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ABSTRACT

CRYSTAL PLASTICITY INSPIRED MODELLING OF FIBRE
REINFORCED COMPOSITES

There is an increasing demand in carbon fibre reinforced (CFR) composites pri-
marily due to their high strength-to-weight ratio. Although their single-ply behaviour is
rather brittle (as compared to metals), by reducing the ply thickness and stacking differ-
ently oriented plies, brittleness is suppressed, and a ductile behaviour similar to metals is
achieved.

In this thesis, a recently proposed material model inspired by crystal plasticity is
reconsidered and implemented in an implicit finite element solution framework. To this
end, a user-defined element is developed in a geometrically non-linear continuum setting
and implemented in commercial finite element software Abaqus through UEL (User-
defined ELement) subroutine. The model is validated by analytical solutions derived for
simple shear cases and two experiments for different loading cases from the literature. The
model is capable of predicting stress-strain response well in cases where matrix plasticity
is dominant. Moreover, a parametric study on the cross-ply shear specimen is conducted
to investigate the influence of different material parameters. In the last part, the model is
extended by a continuum scale damage in the matrix and degradation in elastic material
properties. The predictive capabilities of the damage extended model are assessed by

re-analyzing the cross-ply shear test.
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OZET

FIBER TAKVIYELI KOMPOZITLERIN KRISTAL PLASTISITEDEN
ESINLENEREK MODELLENMESI

Karbon Fiber Takviyeli (KFT) kompozitlere, 6zellikle yiiksek mukavemet-agirlik
oranlar1 nedeniyle artan bir talep vardir. Tek katmanli davraniglar1 (metallere kiyasla)
oldukca gevrek olmasina ragmen, katman kalinlig1 azaltilarak ve farkli fiber yoniine sahip
katmanlar birlestirerek bu gevreklik azaltilabilir ve bu sayede metallere benzer siinek bir
davranig elde edilebilir.

Bu tezde, kristal plastisiteden esinlenerek yakin zamanda onerilen bir malzeme
modeli yeniden ele alinmakta ve kapali adim bir sonlu eleman ¢oziimii ¢ercevesinde
uygulanmaktadir. Bu amagla, geometrik olarak dogrusal olmayan bir siirekli ortamda kul-
lanict tanimli bir eleman gelistirilmis ve kullanict eleman (UEL) altprogrami araciligiyla
sonlu eleman yazilimi Abaqus’e entegre edilmistir. Model, basit kesme durumlari i¢in
tiiretilen analitik ¢oziimler ve literatiirden secilen farkli ylikleme durumlari i¢in iki deney
ile dogrulanmistir. Modelin matris plastisitesinin baskin oldugu durumlarda gerilim-
gerinim tepkisini iyi tahmin etme yetenegine sahip oldugu goriilmiistiir. Ayrica, farklh
malzeme parametrelerinin etkisini arastirmak icin ¢apraz katli kesme numunesi lizerinde
parametrik bir ¢caligma yapilmistir. Son boliimde, model, matriste siireklilik 6lgeginde
hasar ve elastik malzeme 0Ozelliklerinde bozulmay1 yansitacak sekilde genisletilmistir.
Genigletilmis hasar modelinin tahmin yetenekleri, capraz katli kesme testinin yeniden

analiz edilmesiyle degerlendirilmistir.
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CHAPTER 1

INTRODUCTION

Fibre Reinforced Composites (FRC) are lightweight and stiff materials used in
various applications ranging from engineering structures to wind turbine blades. They are
manufactured by the combination of at least two components with different properties in
various proportions. This combination makes it possible to improve the properties of the
constituent for the intended use. The high strength-to-weight ratio of the fibre reinforced
composites has increased the demand for FRC’s in the aforementioned disciplines. Due
to this demand, mechanical response of these materials should be understood correctly.
However, they are heterogeneous, so their characterization requires a large number of ex-
periments. Since composites are expensive materials, successful modelling of composites
would reduce the economic burden of experimental studies involving composites.

As far as modelling of composites is concerned, initially the interest was mostly on
predicting the composite properties from the properties of the constituents (Nemat-Nasser
etal.,2013). Afterwards, the emphasis shifted towards predicting the failure of composites.
Typically, composites are observed to fail at low plastic strains and exhibit brittle-like
behaviour. The modelling of failure mechanisms of composite materials attained priority
and for this purpose an international event called World Wide Failure Exercise (WWFE)
was organized (Hinton et al., 2002; Kaddour & Hinton, 2013). In this exercise, the
theories on the modelling of composites were evaluated in all aspects by comparing with
the experimental results.

Although, fibre reinforced composites are preferable for many properties, their
brittle behaviour limits their use. In this context, there are studies in the literature on the
effects of laminate thickness and fibre angle on the behaviour of composites. For example,
the study of Ogihara and Nakatani (2012) reveals that the 48-ply composite exhibits more
ductile behaviour than the 16-ply composite under monotonic tensile loading, although
both specimens have the same thickness, please see Figure 1.1. Furthermore, Fuller and
Wisnom (2018) shows that non-linearity increases with higher & when monotonic tensile
tests on [+6] composite laminates are conducted.

In experimental studies conducted in recent years, elasto-plastic behaviour similar

to that of metals has been observed in very thin plies, please see Figure 1.1. The modelling
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Figure 1.1. Comparison of stress-strain responses for different ply thickness
(Source: Ogihara and Nakatani, 2012)

of this behaviour is an important issue and has been studied in recent years. Among
the proposed models, especially the model inspired by crystal plasticity reproduces the
experimental data quite well. Experiments on this subject show that plastic deformation
of fibre in FRC has similarity to the notion of crystal plasticity. This similarity reveals
that crystal plasticity can be a sensible approach to understand the plastic deformation of
fibre reinforced composites. This modelling framework (Meza et al., 2019; Tan & Falzon,
2021; Tan & Liu, 2020) is proposed recently and its predictive capabilities and limitations

are not fully explored yet.

1.1. Motivation of the Thesis

Departing from this point, the thesis focuses on crystal plasticity inspired modelling
of composites. To this end, implicit version of the crystal plasticity based model proposed
by Meza et al. (2019) is implemented in Abaqus through user defined element subroutine
(UEL). The implementation is verified by using analytical solution of homogeneous tests
and the predictions are compared with experimental results as well. Referring to Figure 1.2,
it is clearly visible that the predictions deviate from the experimental results at relatively
high strain levels. This is essentially attributed to damage mechanisms taking place within
the matrix, fibre and matrix-fibre interface. To address this, in the last part of the thesis,
the model is extended to include matrix damage using the concepts of continuum damage

mechanics.
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In the next chapter, crystal plasticity inspired model and its adoption to composites
is explained. The following chapter deals with the implementation of the model and elab-
orates on its algorithmic structure. Simple shear tests and comparison with experimental
results are presented in this chapter. In the next chapter, it is explained how the concepts
of damage mechanics are connected to the model and implemented. The effect of damage
on predictions is investigated by repeating the analysis with the damage-extended model.

Finally the thesis is closed by Conclusion & Outlook chapter.



CHAPTER 2

CRYSTAL PLASTICITY INSPIRED MODELLING OF

COMPOSITES

2.1. Crystal Plasticity Theory

In this chapter, the primary goal is to give information about crystal plasticity theory
and its adoption to fibre reinforced composites. In the vast majority of metals, plastic
deformation results from dislocation glide. Crystal plasticity is an approach that tries
to explain permanent deformation by incorporating crystalline level slip mechanisms. It
postulates that permanent deformation occurs by shear at the microscopic level. According
to this approach, plastic deformation is described as the sliding of atoms, and the specific
planes on which the sliding occurs are called slip planes. These slip planes are defined by
the direction vector 57 and the normal vector 71" of the slip plane, which are orthogonal

to each other, see Figure 2.1 for illustrations of the slip systems.

(a) (b)
Figure 2.1. An illustration for (a) Body Centred Cubic (BCC) slip system and (b) Face
Centred Cubic (FCC) slip system.

Crystal plasticity is a continuum scale modelling approach based on these slip
mechanisms and therefore has a strong physical basis. The kinematics of this description

is going to be detailed in the next section.



2.1.1. Kinematics

The deformation gradient, F is the fundamental measure of deformation in con-
tinuum mechanics. It is the second-order tensor that maps material line elements in the
reference configuration into line elements in the current configuration. The mapping is

expressed mathematically as,

Z t=0 t>0

Figure 2.2. Line segment mapping of a deformable body.

dx = FdX 2.1

In finite strain crystal plasticity, total deformation gradient tensor is split into an

elastic and a plastic part,
F=F.F, det(Fe) >0 & det(Fp) =1 (2.2)

which is called as multiplicative decomposition of deformation gradient. This decompo-
sition implies that there is a fictitious intermediate state formed by plastic deformation
gradient tensor, please see Figure 2.3. The plastic part consists of plastic slips on the
slip planes, whereas the elastic part is composed of lattice distortion and rotation. In
intermediate state, the lattice structure is the same as the undeformed configuration and
the slip vectors do not alter. The rotation and stretching of slip vectors take place as a result
of elastic part of deformation gradient. Current slip vectors are evaluated by 57 = F, Eg

and /i = Fl 7i] , both are orthogonal.
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Figure 2.3. Please note that the slip vector in reference configuration and intermediate
configuration are identical. Dashed black lines in the final configuration are obtained by
mapping R. and the solid red line represents the final configuration.

reference configuration intermediate configuration

The fibre rotation due to deformation, denoted as w in Figure 2.3, can be evaluated
based on elastic rotation tensor. With polar decomposition, a deformation gradient can
be multiplicatively decomposed into orthogonal rotation and symmetric stretch tensors.

