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THE DIFFERENCE OF HYPERHARMONIC NUMBERS VIA

GEOMETRIC AND ANALYTIC METHODS

Çağatay Altuntaş, Haydar Göral, and Doğa Can Sertbaş

Abstract. Our motivation in this note is to find equal hyperharmonic

numbers of different orders. In particular, we deal with the integerness
property of the difference of hyperharmonic numbers. Inspired by finite-

ness results from arithmetic geometry, we see that, under some extra
assumption, there are only finitely many pairs of orders for two hyper-

harmonic numbers of fixed indices to have a certain rational difference.

Moreover, using analytic techniques, we get that almost all differences
are not integers. On the contrary, we also obtain that there are infinitely

many order values where the corresponding differences are integers.

1. Introduction

In this paper, we investigate the integerness property of the differences of
hyperharmonic numbers. For this purpose, we apply geometric and analytic
methods, and use a computer algebra toolbox to obtain several examples for
hyperharmonic differences.

The nth harmonic number is defined as the nth partial sum of the harmonic
series:

hn =

n∑
k=1

1

k
.

These numbers are equipped with various arithmetic and analytic properties
so that there has been a constant focus on them. It is well known that for any
n > 1, the nth harmonic number is not an integer [24]. The difference hn−hm
is never an integer if n > m ≥ 1 as well [15].

A generalization of harmonic numbers is the hyperharmonic numbers, intro-
duced by Conway and Guy [7]. The nth hyperharmonic number of order r is
defined recursively as

h(r)
n =

n∑
k=1

h
(r−1)
k
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for r ≥ 2, where h
(1)
n = hn is the nth harmonic number. They also presented

a combinatorial identity that relates hyperharmonic numbers and harmonic
numbers as follows:

h(r)
n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1).

This generalization has also plentiful properties, which attracts attention. For
instance, the integerness problem for the hyperharmonic numbers has been
studied by various authors. In 2007, Mező conjectured that there is no hyper-
harmonic integer for any integers n, r ≥ 2 [17]. Moreover, he showed in the

same paper that h
(r)
n is non-integer for n > 1 and r = 2, 3.

This result was improved by Amrane and Belbachir in [2, 3], where they

showed that h
(r)
n is not an integer for any n > 1 and r ≤ 25. They also gave

a couple of (n, r) tuples where the corresponding hyperharmonic number is
non-integer.

Then, these known results were extended by the second and the third authors

[11]. For instance, it was shown that h
(r)
n is non-integer for any n > 1 and

r ≤ 20001. Also, an asymptotic result was given as follows. Let

S(x) = |{(n, r) ∈ [0, x]× [0, x] : h(r)
n /∈ Z}|.

Then, one has

S(x) = x2 +O
(
x

2.475
1.475

)
so that the non-integer hyperharmonic numbers have full asymptotic density
in the first quadrant. Later, the error term was improved in [1].

The generalized hyperharmonic numbers are another generalization in which
different approaches can be applied to study their integerness. For instance,
the interested reader may check [12] to see how topology can be used on the
integerness of these numbers.

Despite all the results which support the conjecture of Mező, it was proven
by the third author that there are infinitely many hyperharmonic integers [21].

From another point of view, one can consider the following problem which
was also first proposed by Mező [17].

Problem 1.1. For which n 6= m and r 6= s does the equality

h(r)
n = h(s)

m

hold?

The motivation of this paper partially comes from this question and we give
a partial answer. Moreover, we will show that the difference may be an integer,
but it rarely happens.

Now, we state our first theorem.
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Theorem A. Let n > m ≥ 4 and gcd(n−1,m−1) = 1. Then for any rational
number γ, there are only finitely many positive integer tuples (r, s) such that

(1) h(r)
n − h(s)

m = γ.

Moreover, equation (1) does not have any solutions when

(n,m) ∈ {(3, 2), (4, 2), (4, 3)} and γ ∈ Z.

To prove the theorem, we will follow a geometric approach where we link
our finiteness problem to a corresponding question in arithmetic geometry. In
fact, one may relate to fundamental finiteness theorems in arithmetic geometry
such as Mordell-Weil, Roth’s, Siegel’s and Falting’s theorem [14].

Remark 1.2. Let C(x) = |{(n,m) ∈ [1, x]2 : n,m ∈ Z>0, gcd(n,m) = 1}|.
Then, we have (see [4])

lim
x→∞

C(x)

x2
=

6

π2

so that a significant amount of tuples (n,m) in the rectangle [1, x]2 are covered
in the previous theorem.

Our second theorem states that the difference of hyperharmonic numbers
can hardly be an integer, which is obtained by an analytic approach. In fact,
we will give a careful count of the number of tuples (n,m, r, s) lying inside
the four dimensional cube [1, x]4 such that the corresponding hyperharmonic
difference is non-integer. In particular, the non-integerness will be captured by
a negative p-adic order for some p in a short interval.

Theorem B. Let T (x) be the number of tuples (n,m, r, s) ∈ [1, x]4 so that the

difference h
(r)
n − h(s)

m is not an integer. Then, for any ε > 0 we have

T (x) = x4 +Oε

(
x

59
18 +ε

)
,

where the implied constant depends only on ε. Moreover, if we assume the
Riemann hypothesis, then we obtain

T (x) = x4 +O
(
x3 log3 x

)
.

On the other hand, we are able to find infinitely many tuples (n,m, r, s) ∈ Z4

such that the corresponding difference h
(r)
n − h(s)

m is an integer. For instance,
when n = 6, we have some values given in Table 1.

By Table 1, we see that (r, s) = (20, 47501) is a solution for Problem 1.1
when n = 6 and m = 2. In particular, we will show in Section 4 that there are
infinitely many solutions of this problem.

Now, throughout this paper, let P denote the set of prime numbers and for
a given prime number p, let νp denote the p-adic order defined as follows. For
a given integer n and a prime p, we define

νp(n) =

{
a if pa ‖ n,
∞ if n = 0,
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Table 1. Several m, r, s values where the difference h
(r)
n −h(s)

m

is an integer, when n = 6.

m r s h
(r)
n − h(s)

m

2 20 47501 0
3 15 161 296
4 5 4 151
5 6 1 338
6 723 3 1674946827908

and for a given rational number a
b , we set

νp

(a
b

)
= νp(a)− νp(b).

The p-adic order will be used frequently, particularly in the analytic point of
view.

2. Geometric methods

In this section, we prove Theorem A using arithmetic geometry. The moti-
vation of the theorem rises from the question: can a hyperharmonic difference
be 0 or not? That is, we investigate whether

(2) h(r)
n = h(s)

m

may hold or not. Now, before going any further, let us state the following
lemma, which eases the computations with hyperharmonic numbers and will
be used frequently throughout the paper.

Lemma 2.1. For any positive integer n, define fn(x) as
∏n−1
i=0 (x+ i). Then,

for any positive integer r, we have

h(r)
n =

f
′

n(r)

n!
.

Proof. We have log fn(x) =
∑n−1
i=0 log (x+ i) and by differentiating both sides

we obtain
f
′

n(x)

fn(x)
=

n−1∑
i=0

1

x+ i
.

It is known by [7] that the nth hyperharmonic number of order r can be ex-
pressed as

h(r)
n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1).

As a result,

h(r)
n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1)
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=
r(r + 1) · · · (n+ r − 1)

n!

(
1

r
+

1

r + 1
+ · · ·+ 1

n+ r − 1

)
=
fn(r)

n!

f
′

n(r)

fn(r)
=
f
′

n(r)

n!
,

and we are done. �

Consequently, working with (2) can be done by looking for solutions of the
equation

(3)
f
′

n(r)

n!
=
f
′

m(s)

m!
.

