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ABSTRACT

CRYSTAL PLASTICITY INSPIRED MODELLING OF FIBRE
REINFORCED COMPOSITES

There is an increasing demand in carbon fibre reinforced (CFR) composites pri-

marily due to their high strength-to-weight ratio. Although their single-ply behaviour is

rather brittle (as compared to metals), by reducing the ply thickness and stacking differ-

ently oriented plies, brittleness is suppressed, and a ductile behaviour similar to metals is

achieved.

In this thesis, a recently proposed material model inspired by crystal plasticity is

reconsidered and implemented in an implicit finite element solution framework. To this

end, a user-defined element is developed in a geometrically non-linear continuum setting

and implemented in commercial finite element software Abaqus through UEL (User-

defined ELement) subroutine. The model is validated by analytical solutions derived for

simple shear cases and two experiments for different loading cases from the literature. The

model is capable of predicting stress-strain response well in cases where matrix plasticity

is dominant. Moreover, a parametric study on the cross-ply shear specimen is conducted

to investigate the influence of different material parameters. In the last part, the model is

extended by a continuum scale damage in the matrix and degradation in elastic material

properties. The predictive capabilities of the damage extended model are assessed by

re-analyzing the cross-ply shear test.
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ÖZET

FİBER TAKVİYELİ KOMPOZİTLERİN KRİSTAL PLASTİSİTEDEN
ESİNLENEREK MODELLENMESİ

Karbon Fiber Takviyeli (KFT) kompozitlere, özellikle yüksek mukavemet-ağırlık

oranları nedeniyle artan bir talep vardır. Tek katmanlı davranışları (metallere kıyasla)

oldukça gevrek olmasına rağmen, katman kalınlığı azaltılarak ve farklı fiber yönüne sahip

katmanları birleştirerek bu gevreklik azaltılabilir ve bu sayede metallere benzer sünek bir

davranış elde edilebilir.

Bu tezde, kristal plastisiteden esinlenerek yakın zamanda önerilen bir malzeme

modeli yeniden ele alınmakta ve kapalı adım bir sonlu eleman çözümü çerçevesinde

uygulanmaktadır. Bu amaçla, geometrik olarak doğrusal olmayan bir sürekli ortamda kul-

lanıcı tanımlı bir eleman geliştirilmiş ve kullanıcı eleman (UEL) altprogramı aracılığıyla

sonlu eleman yazılımı Abaqus’e entegre edilmiştir. Model, basit kesme durumları için

türetilen analitik çözümler ve literatürden seçilen farklı yükleme durumları için iki deney

ile doğrulanmıştır. Modelin matris plastisitesinin baskın olduğu durumlarda gerilim-

gerinim tepkisini iyi tahmin etme yeteneğine sahip olduğu görülmüştür. Ayrıca, farklı

malzeme parametrelerinin etkisini araştırmak için çapraz katlı kesme numunesi üzerinde

parametrik bir çalışma yapılmıştır. Son bölümde, model, matriste süreklilik ölçeğinde

hasar ve elastik malzeme özelliklerinde bozulmayı yansıtacak şekilde genişletilmiştir.

Genişletilmiş hasar modelinin tahmin yetenekleri, çapraz katlı kesme testinin yeniden

analiz edilmesiyle değerlendirilmiştir.
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CHAPTER 1

INTRODUCTION

Fibre Reinforced Composites (FRC) are lightweight and stiff materials used in

various applications ranging from engineering structures to wind turbine blades. They are

manufactured by the combination of at least two components with different properties in

various proportions. This combination makes it possible to improve the properties of the

constituent for the intended use. The high strength-to-weight ratio of the fibre reinforced

composites has increased the demand for FRC’s in the aforementioned disciplines. Due

to this demand, mechanical response of these materials should be understood correctly.

However, they are heterogeneous, so their characterization requires a large number of ex-

periments. Since composites are expensive materials, successful modelling of composites

would reduce the economic burden of experimental studies involving composites.

As far as modelling of composites is concerned, initially the interest was mostly on

predicting the composite properties from the properties of the constituents (Nemat-Nasser

et al., 2013). Afterwards, the emphasis shifted towards predicting the failure of composites.

Typically, composites are observed to fail at low plastic strains and exhibit brittle-like

behaviour. The modelling of failure mechanisms of composite materials attained priority

and for this purpose an international event called World Wide Failure Exercise (WWFE)

was organized (Hinton et al., 2002; Kaddour & Hinton, 2013). In this exercise, the

theories on the modelling of composites were evaluated in all aspects by comparing with

the experimental results.

Although, fibre reinforced composites are preferable for many properties, their

brittle behaviour limits their use. In this context, there are studies in the literature on the

effects of laminate thickness and fibre angle on the behaviour of composites. For example,

the study of Ogihara and Nakatani (2012) reveals that the 48-ply composite exhibits more

ductile behaviour than the 16-ply composite under monotonic tensile loading, although

both specimens have the same thickness, please see Figure 1.1. Furthermore, Fuller and

Wisnom (2018) shows that non-linearity increases with higher 𝜃 when monotonic tensile

tests on [±𝜃] composite laminates are conducted.

In experimental studies conducted in recent years, elasto-plastic behaviour similar

to that of metals has been observed in very thin plies, please see Figure 1.1. The modelling
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Figure 1.1. Comparison of stress-strain responses for different ply thickness
(Source: Ogihara and Nakatani, 2012)

of this behaviour is an important issue and has been studied in recent years. Among

the proposed models, especially the model inspired by crystal plasticity reproduces the

experimental data quite well. Experiments on this subject show that plastic deformation

of fibre in FRC has similarity to the notion of crystal plasticity. This similarity reveals

that crystal plasticity can be a sensible approach to understand the plastic deformation of

fibre reinforced composites. This modelling framework (Meza et al., 2019; Tan & Falzon,

2021; Tan & Liu, 2020) is proposed recently and its predictive capabilities and limitations

are not fully explored yet.

1.1. Motivation of the Thesis

Departing from this point, the thesis focuses on crystal plasticity inspired modelling

of composites. To this end, implicit version of the crystal plasticity based model proposed

by Meza et al. (2019) is implemented in Abaqus through user defined element subroutine

(UEL). The implementation is verified by using analytical solution of homogeneous tests

and the predictions are compared with experimental results as well. Referring to Figure 1.2,

it is clearly visible that the predictions deviate from the experimental results at relatively

high strain levels. This is essentially attributed to damage mechanisms taking place within

the matrix, fibre and matrix-fibre interface. To address this, in the last part of the thesis,

the model is extended to include matrix damage using the concepts of continuum damage

mechanics.
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Figure 1.2. Measured and predicted shear stress-strain responses of [±90]4s
(Source: Tan and Falzon (2021))

In the next chapter, crystal plasticity inspired model and its adoption to composites

is explained. The following chapter deals with the implementation of the model and elab-

orates on its algorithmic structure. Simple shear tests and comparison with experimental

results are presented in this chapter. In the next chapter, it is explained how the concepts

of damage mechanics are connected to the model and implemented. The effect of damage

on predictions is investigated by repeating the analysis with the damage-extended model.

Finally the thesis is closed by Conclusion & Outlook chapter.
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CHAPTER 2

CRYSTAL PLASTICITY INSPIRED MODELLING OF

COMPOSITES

2.1. Crystal Plasticity Theory

In this chapter, the primary goal is to give information about crystal plasticity theory

and its adoption to fibre reinforced composites. In the vast majority of metals, plastic

deformation results from dislocation glide. Crystal plasticity is an approach that tries

to explain permanent deformation by incorporating crystalline level slip mechanisms. It

postulates that permanent deformation occurs by shear at the microscopic level. According

to this approach, plastic deformation is described as the sliding of atoms, and the specific

planes on which the sliding occurs are called slip planes. These slip planes are defined by

the direction vector ®𝑠 𝜂 and the normal vector ®𝑛 𝜂 of the slip plane, which are orthogonal

to each other, see Figure 2.1 for illustrations of the slip systems.

(b)(a)
Figure 2.1. An illustration for (a) Body Centred Cubic (BCC) slip system and (b) Face

Centred Cubic (FCC) slip system.

Crystal plasticity is a continuum scale modelling approach based on these slip

mechanisms and therefore has a strong physical basis. The kinematics of this description

is going to be detailed in the next section.
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2.1.1. Kinematics

The deformation gradient, F is the fundamental measure of deformation in con-

tinuum mechanics. It is the second-order tensor that maps material line elements in the

reference configuration into line elements in the current configuration. The mapping is

expressed mathematically as,

dx

dX

Y

X

Z t = 0 t > 0

𝜑

Figure 2.2. Line segment mapping of a deformable body.

dx = F dX (2.1)

In finite strain crystal plasticity, total deformation gradient tensor is split into an

elastic and a plastic part,

F = Fe Fp det(Fe) > 0 & det(Fp) = 1 (2.2)

which is called as multiplicative decomposition of deformation gradient. This decompo-

sition implies that there is a fictitious intermediate state formed by plastic deformation

gradient tensor, please see Figure 2.3. The plastic part consists of plastic slips on the

slip planes, whereas the elastic part is composed of lattice distortion and rotation. In

intermediate state, the lattice structure is the same as the undeformed configuration and

the slip vectors do not alter. The rotation and stretching of slip vectors take place as a result

of elastic part of deformation gradient. Current slip vectors are evaluated by ®𝑠 𝜂 = Fe ®𝑠 𝜂0
and ®𝑛 𝜂 = F-T

e ®𝑛 𝜂
0 , both are orthogonal.
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Figure 2.3. Please note that the slip vector in reference configuration and intermediate
configuration are identical. Dashed black lines in the final configuration are obtained by

mapping Re and the solid red line represents the final configuration.

The fibre rotation due to deformation, denoted as 𝜔 in Figure 2.3, can be evaluated

based on elastic rotation tensor. With polar decomposition, a deformation gradient can

be multiplicatively decomposed into orthogonal rotation and symmetric stretch tensors.

Polar decomposition of elastic deformation gradient can be expressed as,

Fe = Re Ue (2.3)

where Re and Ue are elastic rotation tensor and elastic stretch tensor, respectively. Right

Cauchy-Green deformation tensor corresponding to Fe can be written as

Ce = Fe
T Fe = Ue R

T
eRe︸︷︷︸
I

Ue = Ue Ue (2.4)

which is used to obtain Ue through spectral decomposition as

Ue =
√︁
𝜆1 n1 ⊗ n1 +

√︁
𝜆2 n2 ⊗ n2 +

√︁
𝜆3 n3 ⊗ n3 (2.5)

where 𝜆𝑖, n𝑖 are eigenvalues and eigenvectors of Ce, respectively. After getting Ue, Re

6



can be easily calculated by

Re = Fe U
−1
e (2.6)

In almost all experimental studies, fibre directions vary around an axis perpendic-

ular to the plane of the ply, i.e. z-axis according to Figure 2.3. Therefore, elastic rotation

tensor has the following form,

Re =


cos𝜔 −sin𝜔 0

sin𝜔 cos𝜔 0

0 0 1

 (2.7)

from which the rotation angle of fibres around z-axis can be calculated as,

𝜔 = tan−1
( (
Re

)
21(

Re
)
11

)
(2.8)

When the material deforms, there must be differences in velocity between adjacent

points which cause a gradient in the velocity field called as spatial velocity gradient tensor

ℓ and written as,

𝜕

𝜕𝑡

(
dx

)
= ¤F dX = ¤FF−1︸︷︷︸

ℓ

dx (2.9)

Inserting multiplicative decomposition into Equation 2.9 leads to the additive

decomposition of ℓ as,

ℓ = ℓe + ¤Fe ℓp F
−1
e (2.10)

where,

ℓe = ¤FeF
−1
e & ℓp = ¤FpF

−1
p (2.11)

are the elastic and plastic velocity gradient tensors, respectively. In crystal plasticity, ℓ𝑝 is

defined as,

ℓp =
𝑛𝑠𝑙𝑖 𝑝∑︁
𝜂=1

¤𝛾𝜂 ®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0 (2.12)
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which is the summation of slip rates on specific slip planes identified by 𝜂. Inserting this

into Equation 2.11 results in the following evolution equation for Fp

¤Fp =
𝑛𝑠𝑙𝑖 𝑝∑︁
𝜂=1

¤𝛾𝜂 (®𝑠 𝜂0 ⊗ ®𝑛 𝜂
0

)
Fp (2.13)

which is updated mostly by using exponential map algorithm, see de Souza Neto et al.