Polar decomposition of elastic deformation gradient can be expressed as,
F.=R. U, (2.3)

where R, and Uy are elastic rotation tensor and elastic stretch tensor, respectively. Right

Cauchy-Green deformation tensor corresponding to F. can be written as

C.=F. F.=URR. U, =U.U, (2.4)
N——
I

which is used to obtain U, through spectral decomposition as

Ue = VA0 ®ny + /1203 ® 0y + /1303 ® n3 (2.5)

where A;, n; are eigenvalues and eigenvectors of C., respectively. After getting Ue, Re



can be easily calculated by
R, =F.U;! (2.6)

In almost all experimental studies, fibre directions vary around an axis perpendic-
ular to the plane of the ply, i.e. z-axis according to Figure 2.3. Therefore, elastic rotation

tensor has the following form,

cosw -sinw 0
Re = |sinw cosw 0 (2.7)
0 0 1

from which the rotation angle of fibres around z-axis can be calculated as,

w:tan_l(me)m

2.8)
(Re),,

When the material deforms, there must be differences in velocity between adjacent
points which cause a gradient in the velocity field called as spatial velocity gradient tensor

¢ and written as,

%(dx) =FdX=FF 'dx (2.9)
¢

Inserting multiplicative decomposition into Equation 2.9 leads to the additive

decomposition of £ as,
0=Clc+F 0, F (2.10)
where,
te=FF;' & €=FF' (2.11)

are the elastic and plastic velocity gradient tensors, respectively. In crystal plasticity, £, is

defined as,

Nslip

b= 75 ®ii] (2.12)
n=1



which is the summation of slip rates on specific slip planes identified by 7. Inserting this
into Equation 2.11 results in the following evolution equation for F,
Nslip
Fp= > 350 @ii]) Fy (2.13)
n=1
which is updated mostly by using exponential map algorithm, see de Souza Neto et al.
(2011). Once F, is updated and available, elastic deformation gradient is obtained by

inserting F,, into Equation 2.2. Following this, Green strain tensor is calculated as
1
E = §(Ce -1 (2.14)

where C, = FgFe. Thereafter, the second Piola—Kirchhoff (P-K) stress tensor is calculated
by S = C : E where C is the forth-order constitutive tensor.

As far as the adoption of this model to composites is concerned, there are a number
of issues that have to be addressed. The first issue is the determination of slip systems
(slip angles) for composites. There are essentially two factors which are used to specify
these planes. The first one is the fibre arrangement which could be seen in an idealized
form in Figure 2.4. In case of hexagonal closed packed fibre arrangement, slip angle for
transverse system is identified as +30°. However, if the fibre arrangement is different,
other slip planes may exist and depends on the failure criteria considered. Tan and Liu
(2020) carried out finite element analysis of transverse compression test with different slip
angles. The results of these analyses, please see Figure 2.5, suggest that 8 = 45° yields

the closest initial yield stress to experimental result.

N oToTeTeTeleNENNAN
OO0000| | 00000 | oy e
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(a) (b)
Figure 2.4. (a) Square and (b) hexagonal (8 = 30°) arrangement of fibres.
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Figure 2.5. Stress — strain responses of unidirectional lamina for 3 different slip angles
under transverse compression. (Source: Tan and Liu, 2020)

As mentioned before, the slip planes for a FRC are split into two classes as
longitudinal and transverse slip systems. Systems whose slip direction is parallel to the
fibre direction are classified as longitudinal, while systems that are perpendicular are
defined as transverse. These slip systems are shown in Figure 2.6 and the slip vectors are

given in Table 2.1. Slip systems are used in the definition of £,.

Figure 2.6. An illustration of slip systems
reproduced from Tan and Liu (2020)



Table 2.1. Slip systems

System number (type) 50 1o

1 (longitudinal) (1 0 0) (0 1 0

2 (longitudinal) (1 0 0 (0 cosB sing)

3 (longitudinal) (r 0 0 (0 cosB —sinp)

4 (transverse) O 0 -1 O -1 0

5 (transverse) (0 sinB  —cosp) (0 —cosB —sinpB)
6 (transverse) (0 sinB cosp) (0 cosB —sinf)

Since the micro-structure is transversely isotropic, the elastic response is governed by the

following compliance relation,

E1y LEf —vo1/Em2 —v31/Em3 0 0 0 S11
Eao —vi2/Ey 1/En2  —v32/Eps3 0 0 0 Sao
E —vi13/E¢s —vo3/Ena  1/E, 0 0 0 S
33| _ 13/Ef —vo3/En2  1/Ep3 33 2.15)
Eio 0 0 0 1/(2G12) 0 0 S1i9
E13 0 0 0 0 1/(2613) 0 Slg
o 0 0 0 0 0 1/(2Ga3)| |Sas
E H S
S=D:E (2.16)

where E¢, E,2 and Ej,3 are Modulus of Elasticity of the material in longitudinal and
transverse directions, respectively. The corresponding Poisson’s Ratio and Shear Moduli
are represented by v;; and G;; where i, j = 1,2, 3. By inverting Equation 2.15, the second
Piola—Kirchhoff stress tensor is expressed in terms of material stiffness tensor D and Green

strain tensor E. In addition to this, slip evolution equation on individual slip systems is

defined as
[\
=53 ( p ) sign(7") (2.17)

where 7¢ is the Schmid stress driving the slip on that particular system. g is the resistance
against slip and m is rate sensitivity exponent, Asaro and Needleman (1985). Itis clear that

arate dependent viscous formulation is used here due to its relative easier implementation.
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Schmid stress for each slip system is calculated by,
h=71:(5"@n") =s"Ttn" (2.18)

where T is Kirchhoff stress tensor and obtained from second Piola-Kirchhoff stress tensor

through
7=F.SF] (2.19)

The resistance against slip is represented by g¢ and as opposed to metals, depends on
confinement. The confining pressure is illustrated in Figure 2.7. In other words, the
confining pressure (p) leads to an increase in resistance (like a friction mechanism) and

expressed as,

ow+up p=0
¢1=1{" (2.20)

T)T,] p<0

The aforementioned pressure on the fibres is calculated by averaging the local normal

stresses So9 and S33,

1
P=-3 (322 + 333) (2.21)

which are perpendicular to fibre direction as shown in Figure 2.7.

3
!

S33 matrix

_’2

Figure 2.7. 2D drawing for the pressure from the matrix on the fibre.
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Although various other plasticity models are available in the literature, the interest
in using crystal plasticity in composites has recently increased. Classical plasticity models
assume that the fibres’ rotation follows the matrix’s rotation under shear loading. However,
the relative rotation difference between fibre and matrix reaches large values that cannot be
neglected at high strains. Since crystal plasticity is inherently capable of capturing plastic
spin, the crystal plasticity inspired models represent the micro-structure much better than
classical plasticity models. In the next section, time discretization, i.e. stress update

algorithm is presented.

2.1.2. Stress Update Algorithm

In an incremental-iterative solution framework, the intention of the stress-update
algorithm is to find the stresses and the associated material tangent stiffness at t,,.;. Plastic
deformation gradient (F, ) and y, belonging to t, are available. Furthermore the problem
is displacement driven and an estimate for total deformation gradient F,, is available as
well. By substituting Ay /At in place of y" in Equation 2.13, the equation can be rewritten

as
6
FF;! = 22 Y15 @i (2.22)
n=1

Using the exponential map, see for example de Souza Neto etal. (2011), plastic deformation
gradient matrix in the current step can be written in terms of slip increments, reference
slip systems and (F;) = as

(Fp),.; = Q(F,), with Q=exp (2.23)

6
Z AyTsy ®n
n=1

To calculate Q in Equation 2.23, the infinite series expansion given in de Souza Neto et al.