To answer the question, we make use of [6, Theorem 1.1]. Now, (3) can be
written as

(4) p(x) = q(y)

for some polynomials p(x), q(x) ∈ Q[x] of degrees n−1 and m−1, respectively.
Thus, one may consider the solutions of

(5) F (x, y) := p(x)− q(y) = 0

instead of (4). Let us say that the equation F (x, y) = 0 has infinitely many
rational solutions with a bounded denominator if there is a positive integer δ
such that (5) has infinitely many solutions (x, y) ∈ Q × Q where δx, δy ∈ Z.
Now, we state five standard pairs of polynomials (p(x), q(x)) over Q as in [6]
as follows. Let a, b be non-zero rational numbers, m,n be positive integers and
g(x) be a non-zero polynomial.

1) The first kind. A pair

(xk, axrg(x)k)

or switched, (axrg(x)k, xk) is a standard pair of the first kind, provided that
0 ≤ r < k, gcd(r, k) = 1 and r + deg g(x) > 0.

2) The second kind. A pair

(x2, (ax2 + b)g(x)2)

or switched is a standard pair of the second kind.
Let Dk(x, α) be the kth Dickson polynomial of the first kind defined as

Dk(x, α) =

bk/2c∑
i=0

k

k − i

(
k − i
i

)
(−α)ixk−2i

with parameter α ∈ Q (see [16]).
3) The third kind. A pair(

Dk

(
x, a`

)
, D`

(
x, ak

))
with gcd(k, `) = 1 is a standard pair of the third kind.

4) The fourth kind. A pair

(a−k/2Dk(x, a),−b−`/2D`(x, b))
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with gcd(k, `) = 2 is a standard pair of the fourth kind.
5) The fifth kind. A pair

((ax2 − 1)3, 3x4 − 4x3)

or switched, is a standard pair of the fifth kind.
In fact, our concern will be whether the polynomials in (4) are standard

pairs or not.

Remark 2.2. Given a standard pair (p(x), q(x)) over Q of any kind, (4) has
infinitely many rational solutions with a bounded denominator (see [6, p. 2]).

The following theorem will be a key step towards Theorem A.

Theorem 2.3 ([6, Theorem 1.1]). Let p(x), q(x) be non-constant polynomials
over Q. Then, the following statements are equivalent.

(i) There are infinitely many rational solutions with a bounded denomina-
tor of equation (4).

(ii) The polynomials p and q can be written as p = ϕ ◦ p1 ◦ λ and q = ϕ ◦
q1 ◦µ where λ(x), µ(x) are linear polynomials over Q, ϕ(x) ∈ Q[x] and
(p1, q1) is a standard pair over Q such that the equation p1(x) = q1(y)
has infinitely many rational solutions with a bounded denominator.

Moreover, we need the following fact from [6] for our set up.

Fact 2.4 ([6, Remark 1.2.ii]). In Theorem 2.3(ii), if we have

gcd (deg p, deg q) = 1,

then degϕ = 1 and (p1(x), q1(x)) is a standard pair of the first or third kind
over Q.

Now, the next proposition will be a first step towards proving Theorem A.

Proposition 2.5. For any positive integer n, let

fn(x) :=

n−1∏
i=0

(x+ i).

Suppose that n > 3. Then, the polynomial
f ′n(x)
n! + γ cannot be written as

a(cx+ d)n−1 + b

for any rational numbers a, b, c, d, γ with a, c 6= 0.

Proof. Let n > 3 be a positive integer. We have

fn(x) = x(x+ 1) · · · (x+ n− 1)

= xn +
(
1 + 2 + · · ·+ (n− 1)

)
xn−1 +

 ∑
1≤i<j≤n−1

ij

xn−2 + · · ·

+

(
n−1∑
i=1

(n− 1)!

i

)
x2 + (n− 1)!x.
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One may verify that ∑
1≤i<j≤t

ij =
(t− 1)t(t+ 1)(3t+ 2)

24
.

Then, we can write

fn(x) = xn +
(n− 1)n

2
xn−1 +

(n− 2)(n− 1)n(3n− 1)

24
xn−2 + · · ·

+ (n− 1)!hn−1x
2 + (n− 1)!x.

Taking derivative with respect to x, we obtain

f ′n(x) = nxn−1 +
(n− 1)2n

2
xn−2 +

(n− 2)2(n− 1)n(3n− 1)

24
xn−3 + · · ·

+ 2(n− 1)!hn−1x+ (n− 1)!.

Now, suppose that

f
′

n(x)

n!
+ γ = a(cx+ d)n−1 + b

holds for some rational numbers a, b, c, d and γ with a, c 6= 0. We have

f
′

n(x)

n!
= a(cx+ d)n−1 + b− γ.

Recall that n > 3, so we can equate the coefficients of xn−1, xn−2 and xn−3 on
both sides as follows.

Coefficient of xn−1. The equality
n

n!
= acn−1

implies

(6) acn−1 =
1

(n− 1)!
.

Coefficient of xn−2. We have

(n− 1)2n

2n!
= (n− 1)acn−2d

which gives

(7) acn−2d =
1

2(n− 2)!
.

Coefficient of xn−3. The equation

(n− 2)2(n− 1)n(3n− 1)

24n!
= a

(
n− 1

2

)
cn−3d2

yields

(8) acn−3d2 =
(n− 2)2(3n− 1)

12n!
.
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Now, multiplying (7) with c gives

(9) acn−1d =
c

2(n− 2)!
.

By (6) we have acn−1 = 1
(n−1)! . Thus, using (9), we obtain

d

(n− 1)!
=

c

2(n− 2)!

so that we have

(10)
c

d
=

2

n− 1
.

Moreover, by (7) and (8), we have

acn−2d

acn−3d2
=

1

2(n− 2)!

12n!

(n− 2)2(3n− 1)
.

Consequently, we can write

(11)
c

d
=

6(n− 1)n

(n− 2)2(3n− 1)
.

Combining (10) and (11), one arrives at

2

n− 1
=

6(n− 1)n

(n− 2)2(3n− 1)
.

Therefore,
7n2 − 13n+ 4 = 0

must hold. However, 7n2 − 13n+ 4 > 0 for any n > 3. This is a contradiction,
and we conclude the result. �

The following proposition will be another key step towards our proof of
Theorem A.

Proposition 2.6. Let n be a positive integer and define

fn(x) :=

n−1∏
i=0

(x+ i).

Suppose that n > 5. Then, the polynomial
f ′n(x)
n! + γ cannot be written as

aDn−1(cx+ d, α) + b,

where Dn−1 is the (n− 1)
th

Dickson polynomial of the first kind and a, b, c,
d, α, γ with a, c 6= 0 are rational numbers.

Proof. Assume that n > 5 and write

fn(x) = x(x+ 1) · · · (x+ n− 1)

= xn+

(
n−1∑
i=1

i

)
xn−1+

 ∑
1≤i<j≤n−1

ij

xn−2+

 ∑
1≤i<j<k≤n−1

ijk

xn−3
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+

 ∑
1≤i<j<k<`≤t

ijk`

xn−4 + · · ·+ (n− 1)!x.

One may check that∑
1≤i<j≤t

ij =
(t−1)t(t+1)(3t+2)

24
and

∑
1≤i<j<k≤t

ijk =
(t−2)(t−1)t2(t+1)2

48

for any positive integer t ≥ 3. In addition,∑
1≤i<j<k<`≤t

ijk` =
(t− 3)(t− 2)(t− 1)t(t+ 1)(15t3 + 15t2 − 10t− 8)

5760

holds. Thus, we write

fn(x) = xn +
(n− 1)n

2
xn−1 +

(n− 2)(n− 1)n(3n− 1)

24
xn−2

+
(n− 3)(n− 2)(n− 1)2n2

48
xn−3

+
(n− 4)(n− 3)(n− 2)(n− 1)n(15n3 − 30n2 + 5n+ 2)

5760
xn−4

+ · · ·+ (n− 1)!x.