(2011). Once Fp is updated and available, elastic deformation gradient is obtained by

inserting Fp into Equation 2.2. Following this, Green strain tensor is calculated as

E =
1

2
(Ce − I) (2.14)

where Ce = FT
eFe. Thereafter, the second Piola–Kirchhoff (P-K) stress tensor is calculated

by S = C : E where C is the forth-order constitutive tensor.

As far as the adoption of this model to composites is concerned, there are a number

of issues that have to be addressed. The first issue is the determination of slip systems

(slip angles) for composites. There are essentially two factors which are used to specify

these planes. The first one is the fibre arrangement which could be seen in an idealized

form in Figure 2.4. In case of hexagonal closed packed fibre arrangement, slip angle for

transverse system is identified as ±30◦. However, if the fibre arrangement is different,

other slip planes may exist and depends on the failure criteria considered. Tan and Liu

(2020) carried out finite element analysis of transverse compression test with different slip

angles. The results of these analyses, please see Figure 2.5, suggest that 𝛽 = 45◦ yields

the closest initial yield stress to experimental result.

(a)

fibre

matrix

(b)

slip
plane

𝛽

Figure 2.4. (a) Square and (b) hexagonal (𝛽 = 30◦) arrangement of fibres.
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As mentioned before, the slip planes for a FRC are split into two classes as

longitudinal and transverse slip systems. Systems whose slip direction is parallel to the

fibre direction are classified as longitudinal, while systems that are perpendicular are

defined as transverse. These slip systems are shown in Figure 2.6 and the slip vectors are

given in Table 2.1. Slip systems are used in the definition of ℓ𝑝.

n
(5)

n

s
(3) n

(1)

n

n

n

(5)n
(6)

n
(3)

s
(6)

s
(5)

Figure 2.6. An illustration of slip systems

reproduced from Tan and Liu (2020)
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Table 2.1. Slip systems

System number (type) ®𝑠0 ®𝑛0
1 (longitudinal) (1 0 0) (0 1 0)
2 (longitudinal) (1 0 0) (0 cos𝛽 sin𝛽)
3 (longitudinal) (1 0 0) (0 cos𝛽 − sin𝛽)
4 (transverse) (0 0 − 1) (0 − 1 0)
5 (transverse) (0 sin𝛽 − cos𝛽) (0 − cos𝛽 − sin𝛽)
6 (transverse) (0 sin𝛽 cos𝛽) (0 cos𝛽 − sin𝛽)

Since the micro-structure is transversely isotropic, the elastic response is governed by the

following compliance relation,



E11

E22

E33

E12

E13

E23

︸︷︷︸
E

=



1/𝐸 𝑓 −𝜈21/𝐸𝑚2 −𝜈31/𝐸𝑚3 0 0 0

−𝜈12/𝐸 𝑓 1/𝐸𝑚2 −𝜈32/𝐸𝑚3 0 0 0

−𝜈13/𝐸 𝑓 −𝜈23/𝐸𝑚2 1/𝐸𝑚3 0 0 0

0 0 0 1/(2𝐺12) 0 0

0 0 0 0 1/(2𝐺13) 0

0 0 0 0 0 1/(2𝐺23)

︸                                                                                  ︷︷                                                                                  ︸
H



S11

S22

S33

S12

S13

S23

︸︷︷︸
S

(2.15)

S = D : E (2.16)

where 𝐸 𝑓 , 𝐸𝑚2 and 𝐸𝑚3 are Modulus of Elasticity of the material in longitudinal and

transverse directions, respectively. The corresponding Poisson’s Ratio and Shear Moduli

are represented by 𝜈𝑖 𝑗 and 𝐺𝑖 𝑗 where 𝑖, 𝑗 = 1, 2, 3. By inverting Equation 2.15, the second

Piola–Kirchhoff stress tensor is expressed in terms of material stiffness tensorD and Green

strain tensor E. In addition to this, slip evolution equation on individual slip systems is

defined as

¤𝛾𝜂 = ¤𝛾𝜂0
( |𝜏𝜂 |
𝑔𝜂

)1/m
sign(𝜏𝜂) (2.17)

where 𝜏𝛼 is the Schmid stress driving the slip on that particular system. 𝑔𝛼 is the resistance

against slip and m is rate sensitivity exponent, Asaro and Needleman (1985). It is clear that

a rate dependent viscous formulation is used here due to its relative easier implementation.
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Schmid stress for each slip system is calculated by,

𝜏𝜂 = 𝜏𝜏𝜏 : (®𝑠 𝜂 ⊗ ®𝑛𝜂) = ®𝑠 𝜂 𝜏𝜏𝜏 ®𝑛𝜂 (2.18)

where 𝜏𝜏𝜏 is Kirchhoff stress tensor and obtained from second Piola-Kirchhoff stress tensor

through

𝜏𝜏𝜏 = Fe SF
T
e (2.19)

The resistance against slip is represented by 𝑔𝛼 and as opposed to metals, depends on

confinement. The confining pressure is illustrated in Figure 2.7. In other words, the

confining pressure (p) leads to an increase in resistance (like a friction mechanism) and

expressed as,

𝑔𝜂 =


𝜏
𝜂
𝑦 + 𝜇 p p ≥ 0

𝜏
𝜂
𝑦 p < 0

(2.20)

The aforementioned pressure on the fibres is calculated by averaging the local normal

stresses S22 and S33,

p = −1
2

(
S22 + S33

)
(2.21)

which are perpendicular to fibre direction as shown in Figure 2.7.

fibre

matrix

S22S22

S33

S33

3

2

Figure 2.7. 2D drawing for the pressure from the matrix on the fibre.
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Although various other plasticity models are available in the literature, the interest

in using crystal plasticity in composites has recently increased. Classical plasticity models

assume that the fibres’ rotation follows the matrix’s rotation under shear loading. However,

the relative rotation difference between fibre and matrix reaches large values that cannot be

neglected at high strains. Since crystal plasticity is inherently capable of capturing plastic

spin, the crystal plasticity inspired models represent the micro-structure much better than

classical plasticity models. In the next section, time discretization, i.e. stress update

algorithm is presented.

2.1.2. Stress Update Algorithm

In an incremental-iterative solution framework, the intention of the stress-update

algorithm is to find the stresses and the associated material tangent stiffness at t𝑛+1. Plastic

deformation gradient
(
Fp

)
𝑛 and 𝛾

𝜂
𝑛 belonging to t𝑛 are available. Furthermore the problem

is displacement driven and an estimate for total deformation gradient F𝑛+1 is available as

well. By substituting Δ𝛾𝜂/Δt in place of ¤𝛾𝜂 in Equation 2.13, the equation can be rewritten

as

¤FF−1p =
1

Δt

6∑︁
𝜂=1

Δ𝛾𝜂 ®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0 (2.22)

Using the exponential map, see for example de Souza Neto et al. (2011), plastic deformation

gradient matrix in the current step can be written in terms of slip increments, reference

slip systems and
(
Fp

)
𝑛 as

(
Fp

)
𝑛+1 = Q

(
Fp

)
𝑛 with Q = exp

[
6∑︁

𝜂=1

Δ𝛾𝜂 ®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0

]
(2.23)

To calculate Q in Equation 2.23, the infinite series expansion given in de Souza Neto et al.

(2011) is used by keeping the first six terms of the expansion. For further information

please see Appendix B of de Souza Neto et al. (2011). Computation of the elastic

deformation gradient tensor in the current step is done in a straightforward manner by

using

(
Fe

)
𝑛+1 =

(
F
)
𝑛+1

(
Fp

)−1
𝑛+1 (2.24)
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Since exp [A]−1 = exp [−A] where A is a second-order tensor,
(
Fp

)−1
𝑛+1 can be written as

(
Fp

)−1
𝑛+1 =

(
Fp

)−1
𝑛 exp

[
−

6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0

]
(2.25)

Elastic deformation gradient matrix is a key term in the process of crystal plasticity

calculations. However, values of incremental slips Δ𝛾𝜂 have to be determined. To this

end, evolution equations are written in the following residual form which are enforced by

Newton-Raphson method. Obtained residual equations are given as

𝑟𝜂 = Δ𝛾𝜂 − Δt ¤𝛾𝜂0
(
|𝜏𝜂𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m
sign

(
𝜏
𝜂
𝑛+1

)
= 0 (2.26)

To solve the system of residual equations, the equations are linearized around

iteration (k)

𝑟 𝜂 |𝑘 + 𝜕𝑟 𝜂

𝜕Δ𝛾 𝛽

����
𝑘︸   ︷︷   ︸

K

dΔ𝛾 𝛽 = 0 (2.27)

where K is the local tangent stiffness and the slip increments are updated by

Δ𝛾𝜂𝑘+1 = Δ𝛾𝜂𝑘 + dΔ𝛾𝜂 (2.28)

𝑘 and dΔ𝛾𝜂 refer to iteration number and corrective terms obtained from dΔ𝛾𝜂 =

−(K)−1
𝑟 𝜂. The iterative local Newton-Raphson process is repeated until acceptable

residual values are obtained. The general structure of the local Newton-Raphson algo-

rithm is given in Algorithm 1. After completing the material level response, in the next

section structural level behaviour is going to be discussed.
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Algorithm 1 Local Newton-Raphson Algorithm
Initial estimate for slip increment on slip plane 𝜂, Δ 𝛾

𝜂
0 = 0(

Fe
)
𝑛+1 =

(
F
)
𝑛+1

(
Fp

)−1
𝑛+1

C𝑛+1 =
(
Fe

)T
𝑛+1

(
Fe

)
𝑛+1

E𝑛+1 = 1
2

(
C − I)

S𝑛+1 = D : E𝑛+1

𝜏𝜏𝜏𝑛+1 =
(
Fe

)
𝑛+1 S𝑛+1

(
Fe

) T
𝑛+1

while norm (r) > tolerance do
Calculate K = dr𝜂

dΔ𝛾𝛽

Update slip increments, Δ 𝛾𝜂 = Δ 𝛾𝜂 + dΔ𝛾𝜂(
Fe

)
𝑛+1 =

(
F
)
𝑛+1

(
Fp

)−1
𝑛+1

C𝑛+1 =
(
Fe

)T
𝑛+1

(
Fe

)
𝑛+1

E𝑛+1 = 1
2

(
C − I)

S𝑛+1 = D : E𝑛+1

𝜏𝜏𝜏𝑛+1 =
(
Fe

)
𝑛+1 S𝑛+1

(
Fe

) T
𝑛+1

r 𝜂 = Δ𝛾𝜂 − Δt ¤𝛾𝜂0
(
|𝜏𝜂
𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m
sign

(
𝜏
𝜂
𝑛+1

)
end while

2.2. Boundary Value Problem

At the structural level, the problem is in fact a boundary value problem which

is governed by a partial differential equation and associated boundary conditions. The

equation that is going to be solved is static equilibrium and written as,

∇ ·𝜎𝜎𝜎 + 𝜌 b = 0 (2.29)

where ∇ · is the divergence operator with respect to current coordinates, 𝜌 is the density

and b is the body forces.

Since the analytical solutions are limited to simple geometries and boundary con-

ditions, finite element method is used to solve the problem approximately. Following

a weighted residual procedure, the weak form of the governing differential equation is

obtained as,
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Γu

Γt

t̄

t̄ = t on Γt
ū = u on Γu
Γt ∩ Γu = ∅

Figure 2.8. An illustration of a body with boundary conditions.