(2011) is used by keeping the first six terms of the expansion. For further information
please see Appendix B of de Souza Neto et al. (2011). Computation of the elastic
deformation gradient tensor in the current step is done in a straightforward manner by

using

(Fe)pp1 = (F) iy (Fp),;h (2.24)

12
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Since exp [A] " = exp [-A] where A is a second-order tensor, (Fp);il can be written as

(2.25)

6
-1 _ -1 -n -7
(Fp) i1 = (Fp),, exp [_ Z AyTsy @i
n=1
Elastic deformation gradient matrix is a key term in the process of crystal plasticity
calculations. However, values of incremental slips Ay have to be determined. To this
end, evolution equations are written in the following residual form which are enforced by

Newton-Raphson method. Obtained residual equations are given as

21 1/m
= Ay" - Aty ( ';‘;'1 ) sign(7 ) =0 (2.26)
n+l

To solve the system of residual equations, the equations are linearized around

iteration (k)

dAyP =0 (2.27)
k

where K is the local tangent stiffness and the slip increments are updated by
Ay, = Ayl +dAy” (2.28)

k and dAy" refer to iteration number and corrective terms obtained from dAy7 =
—(K)_lr . The iterative local Newton-Raphson process is repeated until acceptable
residual values are obtained. The general structure of the local Newton-Raphson algo-
rithm is given in Algorithm 1. After completing the material level response, in the next

section structural level behaviour is going to be discussed.
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Algorithm 1 Local Newton-Raphson Algorithm

Initial estimate for slip increment on slip plane , A yg =0
(Fe)er = (F) 0 (Fp)y_wh
Chi1 = (FC)IH(Fe)nH
E.i=3(C-1)
Sps1=D:Eup

T

Tnel = (Fe)n+1 S"H'l (Fe)n+1
while norm (r) > tolerance do

— _dr7
Calculate K = 5 AP

Update slip increments, A y7 = Ay + dAy"
(Fe)n+1 = (F)n+1 (Fp);l
Cui1 = (Fe)Ll(Fe)nﬂ
E.i=3(C-1)

Sne1 =D : Epny

Tnl = (Fe)n+1 Sn+1 (Fe)nT+1

(7 1/m
= Ay — At)‘/g( nil ) sign(7”,)

8n+1 n+l

end while

2.2. Boundary Value Problem

At the structural level, the problem is in fact a boundary value problem which
is governed by a partial differential equation and associated boundary conditions. The

equation that is going to be solved is static equilibrium and written as,
V-o+pb=0 (2.29)

where V - is the divergence operator with respect to current coordinates, p is the density
and b is the body forces.

Since the analytical solutions are limited to simple geometries and boundary con-
ditions, finite element method is used to solve the problem approximately. Following
a weighted residual procedure, the weak form of the governing differential equation is

obtained as,

14
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Figure 2.8. An illustration of a body with boundary conditions.
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v

/O':Véudv:/t- 6udﬂ+/pb-6udv (2.30)
I

which in fact corresponds to the principle of virtual work. The internal virtual work at

t.+1 can be written as,
Wi = / Thpel (Vo ou (F‘l),m) dv (2.31)
14

where the integral has to evaluated over the undeformed volume V. A brick type element
with quadratic displacement interpolation (twenty-noded brick element) is used for spatial
discretization. Using isoparametric finite element formulation, displacement gradient and

gradient of virtual displacement can be written as,
Vou=Bu, Voéu =B du (2.32)

where B is the matrix correlating nodal displacement degrees of freedoms (i and éu) and

gradient of displacement. Equation 2.30 can be written as,
5ﬁT (fznt - fext) =0 (233)

which corresponds to f;,,; — f,,; = 0. The element level contribution to f;,; is based on

Equation 2.31 and reads as

15



£ = / B'Pdv (2.34)
Ve

where the 1% Piola-Kirchhoff tensor P = 7 F~T. The virtual work equation is non-linear
since both 7 and (Vo duF~!) depend on the displacement field; the unknowns of the

problem. To solve a set of non-linear equations, 6W;,; should be linearized as
D(6Win) [Au] = D (1) [Au] : VosuF ! +7 : D(VoouF ') [Au] (2.35)

in the direction of incremental displacements Au and D() [Au] represents the directional
derivative. The first term on the right side of the equal sign produces material tangent
stiffness, and the second one leads to geometric tangent stiffness. Expanding the second

term leads to,
D(VouF~!)[Au] = Voou D(F!)[Au] (2.36)

where D(F7!)[Au] = -F"!D(F)[Au] F~! and D(F)[Au] = B (Au). Expanding the

first term leads to

T
D (rusn) [Au] = ZE% D(F,e1) Au] (237)

———

(Dma‘) n+l

Kirchhoff stress is a function of F and Ayﬂ . Therefore, (Dmat) 4.1 can be calculated by

the chain rule as,

8Tn+1 _ aT}’L+1 . 8(Fe)n+1
T O(Fe) ., OFu

0T 41 ) 0 (Fe)n+1
AyP 8(Fe)n+1 aAy'B

. ONyP
Fui1 . 8Fn+1

(2.38)

n+l

The derivations of the terms presented above are clearly demonstrated in Appendix-B.

Rearranging the terms presented above, element tangent stiffness matrix can be written as

K%, = / B (Cgeo),,, BAV + / BT (Cmat),,,; BdV (2.39)
Ve Ve

where Cge, and Cpyy are given in Appendix-B.
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The general structure of global Newton-Raphson algorithm is presented in Algorithm 2.

Algorithm 2 Global Newton-Raphson Algorithm

Using (F)ﬁﬂ,
(Please see Algorithm 1: Local Newton-Raphson Algorithm)
Calculate (£2) ., = [ (B),,, Pr1dV

int n+l1

Calculate (fee,lc,) nil

Assemble (£5,),., & (£5),,, and obtain (F3i) ., & (F5,),

int int

(Fp),. (v"), calculate P4y

Calculate residual column R,y = (F5%) | — (F35,) .,

while norm (R,+1) > tolerance do
Calculate K¢ | = [ BT (Cge),,, BdV + [ BT (Cpua) ., BAV
Assembly K,
Solve for du
Update u|z4+1 = uly + du
Calculate ffj}t = f BTP,.;dV
Assemble £ and obtain F5"
Calculate R4 = F5" — F5y,
Calculate ||R,41]]

end while

Update history variables, (Fp) «— (Fp) ., & (¥7), < (¥"),.1

Proceed with the next increment




CHAPTER 3

PERFORMANCE OF THE MODEL

3.1. Simple Shear Test

In this section, the implemented model is validated by analytical solution of simple
shear test to verify the accuracy of stress-update algorithm. For this purpose, the finite
element model, consisting of a single element with 1 mm x 1 mm dimensions and a
thickness of 0.1 mm, is considered. The geometry of the model with expected deformed
shapes are shown in Figure 3.1. In this context, two different fibre orientations are
considered. In the first case, the displacement is imposed parallel to the fibre direction,
while in the other, it is applied as perpendicular. It is aimed to have a homogeneous plane
strain state with appropriate boundary conditions. Loading details for both models are
presented in Section 3.1.1 and Section 3.1.2. The material parameters used in the model

are given in Table 3.1.

Table 3.1. Model Parameters for IM7-8552 (Tan & Liu, 2020)

Material Parameter Value

Ey 171420 MPa
E, 8930 MPa
Ty 62.3

U 0.28

V12 0.32

V13 0.34

V93 0.34
Gio 5100 MPa

In Appendix-A, analytical solution for rate independent model is derived. Since
the implemented material model is rate-dependent, rate-independent limit is obtained by
setting m—0. The rate sensitivity exponent is set to 0.0005 which makes the analysis
result almost independent of the loading rate and provides almost an ideal elasto-plastic
response. Considering that the analytical solution is 2D, the Poisson’s ratio in the direction

of y and z are taken as zero. Furthermore, out of plane displacement degrees of freedom
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Figure 3.1. (a) Simple shear test for loading parallel to fibre direction (b) Simple shear
test for loading perpendicular to fibre direction

of the model are set to zero so that plane strain conditions are imposed. Stress values are
obtained by dividing the sum of the reaction forces by the surface area, and strain values

are obtained by dividing the imposed displacement by height of the model L.

3.1.1. Loading Parallel to Fibre Direction

In the first case, the imposed displacement is parallel to the fibre direction. The
finite element model and the corresponding displacement boundary conditions are shown
in Figure 3.2a. Symmetry boundary conditions about the z-axis are defined for the back and
front faces. Displacements at the bottom nodes are fixed in all directions. A displacement
of 0.1 mm was applied to the upper nodes of the model, and a displacement of 0.05 mm
was applied to the side mid-nodes. Therefore, linear displacement profile is imposed along
the y direction. Second Piola-Kirchhoff stress components in each integration point are
stored as an output, and stress distribution at the end of the analysis is presented in Figure
3.2b.

Figure 3.3 shows the stress-strain response obtained by finite element analysis of
simple shear model. In order to reach the analytical solution valid for the rate-independent
model, the analysis was repeated with 4 different values of m. Finite element model over-
predicts the yield stress which is due to the fact that the analytical result is rate independent.
By setting the rate sensitivity exponent as close as possible to zero, the response obtained

from the finite element analysis gets very close to the analytical result.

! . . l — 5. .
A direction 1] direction
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Figure 3.2. (a) Boundary conditions for the case of & = 0° and (b) distribution of second
Piola-Kirchhoff stress throughout the element.
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Figure 3.3. Comparison of finite element predictions and analytical solution for 6 = (°
simple shear

3.1.2. Loading Perpendicular to Fibre Direction

In the second case, the prescribed displacement is perpendicular to the fibre di-
rection. Symmetry boundary conditions about the z-axis are defined for the back and
front faces. Displacements at the left edge nodes are prescribed in all directions. A
displacement of 0.1 mm was applied to the right nodes of the model, and a displacement
of 0.05 mm was applied to the top and bottom middle nodes. Thus, a gradually increasing

displacement throughout the model is achieved. The defined boundary conditions for the

20



displacement are shown in Figure 3.4a. Second Piola-Kirchhoff stress contour through

the model is exhibited in Figure 3.4b .

u/zﬁ_,,..»;;l\u

§>§2f:fﬁﬁﬁffji' i

A UVARM7

(Avg: 75%)
148.4
148.4
148.4

(b)

Figure 3.4. (a) Boundary conditions for the case of 6 = 90° and (b) distribution of the
second P-K stress throughout the element.