Taking derivative, we have

f
′

n(x) = nxn−1 +
(n− 1)2n

2
xn−2 +

(n− 2)2(n− 1)n(3n− 1)

24
xn−3

+
(n− 3)2(n− 2)(n− 1)2n2

48
xn−4

+
(n− 4)2(n− 3)(n− 2)(n− 1)n(15n3 − 30n2 + 5n+ 2)

5760
xn−5

+ · · ·+ (n− 1)!.

Now, suppose that

f ′n(x)

n!
+ γ = aDn−1(cx+ d, α) + b

holds for some positive integer n > 5 and for some rational numbers a, b, c, d,
α, γ with a, c, α 6= 0. Let us write

(12)
f ′n(x)

n!
= aDn−1(cx+ d, α) + b− γ.

We will equate the coefficients of the monomials xn−1, xn−2, xn−3, xn−4 and
xn−5 on both sides of (12). As we have

Dn−1(cx+ d, α) =

bn−1
2 c∑
i=0

n− 1

n− 1− i

(
n− 1− i

i

)
(−α)i(cx+ d)n−1−2i,
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determining the terms in the sum for i = 0, 1, 2 will be enough for our purposes.
We have

Dn−1(cx+ d, α)

=
n− 1

n− 1

(
n− 1

0

)
(−α)0(cx+ d)n−1

+
n− 1

n− 2

(
n− 2

1

)
(−α)(cx+ d)n−3

+
n− 1

n− 3

(
n− 3

2

)
(−α)2(cx+ d)n−5 + · · ·

+
n− 1

n− 1−
⌊
n−1

2

⌋(n− 1−
⌊
n−1

2

⌋⌊
n−1

2

⌋ )
(−α)b

n−1
2 c(cx+ d)n−1−2bn−1

2 c,

so that we can write

Dn−1(cx+ d, α) = (cx+ d)n−1 − (n− 1)α(cx+ d)n−3

+
(n− 1)(n− 4)

2
α2(cx+ d)n−5 + E1(x).

Furthermore, the polynomial aDn−1(cx + d, α) + b − γ in (12) can be written
as follows.

aDn−1(cx+ d, α) + b− γ
= acn−1xn−1 + (n− 1)acn−2dxn−2

+ (n− 1)acn−3

(
n− 2

2
d2 − α

)
xn−3

+ (n− 1)(n− 3)acn−4d

(
n− 2

6
d2 − α

)
xn−4

+
(n− 4)(n− 1)

2
acn−5

[
(n− 3)(n− 2)

12
d4 − (n− 3)d2α+ α2

]
xn−5

+ E2(x).

Now, we are set to equate the first five coefficients in (12).
Coefficient of xn−1. We have

(13) acn−1 =
1

(n− 1)!
.

Coefficient of xn−2. We write

(n− 1)2n

2n!
= (n− 1)acn−2d

so that

(14) acn−2d =
1

2(n− 2)!
.
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Coefficient of xn−3. The equation

(n− 2)2(n− 1)n(3n− 1)

24n!
= (n− 1)acn−3

(
n− 2

2
d2 − α

)
implies

(15)
(n− 2)(3n− 1)

24(n− 1)(n− 3)!
= acn−3

(
n− 2

2
d2 − α

)
.

Coefficient of xn−4. The equality

(n− 3)2(n− 2)(n− 1)2n2

48n!
= (n− 1)(n− 3)acn−4d

(
n− 2

6
d2 − α

)
gives

(16)
n

48(n− 4)!
= acn−4d

(
n− 2

6
d2 − α

)
.

Coefficient of xn−5. In (12), on the left hand-side we have

k1 =
(n− 4)2(n− 3)(n− 2)(n− 1)n(15n3 − 30n2 + 5n+ 2)

5760n!

and on the right hand-side we have

k2 =
(n− 4)(n− 1)

2
acn−5

[
(n− 3)(n− 2)

12
d4 − (n− 3)d2α+ α2

]
.

We ignore any cancellations in this case and simply write

(17) k1 = k2

for the coefficients of xn−5 in short.
Now, using the equations above, we can write everything in terms of the

number c. Multiplying (14) with c, we have

acn−1d =
c

2(n− 2)!
.

Using (13) we get

d =
n− 1

2
c.

Then, (15) can be written as

(n− 2)(3n− 1)

24(n− 1)(n− 3)!
= acn−3

(
n− 2

2

(
n− 1

2
c

)2

− α

)
.

Consequently,

acn−3α =
(n− 2)(n− 1)2

8
acn−1 − (n− 2)(3n− 1)

24(n− 1)(n− 3)!

(13)
=

(n− 2)(n− 1)2

8

1

(n− 1)!
− (n− 2)(3n− 1)

24(n− 1)(n− 3)!
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=
3(n− 2)(n− 1)2 − (n− 2)2(3n− 1)

24(n− 1)!

=
(n− 2)(n+ 1)

24(n− 1)!
.

Next, by multiplying both sides with c2, we obtain

acn−1α
(13)
=

α

(n− 1)!
=
c2(n− 2)(n+ 1)

24(n− 1)!
.

Thus, we see that

(18) α =
c2(n− 2)(n+ 1)

24
.

Before we proceed to the last step of the proof, notice that one can also use
(16) to obtain (18).

Finally, we write d and α in terms of c in (17) as follows:

k2 =
(n− 4)(n− 1)

2
acn−5

[
(n− 3)(n− 2)

12
d4 − (n− 3)d2α+ α2

]

=
(n− 4)(n− 1)

2
acn−5



(n− 3)(n− 2)

12

(
n− 1

2
c

)4

− (n− 3)

(
n− 1

2
c

)2(
c2(n− 2)(n+ 1)

24

)
+

(
c2(n− 2)(n+ 1)

24

)2



=
(n− 4)(n− 2)(n− 1)

2
acn−1


(n− 3)(n− 1)4

192
− (n− 3)(n− 1)2(n+ 1)

96

+
(n− 2)(n+ 1)2

576


(13)
=

(n− 4)(n− 2)(n− 1)

2

1

(n− 1)!


(n− 3)(n− 1)4

192
− (n− 3)(n− 1)2(n+ 1)

96

+
(n− 2)(n+ 1)2

576


=

n− 4

2(n− 3)!

(
3n5 − 27n4 + 79n3 − 78n2 + 12n+ 7

576

)
= k1 =

(n− 4)2(n− 3)(n− 2)(n− 1)n(15n3 − 30n2 + 5n+ 2)

5760n!
.

In fact, we obtain that

5(3n5 − 27n4 + 79n3 − 78n2 + 12n+ 7)

= (n− 4)(n− 3)(15n3 − 30n2 + 5n+ 2)

which in turn yields
3n2 + 14n+ 11 = 0.
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However, the polynomial

3n2 + 14n+ 11

is always positive for any n > 5, a contradiction. This completes the proof. �

Now, to give our results via a geometric approach, we continue by recalling
some basic definitions from arithmetic geometry. The interested reader may
consult [14,23].

Let k be a field. We define the usual affine plane as

A2(k) = {(x, y) : x, y ∈ k}.

For any positive integer n, the affine space An(k) is defined similarly. Now,
suppose that a, b, c, x, y, z ∈ k such that the vectors (a, b, c) and (x, y, z) are not
the zero vector (0, 0, 0). Then, define a relation ∼ as follows: (x, y, z) ∼ (a, b, c)
if and only if there exists λ ∈ k∗ such that x = λa, y = λb, z = λc. This relation
is an equivalence relation so that we have the equivalence classes

[x, y, z] = {(a, b, c) : a, b, c ∈ k, (a, b, c) 6= (0, 0, 0) and (x, y, z) ∼ (a, b, c)}.

Then, the projective plane over k is defined by

P2(k) = {[x, y, z] : x, y, z ∈ k, (x, y, z) 6= (0, 0, 0)}.

