12, and E = 3 kV/cm); (b) low electric
field, experiment 15 (D = 1 µm, µ = 0.071 kg/ms, x = 0.12, and E = 0.1 kV/cm).

2.2. Effect of Temperature (Oil Viscosity)

Figure 4 shows the oil volume fraction contours in a longitudinal plane of the desalting
unit, comparing the case of high oil viscosity (low temperature) of 0.071 kg/ms (Figure 4a)
and low oil viscosity (high temperature) of 0.017 kg/ms (Figure 4b). This variable has a
lower effect on the electrostatic separation than the electrostatic field, but the influence is
still evident. Crude oil desalting and dehydration at high temperatures (high viscosity of
oil) are achieved better than at low temperatures (low viscosity of oil). One of the forces
droplets feel that prevents the separation is the drag forces from the oil to the water droplet,
so the higher the viscosity, the higher the drag forces and the worse the separation.
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Figure 4. Effect of the temperature (oil viscosity) on the oil volume fraction in a longitudinal plane for
(a) high viscosity, experiment 12 (D = 20 µm, µ = 0.071 kg/ms, x = 0.12, and E = 0.1 kV/cm); (b) low
viscosity, experiment 10 (D = 20 µm, µ = 0.017 kg/ms, x = 0.12, and E = 0.1 kV/cm).
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2.3. Effect of Water Content

Figure 5 shows the oil volume fraction contours in a longitudinal plane of the desalting
unit, comparing the case of the high water content of 12% (Figure 5a) and low water content
of 3% (Figure 5b). This variable has a lower effect on the electrostatic separation than
the electrostatic field but a more significant impact than the oil viscosity (temperature).
Water separation is, in practice, achieved by adding extra wash water to the water already
present in the emulsion. Nevertheless, adding too much water may be counterproductive
and prevent water separation. Therefore, water content is one of the main variables to be
optimized in practice. Increasing the water content intends to form a w/o emulsion with
water droplets closer to one another and requires a lower electric field. However, adding
more water than necessary may need too many collisions to achieve the coalescence, and
this high number of collisions may not be achieved in the residence time of the droplets.
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Figure 5. Effect of the water content on the oil volume fraction in a longitudinal plane for (a) high
water content, experiment 9 (D = 1 µm, µ = 0.017 kg/ms, x = 0.12, and E = 0.1 kV/cm); (b) low water
content, experiment 1 (D = 1 µm, µ = 0.017 kg/ms, x = 0.03, and E = 0.1 kV/cm).

2.4. Effect of Droplet Size

Figure 6 shows the oil volume fraction contours in a longitudinal plane of the desalting
unit, comparing the case of a large droplet size of 20 microns (Figure 6a) and a small droplet
size of 1 micron (Figure 6b). This variable has the lowest effect on the electrostatic separation
of all the variables explored in this study. Therefore, the droplet sizes used for the survey
probably show no sensitivity to the separation. The effect of the droplet size may play
a role if the size is big enough to promote buoyancy forces in the case of light crude oil,
but this effect has a lower impact with heavy crude oil. The result suggests that drag and
electrostatic forces dominate the motion of the droplets.
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Figure 6. Effect of the droplet size on the oil volume fraction in a longitudinal plane for (a) high
droplet size, experiment 6 (D = 20 µm, µ = 0.017 kg/ms, x = 0.03, and E = 3 kV/cm); (b) low droplet
size, experiment 5 (D = 1 µm, µ = 0.017 kg/ms, x = 0.03, and E = 3 kV/cm).

3. Discussion
3.1. Hydrodynamic Analysis

From Figure 7, it is possible to explain the behavior presented in Figures 3 and 5 on
the oil volume fraction or separation of oil from water, where the effects of the electric field
and water content are analyzed, which are the most significant variables in the process.
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It is concluded that the separation is significantly improved by raising the electric field
from 0.1 kV/cm to 3 kV/cm. By examining Figure 7c,d with electric fields of 3 kV/cm
and 0.1 kV/cm, respectively, it can be seen that at 3 kV/cm, the turbulence is much lower
than in the case of 0.1 kV/cm. A similar trend is found in Figure 7a,b with a water content
of 0.12 and 0.03, respectively, where the turbulence is much lower in the case of better
separation (x = 0.12) than in the case of worst separation (x = 0.03), showing high turbulence.
These results suggest that turbulence promotes collision and prevents the coalescence of oil
droplets. Then, moderate turbulence is required to encourage collisions but not too much
to allow the coalescence of droplets.

Figure 7. Effect of the water content on the Eddy viscosity in a longitudinal plane for (a) high water
content, experiment 9 (D = 1 µm, µ = 0.017 kg/ms, x = 0.12, and E = 0.1 kV/cm); (b) low water
content, experiment 1 (D = 1 µm, µ = 0.017 kg/ms, x = 0.03, and E = 0.1 kV/cm). Effect of the
electric field on the Eddy viscosity in a longitudinal plane for (c) high electric field, experiment
11 (D = 1 µm, µ = 0.071 Kg/ms, x = 0.12, and E = 3 kV/cm); (d) low electric field, experiment 15
(D = 1 µm, µ = 0.071 Kg/ms, x = 0.12, and E = 0.1 kV/cm).