Figure 3.5 shows the stress-strain response obtained by finite element analysis.
In order to approach the analytical solution, 4 different values of m are used. With m
values approaching to zero, the model would become rate independent. It is obvious that
the estimated result deviates somewhat from the analytical result more prominently at
higher strain values. The reason of this deviation is that rate sensitivity exponent is very
close to zero but still larger than 0. m=0.0005 is the smallest m value which the local
Newton-Raphson algorithm could be completed successfully. In the analytical solution
detailed in Appendix-A, hardening is observed in the presence of plastic strain when the
loading direction is perpendicular to the fibre direction. Consistent with this expectation,
hardening occurs beyond the initial yield stress in the finite element analysis results of
the single-element model. The effect of longitudinal elastic modulus of composite on this
hardening can be explained by the fact that deformation of the matrix is accompanied by

the fibre rotation. This is also clearly visible in the Equation A.17.

3.2. Compression Test on Unidirectional Laminates

In the study of Koerber et al. (2010), the behaviour of uni-directional laminates
with different fibre orientations under compression loading is investigated. The specimen

has dimensions of 20 x 10 x 4 mm. It consists of 32 layers throughout the thickness, and
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Figure 3.5. Comparison of finite element predictions and analytical solution for 8 = 90°
simple shear

the thickness of each layer is approximately

0.125 mm. Compression tests are carried for

three different fibre angles of 0°, 45° and 75°. The orientation of the fibres is indicated
as 6 in Figure 3.6. End-loaded compression tests are conducted by INSTRON 4208 load

frame. To reduce the friction between the loading surfaces and testing device, a thin layer

of molybdenum-disulfide is used. The experimental loading rate, classified as quasi-static

loading, is specified as 0.5 mm/min. The specimen consists of carbon fibres and epoxy

resin that is designated as IM7. The material parameters used in all compression analysis

are presented in Table 3.2.

Table 3.2. Model Parameters for IM7-8552
(Tan & Liu, 2020)

Material Parameter Value

Ey 171420 MPa
E,, 8930 MPa
Ty 62.3 MPa

u 0.28

Vi2 0.32

V13 0.32

V23 0.34

G2 5100 MPa

m 0.045

~ 10mm —

20mm —M >
l
(Sn}
)
‘2
&

y
t=4 mm ‘

X

Figure 3.6. Geometry of [0]39
Unidirectional Model
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In the finite element analysis, the model is discretized by UEL which has the
topology of twenty-noded quadratic brick element and has eight integration points. This
element geometry and integration scheme corresponds to C3D20R of Abaqus library. A
perfect bond is assumed between the ply laminates, so no internal contact or cohesive
interaction is defined. In the finite element model, as in the experimental setup, a com-
pression is applied to the specimen by two plates defined as rigid bodies. The friction
between the specimen and rigid bodies are set to 0.001 in finite elements model to reflect

low friction due to applied molybdenum-disulfide.

F//HM rigid body

-y

(a) (b)

Figure 3.7. (a) An illustration for boundary conditions of [6]3, unidirectional model
(perspective view). (b) Symmetry boundary conditions in the z-direction on the back
surface. Reference points are represented by crosses on the bottom and top rigid bodies
(side view).

rigid body

3.2.1. Compression Test on 6 = 0° Specimen

In the finite element model, degrees of freedoms at the bottom reference point is
prescribed to zero whereas at the top reference point a displacement of 1.2 mm is applied
along y-direction. Considering the loading rate in experiments, the step time for the
prescribed displacement is set to 150 seconds. Three different element sizes are tested
to check the mesh dependency and mesh convergence of the analysis, as shown in Figure
3.8. There is no remarkable difference between the responses of different element sizes.
It indicates that the analysis is mesh independent. For that reason, medium-size structured

mesh is used for further analysis.
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Figure 3.8. Mesh convergence of the model 6§ = 0° is investigated by 3 different element
sizes.

Figure 3.9 illustrates the comparison of finite element analysis prediction with the
experimental results for compression test of [0°]35 model. Stress is calculated by dividing
the applied force by the cross-sectional area. Initial tangent is identical with experimental
results and the two curves are almost coincident until 1.5% strain level. While the FEA

prediction overestimates the yield value, it produces a plateau-like behavior after 4% strain

level.
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Figure 3.9. Comparison of simulation and the experimental results for 6 = 0°
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Figure 3.10 shows slip systems in which the slip activities is observed the least and
the most. While the slip occurring in the 6" system is much larger compared to the other
systems, the slip is non-existent in the system 1. The predicted axial strains are compared
to digital image correlation (DIC) measurements in Figure 3.11. Although horizontal
bands are obtained in finite element predictions, the strain distribution is almost uniform.

However, the strain values are close to experimental results.
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+0.000e+00
+0.000e+00
+0.000e+00
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+0.000e+00

(a) (b)

Figure 3.10. Minimum and maximum slip activities are observed in (a) slip system 1 and
(b) slip system 6, respectively.
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Figure 3.11. (a) e22 obtained by Digital image correlation (DIC) measurement device (b)
€29 contour of finite element analysis
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3.2.2. Compression Test on 8 = 45° Specimen

In the finite element model, the displacement degrees of freedoms at the bottom
reference point are prescribed to zero, whereas a displacement of 2 mm in the y-direction
is applied at the top reference point. Considering the loading rate in the experiments, the

step time for the applied displacement is set to 250 seconds.

250 -

_________________
-

200
150 s .

100 2

T
<

Stress (MPa)

- - - Experiments (Koerber et al., 2010)
—e— FEA result of current study

00 1 2 3 4 5 6 7 8 9 10

Strain %

Figure 3.12. Comparison of simulation and the experimental results for 8 = 45°

Figure 3.12 illustrates the comparison of finite element analysis result with the
experimental results for compression test of [45°]35. Stress is calculated by dividing the
applied force by the cross-sectional area of the specimen. There is a slightly upward
tendency in the stress response beyond the 4% strain level similar to experimental obser-
vation. Itis obvious that FEA predictions and experimental results are very close up to 1%
strain levels. As in the previous case, FEA predictions overpredict the yield stress value.
Figure 3.13 demonstrates that a diagonal band along fibre direction is observed similar
to the one obtained by DIC measurement. The thickness of the band obtained in finite
element analysis is approximately 4.8 mm whereas it is more or less equal to observed
in the experimental results. Contrary to the DIC measurements, the strain occurring in
the upper right and lower left corners exceeds 20% levels. Maximum and minimum slip

activities are observed in slip system 1 and slip system 4 as shown in Figure 3.14.
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Figure 3.13. (a) ez obtained by Digital Image Correlation (DIC) measurement device
(b) €22 contour of finite element analysis
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Figure 3.14. (a) Minimum and maximum slip activities are observed in (a) slip system 4

and (b) slip system 1, respectively.
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3.2.3. Compression Test on 8 = 75° Specimen

In finite element model, degrees of freedoms at the bottom reference point is
prescribed to zero whereas at the top a displacement of 0.32 mm is applied in y-direction.

Considering loading rate in experiments, step time is defined as 40 sec for the given

displacement.
400 | e 8
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Figure 3.15. Comparison of simulation and the experimental results for 8 = 75°

Figure 3.15 illustrates the comparison of finite element analysis result with the
experimental results for compression test of [75°]35. Stress is calculated by dividing
applied force on the cross-sectional area. In the case of 6 = 75°, a much higher stress
value is obtained for 0.6% strain compared to other two cases. While the FEA estimation
is consistent with the initial tangent obtained in the experimental results, a significant
softening appears after 0.6% strain value. A huge amount of fibre rotations causes plastic
micro-buckling (Budiansky & Fleck, 1993) and followed by fibre kinking obtained in
Figure 3.17.
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Figure 3.16. (a) There is no slip activitiy in slip system 1. (b) Maximum slip activities
are observed in slip system 1.
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Figure 3.17. Comparison of DIC measurements with rotation angle prediction of finite
element analysis.



3.3. Shear Test on Cross-Ply Laminates

In this section finite element predictions obtained for shear test on [+90°] 4, unidi-
rectional laminates are compared with experimental results (Tan & Falzon, 2016) in order
to validate the model. The specimen dimensions are presented in Figure 3.18. It consists
of 16 layers throughout the thickness, and the thickness of each layer is approximately 0.21
mm. Radius of notches located on long edges are equal to 1.3 mm. The loading rate is
stated as 1 mm/min in the study of Tan and Falzon (2016). Displacement controlled exper-
iments were conducted by using screw-driven mechanical testing machine. The specimen
subjected to shear by clamping right and left parts to testing machine. It is mentioned
that the surfaces of the specimen was roughened by sandpaper to hold specimen firmly.
Engineering shear strain was calculated by summing logarithmic strains measured at two
strain gauges those located in the direction of +45°. The approximate locations of the
strain gauges are shown in Figure 3.18. The stacking orientation of the [+90°],, cross-ply
model is given in Figure 3.19a. Shear stresses were obtained by dividing the reaction force
by the cross-sectional area of the narrowest section. In the calculation of the stress, the
effect of notch radius hence stress concentration is neglected. The material parameters

used in all shear analysis is presented in Table 3.3.