Note that if z 6= 0, then we have (x, y, z) ∼ (xz ,
y
z , 1). Therefore, we can write

P2(k) = {[x, y, 1] : x, y ∈ k} ∪ {[a, b, 0] : a, b ∈ k}.

The points in the set {[a, b, 0] : a, b ∈ k} above are called the points at infinity.
A curve in the affine plane A2(k) is defined by the set of k̄-solutions of a

polynomial in k[x, y]. To define a curve in the projective plane, we need a
homogeneous polynomial. We say that a polynomial F (x, y, z) is homogeneous
of degree d if for any monomial xpyrzs in F , we have p + r + s = d. Now,
a projective curve C in the projective plane P2(k) is defined as the set of
k̄-solutions of a non-constant homogeneous polynomial F (x, y, z) in k[x, y, z].
We will simply write A2 and P2 for affine and projective planes when k is
understood from the context. Now, let us consider a curve C : f(x, y) = 0 in

the affine space. We extend C to a curve Ĉ in the projective plane as follows.
Let d be the highest degree of the monomials in f(x, y). Then, we define

Ĉ : F (x, y, z) = zdf
(x
z
,
y

z

)
= 0.

The curve Ĉ is called the projectivization of C. Note that if (x, y) is a point

on C, then [x, y, 1] is a point on the curve Ĉ. We say that an affine curve

C : f(x, y) = 0

is singular at a point P ∈ C if

∂f

∂x
(P ) = fx(P ) = 0 and

∂f

∂y
(P ) = fy(P ) = 0.



1116 Ç. ALTUNTAŞ, H. GÖRAL, AND D. C. SERTBAŞ

Similarly, we say that the projective curve C ′ : F (x, y, z) = 0 is singular at a
point Q ∈ C ′ if the partial derivatives Fx, Fy and Fz vanish at Q. Otherwise,
we say that C ′ is non-singular, or smooth, at the point Q. If the curve C ′ is
smooth at every point, then C ′ is called a smooth curve. Note that the same
definitions apply to affine curves.

From now on, let us take k = C. Suppose that C is an affine curve and P is
a point on the curve. If the coordinates of P are integers, then we say that P is
an integral point on the curve and if the coordinates are rational numbers, then
we say that P is a rational point on the curve. The set of integral and rational
points on C are denoted by C(Z) and C(Q), respectively. Moreover, we say
that a projective curve C given by the polynomial equation F (x, y, z) = 0 is a
rational curve if F (x, y, z) ∈ Q[x, y, z].

In addition, for a given curve C we have a numerical invariant g called
genus, a non-negative integer, in which its derivation relies on the number of
singularities of C (see [10, Chapter 8]).

On the other hand, whenever we have a smooth projective curve C defined
over Q of degree d, we have

g =
(d− 1)(d− 2)

2
.

This is called the genus-degree formula. In 1929, Siegel (see [22]) proved that
if C is a smooth rational curve with genus g > 0, then C(Z) is finite. In 1983,
the result was improved for genus g > 1 by Faltings (see [9]). He proved that
if C is a smooth rational curve with genus g > 1, then C(Q) is finite. This was
also known as the Mordell Conjecture.

Now, suppose that we have

h(r)
n − h(s)

m = a

for some integers n,m, r, s and a rational number a. By Lemma 2.1, we can
write

(19) h(r)
n − h(s)

m =
f
′

n(r)

n!
− f

′

m(s)

m!
= a.

Without loss of generality, we may assume n ≥ m ≥ 2. Then, we can rewrite
(19) as

f
′

n(r)− d · f
′

m(s) = n!a

with

(20) d = n(n− 1) · · · (m+ 1).

Now, let us define a curve in the affine plane A2 by

Cn,m,a : f(r, s) = f
′

n(r)− d · f
′

m(s)− n! a = 0.

Recall that f
′

n(r) is of degree n − 1 and f
′

m(s) is of degree m − 1. Therefore,

we can define the projectivization Ĉn,m,a of Cn,m,a in the projective plane P2
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as follows.

Ĉn,m,a : F (r, s, t) = tn−1f
(r
t
,
s

t

)
= 0.

Consequently, we obtain that

F (r, s, t) =
(
an−1r

n−1 + an−2r
n−2t+ · · ·+ a1rt

n−2 + a0t
n−1
)

−
(
bn−2s

n−2t+ bn−3s
n−3t2 + · · ·+ b1st

n−2 + b0t
n−1
)
− (n!a)tn−1

= 0

for some positive integers ai, bj with i = 0, . . . , n− 1, and j = 0, . . . , n− 2 (see
Propositions 2.5, 2.6).

At this point, we can associate our work on hyper harmonic differences with
arithmetic geometry. If, for some rational number a and a integer tuple (m,n),
the corresponding algebraic curve Cn,m,a is smooth and its genus is greater
than 0, then C(Z) is finite by Siegel’s Theorem [22]. In fact, there are only
finitely many positive integer tuples (r, s) which satisfy

h(r)
n = h(s)

m .

Next, let us show that the curve Ĉn,m,a is singular whenever n−m > 1.

Proposition 2.7. Let n > m be two positive integers and a be a rational
number. Then,

n−m = 1 if and only if the projective curve Ĉn,m,a is smooth at infinity.

Proof. First, assume that n −m = 1. In order to define the projective curve

Ĉn,m,a, let us write

h(r)
n − h(s)

m =
f
′

n(r)

n!
− f

′

m(s)

m!
= a.

Moreover, we define the affine curve

Cn,m,a : f(r, s) = f
′

n(r)− nf
′

n−1(s)− n! a = 0

as m = n− 1. Then, we can define the projective curve Ĉn,m,a as above:

Ĉn,m,a : F (r, s, t) = tn−1f
(r
t
,
s

t

)
= 0.

Now, we check which point at infinity lie on the curve Ĉn,m,a. Let F (P ) = 0
for some P = [r0, s0, 0]. Then, we have

an−1r
n−1
0 = 0,

but as an−1 = n 6= 0, we obtain that r0 = 0. Consequently, we get P = [0, 1, 0]
as the only point at infinity lying on the curve. Next, observe that

Fr = (n− 1)an−1r
n−2 + (n− 2)an−2r

n−3t+ · · ·+ a1t
n−2

Fs = −(n− 2)bn−2s
n−3t− · · · − b1tn−2 and

Ft = (n− 1)(a0 − b0 − n!a)tn−2 + · · ·+ (an−2r
n−2 − bn−2s

n−2).
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Furthermore, as n > m > 0 and Ft(0, 1, 0) = −bn−2 = −n(n − 1) 6= 0 we

conclude that the curve Ĉn,m,a is smooth at the point [0, 1, 0].
Conversely, suppose that the projective curve is smooth at infinity. Let

n−m = ` > 1 and write

f
′

n(r) = an−1r
n−1 + · · ·+ a1r + a0 and f

′

m(s) = bm−1s
m−1 + · · ·+ b1s+ b0

for some ai, bj ∈ Z for i = 0, 1, . . . , n − 1 and j = 0, 1, . . . ,m − 1. Also, let us
write dj = d · bj , j = 0, 1, . . . ,m−1 for simplicity, where d is defined as in (20).
We have

F (r, s, t) =
(
an−1r

n−1 + an−2r
n−2t+ · · ·+ a1rt

n−2 + a0t
n−1
)

−
(
dm−1s

m−1t` + dm−2s
m−2t`+1 + · · ·+ d1st

n−2 + d0t
n−1
)

− (n!a)tn−1

= 0.

Hence, we obtain

(21)

Fr = (n− 1)an−1r
n−2 + (n− 2)an−2r

n−3t+ · · ·+ a1t
n−2

Fs = − (m− 1)dm−1s
m−2t` − (m− 2)dm−2s

m−3t`+1

− · · · − d1t
n−2 and

Ft = (n− 1)(a0 − d0 − n!a)tn−2 + (n− 2)(a1r − d1s)t
n−3

+ · · ·+ an−2r
n−2.