Further explanation about the differences in the separation obtained by changing the
water content and the electric field comes from Figure 8, where the effect of the electric
field and water content on the liquid velocity field is analyzed. In all cases, basic features
of the flow field are the vertical high-velocity flow coming from the inlets, a clockwise
circulation at the right lateral wall, and a low-velocity zone below the water outlets. In a
high electric field of 3 kV/cm (Figure 8c), two well-defined circulation loops appear in the
center of the desalter that are not defined at low electric fields of 0.1 kV/cm (Figure 8d). In
the case of the high water content of x = 0.012 (Figure 8a), these circulations in the center are
present but not at low water content (Figure 8b). These circulation loops seem to increase
the residence time of oil droplets that help in the separation process, although the residence
time curves were not considered in this work.
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Figure 8. Effect of the water content on the velocity in a longitudinal plane for (a) high water content,
experiment 9 (D = 1 µm, µ = 0.017 kg/ms, x = 0.12, and E = 0.1 kV/cm); (b) low water content,
experiment 1 (D = 1 µm, µ = 0.017 kg/ms, x = 0.03, and E = 0.1 kV/cm). Effect of the electric field on the
velocity in a longitudinal plane for (c) high electric field, experiment 11 (D = 1 µm, µ = 0.071 kg/ms,
x = 0.12, and E = 3 kV/cm); (d) low electric field, experiment 15 (D = 1 µm, µ = 0.071 kg/ms, x = 0.12,
and E = 0.1 kV/cm).

3.2. Statistical Analysis and Optimization

Table 7 shows the statistical analysis of each main effect of the four variables, along
with double effects. Figure 9 shows a Pareto graph where the single results are reported
along with double and triple interactions and the statistical significance through a dashed
line. All effects lower than this line may be considered statistically insignificant and are,
consequently, not reported in Table 7.

Table 7. Analysis of Variance.

Term Effect Coefficient Std Dev. p-Value

µ 0.010134 0.005067 0.000656 0.001

E −0.03191 −0.01596 0.000656 0.000

X 0.04239 0.02119 0.000656 0.000

µ × x 0.007805 0.003903 0.000656 0.002

E × x −0.02950 −0.01475 0.000656 0.000
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Figure 9. Pareto chart of the single effects, namely pressure drop at the inlet valve (droplet size, D),
content of freshwater x, temperature (viscosity of the oil µ), and electric field E. In addition, effects of
double, triple, and quadruple interactions are shown.

Table 7 and Figure 9 clearly state that only three variables and two double interactions
are significant in oil separation. These are from high to low effects: water content, electric
field, the combined effect of water content–electric field, and oil viscosity (temperature). If
the initial water content increases from 0.03 to 0.12, water separation decreases by 4.24%.
Aryafard et al. [14,15] found a similar improvement of oil content at the outlet from 96
to 98.5% when wash water is changed from 3 to 6% and validated in an industrial unit.
Supposing the electric field increases from 0.1 kV/cm to 3 kV/cm, the separation of salty
water is enhanced by 3.2%. Not too many studies are clear on the effect of the electric
strength. Aryafard [14] et al. showed that increasing the electric field from 1.5 to 2 kV/cm
increases the water removal efficiency from 96.4% to 97.8% in the crude oil. The effect
of the combination of water content and the electric field is interesting, which indicates
that a simultaneous increment in water and the electric field is beneficial by 3% separation.
Finally, the increment in viscosity from 0.017 kg/ms to 0.071 kg/ms diminishes water
separation from the oil by almost 1%. The droplet size resulted as insignificant. However,
in the real process, this variable is linked somehow to the amount of fresh water in the
desalting unit. Thus, the true nature of the simulation does not distinguish a case with
high water content and small droplet size from a case with high water content and small
droplet size. One of these two conditions may be challenging to meet in a real desalter. In
the literature, many authors point out that the droplet size is essential as its size dominates
the forces acting on the droplet that causes the collision and coalescence process needed for
the separation [10,13,14].

The statistical analysis allowed us to obtain a response surface of the final water
content at the oil outlet as a function of the main variables explored and expressed through
the following equation not including the insignificant terms as:

Mean Volume Water Fraction = 0.01041− 0.1221µ + 0.003830E + 0.6304x + 4.373µ× x − 0.1865E× x (1)

The above equation was used to obtain a formal optimization analysis through the
genetic algorithm built in the optimization module of MATLAB. The optimization consisted
in minimizing the water content at the oil outlets, i.e., maximizing the separation of
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water from the crude oil. The outcome of this optimization exercise is the recognition of
25 optimum conditions (Pareto front) described in Table 8.

Table 8. Pareto front with optima.