——25.3 mm 25.4 mm 253 mm——

Table 3.3. Model Parameters for

AS4/PEEK (Tan & Falzon, 2016) AN /
Material Parameter  Value ‘
Ey 138000 MPa g E
Ep 10300 MPa ¢ S o<
Ty 80.81 MPa / T

strain gauges
u 0.28 y
V12 0.3 t=3.36 mm T
V13 0.3 X
V93 0.3 76 mm
G12 5200 MPa
m 0.045 Figure 3.18. The geometry of [+90],, cross-ply
model
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Figure 3.19. (a) Stacking orientation of [+90],, cross-ply model (Fibres are depicted by
dashed lines.). (b) Boundary conditions of finite element model is presented. A

displacement is applied to left (blue) part in the direction of u and right (grey) part is
fully constrained.

In the finite element analysis, the model is discretized by UEL which has the
topology of twenty noded quadratic brick element and has eight integration points. The
model is created symmetrically by utilizing the symmetry boundary conditions in the
z-direction on the back surface. A displacement along y direction imposed to nodes at left
part whereas nodes at the right part are fully constrained. Defined boundary conditions
are illustrated in Figure 3.19b. Shear strain was calculated from the logarithmic strains
at the nodes, which correspond approximately to the midpoints of strain gauge areas. To
check mesh dependency and mesh convergence, the analysis is repeated for three different
mesh densities, as shown in Figure 3.20. There is no remarkable difference between the
responses of different element sizes. It shows that the analysis is mesh independent. For
that reason, medium-size structured mesh is used for further analysis.

Figure 3.21 shows the comparison of predicted response, experimental results and
finite element analysis result conducted by Tan and Falzon (2021). Stress-strain response
can be considered in three different parts as linear part, plateau and hardening. The
initial tangent of linear behaviour is consistent with Tan’s simulation result and one of the
experimental results. In the experimental results, the mild hardening seen in the plateau
part is also obtained with the current model. It is worthy to note that eight-node brick
elements with reduced integration points (C3D8R in the Abaqus notation) were used in
the study of Tan and Falzon (2021). It can be concluded that the predicted behaviour has
successfully experimental results up to 35% strain. Since the damage in the specimen is

not taken into account in the model yet, excessive hardening is observed in higher strains.
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Figure 3.20. Mesh convergence of the cross-ply model is investigated by 3 different mesh

densities.
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Figure 3.21. Comparison of simulation results with the experimental results for [+90°] 4
and prediction of Tan and Falzon (2021)

Produced shear strain distribution is compared to DIC measurements at y12 = 18%
in Figure 3.22. The shear strain contour matches the DIC measurements obtained during
the experiment. As expected, the shear strain increases in the notched section which is
named as fracture zone and decreases towards the edges of the model. Figure 3.23 shows

comparison of predicted fibre rotation and measured fibre rotation in experiment. The
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measured and predicted fibre rotation angles are 12° and 12.8°, respectively.
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Figure 3.22. Comparison of shear strain contours at 18% strain obtained from (a) DIC
measurements (Tan & Falzon, 2016) and (b) simulation results of current study.
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Figure 3.23. Comparison of fibre rotation contours at 18% strain obtained from (a)
prediction of Tan and Falzon (2021) and (b) simulation results of current study and (c)
experimental observation by Tan and Falzon (2016).



3.4. Parametric Study on Cross-Ply Shear Analysis

A parametric study on cross-ply shear analysis provides an understanding of the
sensitivity of material response to its model parameters. To this end, the influence of yield
stress, rate sensitivity exponent, and friction coefficient on the behaviour of shear response
is investigated in this section. While performing a parametric study for each parameter

mentioned, the remaining material parameters were kept constant.

3.4.1. Influence of Yield Stress

Stress-strain response of the material AS4/PEEK with different yield stresses for
[+90°] 4, is presented in Figure 3.24. In all three cases, as expected, the initial tangent
demonstrates the same characteristics until the yield point. Increasing yield stress affects
the stress level of the plateau. So, the analysis with larger yield stress produces the highest
ultimate stress among the three analyses. Considering the three different analyses, the

differences in yield value did not cause any change in the overall behaviour.
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)
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Figure 3.24. Comparison of simulation results produced from [+90°],, model for
different yield stress values
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3.4.2. Influence of Rate Sensitivity Exponent

Stress-strain response of the material AS4/PEEK with different rate sensitivity
exponents for [+90°], is presented in Figure 3.25. Parametric study for various rate
sensitivity is much more complex compared to yield stress. There is a slight difference
in initial tangent which effects the beginning strain plateau. An increase in the value of
m causes a growth in elastic strains, and therefore a decrease in plastic strains. For that

reason higher rate sensitivity exponent leads to larger stress value for the same strain value.
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Figure 3.25. Comparison of simulation results produced from [+90°] 4, model for
different rate sensitivity exponent values

3.4.3. Influence of Friction Coeflicient

Stress-strain response of the material AS4/PEEK with different friction coefficient
for [+90°], are presented in Figure 3.26. While different friction values does not cause
any change up to 18% strain, higher friction coeflicient leads to higher stresses at larger
strain levels. As it is stated in Equation 2.20, the hardening mechanism in the model
is controlled by the pressure. Therefore, hardening response depends on stress state.
An increase in the friction coefficient triggers the hardening mechanism and leads to an

increase in the resistance of slip systems.
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Figure 3.26. Comparison of simulation results produced from [+90°] 4, model for

different friction coefficient values
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CHAPTER 4

INCORPORATION OF DAMAGE MECHANISMS

4.1. Introduction

Referring to Figure 4.1, finite element analysis predictions deviate from the experi-
mental results at high strain levels, e.g. strain levels larger than %35. At these strain levels,
it is expected that damage mechanisms would be activated and the mechanical properties

of the material would deteriorate.

200 | S
s 150 = B
2 =
7] - -
N
D= R I
v 100 A
S
<
O
<
wnn

50 | —— Experiments (Tan & Falzon, 2016) —
A - - - FEA result of the current study
—e— Explicit FEA result of Tan and Falzon (2021)
O | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
Strain Y%

Figure 4.1. Comparison of simulation results with the experimental results for [+90°] 4
(Tan & Falzon, 2016)

If the material micro-structure is recalled, it is composed of fibres embedded into
a relatively ductile matrix. Matrix and the fibre-matrix interface are not free of flaws, e.g.
micro-voids. The voids would enlarge and might coalesce, see Figure 4.2. Therefore, it is
expected both resistance mechanism against slip and elastic properties would diminish.

In this chapter, the intention is to embed such micro-structural damage mechanisms
into the continuum scale material model presented in previous chapters. To this end,

continuum damage mechanics is going to be used where all micro-mechanical degradation
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Figure 4.2. (a) Fibre direction coincides with dir-1. Illustrations for physical meaning of
(b) G13 and (c) G2 are presented. Deformed shapes are depicted by dashed lines.

mechanisms are lumped in a damage variable D.

Referring back to Figure 4.1, at strain levels larger than 35%, a very large fraction
of the strain is plastic. Therefore it is reasonable to correlate damage to plastic strains.
However, there are two types of slip systems. For this reason, it makes sense to introduce
two damage variables D and DT associated with longitudinal and transverse slip systems,
respectively. As these micro-mechanisms evolve, it is expected that resistance against slip
would get weaker. Relying on this argument, resistance of undamaged material against
slip (7,) and hardening term (up) are both pre-multiplied by (1 — D”) where p = L,T and
D? >0 & DP <1.0.

As far as elastic material properties are concerned, aforementioned damage mech-
anisms would effect them as well. Expecting change in the elastic material properties
is inevitable when the damage is clearly visible. For that reason, some of the material
properties are degraded depending on the damage variables during the analysis. Longi-
tudinal and transverse modulus of elasticity parameters are scaled down by (1 — D¥) and
(1 = D7), respectively. In the same context, G12 and G13 are reduced by (1 — DT) and
(1 — D1), respectively. Since the material is transversely isotropic, Go3 is calculated by
(0.5 Ep) /(1 + vo3) with the degraded material parameters. It is assumed that there is no

damage-related change in v values.

4.2. Definition and Evolution of Damage Variables

As mentioned in the previous section, damage variables D* and DT are driven
by plastic strain. To specify these variables explicitly, it is necessary to introduce history

variables I'’* and I'T. The specific form of I'* and I'” are defined as
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Since damage is a non-decreasing process, history variables «* and «” are introduced as

(4.1)

k" = max (FL(T)) T<t
(4.2)
kT = max (FT(T)) T<t

where 7 is time-like parameter describing the loading process until time 7. For damage

evolution, the following exponential form

p
DP =1- K—; (1 -af + a/pe_ﬂp(Kp_Kg)) p={L,T} (4.3)

K
is used where k%, a” and S? are fitting parameters. «’ is the parameter that defines where
damage starts to evolve in the model. Parameter a prevents the damage variable from
reaching 1.0. S controls the rate of damage evolution, such that higher 8 values cause
faster damage evolution. D - k response of the exponential softening law is given in Figure

4.3.