Notice that the point P = [0, 1, 0] is on the curve Ĉn,m,a as

F (0, 1, 0) = 0.

Moreover, by (21), we have

Fr(P ) = Fs(P ) = Ft(P ) = 0

since ` > 1. Thus, we obtain that the curve Ĉn,m,a is singular at one of the
points at infinity. Therefore, we must have n −m = 1 and this completes the
proof. �

Now, we are set to prove the first part of Theorem A.

Proof of Theorem A. Let n > m ≥ 4 be two positive integers with gcd(n −
1,m − 1) = 1 and γ be any rational number such that the following equation
is satisfied.

(22) h(r)
n − h(s)

m = γ.

Case 1. n ≥ 6.
In this case, we make use of Theorem 2.3. Observe that (22) can be rewritten

as
f
′

n(r)

n!
=
f
′

m(s)

m!
+ γ
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so that we have a polynomial equation

(23) p(r) = q(s)

with p(x), q(x) ∈ Q[x]. Moreover, notice that the polynomials f
′

n(r) and f
′

m(s)
are of degrees n − 1 and m − 1, respectively. Hence, since n > m ≥ 4, the
polynomials p and q are non-constant.

Now, suppose that equation (23) has infinitely many integer solutions. Thus,
it has infinitely many rational solutions with a bounded denominator. Then
by Theorem 2.3, the polynomials p and q can be decomposed as p = ϕ ◦ p1 ◦ λ
and q = ϕ ◦ q1 ◦ µ where

- λ(x), µ(x) ∈ Q[x] are linear,
- ϕ(x) ∈ Q[x] and
- (p1, q1) is a standard pair over the rationals

such that the equation p1(x) = q1(y) has infinitely many rational solutions with
a bounded denominator. In this case, since gcd(n−1,m−1) = gcd (deg p,deg q)
= 1 we know by Fact 2.4 that degϕ = 1 and (p1(x), q1(x)) must be a standard
pair of the first or third kind over Q. Moreover, since the polynomials ϕ, λ, µ
are all linear, we have

deg p1 = deg p = n− 1 and deg q1 = deg q = m− 1.

If the pair (p1(x), q1(x)) is of the first kind, recall that they must be of the
form

(xk, axrg(x)k)

or switched (axrg(x)k, xk) for some non-zero rational a and for some non-zero
polynomial g(x) over the rationals, provided that 0 ≤ r < k, gcd(r, k) = 1 and
r + deg g(x) > 0 are satisfied. Moreover, let

ϕ(x) = ax+ b, λ(x) = c1x+ d1 and µ(x) = c2x+ d2

for some rational numbers a, b, c1, c2, d1, d2 with a, c1, c2 6= 0. Furthermore,
either p1(x) = xn−1 or q1(x) = xm−1 must hold. If p1(x) = xn−1, then we
write

(24) p(x) = (ϕ ◦ p1 ◦ λ)(x) = a(c1x+ d1)n−1 + b

and if q1(x) = xm−1, then we have

(25) q(x) = (ϕ ◦ q1 ◦ µ)(x) = a(c2x+ d2)m−1 + b.

However, as n ≥ 6 and m ≥ 4, a decomposition as in (24) or (25) is not possible
by Proposition 2.5.

If (p1, q1) is a standard pair of the third kind, let us write p1(x) = Dn−1(x, α)
where α is a non-zero parameter in Q. (In fact, we must have α = am−1 for
some 0 6= a ∈ Q but we proved the general case.) To add, let ϕ(x) = ax + b
and λ(x) = cx + d for some rational numbers a, b, c, d with a, c 6= 0 such that
we have

(26) p(x) = (ϕ ◦ p1 ◦ λ)(x) = aDn−1(cx+ d, α) + b.
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In this case, a decomposition that we give in (26) is impossible by Proposition
2.6. Hence, (23) has finitely many rational solutions with a bounded denom-
inator by Theorem 2.3. In particular, there are finitely many positive integer
tuples (r, s) such that (22) holds.

Case 2. n = 5 and m = 4.
Suppose that we have

(27) h
(r)
5 − h

(s)
4 =

f
′

5(r)

5!
− f

′

4(s)

4!
= γ.

Then, we can rewrite this as an affine curve:

C5,4,γ : f(r, s) = 5r4 +40r3 +105r2 +100r−20s3−90s2−110s−6−120γ = 0.

Furthermore, we have

∂f

∂r
= 20r3 + 120r2 + 210r + 100 and

∂f

∂s
= −60s2 − 180s− 110.

Now, the equations ∂f
∂r = ∂f

∂s = 0 give us the following set of points:

P1

(
−2,

√
15− 9

6

)
, P2

(
−2−

√
3/2,

√
15− 9

6

)
,

P3

(
−2 +

√
3/2,

√
15− 9

6

)
, P4

(
−2,−

√
15 + 9

6

)
,

P5

(
−2−

√
3/2,−

√
15 + 9

6

)
, P6

(
−2 +

√
3/2,−

√
15 + 9

6

)
.

Moreover, we have

f(P1) = 0 if γ =
36 + 25

√
15

1080
, f(P2) = 0 if γ =

100
√

15− 261

4320
,

f(P3) = 0 if γ =
100
√

15− 261

4320
, f(P4) = 0 if γ =

36− 25
√

15

1080
,

f(P5) = 0 if γ = −261 + 100
√

15

4320
, f(P6) = 0 if γ = −261 + 100

√
15

4320
.

Hence, the affine curve C5,4,γ is smooth as γ is chosen to be rational. Now, let

Ĉ5,4,γ : F (r, s, t) = t4f
(r
t
,
s

t

)
= 0

be the projectivization of the curve C5,4,γ . By Proposition 2.7, as we have

5 − 4 = 1, the projective curve Ĉ5,4,γ is smooth at infinity so that we have a
non-singular curve.

Thus, the curve satisfies the genus degree formula. Namely, it has genus

g =
(4− 1)(4− 2)

2
= 3 > 0.
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Hence, by Siegel’s Theorem [22], we conclude that there can be only finitely
many positive integer tuples (r, s) which satisfy equation (27). This completes
the proof of the first part.

Now, we can prove the rest of Theorem A. When (n,m) = (3, 2) we have

h
(r)
3 − h

(s)
2 =

1

2
r2 + (r − s) +

1

3
− 1

2
=

1

2
r2 + (r − s)− 1

6

so that the difference is an integer only if 3r2−1
6 is an integer. As 3 - 3r2 − 1

for any positive integer r, the result follows.
When (n,m) = (4, 2), we get

h
(r)
4 − h

(s)
2 =

4r3 + 18r2 + 22r + 6

24
− 2s+ 1

2

such that νp

(
h

(r)
4

)
= −2 because ν2

(
4r3 + 18r2 + 22r + 6

)
= 1 for any r. To

add, as ν2( 2s+1
2 ) = −1 for any positive integer s, the difference h

(r)
4 − h(s)

2 is
never an integer.

When (n,m) = (4, 3), we obtain that

h
(r)
4 − h

(s)
3 =

4r3 + 18r2 + 22r + 6

24
− 3s2 + 6s+ 2

6
.

Also, note that ν2( 3s2+6s+2
6 ) ≥ −1. Again, as we get ν2( 4r3+18r2+22r+6

24 ) = −2,
we obtain the result. �

Remark 2.8. Note that any equation

p(x) = q(y)

having infinitely many rational solutions with bounded denominator does not
imply that it has infinitely many integer solutions. For instance, the equation

h
(r)
n = s always has a solution with a bounded denominator which is positive.

That is, if we fix a positive integer n, then we can find some positive rational
number s for any given positive integer r. As we have

h(r)
n =

f
′

n(r)

n!
,

we can say that there are infinitely many rational solutions (r, s) for the equa-
tion such that (n!) · r, (n!) · s ∈ Z. In particular, we can choose some positive

integer n > 1. However, it is known by [11] that h
(r)
n /∈ Z for any r and

1 < n ≤ 32. Thus, even though the equation h
(r)
n = s has infinitely many posi-

tive rational solutions with bounded denominator for any 1 < n ≤ 32, there is
no positive integer solution to the equation.