∫
𝑣

𝜎𝜎𝜎 : ∇𝛿u d𝑣︸            ︷︷            ︸
𝛿𝑊𝑖𝑛𝑡

=
∫
Γt

t · 𝛿u dΓt +
∫
𝑣

𝜌 b · 𝛿u d𝑣 (2.30)

which in fact corresponds to the principle of virtual work. The internal virtual work at

𝑡𝑛+1 can be written as,

𝛿𝑊𝑖𝑛𝑡 =
∫
𝑉

𝜏𝜏𝜏𝑛+1 :
(
∇0 𝛿u

(
F−1

)
𝑛+1

)
d𝑉 (2.31)

where the integral has to evaluated over the undeformed volume V. A brick type element

with quadratic displacement interpolation (twenty-noded brick element) is used for spatial

discretization. Using isoparametric finite element formulation, displacement gradient and

gradient of virtual displacement can be written as,

∇0u = B û, ∇0𝛿u = B 𝛿û (2.32)

where B is the matrix correlating nodal displacement degrees of freedoms (û and 𝛿û) and

gradient of displacement. Equation 2.30 can be written as,

𝛿ûT
(
f𝑖𝑛𝑡 − f𝑒𝑥𝑡

)
= 0 (2.33)

which corresponds to f𝑖𝑛𝑡 − f𝑒𝑥𝑡 = 0. The element level contribution to f𝑖𝑛𝑡 is based on

Equation 2.31 and reads as
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f el
𝑖𝑛𝑡 =

∫
𝑉𝑒

BT P dV (2.34)

where the 1st Piola-Kirchhoff tensor P = 𝜏𝜏𝜏 F−T. The virtual work equation is non-linear

since both 𝜏𝜏𝜏 and
(∇0 𝛿uF−1) depend on the displacement field; the unknowns of the

problem. To solve a set of non-linear equations, 𝛿𝑊𝑖𝑛𝑡 should be linearized as

D
(
𝛿𝑊𝑖𝑛𝑡

) [Δu] = D
(
𝜏𝜏𝜏
) [Δu] : ∇0𝛿uF−1 + 𝜏𝜏𝜏 : D

(∇0𝛿uF−1) [Δu] (2.35)

in the direction of incremental displacements Δu and D( ) [Δu] represents the directional

derivative. The first term on the right side of the equal sign produces material tangent

stiffness, and the second one leads to geometric tangent stiffness. Expanding the second

term leads to,

D
(∇0 𝛿uF−1 ) [Δu] = ∇0𝛿u D

(
F−1

) [Δu] (2.36)

where D
(
F−1

) [Δu] = −F−1 D
(
F
) [Δu] F−1 and D

(
F
) [Δu] = B

(
Δu

)
. Expanding the

first term leads to

D
(
𝜏𝜏𝜏𝑛+1

) [Δu] = 𝜕𝜏𝜏𝜏𝑛+1
𝜕F𝑛+1︸ ︷︷ ︸(
Dmat

)
𝑛+1

D
(
F𝑛+1

) [Δu] (2.37)

Kirchhoff stress is a function of Fe and Δ𝛾𝛽. Therefore,
(
Dmat

)
𝑛+1 can be calculated by

the chain rule as,

𝜕𝜏𝜏𝜏𝑛+1
𝜕F𝑛+1

=
𝜕𝜏𝜏𝜏𝑛+1

𝜕
(
Fe

)
𝑛+1

:
𝜕
(
Fe

)
𝑛+1

𝜕F𝑛+1

����
Δ𝛾𝛽
+ 𝜕𝜏𝜏𝜏𝑛+1

𝜕
(
Fe

)
𝑛+1

:
𝜕
(
Fe

)
𝑛+1

𝜕Δ𝛾𝛽

����
F𝑛+1

:
𝜕Δ𝛾𝛽

𝜕F𝑛+1
(2.38)

The derivations of the terms presented above are clearly demonstrated in Appendix-B.

Rearranging the terms presented above, element tangent stiffness matrix can be written as

Kel
𝑛+1 =

∫
𝑉𝑒

BT (
Cgeo

)
𝑛+1B dV +

∫
𝑉𝑒

BT (
Cmat

)
𝑛+1B dV (2.39)

where Cgeo and Cmat are given in Appendix-B.
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The general structure of global Newton-Raphson algorithm is presented in Algorithm 2.

Algorithm 2 Global Newton-Raphson Algorithm

Using
(
F
) 𝑘
𝑛+1,

(
Fp

)
𝑛,

(
𝛾 𝜂

)
𝑛 calculate P𝑛+1(

Please see Algorithm 1: Local Newton-Raphson Algorithm
)

Calculate
(
f el
𝑖𝑛𝑡

)
𝑛+1 =

∫ (
B
)T
𝑛+1 P𝑛+1dV

Calculate
(
f el
𝑒𝑥𝑡

)
𝑛+1

Assemble
(
f el
𝑖𝑛𝑡

)
𝑛+1 &

(
f el
𝑒𝑥𝑡

)
𝑛+1 and obtain

(
Fstr
𝑖𝑛𝑡

)
𝑛+1 &

(
Fstr
𝑒𝑥𝑡

)
𝑛+1

Calculate residual column R𝑛+1 =
(
Fstr
𝑖𝑛𝑡

)
𝑛+1 −

(
Fstr
𝑒𝑥𝑡

)
𝑛+1

while norm
(
R𝑛+1

)
> tolerance do

Calculate Kel
𝑛+1 =

∫
BT (

Cgeo
)
𝑛+1B dV +

∫
BT (

Cmat
)
𝑛+1B dV

Assembly Kstr
𝑛+1

Solve for du

Update u|𝑘+1 = u|𝑘 + du

Calculate f el
𝑖𝑛𝑡 =

∫
BT P𝑛+1 dV

Assemble f el
𝑖𝑛𝑡 and obtain Fstr

𝑖𝑛𝑡

Calculate R𝑛+1 = Fstr
𝑖𝑛𝑡 − Fstr

𝑒𝑥𝑡

Calculate | |R𝑛+1 | |
end while
Update history variables,

(
Fp

)
𝑛 ←

(
Fp

)
𝑛+1 &

(
𝛾𝜂

)
𝑛 ←

(
𝛾𝜂

)
𝑛+1

Proceed with the next increment
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CHAPTER 3

PERFORMANCE OF THE MODEL

3.1. Simple Shear Test

In this section, the implemented model is validated by analytical solution of simple

shear test to verify the accuracy of stress-update algorithm. For this purpose, the finite

element model, consisting of a single element with 1 mm x 1 mm dimensions and a

thickness of 0.1 mm, is considered. The geometry of the model with expected deformed

shapes are shown in Figure 3.1. In this context, two different fibre orientations are

considered. In the first case, the displacement is imposed parallel to the fibre direction,

while in the other, it is applied as perpendicular. It is aimed to have a homogeneous plane

strain state with appropriate boundary conditions. Loading details for both models are

presented in Section 3.1.1 and Section 3.1.2. The material parameters used in the model

are given in Table 3.1.

Table 3.1. Model Parameters for IM7-8552 (Tan & Liu, 2020)

Material Parameter Value

𝐸 𝑓 171420 MPa
𝐸𝑚 8930 MPa
𝜏𝑦 62.3
𝜇 0.28
𝜈12 0.32
𝜈13 0.34
𝜈23 0.34
𝐺12 5100 MPa

In Appendix-A, analytical solution for rate independent model is derived. Since

the implemented material model is rate-dependent, rate-independent limit is obtained by

setting m→0. The rate sensitivity exponent is set to 0.0005 which makes the analysis

result almost independent of the loading rate and provides almost an ideal elasto-plastic

response. Considering that the analytical solution is 2D, the Poisson’s ratio in the direction

of y and z are taken as zero. Furthermore, out of plane displacement degrees of freedom
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(a) (b)

fibre
direction

u

L

fibre
direction

u

L

Figure 3.1. (a) Simple shear test for loading parallel to fibre direction (b) Simple shear
test for loading perpendicular to fibre direction

of the model are set to zero so that plane strain conditions are imposed. Stress values are

obtained by dividing the sum of the reaction forces by the surface area, and strain values

are obtained by dividing the imposed displacement by height of the model L.

3.1.1. Loading Parallel to Fibre Direction

In the first case, the imposed displacement is parallel to the fibre direction. The

finite element model and the corresponding displacement boundary conditions are shown

in Figure 3.2a. Symmetry boundary conditions about the z-axis are defined for the back and

front faces. Displacements at the bottom nodes are fixed in all directions. A displacement

of 0.1 mm was applied to the upper nodes of the model, and a displacement of 0.05 mm

was applied to the side mid-nodes. Therefore, linear displacement profile is imposed along

the y direction. Second Piola-Kirchhoff stress components in each integration point are

stored as an output, and stress distribution at the end of the analysis is presented in Figure

3.2b.

Figure 3.3 shows the stress-strain response obtained by finite element analysis of

simple shear model. In order to reach the analytical solution valid for the rate-independent

model, the analysis was repeated with 4 different values of m. Finite element model over-

predicts the yield stress which is due to the fact that the analytical result is rate independent.

By setting the rate sensitivity exponent as close as possible to zero, the response obtained

from the finite element analysis gets very close to the analytical result.
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Figure 3.2. (a) Boundary conditions for the case of 𝜃 = 0◦ and (b) distribution of second
Piola-Kirchhoff stress throughout the element.
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Figure 3.3. Comparison of finite element predictions and analytical solution for 𝜃 = 0◦

simple shear

3.1.2. Loading Perpendicular to Fibre Direction

In the second case, the prescribed displacement is perpendicular to the fibre di-

rection. Symmetry boundary conditions about the z-axis are defined for the back and

front faces. Displacements at the left edge nodes are prescribed in all directions. A

displacement of 0.1 mm was applied to the right nodes of the model, and a displacement

of 0.05 mm was applied to the top and bottom middle nodes. Thus, a gradually increasing

displacement throughout the model is achieved. The defined boundary conditions for the

20



displacement are shown in Figure 3.4a. Second Piola-Kirchhoff stress contour through

the model is exhibited in Figure 3.4b .

u

uu/2

u/2

(a)

(Avg: 75%)
UVARM7

148.4
148.4
148.4

(b)

Figure 3.4. (a) Boundary conditions for the case of 𝜃 = 90◦ and (b) distribution of the
second P-K stress throughout the element.

Figure 3.5 shows the stress-strain response obtained by finite element analysis.

In order to approach the analytical solution, 4 different values of m are used. With m

values approaching to zero, the model would become rate independent. It is obvious that

the estimated result deviates somewhat from the analytical result more prominently at

higher strain values. The reason of this deviation is that rate sensitivity exponent is very

close to zero but still larger than 0. m=0.0005 is the smallest m value which the local

Newton-Raphson algorithm could be completed successfully. In the analytical solution

detailed in Appendix-A, hardening is observed in the presence of plastic strain when the

loading direction is perpendicular to the fibre direction. Consistent with this expectation,

hardening occurs beyond the initial yield stress in the finite element analysis results of

the single-element model. The effect of longitudinal elastic modulus of composite on this

hardening can be explained by the fact that deformation of the matrix is accompanied by

the fibre rotation. This is also clearly visible in the Equation A.17.

3.2. Compression Test on Unidirectional Laminates

In the study of Koerber et al. (2010), the behaviour of uni-directional laminates

with different fibre orientations under compression loading is investigated. The specimen

has dimensions of 20 x 10 x 4 mm. It consists of 32 layers throughout the thickness, and
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Figure 3.5. Comparison of finite element predictions and analytical solution for 𝜃 = 90◦

simple shear

the thickness of each layer is approximately 0.125 mm. Compression tests are carried for

three different fibre angles of 0◦, 45◦ and 75◦. The orientation of the fibres is indicated

as 𝜃 in Figure 3.6. End-loaded compression tests are conducted by INSTRON 4208 load

frame. To reduce the friction between the loading surfaces and testing device, a thin layer

of molybdenum-disulfide is used. The experimental loading rate, classified as quasi-static

loading, is specified as 0.5 mm/min. The specimen consists of carbon fibres and epoxy

resin that is designated as IM7. The material parameters used in all compression analysis

are presented in Table 3.2.