K

Figure 4.3. D - k response of the exponential softening.
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4.3. Temporal and Spatial Discretization

Equation 4.1 has to be converted into discrete form. Replacing I" by (Tps1 —T) /At
and |y,,| by |Ay|/At, Equation 4.1 can be written as,

3
, ny'k zhlzxynJ P = L
Fn+1 = . m6‘ “4.4)
I+ 2 [Ayml p=T
m=4

L

Once I'?. . values are calculated, x%.
n+l n+l

K£+1 and the damage variables D’Ll+1 and D£+1 can
be evaluated by following Algorithm 3 given on the next page. Since longitudinal and
transverse damage parameters are functions of slip increments, linearization of the damage
extended model would become cumbersome. Instead, taking the advantage of small time
steps, a staggered algorithm is used such that damage variables are assumed to be frozen
from t, to t,+1 and they are updated at the end of each increment; at t,;1. Therefore,

resistances on slip system 7 at t,.; are calculated as

(1-DE)(7y+up) n=1,2,3
ghy = ! (4.5)

(1-=DI)(ty+up) n=4,5,6

where DZ and DT are damage parameters available from the previous step t,. Similarly,
DL and DT are used to reduce the elastic material properties. General structure of the
procedure for the incorporation of damage mechanism is given in Algorithm 3. In the next

section, cross-ply shear test is reconsidered using the damage extended model.
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Algorithm 3 Algorithm of Damage Extended Model

Available: D! & DL —from the previous step.

Start increment
Solve Local N-R with the previous damage parameter (multiply resistance components
by (1 — DT) and (1 — DL) according slip system classification & degrade material
parameters),

Conclude Local N-R

Update I'” . & T'L

n+l §+1’ 6
TE =Th+ X [ Ayml & T =T+ 3 |Ayyl
m=1 m=4

Calculate 7 & «L

. T T
if I'", | < «, then
T T
Kn+1 — 1—‘n+1
else
T T
Kn+1 Ky
end if
. L L
if I, <«, then
L L
Kn+1 < Iﬂn+1
else
L L
Kn+1 Ky
end if
T L
Calculate D, , & D),
. L L
if k7., < k& then
L
Dn+1 <0
else
L _ Ly, L _ L L _,BL L gL
Dn+1<_l (Ko/Kn+1)(1 a~“+a-e (n+1 0))
end if
. T T
if  , < «, then
T
Dn+1 <0
else
T _ T, T _ T T —,BT Kf _«T
Dn+1<_1 (KO/K,H_l)(l a +a'e ( +1 0))
end if

End of the increment
Update damage variables, store them as history variables

D,I;<—DL & DZ(—DT

n+1 n+1




4.4. Cross-Ply Shear Test

Cross-ply shear test considered in Section 3.3 is re-analysed using the damage
extended model presented in this chapter. Material and damage model parameters are

given in Table 4.1.

Table 4.1. Material and damage
parameters used in damage
extended model.

Material Parameter ~ Value

Ey 138000 MPa

En 10300 MPa

Ty 80.81 MPa N

7 0.28 ] i
V12 0.3 HHH /
Vi3 0.3 [ i
Va3 0.3 il

Gio 5200 MPa

m 0.045

Ko 0.017

a 0.1

B 100 Figure 4.4. Fine mesh for [+90],, Cross-ply Model

The resulting slip distributions obtained by the original model (without damage)
for the most active slip systems in two classes at 50% strain level are shown in Figure 4.5
side by side. It indicates that obtained slips in longitudinal systems are relatively large
compared to those in transverse systems. Therefore, the damage in longitudinal systems
is expected to be larger than the damage in transverse systems. For this reason, the fitting
parameters of D’ were determined first and these values were taken as valid for the fitting
parameters of D . Similar to the previous chapters, twenty-noded quadratic brick elements
are used to discretize the model. Two variants of twenty-noded brick element with 8 and
27 integration points are considered.

Preliminary analysis with 8 integration points shows that an instability (probably a
numerical instability similar to hour-glassing) is observed, please see Figure 4.6. However,
when 27 integration points are used, these instabilities disappear as shown on the right-
hand side of Figure 4.6. Therefore, 27 integration points are used for the analysis presented

in this chapter.
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Figure 4.5. Slip distribution contours of without damage model for longitudinal slip
system-1 (left side), transverse slip system-6 at 50% strain level (right side). These two
slip systems are the most active ones in their classes.

An important issue in damage mechanics is mesh dependency and mesh con-
vergence. One of the methods to mitigate mesh dependency problem is to insert rate
dependency in the model. Since the discussed model is already rate dependent, no sig-
nificant mesh dependency is expected. To verify this, the analysis is repeated for 3 times
by increasing mesh densities on the centre of the model. Corresponding stress-strain
responses are presented in Figure 4.7. Coarse, medium and fine meshes correspond to
1024, 4160 and 7360 elements, respectively. The constructed fine mesh is shown in Figure

4.4. The comparison indicates that there is no mesh dependency in the problem.

(a) (b)

Figure 4.6. (a) Instabilities are observed when using 8-integration points, (b) instabilities
have disappeared when using 27-point integration (strain level is 37% for both cases).

Figure 4.8 shows the contour plot of D and DT at %50 shear strain level. There is

T

no damage in transverse slip systems since «’ is smaller than the threshold «! which is set
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Figure 4.7. Comparison of damage extended simulation results for different mesh
densities.

equal to k%, Obviously, the damage is concentrated in the centre of the specimen and more
around the notch than in the other parts. In Figure 4.9, experimental results are compared
to the original predictions (without damage) and damage extended models. It is clear
that the deviations between experimental results and finite elements predictions without
damage beyond approximately 35% strain levels is overcome by the damage extended

model.

0503 “ .
(a) (b)

0.76 0.00
0.70 0.00
0.63 0.00
0.56 0.00
0.50 0.00
0.43 0.00
0.37 0.00
0.30 0.00
0.23 0.00
0.17 0.00
0.10 0.00

0.00
—0.03 0.00

Figure 4.8. Contour of damage in (a) longitudinal and (b) transverse slip systems at
Y12 = 50%.

Especially in the top-notch region, compressive normal stresses occur under shear

loading. Hence local compressive stresses might trigger local instabilities. In order to
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Figure 4.9. Comparison of damage extended simulation results with the model without
damage.

investigate this, the symmetry boundary conditions on the back face of the model were
removed. Thus, a thinner and therefore more slender specimen is observed. The deformed
configuration obtained at approximately 90% strain levels as a result of the analysis is
shown in Figure 4.10a. An inclined instability band through the thickness direction is
clearly visible in the notch region. The fibre rotation angle obtained at this strain level
is also shown in the Figure 4.10b. The large fibre rotation angle differences between the
adjacent plies indicate that the probability of interlayer damage is significant. Therefore,
it seems that a failure process in which both delamination and fibre local buckling evolves

in a combined manner is quite possible.
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Figure 4.10. (a) Local instabilities are observed at notch region (perspective view). (b)
There is large fibre rotation angle difference between the adjacent plies (top view).

46



CHAPTER 5

CONCLUSION & OUTLOOK

5.1. Summary & Main Findings

In this thesis, a recently proposed material model for elastoplastic response of
fibre reinforced composites is re-considered and implemented in an implicit finite element
solution framework. The model is inspired by crystal plasticity and, so far, was elaborated
for an explicit finite element algorithm. In this work, the model is recast in implicit form
and implemented in commercial finite element software Abaqus through user-defined
element subroutine (UEL).

In Chapter 3, three different cases have been considered to validate the model.
Firstly, the stress update algorithm was verified with the analytical solution derived for the
simple shear case. The numerical results obtained for two different fibre orientations, 0°
and 90°, are consistent with the analytical solutions. In addition, the behaviour beyond
the yielding point is affected by fibres which may cause a hardening mechanism according
to fibre orientation. Afterwards, the limits of the model were pushed by considering
compression and cross-ply shear tests reported in the literature. Contrary to the success of
the model in cross-ply shear test, the stress-strain responses obtained in the compression
tests show some differences compared to experimental results. It is worthy to note that in
case of both cross-ply shear test and 45° compression test the matrix plasticity is activated
and relatively larger strain levels are reached. Therefore, it is concluded that the model
produces more accurate results in case of significant matrix plasticity. Referring back to
cross-ply shear test, the numerical predictions of the model are promising up to approx-
imately 35% strain level. Contrary to the experimental results, an excessive hardening
was observed in the finite element predictions at high strains. At these deformation levels,
matrix and matrix-fibre interface damages are inevitable.

To remedy this discrepancy, in Chapter 4, the model is extended with a continuum
scale damage model. It is aimed to mitigate the deviation observed in shear analyses
conducted in Chapter 3 at high strains. According to the slip system classification, the

damage is lumped in two different damage parameters. The intention is to suppress the
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excessive hardening by degrading the resistance to slip and the elastic material parameters.
The proposed model is affordable in terms of time and computational power. However,
this is a phenomenological approach, and some weaknesses are obvious. The shear strain
level at which the damage evolution starts and the parameters that drive the evolution law
are determined by curve fitting. The damage evolution law has almost no relation to the
micro-mechanism of damage initiation and growth. However, micro-mechanical damage
models are beyond the scope of this thesis. Shear test was re-analyzed with damage
extended model, and the deviation between finite element predictions and experimental
results for strain levels larger than 35% almost disappeared. The main findings of the

thesis can be summarized as follows:

* The predictions of compression analyses for 45° and 75° are not satisfactory consid-

ering strain contour and stress-strain response comparisons.