Remark 2.9. When n = 4 and m = 3, we have the following:

h
(r)
4 =

4r3 + 18r2 + 22r + 6

24
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h
(s)
3 =

3s2 + 6s+ 2

6
=

12s2 + 24s+ 8

24
.

Then, the difference

h
(r)
4 − h

(s)
3 =

4r3 + 6(3r2 − 2s2) + 2(11r − 12s)− 2

24

and h
(r)
4 − h

(s)
3 = 0 implies that 4r3 + 6(3r2 − 2s2) + 2(11r − 12s)− 2 = 0. By

SageMath [18], the latter equation gives an elliptic curve of genus 1. Now, we
have 2r3 + 9r2 + 11r − 1 = 6s2 + 12s. Setting r = 3r0, s = 3s0 we get

2(3r0)3 + 9(3r0)2 + 11(3r0)− 1 = 6(3s0)2 + 12(3s0),

54r3
0 + 81r2

0 + 33r0 − 1 = 54s2
0 + 36s0,

r3
0 +

3

2
r2
0 +

11

18
r0 −

1

54
= s2

0 +
2

3
s0

so that C(Q) ' {0}
⊕

Z ' Z is generated by the point 〈(− 1
6 ,−

1
6 )〉 using

SageMath [18]. Recall that this curve has genus 1. However, h
(r)
4 − h

(s)
3 is

never 0 as h
(r)
4 − h

(s)
3 /∈ Z by the last part of Theorem A.

Remark 2.10. Using SageMath [18], we found that the set

{(n,m) ∈ Z2 : m ≤ n ≤ 20, the curve Cn,m,a has genus 1}

consists of only (4, 3), (5, 3), (7, 7).

3. Analytic and algebraic approach

In this section, we first use analytic methods to prove our second theorem.
Then, we close the section by mentioning some algebraic facts.

3.1. Analytic methods

To begin with, let us recall Lemma 2.1.

Lemma 2.1. For any positive integer n, define fn(x) as
∏n−1
i=0 (x+ i). Then,

for any positive integer r, we have

h(r)
n =

f
′

n(r)

n!
.

Now, we continue with the following observation, which will also be used in
Section 4, Elementary and Algebraic Methods.

Proposition 3.1. If m is a positive integer and p > m is a prime number,
then

h(r)
p − h(s)

m /∈ Z
for any positive integers r and s.
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Proof. Notice that

fp(x) = x(x+ 1) · · · (x+ p− 1)

≡ xp − x in Fp[x].

Therefore, f
′

p(x) ≡ −1 in Fp[x] so that if we write f
′

p(r) =
∑n−1
k=0 akr

k, then
all the coefficients ak will be divisible by p except a0. Moreover, we know

by Lemma 2.1 that h
(r)
p can be written as

f
′
p(r)

p! . Thus, νp(h
(r)
p ) < 0 for any

r ∈ Z>0. On the other hand, since p > m we have νp

(
h

(s)
m

)
= νp

(
f
′
m(s)
m!

)
≥ 0.

As a result, h
(r)
p − h(s)

m /∈ Z. �

Now, we will use some of the arguments and notations given in [11] to prove
the non-integerness of the hyperharmonic difference. Let I(n, r) be the set
{r, r + 1, . . . , n + r − 1} for any positive integers n, r. For any prime p, let
Ip(n, r) be the set of all multiples of p in I(n, r). Also, note that if p is a prime

less than or equal to n and |Ip(n, r)| = 1, then h
(r)
n /∈ N as νp

(
h

(r)
n

)
< 0 (see

[11, Proposition 6]). The latter argument will also be covered in the proof of
Proposition 3.3.

Fact 3.2. For any α ∈ R>0, there exists a constant xα ∈ R depending on α
such that for all x ≥ xα, there lies a prime in the interval ((1− α)x, x].

We will use Fact 3.2 to obtain a prime p which satisfies |Ip(n, r)| = 1 for
some n, r ∈ Z>0. Notice that the above fact can be obtained using the prime
number theorem.

Proposition 3.3. Suppose that two positive integers m, r are given. Then,
there exists a positive integer nc, depending on m, r such that for all n ≥ nc,

the difference h
(r)
n − h(s)

m is never an integer for any positive integer s.

Proof. Let nc be a sufficiently large positive integer so that
(

2n
3 , n

]
∩ P is

non-empty for any n ≥ nc by Fact 3.2. If necessary, choose nc such that
nc ≥ max{ 3m

2 , 3r − 3} also holds. Let n ≥ nc. Then, n ≥ 3r − 3 implies that
2n
3 ≥

n+r−1
2 and (

2n

3
, n

]
⊆
(
n+ r − 1

2
, n

]
.

Therefore, there exists a prime p in the interval
(
n+r−1

2 , n
]
.

Note that n + r − 1 < 2p and since p < n we have r − 1 < p. Thus,
Ip(n, r) = {p} and |Ip(n, r)| = 1. Now, observe that

h(r)
n =

(
n+ r − 1

r − 1

)
(hn+r−1 − hr−1) =

n+r−1∑
i=r

Ai

n!
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where Ai = Per(n+r−1,r−1)
i for i ∈ {r, . . . , n + r − 1}. Then, consider the

difference

h(r)
n − h(s)

m =

n+r−1∑
i=r

Ai

n!
−

m+s−1∑
j=s

Bj

m!

with Bj = Per(m+s−1,s−1)
j for j ∈ {s, . . . ,m+ s− 1}. Recall that |Ip(n, r)| = 1,

so except for Ap in h
(r)
n , Aj is divisible by p for any j = r, . . . , n + r − 1.

Consequently, we get νp

(
h

(r)
n

)
< 0. Also, we have n ≥ 3m

2 hence 2n
3 ≥ m and

n ≥ p > m hold. As a result, νp

(
h

(s)
m

)
≥ 0. Thus, the difference has a negative

p-adic order and the proof is done. �

Remark 3.4. Let n,m be positive integers and p be a prime number with

n > p > m. If |Ip(n, r)| = 1 for some positive integer r, then h
(r)
n − h(s)

m /∈ Z
for any positive integer s.

Proof. Since |Ip(n, r)| = 1, we have νp

(
h

(r)
n

)
< 0 by Proposition 3.3 above.

Also, as p > m, we have νp

(
h

(s)
m

)
≥ 0 so that νp

(
h

(r)
n − h(s)

m

)
< 0. �

As a consequence of Remark 3.4, we can state the following proposition.

Proposition 3.5. Let n,m, r ∈ Z>0 be given and there exist integers a, b ≥ 1
and p, q ∈ P>m such that one of the conditions

(a− 1)n ≤ r < an,
n+ r

a+ 1
< p < n or

(28)
bn

2
< r ≤ bn, n+ r

b+ 2
< q <

r

b

holds. Then for any positive integer s, we have

h(r)
n − h(s)

m /∈ Z.

Proof. In either case, we will show that

|Ip(n, r)| = |Iq(n, r)| = 1

and since p, q > m we obtain the result via Remark 3.4. For the first case, let
us show that Ip(n, r) = {ap}. We have p < n so that (a− 1)p < (a− 1)n ≤ r.
Also, as n+r

a+1 < p, we get n+ r < (a+ 1)p and r < ap+ p− n < ap. Moreover,

ap < n + r holds because otherwise we get ap > p + r or (a − 1)p > r which
is a contradiction. Thus, (a − 1)p < r < ap < n + r < (a + 1)p holds, so
|Ip(n, r)| = 1 and the first part is done.