Table 3.2. Model Parameters for IM7-8552
(Tan & Liu, 2020)

Material Parameter Value

𝐸 𝑓 171420 MPa
𝐸𝑚 8930 MPa
𝜏𝑦 62.3 MPa
𝜇 0.28
𝜈12 0.32
𝜈13 0.32
𝜈23 0.34
𝐺12 5100 MPa
𝑚 0.045

20
m

m

10 mm

x

y

fibres
𝜃

[𝜃]32

t = 4 mm

Figure 3.6. Geometry of [𝜃]32
Unidirectional Model
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In the finite element analysis, the model is discretized by UEL which has the

topology of twenty-noded quadratic brick element and has eight integration points. This

element geometry and integration scheme corresponds to C3D20R of Abaqus library. A

perfect bond is assumed between the ply laminates, so no internal contact or cohesive

interaction is defined. In the finite element model, as in the experimental setup, a com-

pression is applied to the specimen by two plates defined as rigid bodies. The friction

between the specimen and rigid bodies are set to 0.001 in finite elements model to reflect

low friction due to applied molybdenum-disulfide.

rigid body

rigid body

(a) (b)

Figure 3.7. (a) An illustration for boundary conditions of [𝜃]32 unidirectional model
(perspective view). (b) Symmetry boundary conditions in the z-direction on the back

surface. Reference points are represented by crosses on the bottom and top rigid bodies
(side view).

3.2.1. Compression Test on 𝜃 = 0◦ Specimen

In the finite element model, degrees of freedoms at the bottom reference point is

prescribed to zero whereas at the top reference point a displacement of 1.2 mm is applied

along y-direction. Considering the loading rate in experiments, the step time for the

prescribed displacement is set to 150 seconds. Three different element sizes are tested

to check the mesh dependency and mesh convergence of the analysis, as shown in Figure

3.8. There is no remarkable difference between the responses of different element sizes.

It indicates that the analysis is mesh independent. For that reason, medium-size structured

mesh is used for further analysis.
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Figure 3.8. Mesh convergence of the model 𝜃 = 0◦ is investigated by 3 different element
sizes.

Figure 3.9 illustrates the comparison of finite element analysis prediction with the

experimental results for compression test of [0◦]32 model. Stress is calculated by dividing

the applied force by the cross-sectional area. Initial tangent is identical with experimental

results and the two curves are almost coincident until 1.5% strain level. While the FEA

prediction overestimates the yield value, it produces a plateau-like behavior after 4% strain

level.
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Figure 3.9. Comparison of simulation and the experimental results for 𝜃 = 0◦
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Figure 3.10 shows slip systems in which the slip activities is observed the least and

the most. While the slip occurring in the 6th system is much larger compared to the other

systems, the slip is non-existent in the system 1. The predicted axial strains are compared

to digital image correlation (DIC) measurements in Figure 3.11. Although horizontal

bands are obtained in finite element predictions, the strain distribution is almost uniform.

However, the strain values are close to experimental results.
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Figure 3.10. Minimum and maximum slip activities are observed in (a) slip system 1 and
(b) slip system 6, respectively.

(a) (b)

Figure 3.11. (a) 𝜖22 obtained by Digital image correlation (DIC) measurement device (b)
𝜖22 contour of finite element analysis
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3.2.2. Compression Test on 𝜃 = 45◦ Specimen

In the finite element model, the displacement degrees of freedoms at the bottom

reference point are prescribed to zero, whereas a displacement of 2 mm in the y-direction

is applied at the top reference point. Considering the loading rate in the experiments, the

step time for the applied displacement is set to 250 seconds.
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Figure 3.12. Comparison of simulation and the experimental results for 𝜃 = 45◦

Figure 3.12 illustrates the comparison of finite element analysis result with the

experimental results for compression test of [45◦]32. Stress is calculated by dividing the

applied force by the cross-sectional area of the specimen. There is a slightly upward

tendency in the stress response beyond the 4% strain level similar to experimental obser-

vation. It is obvious that FEA predictions and experimental results are very close up to 1%

strain levels. As in the previous case, FEA predictions overpredict the yield stress value.

Figure 3.13 demonstrates that a diagonal band along fibre direction is observed similar

to the one obtained by DIC measurement. The thickness of the band obtained in finite

element analysis is approximately 4.8 mm whereas it is more or less equal to observed

in the experimental results. Contrary to the DIC measurements, the strain occurring in

the upper right and lower left corners exceeds 20% levels. Maximum and minimum slip

activities are observed in slip system 1 and slip system 4 as shown in Figure 3.14.
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𝜔𝑏

Figure 3.13. (a) 𝜖22 obtained by Digital Image Correlation (DIC) measurement device
(b) 𝜖22 contour of finite element analysis
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Figure 3.14. (a) Minimum and maximum slip activities are observed in (a) slip system 4
and (b) slip system 1, respectively.
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3.2.3. Compression Test on 𝜃 = 75◦ Specimen

In finite element model, degrees of freedoms at the bottom reference point is

prescribed to zero whereas at the top a displacement of 0.32 mm is applied in y-direction.

Considering loading rate in experiments, step time is defined as 40 sec for the given

displacement.
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Figure 3.15. Comparison of simulation and the experimental results for 𝜃 = 75◦

Figure 3.15 illustrates the comparison of finite element analysis result with the

experimental results for compression test of [75◦]32. Stress is calculated by dividing

applied force on the cross-sectional area. In the case of 𝜃 = 75◦, a much higher stress

value is obtained for 0.6% strain compared to other two cases. While the FEA estimation

is consistent with the initial tangent obtained in the experimental results, a significant

softening appears after 0.6% strain value. A huge amount of fibre rotations causes plastic

micro-buckling (Budiansky & Fleck, 1993) and followed by fibre kinking obtained in

Figure 3.17.
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Figure 3.16. (a) There is no slip activitiy in slip system 1. (b) Maximum slip activities

are observed in slip system 1.
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Figure 3.17. Comparison of DIC measurements with rotation angle prediction of finite
element analysis.
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3.3. Shear Test on Cross-Ply Laminates

In this section finite element predictions obtained for shear test on [±90◦]4s unidi-

rectional laminates are compared with experimental results (Tan & Falzon, 2016) in order

to validate the model. The specimen dimensions are presented in Figure 3.18. It consists

of 16 layers throughout the thickness, and the thickness of each layer is approximately 0.21

mm. Radius of notches located on long edges are equal to 1.3 mm. The loading rate is

stated as 1 mm/min in the study of Tan and Falzon (2016). Displacement controlled exper-

iments were conducted by using screw-driven mechanical testing machine. The specimen

subjected to shear by clamping right and left parts to testing machine. It is mentioned

that the surfaces of the specimen was roughened by sandpaper to hold specimen firmly.

Engineering shear strain was calculated by summing logarithmic strains measured at two

strain gauges those located in the direction of ±45◦. The approximate locations of the

strain gauges are shown in Figure 3.18. The stacking orientation of the [±90◦]4s cross-ply

model is given in Figure 3.19a. Shear stresses were obtained by dividing the reaction force

by the cross-sectional area of the narrowest section. In the calculation of the stress, the

effect of notch radius hence stress concentration is neglected. The material parameters

used in all shear analysis is presented in Table 3.3.

Table 3.3. Model Parameters for
AS4/PEEK (Tan & Falzon, 2016)

Material Parameter Value

𝐸 𝑓 138000 MPa
𝐸𝑚 10300 MPa
𝜏𝑦 80.81 MPa
𝜇 0.28
𝜈12 0.3
𝜈13 0.3
𝜈23 0.3
𝐺12 5200 MPa
𝑚 0.045

y

x

Figure 3.18. The geometry of [±90]4s cross-ply
model
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Figure 3.19. (a) Stacking orientation of [±90]4s cross-ply model (Fibres are depicted by
dashed lines.). (b) Boundary conditions of finite element model is presented. A

displacement is applied to left (blue) part in the direction of u and right (grey) part is
fully constrained.

In the finite element analysis, the model is discretized by UEL which has the

topology of twenty noded quadratic brick element and has eight integration points. The

model is created symmetrically by utilizing the symmetry boundary conditions in the

z-direction on the back surface. A displacement along y direction imposed to nodes at left

part whereas nodes at the right part are fully constrained. Defined boundary conditions

are illustrated in Figure 3.19b. Shear strain was calculated from the logarithmic strains

at the nodes, which correspond approximately to the midpoints of strain gauge areas. To

check mesh dependency and mesh convergence, the analysis is repeated for three different

mesh densities, as shown in Figure 3.20. There is no remarkable difference between the

responses of different element sizes. It shows that the analysis is mesh independent. For

that reason, medium-size structured mesh is used for further analysis.

Figure 3.21 shows the comparison of predicted response, experimental results and

finite element analysis result conducted by Tan and Falzon (2021). Stress-strain response

can be considered in three different parts as linear part, plateau and hardening. The

initial tangent of linear behaviour is consistent with Tan’s simulation result and one of the

experimental results. In the experimental results, the mild hardening seen in the plateau

part is also obtained with the current model. It is worthy to note that eight-node brick

elements with reduced integration points (C3D8R in the Abaqus notation) were used in

the study of Tan and Falzon (2021). It can be concluded that the predicted behaviour has

successfully experimental results up to 35% strain. Since the damage in the specimen is

not taken into account in the model yet, excessive hardening is observed in higher strains.
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Figure 3.20. Mesh convergence of the cross-ply model is investigated by 3 different mesh
densities.
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Figure 3.21. Comparison of simulation results with the experimental results for [±90◦]4s
and prediction of Tan and Falzon (2021)

Produced shear strain distribution is compared to DIC measurements at 𝛾12 = 18%

in Figure 3.22. The shear strain contour matches the DIC measurements obtained during

the experiment. As expected, the shear strain increases in the notched section which is

named as fracture zone and decreases towards the edges of the model. Figure 3.23 shows

comparison of predicted fibre rotation and measured fibre rotation in experiment. The

32



measured and predicted fibre rotation angles are 12◦ and 12.8◦, respectively.
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Figure 3.22. Comparison of shear strain contours at 18% strain obtained from (a) DIC

measurements (Tan & Falzon, 2016) and (b) simulation results of current study.
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Figure 3.23. Comparison of fibre rotation contours at 18% strain obtained from (a)
prediction of Tan and Falzon (2021) and (b) simulation results of current study and (c)

experimental observation by Tan and Falzon (2016).
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3.4. Parametric Study on Cross-Ply Shear Analysis

A parametric study on cross-ply shear analysis provides an understanding of the

sensitivity of material response to its model parameters. To this end, the influence of yield

stress, rate sensitivity exponent, and friction coefficient on the behaviour of shear response

is investigated in this section. While performing a parametric study for each parameter

mentioned, the remaining material parameters were kept constant.

3.4.1. Influence of Yield Stress

Stress-strain response of the material AS4/PEEK with different yield stresses for

[±90◦]4s is presented in Figure 3.24. In all three cases, as expected, the initial tangent

demonstrates the same characteristics until the yield point. Increasing yield stress affects

the stress level of the plateau. So, the analysis with larger yield stress produces the highest

ultimate stress among the three analyses. Considering the three different analyses, the

differences in yield value did not cause any change in the overall behaviour.
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Figure 3.24. Comparison of simulation results produced from [±90◦]4s model for
different yield stress values
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3.4.2. Influence of Rate Sensitivity Exponent

Stress-strain response of the material AS4/PEEK with different rate sensitivity

exponents for [±90◦]4s is presented in Figure 3.25. Parametric study for various rate

sensitivity is much more complex compared to yield stress. There is a slight difference

in initial tangent which effects the beginning strain plateau. An increase in the value of

m causes a growth in elastic strains, and therefore a decrease in plastic strains. For that

reason higher rate sensitivity exponent leads to larger stress value for the same strain value.
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Figure 3.25. Comparison of simulation results produced from [±90◦]4s model for
different rate sensitivity exponent values

3.4.3. Influence of Friction Coefficient

Stress-strain response of the material AS4/PEEK with different friction coefficient

for [±90◦]4s are presented in Figure 3.26. While different friction values does not cause

any change up to 18% strain, higher friction coefficient leads to higher stresses at larger

strain levels. As it is stated in Equation 2.20, the hardening mechanism in the model

is controlled by the pressure. Therefore, hardening response depends on stress state.