* The prediction of shear analysis for cross-ply model is satisfactory up to %35 strain

levels.

* Based on the observations mentioned in the previous two items, the proposed model
produces better results when the matrix plasticity is dominant. Therefore, more

accurate predictions are obtained in case of matrix exposed to shear loading.

* By incorporating damage to the model, the deviation beyond %35 strain level is
overcome. The damage extended model is feasible in terms of computational power.
However, it is a phenomenological approach that does not reflect the micro-mechanical

damage mechanisms.

5.2. Recommendations for Future Works

The study presented in this thesis can be improved and extended in a number of

ways.

* For the crystal plasticity inspired modelling of composites, the choice of slip systems
is not as straightforward as the slip systems in metal crystal plasticity. In the literature,
several different slip angles are presented that define slip systems based on different
motivations, such as fibre arrangement and capturing of yield point. It seems that
determination of slip angles for composites is an unsolved problem and requires further

investigation.
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* Composites formed by fibre and matrix materials may have inherent defects like
micro-voids. Under loading, these micro-voids can expand and even coalesce between
adjacent spaces. The identification of these micro-voids requires approaches at the
micromechanical level. Damage studies at the micromechanical level on composite

structures can provide damage models with a more robust physical background.

Delamination is one of the dominant damage modes encountered in experimental stud-
ies on composite elements under certain loading conditions. As described in Chapter
4, large variation of fibre angle rotation from ply to ply might trigger delamination
around the notch region. Therefore, the current study can be extended to capture

delamination failure by using cohesive interface elements between the plies.

Referring back to Figure 1.1, ductile behaviour similar to metallic materials can be
obtained by combining differently oriented thin plies. Achieving ductility by reducing
the ply thickness and stacking different plies presents an interesting optimization

problem.
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APPENDIX A

ANALYTICAL SOLUTION FOR SIMPLE SHEAR TEST

An analytical solution is derived for simple shear test in case of parallel and
perpendicular to fibre orientations with respect to loading directions. It is assumed that

plane strain conditions hold.

A.1. Loading Parallel to Fibre Direction

2D plane shear case is illustrated in Figure A.1. A horizontal displacement u is
applied to the top of the specimen whereas it is restrained at the bottom. Shear strain due
to imposed boundary conditions is equal to y = tan(w) = (u/L) where L is the height of

the specimen.

e ! fibre
e i direction

‘ |—
: ,
: ,

_________________
__________________

Figure A.1. Illustration of simple shear test for loading parallel to fibre direction.
(Deformed shapes are depicted by dashed lines.)

The corresponding mapping function from reference state to deformed configuration can

be written as,

x1(1) =y Xo(t) + X1(2)
x2(t) = Xo(t)

(A.1)
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The total deformation gradient for simple shear test is defined as

Iy Ox 1
F= X1 0Xo —

Oxg  Oxy 0 1

X1 0X2

For pure shear case, plastic deformation gradient is given as follows

F, =
p
Y 1

(A.2)

(A.3)

Therefore, elastic deformation gradient can be obtained by using the multiplicative de-

composition of deformation gradient,

L=yyp v

F.=FF,' = |

Green’s strain tensor then follows as,

o+ (yp—-1D? -1 —yp—v(yyp -1

1
Ee=-(FIF. 1) =
2 o = ¥(yyp = 1) y?

1
2
which can be slightly simplified by ignoring terms higher than second-order as

L =2vy v=
2l yv=»m ¥

Ee:

Second Piola-Kirchhoff stress tensor is calculated by S =D : E and reads as
E

55 (E11 + v21E22)

S = | =22~ (v12E11 +Eg)

1-vi2va1

2G12E12

Using o =J7'F. S FT, Cauchy stress tensor tuns out to be,

Gioy Yp =0
012 =

Ty Yp >0

It is to be noted that J = det(F.) = 1.

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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A.2. Loading Perpendicular to Fibre Direction

A similar analytical solution can be constructed for the case of a load perpendicular
to the direction of the fibres. The case where the imposed displacement is perpendicular

to the fibre direction is shown in A.2.

------------------ fibre direction

Figure A.2. Illustration of simple shear test for loading parallel to fibre direction.
Deformed shapes are depicted by dashed lines.

The corresponding mapping function from reference state to deformed configura-

tion can be written as,

x1(1) = X1(2)

(A.9)
x2(1) = yX1(1) + Xa(1)
The total deformation gradient for simple shear test is defined as
0x1 0x1
po|ox ax|_ (b0 (A.10)
Oxg  Oxa 1 '
0X1 0Xo Y
For pure shear case, plastic deformation gradient is given as follows
1
F,=| 7 (A.11)
0 1

It can be decomposed into elastic and plastic parts. Elastic deformation gradient can be

obtained by multiplicative decomposition of deformation gradient,
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_»yp

F.=FF,' = (A.12)
Y 1=vvp
Green’s strain tensor then follows as,
1 2 ~Yp — -1
Ee=05(FTF, 1) = = ’ T iy ) ) (A.13)
=Yy -1D 7p+Oyp-D"-1
For simplicity, terms higher than second-order are ignored which results in
1l Y v
E.=- ) (A.14)
2ly =y v2-2vyp
Second Piola-Kirchhoff stress tensor is calculated by S =D : E and reads as
E
TS (E11 + v21E22)
S = 1_51';21 (vi2E11 + Eg2) (A.15)
2G12E12
Using o =1 -1 F.S Fg Cauchy stress tensor tuns out to be,
G2y Yp =0
o1 = ! (A.16)

7y +0.5(Epy? - Emyl?;) ¥p >0

Itis to be noted thatJ = det(F.) = 1. Since the transverse modulus of elasticity is relatively
much smaller than the longitudinal modulus of elasticity, the expression can be further

simplified by ignoring the part containing E,, .

G2y Yp =0
oo = g (A.17)

Ty+0.5Ef)/3 Yp >0
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APPENDIX B

DERIVATIONS

B.1. Derivation of Local Tangent Stiffness Matrix

In this section, the local tangent stiffness matrix and its components are derived. The

residual equation carried by local Newton-Raphson algorithm is given as

2 | 1/m
= Ay" - Aty (—’7’;'1 ) sign(7”,,) =0 (B.1)
n+l

To solve the system of residual equations, the equations are linearized around iteration (k).

e+ dAyP =0 (B.2)

-

OAyP

—
K

Linearization of residual equation yields local tangent stiffness which is denoted as K.

The tangent stiffness in the local Newton Raphson algorithm is obtained as follows,

or' ol 0t¢

— + n+l . n+l
0AYF 07, 0(Fe),,,  OAYP

or’ 6gg+1 6p . OSn+1 . O0Ep41 .8(F‘3)n+1

97, Op 9Sm1 OB O(F,),, OAYP

n+1

K8 . G(Fe)

(B.3)

It is worthy to note that dp/JE is a local tensor unlike other terms. To overcome
this inconsistency, a term consisting partial derivative of E'°° with respect to E&°° is
inserted next to dS,+1/0E,+1. In the following items, derivations of tangent stiffness

components are expressed clearly.

* Derivation of 91" /0Ay#

The expression of residual equation is given in Equation B.1. Partial derivative of
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residual equation with respect to slip increments is as follows,

or'l 0Ny 0 7 1 1m .
= — At )’/”( s sign(t” (B.4)
aA,yﬁ 8Ay/3 (9A’)/'B ( 0 Z+1 ( n+1)
onB
Since the second term is independent of Ay?,
o'
c')Ary _ = =0 =5 (B.5)

Derivation of 9F./0Ay?

Elastic deformation gradient can be calculated based on multiplicative decomposition

of deformation gradient into F. and F,.

F=F.F, (B.6)
where F,, can be introduced in terms of slip increments, slip systems and (Fp)n. By
using exponential map,

6
(Fp) iy = exp( Z Ay'sy @ ﬁg) (Fp), (B.7)
n=1

F.=FF,' (B.8)

Elastic deformation gradient for t,4; is expressed in terms of slip increments, slip

vectors and Férial which is formed by F,,;; and (FI; 1)n.

6
()1 = Funr (Fp'), exp( - > AYTE] @iy ) (B.9)
R =1
Férial !
A

where A is a second order tensor. Following to steps given below, partial derivative

of F. with respect to Ay? can be calculated.

d(Fe)ij dexp(A),

aAyﬂ — ( érial)ik aA,yﬂ (B.lO)
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dexp(A) o dexp(A) i OAmn
ANYB  0Ann OAYP

(B.11)

* Derivation of 0r7/0g”

Partial derivative of residual equation with respect to resistance can be calculated by

using residual which is given in Equation B.1.

77 5 sign(7,) (B.12)

or'! |T77 )(1/m—1) |T’7|
(gn+1)

1
-z - 5””Aty"(—)("—+l
ag“ “\m gZ+1

Derivation of  0p/JE

Recall that confinement is a function of second Piola-Kirchhoff stress. It is defined
as p = —0.5(S22 + S33) where S = D : E. The compliance relation can be written in

indicial form as
Sjk = Djkmn Enn (B.13)

Partial derivative of p with respect to E,

op
OE,i

= —0.5(D22jk + Dggjk) (B.14)

Derivation of 0E/0F,

Recall that E = 0.5 (Ce —I) where C, = FeT F.. Partial derivative of Green strain tensor
with respect to elastic deformation gradient produces a 4™ order tensor. Calculation

steps in indicial notation are presented below.