For the second case, we will show that Iq(n, r) = {(b + 1)q} and the result
will follow. Observe that we have q < n and since bq < r, we get

bq + q = (b+ 1)q < q + r < n+ r.
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Also, n + r < (b + 2)q implies that (b + 1)q = (b + 2)q − q > n + r − q > r.
Therefore, the inequality bq < r < (b + 1)q < n + r < (b + 2)q gives that
|Iq(n, r)| = 1 and we obtain the result. �

Next, our observations give rise to the following proposition, which enables

us to locate the intervals containing r, in which the difference h
(r)
n −h(s)

m is not
an integer.

Proposition 3.6. Let n and m be positive integers and p be a prime number
where m < p < n and n

2 < p. Then, for any r ∈
(
(t − 1)p, (t + 1)p − n

]
for

some positive integer t, we have h
(r)
n − h(s)

m /∈ Z for any positive integer s.

Proof. Let t be a positive integer and r ∈
(
(t − 1)p, (t + 1)p − n

]
so that we

have (t − 1)p < r. Also, tp − p < r gives that tp < p + r < n + r. Lastly,
r ≤ (t+1)p−n implies that n+r−1 < (t+1)p and r < tp. Thus, we obtained
that |Ip(n, r)| = 1 and as p > m, Remark 3.4 gives the result. �

Remark 3.7. Suppose that n is a positive integer and p is a prime number
where n

2 < p < n. Then, we have

νp

(
h(r)
n

)
≥ 0

if and only if r ∈
(
(t+ 1)p− n, tp

]
for some positive integer t.

Proof. Let n be a positive integer, p be a prime where n
2 < p < n holds. Define

the intervals

It :=
(
(t+ 1)p− n, tp

]
and Jt :=

(
(t− 1)p, (t+ 1)p− n

]
for t ∈ Z>0. Observe that

It ∪ Jt =
(
(t− 1)p, tp

]
such that we obtain a partition of Z>0. Now, let r be a positive integer. Then,
there exists a positive integer t for which we have r ∈ It ∪ Jt. If r ∈ Jt,

then we know by the proof of Proposition 3.6 that νp

(
h

(r)
n

)
< 0. Moreover, if

r ∈ It =
(
(t + 1)p − n, tp

]
we have (t + 1)p − n = tp + p − n < r and hence

tp+ p− 1 < n+ r − 1. Thus, we get

r ≤ tp and tp+ p = (t+ 1)p ≤ n+ r − 1.

In addition, as |I(n, r)| = n < 2p we obtain that Ip(n, r) = {tp, (t+ 1)p}. Now,
let us write

h(r)
n =

n+r−1∑
i=r

Ai

n!

with Ai = Per(n+r−1,r−1)
i for i ∈ {r, . . . , n+ r − 1}. Finally, observe that each

Ai is divisible by p. Moreover, we have νp(n!) = 1 by the assumption. Thus,
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we have

νp

(
h(r)
n

)
≥ 0

which completes the proof. �

Notice that the prime p above can be taken as the greatest prime that is less
than n. Thus, we obtain the following remark.

Remark 3.8. Given any integer n, let p〈n〉 denote the greatest prime that is
less than n. Then,

νp〈n〉
(
h(r)
n

)
≥ 0

if and only if r ∈
(
(t+ 1)p〈n〉 − n, tp〈n〉

]
for some positive integer t.

Now, using Proposition 3.5 and Remark 3.8 we can take the first step towards
Theorem B as follows. Similar ideas can also be found in [20, Chapter 3].

Theorem 3.9. Let Φ(x) = o(x) be a monotonically increasing positive function
such that the interval (x−Φ(x), x] contains a prime number for any sufficiently

large real number x. Suppose also that x − 2Φ(x) and x2

Φ(x) are monotonically

increasing for any sufficiently large real number x. Then, for any constant
C ∈ (0, 1

3 ), there exists a positive integer n0 depending on C such that if n ≥ n0,

r ≤ C n2

Φ(n) and m ≤ n−3Φ(n) hold, then we have h
(r)
n −h(s)

m /∈ Z for any positive

integer s.

Proof. Let C ∈ (0, 1
3 ) and suppose that there exists a real number x0 > 0 such

that for any x ≥ x0, (x−Φ(x), x]∩ P 6= ∅ holds where Φ(x) is a monotonically
increasing positive function with Φ(x) = o(x). Moreover, let k0 be a sufficiently

large integer such that for any x ≥ k0, the functions x − 2Φ(x) and x2

Φ(x) are

monotonically increasing.
Now, let n0 ≥ max{x0, k0} be a sufficiently large integer depending on C

satisfying

n0 − 2Φ(n0) > x0 and C
n0

2

Φ(n0)
≥ 1

in which n−2Φ(n) and C n2

Φ(n) are increasing for any n ≥ n0. Next, assume that

n ≥ n0. Let p be the greatest prime that is less than or equal to n, so we have
p ∈ (n−Φ(n), n] and p > n

2 . By Proposition 3.6, if r ∈
(
(t− 1)p, (t+ 1)p− n

]
for some positive integer t, then as p > n− Φ(n) > n− 3Φ(n) ≥ m and p > n

2

hold, the difference h
(r)
n − h(s)

m is not an integer for any s ∈ Z>0. Therefore, it
is enough to check the intervals

(
(t+ 1)p− n, tp

]
for t ∈ Z>0.

Let r ≤ C n2

Φ(n) where n is a sufficiently large integer. As r is bounded, we

can bound such integers t. Thus, let us set

(29) t0 = t0(n) =

⌊
C

n2

Φ(n)p

⌋
+ 1.
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We will show that for any positive integer t ∈ {1, 2, . . . , t0} if r ∈
(
(t + 1)p −

n, tp
]
, then we have h

(r)
n −h(s)

m /∈ Z, using the inequalities in (28) of Proposition

3.5. Hence, we can cover all the values of r ≤ C n2

Φ(n) . Note that r ≤ tp < tn

holds. Now, as Φ(n) = o(n) and t ≥ 1, the inequality

Φ(n)

n
≤ 1

4
≤ t

2t+ 2

holds for any sufficiently large n. Then, p > n− Φ(n) ≥ n · t+2
2t+2 must hold as

t ≥ 1. Now, (t + 1)p − n > tn
2 gives that r > tn

2 for any r ∈
(
(t + 1)p − n, tp

]
and t ∈ {1, 2, . . . , t0}. Thus, we get tn

2 < r ≤ tn and the first inequality in (28)

of Proposition 3.5 holds. Next, we will find a prime in the interval
(
n+r
t+2 ,

r
t

)
for

any t ∈ {1, 2, . . . , t0} and the second inequality in (28) of Proposition 3.5 will
be covered. As n− Φ(n) < p ≤ n is satisfied,

(30)

(
t+ 1

t+ 2
n, n− 2Φ(n)

]
⊆
(
n+ r

t+ 2
,
r

t

)
since t ≥ 1. Also, (n− 2Φ(n)− Φ(n− 2Φ(n)), n− 2Φ(n)] ∩ P 6= ∅ must hold.
Moreover, Φ(n) = o(n) is a monotonically increasing function so that Φ(n) ≥
Φ(n− 2Φ(n)) and consequently,

n− 3Φ(n) ≤ n− 2Φ(n)− Φ(n− 2Φ(n))

holds. Then,

(n− 3Φ(n), n− 2Φ(n)] ⊇ (n− 2Φ(n)− Φ(n− 2Φ(n)), n− 2Φ(n)]

and, since (n− 2Φ(n)− Φ(n− 2Φ(n)), n− 2Φ(n)] ∩ P 6= ∅ holds, we get

(31) (n− 3Φ(n), n− 2Φ(n)] ∩ P 6= ∅.

Note that p ∈ (n− Φ(n), n], thus p /∈ (n− 3Φ(n), n− 2Φ(n)]. Moreover, let us
set

A =
3C + 1

6
> C.