An increase in the friction coefficient triggers the hardening mechanism and leads to an

increase in the resistance of slip systems.
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Figure 3.26. Comparison of simulation results produced from [±90◦]4s model for
different friction coefficient values
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CHAPTER 4

INCORPORATION OF DAMAGE MECHANISMS

4.1. Introduction

Referring to Figure 4.1, finite element analysis predictions deviate from the experi-

mental results at high strain levels, e.g. strain levels larger than %35. At these strain levels,

it is expected that damage mechanisms would be activated and the mechanical properties

of the material would deteriorate.
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Figure 4.1. Comparison of simulation results with the experimental results for [±90◦]4s
(Tan & Falzon, 2016)

If the material micro-structure is recalled, it is composed of fibres embedded into

a relatively ductile matrix. Matrix and the fibre-matrix interface are not free of flaws, e.g.

micro-voids. The voids would enlarge and might coalesce, see Figure 4.2. Therefore, it is

expected both resistance mechanism against slip and elastic properties would diminish.

In this chapter, the intention is to embed such micro-structural damage mechanisms

into the continuum scale material model presented in previous chapters. To this end,

continuum damage mechanics is going to be used where all micro-mechanical degradation
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Figure 4.2. (a) Fibre direction coincides with dir-1. Illustrations for physical meaning of
(b) 𝐺13 and (c) 𝐺12 are presented. Deformed shapes are depicted by dashed lines.

mechanisms are lumped in a damage variable 𝐷.

Referring back to Figure 4.1, at strain levels larger than 35%, a very large fraction

of the strain is plastic. Therefore it is reasonable to correlate damage to plastic strains.

However, there are two types of slip systems. For this reason, it makes sense to introduce

two damage variables 𝐷𝐿 and 𝐷𝑇 associated with longitudinal and transverse slip systems,

respectively. As these micro-mechanisms evolve, it is expected that resistance against slip

would get weaker. Relying on this argument, resistance of undamaged material against

slip (𝜏𝑦) and hardening term (𝜇p) are both pre-multiplied by (1−𝐷 𝑝) where 𝑝 = 𝐿,𝑇 and

𝐷 𝑝 ≥ 0 & 𝐷 𝑝 ≤ 1.0.

As far as elastic material properties are concerned, aforementioned damage mech-

anisms would effect them as well. Expecting change in the elastic material properties

is inevitable when the damage is clearly visible. For that reason, some of the material

properties are degraded depending on the damage variables during the analysis. Longi-

tudinal and transverse modulus of elasticity parameters are scaled down by (1 − 𝐷𝐿) and

(1 − 𝐷𝑇 ), respectively. In the same context, 𝐺12 and 𝐺13 are reduced by (1 − 𝐷𝑇 ) and

(1 − 𝐷𝐿), respectively. Since the material is transversely isotropic, 𝐺23 is calculated by

(0.5 𝐸𝑚)/(1 + 𝜈23) with the degraded material parameters. It is assumed that there is no

damage-related change in 𝜈 values.

4.2. Definition and Evolution of Damage Variables

As mentioned in the previous section, damage variables 𝐷𝐿 and 𝐷𝑇 are driven

by plastic strain. To specify these variables explicitly, it is necessary to introduce history

variables Γ𝐿 and Γ𝑇 . The specific form of Γ𝐿 and Γ𝑇 are defined as
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¤Γ𝐿 =
3∑︁

m=1

| ¤𝛾𝑚 |

¤Γ𝑇 =
6∑︁

m=4

| ¤𝛾𝑚 |
(4.1)

Since damage is a non-decreasing process, history variables 𝜅𝐿 and 𝜅𝑇 are introduced as

𝜅𝐿 = max
(
Γ𝐿 (𝜏)

)
𝜏 ≤ 𝑡

𝜅𝑇 = max
(
Γ𝑇 (𝜏)

)
𝜏 ≤ 𝑡

(4.2)

where 𝜏 is time-like parameter describing the loading process until time 𝑡. For damage

evolution, the following exponential form

𝐷 𝑝 = 1 − 𝜅
𝑝
𝑜

𝜅𝑝

(
1 − 𝛼𝑝 + 𝛼𝑝𝑒−𝛽

𝑝 (𝜅𝑝−𝜅𝑝𝑜 )
)

𝑝 = {𝐿,𝑇} (4.3)

is used where 𝜅
𝑝
𝑜 , 𝛼𝑝 and 𝛽𝑝 are fitting parameters. 𝜅𝑝𝑜 is the parameter that defines where

damage starts to evolve in the model. Parameter 𝛼 prevents the damage variable from

reaching 1.0. 𝛽 controls the rate of damage evolution, such that higher 𝛽 values cause

faster damage evolution. D - 𝜅 response of the exponential softening law is given in Figure

4.3.

0
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𝜅

𝐷

𝛽 = 10.0

𝜅𝑜

Figure 4.3. D - 𝜅 response of the exponential softening.
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4.3. Temporal and Spatial Discretization

Equation 4.1 has to be converted into discrete form. Replacing ¤Γ by
(
Γ𝑛+1−Γ𝑛

)/Δt

and | ¤𝛾𝑚 | by |Δ𝛾 |/Δt, Equation 4.1 can be written as,

Γ𝑝
𝑛+1 =


Γ𝐿
𝑛 +

3∑
m=1
|Δ𝛾𝑚 | 𝑝 = 𝐿

Γ𝑇𝑛 +
6∑

m=4
|Δ𝛾𝑚 | 𝑝 = 𝑇

(4.4)

Once Γ𝑝
𝑛+1 values are calculated, 𝜅𝐿𝑛+1, 𝜅

𝑇
𝑛+1 and the damage variables 𝐷𝐿

𝑛+1 and 𝐷𝑇
𝑛+1 can

be evaluated by following Algorithm 3 given on the next page. Since longitudinal and

transverse damage parameters are functions of slip increments, linearization of the damage

extended model would become cumbersome. Instead, taking the advantage of small time

steps, a staggered algorithm is used such that damage variables are assumed to be frozen

from t𝑛 to t𝑛+1 and they are updated at the end of each increment; at t𝑛+1. Therefore,

resistances on slip system 𝜂 at t𝑛+1 are calculated as

𝑔
𝜂
𝑛+1 =


(1 − 𝐷𝐿

𝑛 ) (𝜏𝑦 + 𝜇 p) 𝜂 = 1, 2, 3

(1 − 𝐷𝑇
𝑛 ) (𝜏𝑦 + 𝜇 p) 𝜂 = 4, 5, 6

(4.5)

where 𝐷𝐿
𝑛 and 𝐷𝑇

𝑛 are damage parameters available from the previous step t𝑛. Similarly,

𝐷𝐿
𝑛 and 𝐷𝑇

𝑛 are used to reduce the elastic material properties. General structure of the

procedure for the incorporation of damage mechanism is given in Algorithm 3. In the next

section, cross-ply shear test is reconsidered using the damage extended model.
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Algorithm 3 Algorithm of Damage Extended Model
Available: 𝐷𝑇

𝑛 & 𝐷𝐿
𝑛 –from the previous step.

Start increment

Solve Local N-R with the previous damage parameter (multiply resistance components

by (1 − 𝐷𝑇
𝑛 ) and (1 − 𝐷𝐿

𝑛 ) according slip system classification & degrade material

parameters),

Conclude Local N-R

Update Γ𝑇𝑛+1 & Γ𝐿
𝑛+1,

Γ𝐿
𝑛+1 = Γ𝐿

𝑛 +
3∑

m=1
|Δ𝛾𝑚 | & Γ𝑇𝑛+1 = Γ𝑇𝑛 +

6∑
m=4
|Δ𝛾𝑚 |

Calculate 𝜅𝑇 & 𝜅𝐿

if Γ𝑇𝑛+1 < 𝜅𝑇𝑛 then
𝜅𝑇𝑛+1 ← Γ𝑇𝑛+1

else
𝜅𝑇𝑛+1 ← 𝜅𝑇𝑛

end if
if Γ𝐿

𝑛+1 < 𝜅𝐿𝑛 then
𝜅𝐿𝑛+1 ← Γ𝐿

𝑛+1
else

𝜅𝐿𝑛+1 ← 𝜅𝐿𝑛

end if
Calculate 𝐷𝑇

𝑛+1 & 𝐷𝐿
𝑛+1

if 𝜅𝐿𝑛+1 < 𝜅𝐿o then
𝐷𝐿

𝑛+1 ← 0

else
𝐷𝐿

𝑛+1 ← 1 − (
𝜅𝐿o /𝜅𝐿𝑛+1

) (
1 − 𝛼𝐿 + 𝛼𝐿𝑒−𝛽

𝐿
(
𝜅𝐿𝑛+1−𝜅𝐿o

) )
end if
if 𝜅𝑇𝑛+1 < 𝜅𝑇o then

𝐷𝑇
𝑛+1 ← 0

else
𝐷𝑇

𝑛+1 ← 1 − (
𝜅𝑇o /𝜅𝑇𝑛+1

) (
1 − 𝛼𝑇 + 𝛼𝑇𝑒−𝛽

𝑇
(
𝜅𝑇𝑛+1−𝜅𝑇o

) )
end if
End of the increment

Update damage variables, store them as history variables

𝐷𝐿
𝑛 ← 𝐷𝐿

𝑛+1 & 𝐷𝑇
𝑛 ← 𝐷𝑇

𝑛+1
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4.4. Cross-Ply Shear Test

Cross-ply shear test considered in Section 3.3 is re-analysed using the damage

extended model presented in this chapter. Material and damage model parameters are

given in Table 4.1.

Table 4.1. Material and damage
parameters used in damage

extended model.

Material Parameter Value

𝐸 𝑓 138000 MPa
𝐸𝑚 10300 MPa
𝜏𝑦 80.81 MPa
𝜇 0.28
𝜈12 0.3
𝜈13 0.3
𝜈23 0.3
𝐺12 5200 MPa
𝑚 0.045
𝜅𝑜 0.017
𝛼 0.1
𝛽 100 Figure 4.4. Fine mesh for [±90]4s Cross-ply Model

The resulting slip distributions obtained by the original model (without damage)

for the most active slip systems in two classes at 50% strain level are shown in Figure 4.5

side by side. It indicates that obtained slips in longitudinal systems are relatively large

compared to those in transverse systems. Therefore, the damage in longitudinal systems

is expected to be larger than the damage in transverse systems. For this reason, the fitting

parameters of 𝐷𝐿 were determined first and these values were taken as valid for the fitting

parameters of 𝐷𝑇 . Similar to the previous chapters, twenty-noded quadratic brick elements

are used to discretize the model. Two variants of twenty-noded brick element with 8 and

27 integration points are considered.

Preliminary analysis with 8 integration points shows that an instability (probably a

numerical instability similar to hour-glassing) is observed, please see Figure 4.6. However,

when 27 integration points are used, these instabilities disappear as shown on the right-

hand side of Figure 4.6. Therefore, 27 integration points are used for the analysis presented

in this chapter.
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+2.555e−01

+3.226e−01

+3.898e−01

Figure 4.5. Slip distribution contours of without damage model for longitudinal slip
system-1 (left side), transverse slip system-6 at 50% strain level (right side). These two

slip systems are the most active ones in their classes.