Optimum Point D µ E x Mean Volume Fraction of Water

1 3.06095597 0.01707254 2.99339092 0.03003833 0.02526776

2 3.52471021 0.01701073 2.99998767 0.03001266 0.02524942

3 3.55716842 0.01703218 2.98611306 0.03003497 0.02527249

4 6.1115551 0.01701526 2.99889999 0.03004764 0.02524273

5 7.33734703 0.01701039 2.9964797 0.03003354 0.02523891

6 7.7335968 0.01704495 2.99988084 0.03008657 0.0252396

7 7.83882932 0.01704015 2.94999207 0.03003251 0.0253042

8 8.06589326 0.01707272 2.91442089 0.03008012 0.02536068

9 8.52232293 0.0170021 2.99859394 0.03000871 0.02522771

10 10.0636939 0.01710667 2.99625853 0.03005619 0.0252359

11 10.2583472 0.01702999 2.96275447 0.03005567 0.02527663

12 10.3801102 0.01704703 2.99860591 0.03009518 0.02523013

13 11.7521461 0.01704481 2.99105772 0.03001022 0.02522692

14 12.2213506 0.01702969 2.98366032 0.03006916 0.02523927

15 12.4154352 0.01703886 2.99939996 0.03004532 0.02521476

16 12.9440779 0.01701494 2.99693118 0.03003288 0.02521299

17 13.0555521 0.01702826 2.90428816 0.03000283 0.02534075

18 13.6925743 0.01700749 2.97734302 0.03003171 0.0252365

19 13.70686 0.0170153 2.99584673 0.0300342 0.02521118

20 15.5920049 0.01707421 2.97423509 0.03002545 0.0252366

21 16.5123639 0.01700549 2.99958726 0.03006071 0.02519454

22 16.6602285 0.01708459 2.99414794 0.03002029 0.02520413

23 17.0696906 0.01700989 2.98707433 0.03003351 0.02520774

24 18.7182166 0.01700966 2.98791986 0.03000627 0.02519679

25 18.8514308 0.01704943 2.9998606 0.03006069 0.02518672

From the optimum variables presented in Table 8, the previous analysis can be con-
firmed through the comparison of the oil volume fraction contours, where the effect of
every variable was discussed. Then, the optimum conditions under the range of values
explored in this study are (a) electric field of 3 kV/cm, (b) high temperature with an oil
viscosity of 0.017 kg/ms, and (c) initial water content of 3%, and the size of the droplet
that has no effect may vary from 19 to 3 µm, ratifying that this variable showed no effect
on the separation. All these conditions indicate a final water content of 2.5%, as can be
seen in the last column in Table 8, where the optimum water content at the oil outlets is
presented as the optimum value. Comparison against other studies is difficult because
the variables are not the same and because there are only a few optimization studies. For
instance, Mahdi et al. [8] reported optimum values of a demulsifying agent concentration
of 15 ppm, temperature of 77 ◦C, 10% wash water dilution ratio, settling time of 3 min, and
mixing time of 9 min. Aryafard [14] et al. proposed the following increments in the electric
field from 1.5 to 2 kV/cm, wash water from 3% to 6%, and pressure drop from 20 to 30 psi.
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4. Conclusions

The statistical analysis indicated that the most significant variables affecting the water
separation from oil were from higher to lower impact: the water content, the electric field
intensity, and the oil viscosity. At the same time, the droplet size was insignificant in the
separation under the conditions explored in this work. Increasing the electric field and
decreasing the water content and oil viscosity (increasing temperature), better separation
is achieved. It was found that the excess turbulence promotes collisions but may prevent
actual coalescence and, therefore, it does not help in the separation. Additionally, it was
found that the many circulation loops found in the cases of high electric fields and low
water content may increase the residence time of the droplets, giving enough time for better
separation than in the cases of low electric fields and high water content. Optimum values
suggested from the optimization are E0 = 3 kV/cm, µ = 0.017 kg/ms, and water content
of 3%.
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Abbreviation

Symbol Meaning Units Symbol Meaning
ρ density [kg m−3] Sub index
α Volume fraction [-] M mixture
N Number of phases [-] I i-th phase
µ Viscosity [kg m−1 s−1] T Turbulence
v Average velocity [m s−1] D Diffusion
p Pressure [N m−2] d, i Drift of i-th phase
τ Stress tensor [N m−2] w Water
v́ Fluctuating velocity [m s−1] o Oil
g Gravitational constant 9.81 [m s−2] c Coalescence
η Kinematic viscosity [m2 s−1] b Breakup
Pr Prandtl number [-]
fdrag Drag coefficient [-]
Re Reynolds number [-]
dw Droplet diameter [m]
χw Interfacial area concentration [m2 m−3]
STI Droplet breakup [m−1 s−1]
SRC Droplet Coalescence [m−1 s−1]
nc Number of droplets per volume of the mixture [m−3]
fc Frequency of collisions [s−1]
λc Coalescence probability [-]
nb Number of eddies per volume of the mixture [m−3]
fb Frequency of collisions due to turbulence [s−1]
λb Breakup efficiency [-]
αw,max The maximum water volume fraction [-]
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ε Energy dissipation rate [m2 s−3]
k Turbulent kinetic energy [m2 s−2]
Pk Production of turbulence [m2 s−3]
S Strain tensor [s−1]
σT,k, σT,ε, Constants of the k-

[-]
C1ε, C2ε, Cµ ε realizable turbulence model
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