6E a Fe v a FC
i _o5 (7o), (Fe), + (Fe), (Fe)y (B.15)
0(Fe)lm 0(Fe)lm a(Fe)lm
=0.50m (Fe);, +0km (Fe), . B.16
a(Fe)zm jm ( )lk km )1] ( )
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Derivation of  0r7/07%

Recall that residual equation is as follows

TU 1/m
= Ay" - Aty ( :’;’1 ) sign(7”,,) (B.17)
n+l

The partial derivative of residual with respect to Schmid stress is as follows,

or" 1 (I 1/m-1 1
. 1 . .
o = —S" At 735 (.g’:f ) g Slgn(T]Z+1) 31gn(TZ+1) (B.18)
n+1l

Derivation of dg/dp

Resistance g is a function of p in case confinement pressure is larger than 0. When

confinement pressure p > 0,

a a
% _, (B.19)
ap

where u is friction coefficient. Otherwise,
a (04
% _y (B.20)
ap

Derivation of 07%/0F.

Recall that Schmid stress is a function of Kirchhoff stress tensor and slip systems.
™ =71:(5"®n") (B.21)

where s and n are slip vectors in current frame. Equation B.21 can be written in terms

of indicial notation as follows,
T8 = Ty Sy Ny (B.22)

The partial derivative of Schmid stress with respect to Fe,

o 0T o o ase L on®
= SO+ Ty —————HN, + Tyun S (B.23)
d(Fe);,  OFe), ™" TaE), " T a(F)
Term I Term II Term II1
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— Obtaining the Term I

(Term 1), = Apnjk Spmty (B.24)
where A is the partial derivative of Kirchhoff stress tensor with respect to elastic

deformation gradient which is given in Equation B.37.

Obtaining the Term II

Slip vectors in current configuration are function of F. and sj as they are formulated

in Equation B.25.
s =Fesg (B.25)

Partial derivatives of slip vectors in current configuration with respect to F. are

derived below.

65% aFe my a
_ 9l (50)° (B.26)
O(Fe) . O(Fe)

—_——

6mj6vk

Equation B.26 is implemented to Term II,

(Term II);’k = Tjp (so)[,f ny (B.27)
Obtaining the Term III
ong
Term 1), = 7, 54 L B.28
( )]k mn“m a(Fe)jk ( )

Normal slip vectors in current configuration are function of F. and n{ as they are

formulated as

n'l = F(;T ng (B.29)
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Partial derivative of n® with respect to F. is as follows,

on? 8(Fe)_
1= (nf), (B.30)
o), O ),
—_———
A

- -1
L ()} (o)) B31)
Term III is presented below.

(Term I1)%, = ~Tyun 5% (n2), (Fe) .+ (Fe) s (B.32)
J J

* Derivation of 9A°¢/9AgloP

This term is the partial derivative of a local second order tensor with respect to its
global form. It is stated that A is a second order tensor, and the term produces a fourth
order tensor. Transformation of a second order tensor in global to local configuration

is given in B.42.

AlOC — Q Aglob QT (B33)

(')Aloc 0 (Q Aglob QT)
H Asglob = O Aglob

(B.34)

where Q is a second order transformation tensor. Expression can be written in indicial

notation as follows

OAL B oA,y
HALD - ijQkyaA—mn = QjmQin (B.35)

Derivation of 01 /0F,

The Kirchhoft stress is a function of F, and S. It is defined as

T=F.SF! (B.36)
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Partial derivative of T with respect to F,

ot 3 OF. T 0S 1 BFeT
JF. ~ . SF, +F60F6Fe +F.S o, (B.37)
———— e e
Term-I Term-1II Term-I11
— Obtaining Term I,
d(Fe)
(Term I)jkmn = W SPt (Fe)kt =0jm Sni (Fe)kt (B.38)
€)mn
N—
OjmOpn
— Obtaining Term II,
0S,;
(Term H)jkmn = (Fe)][? 3(1::61)) (Fe)kt (B39)
where
oS )
U Dpirs _9E (B.40)
a(Fe)mn a(Fe)mn

Partial derivative of Green’s strain tensor with respect to elastic deformation gradient

is given in Equation B.16.

— Obtaining Term III,

d(Fe)y,
jp =Pt a(Fe)

mn

(Term TI1) .., = (Fe) = (Fe) ;, Spn Skm (B.41)

This is how the 4" order d7/F, tensor is obtained. It should be noted that Green’s
strain tensor is a global quantity since deformation gradient obtained from Abaqus is
in global form. However, there is a local material tensor in constitutive relation. To

overcome this situation, applied procedure is given below.

Algorithm 4 Local to global transformation
Transform E&°P to E!°°  (See Equation B.42)
Obtain second Piola-Kirchoff stress in local form, S!°¢ =D : Elo¢

Transform S!°° to S€°°  (See Equation B.44)




e Transformation of Ag°b to Aloc

A second order tensor A can be transformed into local frame from the global frame

by using
AIOC — Q AglOb QT (B42)

where Q) is the transformation matrix and defined below.

cos¢p sing 0
Q=|-sing cosp 0 (B.43)
0 0 1

where ¢ is the angle between global and local frames.

o Transformation of A!°¢ to AgloP

A second order tensor A can be transformed into global frame from the local frame
Aglob — QT AIOC Q (B44)
where Q) is defined in Equation B.43.

B.2. Derivation of Material Tangent Stiffness

In this section material tangent stiffness matrix is derived. Recall that internal virtual work

is as follows

Wi = / Toa1 t (Voou(FY) ) dv (B.45)
Vv

Directional derivative of internal virtual work in the direction of [Au],

D(6Win) [Au] = D (t,41) [Au] : VoouF ™ + 7,41 : D(VoouF ') [Au] (B.46)
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where the left term produces material tangent stiffness matrix.

0Ty
D (t4s1)[Au] = a; 1 . D(F 1) [Au] (B.47)
n+

Kirchhoff stress is a function of F, and Ay#. Therefore, (Dmai)ns1 can be calculated by
the chain rule as,

aTn+1 aTn+1 . ad (Fe)n+1

_ OTpi1 d(Fe) 1 N
8Fn+1 a(Fe)nH' aFn+1

. =L (B4
ap O(Fe), AP OF 11
~—_————

Al

n+l

~—_———

A2
The terms A1 and A2 are derived in Equation B.37 and Equation B.10, respectively. In
the following items, derivations of remaining components are expressed clearly.

e Derivation of OF./0F

The expression of F. is defined below,

6
(P = Fovn (Fy1), exp( = > 8975 @ ]

(B.49)
n=1
Partial derivative of F with respect to F as follows,
6
oF. OF ,__, R R
= — (F; )exp( - > A5 @ ng) (B.50)
oF OF UZ:;‘
* Derivation of 9Ay#/OF

When the material disturbed by dF,.,1, the residual equations pertaining to slip systems
should be satisfied. Since residual is functions of F. and Ay,

or"

ONyP or’
OAyP

+
Fo1 6Fn+1 aFn+1

:dF,.1 =0
AyB

(B.51)

Since the disturbance (dF,;1) is always non-zero, the term in square brackets must be
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equal to 0.

or ANYT O
6Ar . aFV + (9Fr ] =0 (B.52)
Y’ F,. n+1 n+1 AP
N———— N————
K8 Gn
OAYP
KB ——_ +G"=0 B.53
aFn+1 ( )

Terms K”# and G” are derived in Equation B.3 and Equation B.55, respectively.

AAy¢ 3

T ~(KH G (B.54)
n+

¢ Derivation of G”
In an open form, G” can be written as

_ or" (9gff+1 op .asn+1. O0E,1 .a(Fe)nH
38a ap 8Sn+1 ' aEn+1 ' a(Fe)n+1 ' aFn+1

n+l1

n

(B.55)

Ayﬁ
————
A
All terms except A are derived in items under Appendix-B.1. The expression of F. is

defined below,

6
(Fe) oy = Furt (F;1), exp( = AyYTS] @ i ) (B.56)
S —— n=1
Fterial
B

The partial derivative of F. with respect to deformation gradient matrix is as follows

-1
8(Fe)n+1 _ a(Fij (Fp)quQP) (B.57)
OF 1 O0Fy Ay '
a(Fe)n+1 -1
(9F—n+1 = 6ik (Fp)lq qu (B58)
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B.3. Derivation of Geometric Tangent Stiffness

As stated previously, the term (‘r : D(Voou F_l) [Au] ) in Equation B.46 leads to geometric
tangent stiffness. Geometric tangent stiffness can be calculated by following the equations

given below.

D(VosuF~')[Au] = —ou; ; F;} Auy i Fy, (B.59)
7 : D(VosuF ) [Au] = —1;, 6u; Fj_,g Auy, Fl_”%

7 : D(VosuF ') [Au] = —6u; ; F} Tin By Auy (B.60)
N’

ca.

Jkil

G

As described in following equation, Cqe, can be obtained by rearranging the cells of CJ. Yil*

(Cgeo)ijkl — Cjcl;cil (B-61)
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