An important issue in damage mechanics is mesh dependency and mesh con-

vergence. One of the methods to mitigate mesh dependency problem is to insert rate

dependency in the model. Since the discussed model is already rate dependent, no sig-

nificant mesh dependency is expected. To verify this, the analysis is repeated for 3 times

by increasing mesh densities on the centre of the model. Corresponding stress-strain

responses are presented in Figure 4.7. Coarse, medium and fine meshes correspond to

1024, 4160 and 7360 elements, respectively. The constructed fine mesh is shown in Figure

4.4. The comparison indicates that there is no mesh dependency in the problem.

Viewport: 2 ODB: D:/Analysis/Shear/dam

(Avg: 75%)

S, Mises
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+2.259e 13
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+3.765e 13
+4.142e 13
+4.518e 13

Step: Step 1
Increment 529: Step Time = 308.3
Primary Var: S, Mises
Deformed Var: U Deformation Scale Fac

ODB: Job 1.odb Abaqus/Standard 6.14

X

Y

Z

Viewport: 2 ODB: D:/Analysis/Shear/damage

(Avg: 75%)

S, Mises

+0.000e+00
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+1.130e 13
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+1.883e 13
+2.259e 13
+2.636e 13
+3.012e 13
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Step: Step 1
Increment 529: Step Time = 308.3
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +

ODB: Job 1.odb Abaqus/Standard 6.14 1 

X

Y

Z

(b)(a)

Figure 4.6. (a) Instabilities are observed when using 8-integration points, (b) instabilities
have disappeared when using 27-point integration (strain level is 37% for both cases).

Figure 4.8 shows the contour plot of 𝐷𝐿 and 𝐷𝑇 at %50 shear strain level. There is

no damage in transverse slip systems since 𝜅𝑇 is smaller than the threshold 𝜅𝑇o which is set
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Figure 4.7. Comparison of damage extended simulation results for different mesh
densities.

equal to 𝜅𝐿o . Obviously, the damage is concentrated in the centre of the specimen and more

around the notch than in the other parts. In Figure 4.9, experimental results are compared

to the original predictions (without damage) and damage extended models. It is clear

that the deviations between experimental results and finite elements predictions without

damage beyond approximately 35% strain levels is overcome by the damage extended

model.

−0.03

 0.03

 0.10

 0.17

 0.23

 0.30

 0.37

 0.43

 0.50

 0.56

 0.63

 0.70

 0.76

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

(b)(a)

Figure 4.8. Contour of damage in (a) longitudinal and (b) transverse slip systems at
𝛾12 = 50%.

Especially in the top-notch region, compressive normal stresses occur under shear

loading. Hence local compressive stresses might trigger local instabilities. In order to
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Figure 4.9. Comparison of damage extended simulation results with the model without
damage.

investigate this, the symmetry boundary conditions on the back face of the model were

removed. Thus, a thinner and therefore more slender specimen is observed. The deformed

configuration obtained at approximately 90% strain levels as a result of the analysis is

shown in Figure 4.10a. An inclined instability band through the thickness direction is

clearly visible in the notch region. The fibre rotation angle obtained at this strain level

is also shown in the Figure 4.10b. The large fibre rotation angle differences between the

adjacent plies indicate that the probability of interlayer damage is significant. Therefore,

it seems that a failure process in which both delamination and fibre local buckling evolves

in a combined manner is quite possible.
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Figure 4.10. (a) Local instabilities are observed at notch region (perspective view). (b)
There is large fibre rotation angle difference between the adjacent plies (top view).
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CHAPTER 5

CONCLUSION & OUTLOOK

5.1. Summary & Main Findings

In this thesis, a recently proposed material model for elastoplastic response of

fibre reinforced composites is re-considered and implemented in an implicit finite element

solution framework. The model is inspired by crystal plasticity and, so far, was elaborated

for an explicit finite element algorithm. In this work, the model is recast in implicit form

and implemented in commercial finite element software Abaqus through user-defined

element subroutine (UEL).

In Chapter 3, three different cases have been considered to validate the model.

Firstly, the stress update algorithm was verified with the analytical solution derived for the

simple shear case. The numerical results obtained for two different fibre orientations, 0◦

and 90◦, are consistent with the analytical solutions. In addition, the behaviour beyond

the yielding point is affected by fibres which may cause a hardening mechanism according

to fibre orientation. Afterwards, the limits of the model were pushed by considering

compression and cross-ply shear tests reported in the literature. Contrary to the success of

the model in cross-ply shear test, the stress-strain responses obtained in the compression

tests show some differences compared to experimental results. It is worthy to note that in

case of both cross-ply shear test and 45◦ compression test the matrix plasticity is activated

and relatively larger strain levels are reached. Therefore, it is concluded that the model

produces more accurate results in case of significant matrix plasticity. Referring back to

cross-ply shear test, the numerical predictions of the model are promising up to approx-

imately 35% strain level. Contrary to the experimental results, an excessive hardening

was observed in the finite element predictions at high strains. At these deformation levels,

matrix and matrix-fibre interface damages are inevitable.

To remedy this discrepancy, in Chapter 4, the model is extended with a continuum

scale damage model. It is aimed to mitigate the deviation observed in shear analyses

conducted in Chapter 3 at high strains. According to the slip system classification, the

damage is lumped in two different damage parameters. The intention is to suppress the
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excessive hardening by degrading the resistance to slip and the elastic material parameters.

The proposed model is affordable in terms of time and computational power. However,

this is a phenomenological approach, and some weaknesses are obvious. The shear strain

level at which the damage evolution starts and the parameters that drive the evolution law

are determined by curve fitting. The damage evolution law has almost no relation to the

micro-mechanism of damage initiation and growth. However, micro-mechanical damage

models are beyond the scope of this thesis. Shear test was re-analyzed with damage

extended model, and the deviation between finite element predictions and experimental

results for strain levels larger than 35% almost disappeared. The main findings of the

thesis can be summarized as follows:

• The predictions of compression analyses for 45◦ and 75◦ are not satisfactory consid-

ering strain contour and stress-strain response comparisons.

• The prediction of shear analysis for cross-ply model is satisfactory up to %35 strain

levels.

• Based on the observations mentioned in the previous two items, the proposed model

produces better results when the matrix plasticity is dominant. Therefore, more

accurate predictions are obtained in case of matrix exposed to shear loading.

• By incorporating damage to the model, the deviation beyond %35 strain level is

overcome. The damage extended model is feasible in terms of computational power.

However, it is a phenomenological approach that does not reflect the micro-mechanical

damage mechanisms.

5.2. Recommendations for Future Works

The study presented in this thesis can be improved and extended in a number of

ways.

• For the crystal plasticity inspired modelling of composites, the choice of slip systems

is not as straightforward as the slip systems in metal crystal plasticity. In the literature,

several different slip angles are presented that define slip systems based on different

motivations, such as fibre arrangement and capturing of yield point. It seems that

determination of slip angles for composites is an unsolved problem and requires further

investigation.
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• Composites formed by fibre and matrix materials may have inherent defects like

micro-voids. Under loading, these micro-voids can expand and even coalesce between

adjacent spaces. The identification of these micro-voids requires approaches at the

micromechanical level. Damage studies at the micromechanical level on composite

structures can provide damage models with a more robust physical background.

• Delamination is one of the dominant damage modes encountered in experimental stud-

ies on composite elements under certain loading conditions. As described in Chapter

4, large variation of fibre angle rotation from ply to ply might trigger delamination

around the notch region. Therefore, the current study can be extended to capture

delamination failure by using cohesive interface elements between the plies.

• Referring back to Figure 1.1, ductile behaviour similar to metallic materials can be

obtained by combining differently oriented thin plies. Achieving ductility by reducing

the ply thickness and stacking different plies presents an interesting optimization

problem.
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APPENDIX A

ANALYTICAL SOLUTION FOR SIMPLE SHEAR TEST

An analytical solution is derived for simple shear test in case of parallel and

perpendicular to fibre orientations with respect to loading directions. It is assumed that

plane strain conditions hold.

A.1. Loading Parallel to Fibre Direction

2D plane shear case is illustrated in Figure A.1. A horizontal displacement 𝑢 is

applied to the top of the specimen whereas it is restrained at the bottom. Shear strain due

to imposed boundary conditions is equal to 𝛾 = tan(𝜔) = (𝑢/L) where L is the height of

the specimen.

fibre
direction

u

L

Figure A.1. Illustration of simple shear test for loading parallel to fibre direction.
(Deformed shapes are depicted by dashed lines.)

The corresponding mapping function from reference state to deformed configuration can

be written as,

𝑥1(𝑡) = 𝛾 𝑋2(𝑡) + 𝑋1(𝑡)
𝑥2(𝑡) = 𝑋2(𝑡)

(A.1)
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The total deformation gradient for simple shear test is defined as

F =


𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

 =


1 𝛾

0 1

 (A.2)

For pure shear case, plastic deformation gradient is given as follows

Fp =


1 0

𝛾𝑝 1

 (A.3)

Therefore, elastic deformation gradient can be obtained by using the multiplicative de-

composition of deformation gradient,

Fe = FF−1p =


1 − 𝛾𝛾𝑝 𝛾

−𝛾𝑝 1

 (A.4)

Green’s strain tensor then follows as,

Ee =
1

2

(
FT

e Fe − I
)
=
1

2


𝛾2p + (𝛾𝛾p − 1)2 − 1 −𝛾p − 𝛾(𝛾𝛾p − 1)
−𝛾p − 𝛾(𝛾𝛾p − 1) 𝛾2

 (A.5)

which can be slightly simplified by ignoring terms higher than second-order as

Ee =
1

2


𝛾2p − 2𝛾𝛾𝑝 𝛾 − 𝛾p

𝛾 − 𝛾p 𝛾2

 (A.6)

Second Piola-Kirchhoff stress tensor is calculated by S = D : E and reads as

S =


𝐸 𝑓

1−𝜈12𝜈21 (E11 + 𝜈21E22)
𝐸𝑚

1−𝜈12𝜈21 (𝜈12E11 + E22)
2𝐺12E12

 (A.7)

Using 𝜎 = J−1 Fe SF
T
e , Cauchy stress tensor tuns out to be,

𝜎12 =


𝐺12 𝛾 𝛾𝑝 = 0

𝜏𝑦 𝛾𝑝 > 0
(A.8)

It is to be noted that J = det(Fe) = 1.
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A.2. Loading Perpendicular to Fibre Direction

A similar analytical solution can be constructed for the case of a load perpendicular

to the direction of the fibres. The case where the imposed displacement is perpendicular

to the fibre direction is shown in A.2.

fibre direction

u

L

Figure A.2. Illustration of simple shear test for loading parallel to fibre direction.
Deformed shapes are depicted by dashed lines.

The corresponding mapping function from reference state to deformed configura-

tion can be written as,

𝑥1(𝑡) = 𝑋1(𝑡)
𝑥2(𝑡) = 𝛾𝑋1(𝑡) + 𝑋2(𝑡)

(A.9)

The total deformation gradient for simple shear test is defined as

F =


𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

 =


1 0

𝛾 1

 (A.10)

For pure shear case, plastic deformation gradient is given as follows

Fp =


1 𝛾𝑝

0 1

 (A.11)

It can be decomposed into elastic and plastic parts. Elastic deformation gradient can be

obtained by multiplicative decomposition of deformation gradient,
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Fe = FF−1p =


1 −𝛾𝑝
𝛾 1 − 𝛾𝛾𝑝

 (A.12)

Green’s strain tensor then follows as,

Ee = 0.5
(
FT

e Fe − I
)
=
1

2


𝛾2 −𝛾p − 𝛾(𝛾𝛾p − 1)

−𝛾p − 𝛾(𝛾𝛾p − 1) 𝛾2p + (𝛾𝛾p − 1)2 − 1

 (A.13)

For simplicity, terms higher than second-order are ignored which results in

Ee =
1

2


𝛾2 𝛾 − 𝛾p

𝛾 − 𝛾p 𝛾2p − 2𝛾𝛾𝑝

 (A.14)

Second Piola-Kirchhoff stress tensor is calculated by S = D : E and reads as

S =


𝐸 𝑓

1−𝜈12𝜈21 (E11 + 𝜈21E22)
𝐸𝑚

1−𝜈12𝜈21 (𝜈12E11 + E22)
2𝐺12E12

 (A.15)

Using 𝜎 = J−1 Fe SF
T
e , Cauchy stress tensor tuns out to be,

𝜎12 =


𝐺12𝛾 𝛾𝑝 = 0

𝜏𝑦 + 0.5
(
𝐸 𝑓 𝛾

3 − 𝐸𝑚𝛾
3
𝑝

)
𝛾𝑝 > 0

(A.16)

It is to be noted that J = det(Fe) = 1. Since the transverse modulus of elasticity is relatively

much smaller than the longitudinal modulus of elasticity, the expression can be further

simplified by ignoring the part containing 𝐸𝑚 .

𝜎12 =


𝐺12𝛾 𝛾𝑝 = 0

𝜏𝑦 + 0.5 𝐸 𝑓 𝛾
3 𝛾𝑝 > 0

(A.17)
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APPENDIX B

DERIVATIONS

B.1. Derivation of Local Tangent Stiffness Matrix

In this section, the local tangent stiffness matrix and its components are derived. The

residual equation carried by local Newton-Raphson algorithm is given as

𝑟𝜂 = Δ𝛾𝜂 − Δt ¤𝛾𝜂0
(
|𝜏𝜂𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m
sign

(
𝜏
𝜂
𝑛+1

)
= 0 (B.1)

To solve the system of residual equations, the equations are linearized around iteration (k).

𝑟 𝜂 |𝑘 + 𝜕𝑟 𝜂

𝜕Δ𝛾 𝛽

����
𝑘︸   ︷︷   ︸

K

dΔ𝛾 𝛽 = 0 (B.2)

Linearization of residual equation yields local tangent stiffness which is denoted as K.

The tangent stiffness in the local Newton Raphson algorithm is obtained as follows,

K𝜂𝛽 =
𝜕r𝜂

𝜕Δ𝛾𝛽
+ 𝜕r𝜂

𝜕𝜏𝛼𝑛+1

𝜕𝜏𝛼𝑛+1
𝜕
(
Fe

)
𝑛+1

:
𝜕
(
Fe

)
𝑛+1

𝜕Δ𝛾𝛽
+

𝜕r𝜂

𝜕g𝛼𝑛+1

𝜕g𝛼𝑛+1
𝜕p

𝜕p
𝜕S𝑛+1

:
𝜕S𝑛+1
𝜕E𝑛+1

:
𝜕E𝑛+1

𝜕
(
F𝑒

)
𝑛+1

:
𝜕
(
Fe

)
𝑛+1

𝜕Δ𝛾𝛽

(B.3)

It is worthy to note that 𝜕𝑝/𝜕E is a local tensor unlike other terms. To overcome

this inconsistency, a term consisting partial derivative of Eloc with respect to Eglob is

inserted next to 𝜕S𝑛+1/𝜕E𝑛+1. In the following items, derivations of tangent stiffness

components are expressed clearly.

• Derivation of 𝜕r𝜂/𝜕Δ𝛾𝛽

The expression of residual equation is given in Equation B.1. Partial derivative of
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residual equation with respect to slip increments is as follows,

𝜕r𝜂

𝜕Δ𝛾𝛽
=

𝜕Δ𝛾𝜂

𝜕Δ𝛾𝛽︸︷︷︸
𝛿𝜂𝛽

− 𝜕

𝜕Δ𝛾𝛽

(
Δt ¤𝛾𝜂0

( |𝜏𝜂𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m
sign

(
𝜏
𝜂
𝑛+1

))
(B.4)

Since the second term is independent of Δ𝛾𝛽,

𝜕r𝜂

𝜕Δ𝛾𝛽
= 𝛿𝜂𝛽 − 0 = 𝛿𝜂𝛽 (B.5)

• Derivation of 𝜕Fe/𝜕Δ𝛾𝛽

Elastic deformation gradient can be calculated based on multiplicative decomposition

of deformation gradient into Fe and Fp.

F = Fe Fp (B.6)

where Fp can be introduced in terms of slip increments, slip systems and
(
Fp

)
𝑛. By

using exponential map,

(
Fp

)
𝑛+1 = exp

( 6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0

) (
Fp

)
𝑛 (B.7)

Fe = FF−1p (B.8)

Elastic deformation gradient for t𝑛+1 is expressed in terms of slip increments, slip

vectors and F trial
e which is formed by F𝑛+1 and (F−1p )𝑛.

(
Fe

)
𝑛+1 = F𝑛+1

(
F−1p

)
𝑛︸        ︷︷        ︸

F trial
e

exp
(
−

6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0︸                 ︷︷                 ︸

A

)
(B.9)

where A is a second order tensor. Following to steps given below, partial derivative

of Fe with respect to Δ𝛾𝛽 can be calculated.

𝜕 (Fe)𝑖 𝑗
𝜕Δ𝛾𝛽

=
(
F trial

e
)
𝑖𝑘

𝜕exp
(
A
)
𝑘 𝑗

𝜕Δ𝛾𝛽
(B.10)
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𝜕exp
(
A
)
𝑘 𝑗

𝜕Δ𝛾𝛽
=
𝜕exp

(
A
)
𝑘 𝑗

𝜕A𝑚𝑛
:
𝜕A𝑚𝑛

𝜕Δ𝛾𝛽
(B.11)

• Derivation of 𝜕r𝜂/𝜕g𝛼

Partial derivative of residual equation with respect to resistance can be calculated by

using residual which is given in Equation B.1.

𝜕r𝜂

𝜕g𝛼
= 𝛿𝜂𝛼Δt 𝛾𝜂0

(
1

m

) ( ��𝜏𝜂𝑛+1��
g𝜂𝑛+1

) (1/m−1) |𝜏𝜂 |(
g𝜂𝑛+1

)2 sign
(
𝜏
𝜂
𝑛+1

)
(B.12)

• Derivation of 𝜕p/𝜕E

Recall that confinement is a function of second Piola-Kirchhoff stress. It is defined

as p = −0.5(S22 + S33
)

where S = D : E. The compliance relation can be written in

indicial form as

S 𝑗 𝑘 = D 𝑗 𝑘𝑚𝑛 E𝑚𝑛 (B.13)

Partial derivative of p with respect to E,

𝜕p
𝜕E 𝑗 𝑘

= −0.5
(
D22 𝑗 𝑘 + D33 𝑗 𝑘

)
(B.14)

• Derivation of 𝜕E/𝜕Fe

Recall thatE = 0.5
(
Ce−I

)
whereCe = FT

e Fe. Partial derivative of Green strain tensor

with respect to elastic deformation gradient produces a 4th order tensor. Calculation

steps in indicial notation are presented below.

𝜕E 𝑗 𝑘

𝜕
(
Fe

)
𝑙𝑚

= 0.5
©­«
𝜕
(
Fe

)T
𝑣 𝑗

𝜕
(
Fe

)
𝑙𝑚

(
Fe

)
𝑣𝑘 +

(
Fe

)T
𝑣 𝑗

𝜕
(
Fe

)
𝑣𝑘

𝜕
(
Fe

)
𝑙𝑚

ª®¬ (B.15)

𝜕E 𝑗 𝑘

𝜕
(
Fe

)
𝑙𝑚

= 0.5

(
𝛿 𝑗𝑚

(
Fe

)
𝑙𝑘 + 𝛿𝑘𝑚

(
Fe

)T
𝑙 𝑗

)
(B.16)
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• Derivation of 𝜕r𝜂/𝜕𝜏𝛼

Recall that residual equation is as follows

𝑟𝜂 = Δ𝛾𝜂 − Δt ¤𝛾𝜂0
(
|𝜏𝜂𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m
sign

(
𝜏
𝜂
𝑛+1

)
(B.17)

The partial derivative of residual with respect to Schmid stress is as follows,

𝜕𝑟𝜂

𝜕𝜏𝛼
= −𝛿𝜂𝛼Δt ¤𝛾𝜂0

1

m

(
|𝜏𝜂𝑛+1 |
𝑔
𝜂
𝑛+1

)1/m−1
1

g𝜂
sign

(
𝜏
𝜂
𝑛+1

)
sign

(
𝜏
𝜂
𝑛+1

)
(B.18)

• Derivation of 𝜕g/𝜕p

Resistance g is a function of p in case confinement pressure is larger than 0. When

confinement pressure p ≥ 0,

𝜕g𝛼

𝜕p
= 𝜇 (B.19)

where 𝜇 is friction coefficient. Otherwise,

𝜕g𝛼

𝜕p
= 0 (B.20)

• Derivation of 𝜕𝜏𝛼/𝜕Fe

Recall that Schmid stress is a function of Kirchhoff stress tensor and slip systems.

𝜏𝛼 = 𝜏𝜏𝜏 :
(®𝑠 𝛼 ⊗ ®𝑛𝛼) (B.21)

where s and n are slip vectors in current frame. Equation B.21 can be written in terms

of indicial notation as follows,

𝜏𝛼 = 𝜏𝑚𝑛 𝑠
𝛼
𝑚 𝑛𝛼𝑛 (B.22)

The partial derivative of Schmid stress with respect to Fe,

𝜕𝜏𝛼

𝜕
(
Fe

)
𝑗 𝑘

=
𝜕𝜏𝑚𝑛

𝜕
(
Fe

)
𝑗 𝑘

𝑠𝛼𝑚𝑛
𝛼
𝑛︸           ︷︷           ︸

Term I

+ 𝜏𝑚𝑛
𝜕𝑠𝛼𝑚

𝜕
(
Fe

)
𝑗 𝑘

𝑛𝛼𝑛︸            ︷︷            ︸
Term II

+ 𝜏𝑚𝑛 𝑠
𝛼
𝑚

𝜕𝑛𝛼𝑛
𝜕
(
Fe

)
𝑗 𝑘︸            ︷︷            ︸

Term III

(B.23)
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– Obtaining the Term I

(
Term I

)𝛼
𝑗 𝑘 = A𝑚𝑛 𝑗 𝑘 𝑠

𝛼
𝑚𝑛

𝛼
𝑛 (B.24)

where A is the partial derivative of Kirchhoff stress tensor with respect to elastic

deformation gradient which is given in Equation B.37.

– Obtaining the Term II

Slip vectors in current configuration are function ofFe and 𝑠𝛼0 as they are formulated

in Equation B.25.

𝑠𝛼 = Fe 𝑠
𝛼
0 (B.25)

Partial derivatives of slip vectors in current configuration with respect to Fe are

derived below.

𝜕𝑠𝛼𝑚
𝜕
(
Fe

)
𝑗 𝑘

=
𝜕
(
Fe

)
𝑚𝑣

𝜕
(
Fe

)
𝑗 𝑘︸    ︷︷    ︸

𝛿𝑚𝑗 𝛿𝑣𝑘

(
𝑠0

)𝛼
𝑣 (B.26)

Equation B.26 is implemented to Term II,

(
Term II

)𝛼
𝑗 𝑘 = 𝜏𝑗𝑛

(
𝑠0

)𝛼
𝑘 𝑛

𝛼
𝑛 (B.27)

– Obtaining the Term III

(
Term III

)𝛼
𝑗 𝑘 = 𝜏𝑚𝑛 𝑠

𝛼
𝑚

𝜕𝑛𝛼𝑛
𝜕
(
Fe

)
𝑗 𝑘

(B.28)

Normal slip vectors in current configuration are function of Fe and 𝑛𝛼0 as they are

formulated as

𝑛𝜂 = F-T
e 𝑛

𝜂
0 (B.29)
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Partial derivative of 𝑛𝛼 with respect to Fe is as follows,

𝜕𝑛𝛼𝑛
𝜕
(
Fe

)
𝑗 𝑘

=
(
𝑛𝛼0

)
𝑣

𝜕
(
Fe

)−1
𝑣𝑛

𝜕
(
Fe

)
𝑗 𝑘︸   ︷︷   ︸

A

(B.30)

where A is a fourth-order tensor and yields as

𝜕
(
Fe

)−1
𝑣𝑛

𝜕
(
Fe

)
𝑗 𝑘

= −(Fe
)−1
𝑣 𝑗

(
Fe

)−1
𝑘𝑛 (B.31)

Term III is presented below.

(
Term III

)𝛼
𝑗 𝑘 = −𝜏𝑚𝑛 𝑠

𝛼
𝑚

(
𝑛𝛼0

)
𝑣

(
Fe

)−1
𝑣 𝑗

(
Fe

)−1
𝑘𝑛 (B.32)

• Derivation of 𝜕Aloc/𝜕Aglob

This term is the partial derivative of a local second order tensor with respect to its

global form. It is stated that A is a second order tensor, and the term produces a fourth

order tensor. Transformation of a second order tensor in global to local configuration

is given in B.42.

Aloc = QAglob QT (B.33)

𝜕Aloc

𝜕Aglob =
𝜕
(
QAglob QT)
𝜕Aglob (B.34)

where Q is a second order transformation tensor. Expression can be written in indicial

notation as follows

𝜕Aloc
𝑗 𝑘

𝜕Aglob
𝑚𝑛

= Q 𝑗𝑣Q𝑘𝑦

𝜕A𝑣𝑦

𝜕A𝑚𝑛
= Q 𝑗𝑚Q𝑘𝑛 (B.35)

• Derivation of 𝜕𝜏𝜏𝜏/𝜕Fe

The Kirchhoff stress is a function of Fe and S. It is defined as

𝜏𝜏𝜏 = Fe SF
T
e (B.36)
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Partial derivative of 𝜏𝜏𝜏 with respect to Fe,

𝜕𝜏𝜏𝜏

𝜕Fe
=
𝜕Fe
𝜕Fe

SFT
e︸     ︷︷     ︸

Term-I

+Fe
𝜕S

𝜕Fe
FT

e︸      ︷︷      ︸
Term-II

+Fe S
𝜕FT

e
𝜕Fe︸     ︷︷     ︸

Term-III

(B.37)

– Obtaining Term I,

(
Term I

)
𝑗 𝑘𝑚𝑛 =

𝜕
(
Fe

)
𝑗 𝑝

𝜕
(
Fe

)
𝑚𝑛︸    ︷︷    ︸

𝛿 𝑗𝑚 𝛿𝑝𝑛

S𝑝𝑡
(
Fe

)
𝑘𝑡 = 𝛿 𝑗𝑚 S𝑛𝑡

(
Fe

)
𝑘𝑡 (B.38)

– Obtaining Term II,

(
Term II

)
𝑗 𝑘𝑚𝑛 =

(
Fe

)
𝑗 𝑝

𝜕S𝑝𝑡

𝜕
(
Fe

)
𝑚𝑛

(
Fe

)
𝑘𝑡 (B.39)

where

𝜕S𝑝𝑡

𝜕
(
Fe

)
𝑚𝑛

= D𝑝𝑡𝑟𝑠
𝜕E𝑟𝑠

𝜕
(
Fe

)
𝑚𝑛

(B.40)

Partial derivative of Green’s strain tensor with respect to elastic deformation gradient

is given in Equation B.16.

– Obtaining Term III,

(
Term III

)
𝑗 𝑘𝑚𝑛 =

(
Fe

)
𝑗 𝑝 S𝑝𝑡

𝜕
(
Fe

)
𝑘𝑡

𝜕
(
Fe

)
𝑚𝑛

=
(
Fe

)
𝑗 𝑝 S𝑝𝑛 𝛿𝑘𝑚 (B.41)

This is how the 4th order 𝜕𝜏𝜏𝜏/𝜕F𝑒 tensor is obtained. It should be noted that Green’s

strain tensor is a global quantity since deformation gradient obtained from Abaqus is

in global form. However, there is a local material tensor in constitutive relation. To

overcome this situation, applied procedure is given below.

Algorithm 4 Local to global transformation
Transform Eglob to Eloc (See Equation B.42)

Obtain second Piola-Kirchoff stress in local form, Sloc = D : Eloc

Transform Sloc to Sglob (See Equation B.44)
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• Transformation of Aglob to Aloc

A second order tensor A can be transformed into local frame from the global frame

by using

Aloc = QAglob QT (B.42)

where Q is the transformation matrix and defined below.

Q =


cos 𝜙 sin 𝜙 0

−sin 𝜙 cos 𝜙 0

0 0 1

 (B.43)

where 𝜙 is the angle between global and local frames.

• Transformation of Aloc to Aglob

A second order tensor A can be transformed into global frame from the local frame

Aglob = QT Aloc Q (B.44)

where Q is defined in Equation B.43.

B.2. Derivation of Material Tangent Stiffness

In this section material tangent stiffness matrix is derived. Recall that internal virtual work

is as follows

𝛿𝑊𝑖𝑛𝑡 =
∫
𝑉

𝜏𝜏𝜏𝑛+1 :
(∇0 𝛿u (

F−1
)
𝑛+1

)
d𝑉 (B.45)

Directional derivative of internal virtual work in the direction of [Δu],

D
(
𝛿𝑊𝑖𝑛𝑡

) [Δu] = D
(
𝜏𝜏𝜏𝑛+1

) [Δu] : ∇0𝛿uF−1 + 𝜏𝜏𝜏𝑛+1 : D
(∇0𝛿uF−1) [Δu] (B.46)
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where the left term produces material tangent stiffness matrix.

D
(
𝜏𝜏𝜏𝑛+1

) [Δu] = 𝜕𝜏𝜏𝜏𝑛+1
𝜕F𝑛+1︸ ︷︷ ︸(
Dmat

)
𝑛+1

: D
(
F𝑛+1

) [Δu] (B.47)

Kirchhoff stress is a function of Fe and Δ𝛾𝛽. Therefore, (Dmat)𝑛+1 can be calculated by

the chain rule as,

𝜕𝜏𝜏𝜏𝑛+1
𝜕F𝑛+1

=
𝜕𝜏𝜏𝜏𝑛+1

𝜕
(
Fe

)
𝑛+1︸     ︷︷     ︸

A1

:
𝜕
(
Fe

)
𝑛+1

𝜕F𝑛+1

�����
Δ𝛾𝛽

+ 𝜕𝜏𝜏𝜏𝑛+1
𝜕
(
Fe

)
𝑛+1

:
𝜕
(
Fe

)
𝑛+1

𝜕Δ𝛾𝛽

�����
F𝑛+1︸           ︷︷           ︸

A2

:
𝜕Δ𝛾𝛽

𝜕F𝑛+1
(B.48)

The terms A1 and A2 are derived in Equation B.37 and Equation B.10, respectively. In

the following items, derivations of remaining components are expressed clearly.

• Derivation of 𝜕Fe/𝜕F

The expression of Fe is defined below,

(
Fe

)
𝑛+1 = F𝑛+1

(
F−1p

)
𝑛 exp

(
−

6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0

)
(B.49)

Partial derivative of Fe with respect to F as follows,

𝜕Fe
𝜕F

=
𝜕F

𝜕F

(
F−1p

)
exp

(
−

6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0

)
(B.50)

• Derivation of 𝜕Δ𝛾𝛽/𝜕F

When the material disturbed by dF𝑛+1, the residual equations pertaining to slip systems

should be satisfied. Since residual is functions of Fe and Δ𝛾𝜂,[
𝜕𝑟𝜂

𝜕Δ𝛾𝛽

����
F𝑛+1

𝜕Δ𝛾𝛽

𝜕F𝑛+1
+ 𝜕𝑟𝜂

𝜕F𝑛+1

����
Δ𝛾𝛽

]
: dF𝑛+1 = 0 (B.51)

Since the disturbance (dF𝑛+1) is always non-zero, the term in square brackets must be
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equal to 0. [
𝜕𝑟𝜂

𝜕Δ𝛾𝛽

�����
F𝑛+1︸      ︷︷      ︸

K𝜂𝛽

𝜕Δ𝛾𝜂

𝜕F𝑛+1
+ 𝜕𝑟𝜂

𝜕F𝑛+1

�����
Δ𝛾𝛽︸      ︷︷      ︸

G𝜂

]
= 0 (B.52)

K𝜂𝛽 𝜕Δ𝛾𝛽

𝜕F𝑛+1
+G𝜂 = 0 (B.53)

Terms K𝜂𝛽 and G𝜂 are derived in Equation B.3 and Equation B.55, respectively.

𝜕Δ𝛾 𝜉

𝜕F𝑛+1
= −(K−1)𝜉𝜂 G𝜂 (B.54)

• Derivation of G𝜂

In an open form, G𝜂 can be written as

G𝜂 =
𝜕𝑟𝜂

𝜕𝑔𝛼𝑛+1

𝜕𝑔𝛼𝑛+1
𝜕p

𝜕p
𝜕S𝑛+1

:
𝜕S𝑛+1
𝜕E𝑛+1

:
𝜕E𝑛+1

𝜕 (Fe)𝑛+1 :
𝜕 (Fe)𝑛+1
𝜕F𝑛+1

�����
Δ𝛾𝛽︸          ︷︷          ︸

A

(B.55)

All terms except A are derived in items under Appendix-B.1. The expression of Fe is

defined below,

(
Fe

)
𝑛+1 = F𝑛+1

(
F−1p

)
𝑛︸        ︷︷        ︸

Ftrial
e

exp
(
−

6∑︁
𝜂=1

Δ𝛾 𝜂®𝑠 𝜂0 ⊗ ®𝑛
𝜂
0︸                        ︷︷                        ︸

B

)
(B.56)

The partial derivative of Fe with respect to deformation gradient matrix is as follows

𝜕
(
Fe

)
𝑛+1

𝜕F𝑛+1
=
𝜕
(
F𝑖 𝑗

(
Fp

)−1
𝑗𝑞B𝑞𝑝

)
𝜕F𝑘𝑙

�����
Δ𝛾𝛽

(B.57)

𝜕
(
Fe

)
𝑛+1

𝜕F𝑛+1
= 𝛿𝑖𝑘

(
Fp

)−1
𝑙𝑞 B𝑞𝑝 (B.58)
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B.3. Derivation of Geometric Tangent Stiffness

As stated previously, the term
(
𝜏𝜏𝜏 : D

(∇0𝛿uF−1) [Δu]) in Equation B.46 leads to geometric

tangent stiffness. Geometric tangent stiffness can be calculated by following the equations

given below.

D
(∇0𝛿uF−1) [Δu] = −𝛿𝑢𝑖, 𝑗 F−1𝑗 𝑘 Δ𝑢𝑘,𝑙 F−1𝑙𝑚 (B.59)

𝜏𝜏𝜏 : D
(∇0𝛿uF−1) [Δu] = −𝜏𝑖𝑚 𝛿𝑢𝑖, 𝑗 F−1𝑗 𝑘 Δ𝑢𝑘,𝑙 F−1𝑙𝑚

𝜏𝜏𝜏 : D
(∇0𝛿uF−1) [Δu] = −𝛿𝑢𝑖, 𝑗 F−1𝑗 𝑘 𝜏𝑖𝑚 F-T

𝑚𝑙︸       ︷︷       ︸
C𝐺

𝑗𝑘𝑖𝑙

Δ𝑢𝑘,𝑙 (B.60)

As described in following equation, Cgeo can be obtained by rearranging the cells of C𝐺
𝑗𝑘𝑖𝑙 .(

Cgeo
)
𝑖 𝑗 𝑘𝑙 ← C𝐺

𝑗𝑘𝑖𝑙 (B.61)
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