We have Φ(n) = o(n), thus

Φ(n)

n
< 1− 3A =

1− 3C

2

holds for sufficiently large n depending on C. Then, 3An < n − Φ(n) < p so
that

(32) A
n2

Φ(n)p
<

n

3Φ(n)
.

Since n−Φ(n) < p ≤ n and Φ(n) = o(n), the function n2

Φ(n)p is also increasing.

Thus, for any sufficiently large n,

(33) C
n2

Φ(n)p
+ 3 < A

n2

Φ(n)p
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holds since C < A < 1
3 and n is a sufficiently large number depending on C.

The inequalities (29), (32), (33) yield that

t0 ≤ C
n2

Φ(n)p
+ 1 <

n

3Φ(n)
− 2.

Furthermore, recall that we have t ∈ {1, 2, . . . , t0} and the above inequality

implies that
(

1− 1
t+2

)
n < n− 3Φ(n). Then, by (30) and (31) we have

(n− 3Φ(n), n− 2Φ(n)] ⊆
(
t+ 1

t+ 2
· n, n− 2Φ(n)

]
⊆
(
n+ r

t+ 2
,
r

t

)
.

Hence, (
n+ r

t+ 2
,
r

t

)
∩ P 6= ∅

and the second condition of (28) of Proposition 3.5 is covered by some prime q
lying in the interval (n− 3Φ(n), n− 2Φ(n)]. Finally, since m < n− 3Φ(n) < q,

we get that h
(r)
n − h(s)

m /∈ Z and the proof is complete. �

Remark 3.10. The function Φ(x) in Theorem 3.9 above can be taken as x0.525

(see [5]).
As a result, we obtain the following corollary.

Corollary 3.11. For any constant C ∈ (0, 1
3 ), there exists a positive integer

n0 depending on C such that if n ≥ n0, r ≤ Cn1.475 and m ≤ n− 3n0.525, then

h
(r)
n − h(s)

m /∈ Z for any positive integer s.

The following fact on the difference of consecutive primes is the last step
towards Theorem B.

Fact 3.12. Let pk denote the kth prime number. Then, for any real number
ε > 0, we have ∑

pk≤x

(pk+1 − pk)2 �ε x
23
18 +ε

by [13]. Moreover, if we assume the Riemann hypothesis, then by [19] we have∑
pk≤x

(pk+1 − pk)2 � x log3 x.

Now, we are ready to prove Theorem B.

Theorem B. Let T (x) be the number of tuples (n,m, r, s) ∈ [1, x]4 so that the

difference h
(r)
n − h(s)

m is not an integer. Then, for any ε > 0 we have

T (x) = x4 +Oε

(
x

59
18 +ε

)
,

where the implied constant depends only on ε. Moreover, if we assume the
Riemann hypothesis, then we obtain

T (x) = x4 +O
(
x3 log3 x

)
.
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Proof. Let us define

D(x) := |{(n,m, r, s) ∈ [1, x]4 : m ≤ n, n0 ≤ n, h(r)
n − h(s)

m /∈ Z}|
and

En(x) := |{(m, r, s) ∈ [1, x]3 : m ≤ n, h(r)
n − h(s)

m ∈ Z}|
for each n ≤ x. Observe that we only count half of the tuples (n,m, r, s) inside
[1, x]4 as m ≤ n. So, we can write

(34) D(x) +
∑

n0≤n≤x

En(x) =
1

2
x4 +O(x3).

Also, note that we have

T (x) = 2D(x) +O(x3)

as the cases n ≥ m and m ≥ n are symmetric.
Now, we can write En(x) as follows.

En(x) = O

(∑
s≤x

∑
r≤x

∑
m≤n

h
(r)
n −h(s)

m ∈Z

1

)

= O

(∑
s≤x

∑
r≤x

∑
m<p〈n〉

h
(r)
n −h(s)

m ∈Z

1 +
∑
s≤x

∑
r≤x

∑
p〈n〉≤m≤n

h
(r)
n −h(s)

m ∈Z

1

)
.

(35)

By Remark 3.8, we know that

νp〈n〉(h
(r)
n ) ≥ 0

if and only if r ∈ ((t + 1)p〈n〉 − n, tp〈n〉] holds for some positive integer t.

Moreover, there are at most
⌊

x
p〈n〉

⌋
many such values of t as r ≤ x. In addition,

let us set

∆(n) = n− p〈n〉

whenever n is not prime. Notice that if n is prime, then by Proposition 3.1,
the difference is never an integer. Now, observe that the number of integers in
the interval ((t+ 1)p〈n〉 − n, tp〈n〉] is bounded by ∆(n).

Moreover, for a fixed positive integer n, if there is a tuple (m, r, s) ∈ En(x)

with m < p〈n〉, then νp〈n〉
(
h

(r)
n

)
≥ 0 holds. That is because we have h

(r)
n −

h
(s)
m ∈ Z, which implies that νp〈n〉

(
h

(r)
n − h(s)

m

)
≥ 0 and as m < p〈n〉, we have

νp〈n〉
(
h

(s)
m

)
≥ 0.

Now, consider the first summand in the last error term at (35). We have∑
s≤x

∑
r≤x

∑
m<p〈n〉

h
(r)
n −h(s)

m ∈Z

1 ≤
∑
r≤x

∑
s≤x

∑
m<p〈n〉

ν
p〈n〉

(
h
(r)
n

)
≥0

1
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<
∑
r≤x

∑
s≤x

ν
p〈n〉

(
h
(r)
n

)
≥0

p〈n〉 ≤
∑
s≤x

x

p〈n〉
∆(n)p〈n〉 ≤ x2∆(n).

For the second summand in the last error term in (35), we have∑
s≤x

∑
r≤x

∑
p〈n〉≤m≤n

h
(r)
n −h(s)

m ∈Z

≤
∑
s≤x

∑
r≤x

(
∆(n) + 1

)
≤ x2∆(n) + x2.

Therefore, both summands yield O(x2∆(n)) as n is not prime.
Consequently, we have

(36)
∑
n≤x

En(x) = O

x2
∑
n≤x

∆(n)

 .

Furthermore, observe that if

n ∈ (pk, pk+1]

with pk being the kth prime number for some positive integer k, then

∆(n) ≤ pk+1 − pk
holds. Thus, ∑

n∈(pk,pk+1]

∆(n) ≤ (pk+1 − pk)2

so that we get

(37)
∑
n≤x

∆(n) ≤
∑
pk≤x

∑
n∈(pk,pk+1]

∆(n) ≤
∑
pk≤x

(pk+1 − pk)2.

By Fact 3.12, we have ∑
pk≤x

(pk+1 − pk)2 �ε x
23
18 +ε

for any real number ε > 0. Hence, (36) can be written as

∑
n≤x

En(x) = O

x2
∑
n≤x

∆(n)

 = Oε

(
x

59
18 +ε

)
.

Consequently, feeding this result into (34), we obtain that

D(x) =
1

2
x4 +Oε

(
x

59
18 +ε

)
.

This implies that

T (x) = x4 +Oε

(
x

59
18 +ε

)
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and the first part of the proof is done. Moreover, if we assume the Riemann
hypothesis, then by Fact 3.12 we have∑

pk≤x

(pk+1 − pk)2 � x log3 x.

This together with (36) and (37) gives

∑
n≤x

En(x) = O

x2
∑
n≤x

∆(n)

 = O
(
x3 log3 x

)
.

Hence, we argue as in the first part and obtain that

T (x) = x4 +O
(
x3 log3 x

)
.

The proof is now complete. �

Remark 3.13. If we assume the Cramér’s conjecture, then the function Φ(x)
in Theorem 3.9 can be taken as C log2 x for some positive number C (see [8]).
Then, the error term in Theorem B can be reduced to O

(
x3 log2 x

)
.

3.2. Some algebraic remarks

Here, we analyze the integerness properties of the differences of hyperhar-
monic numbers with different orders in an algebraic way.

Recall that we have

h(r)
n =

f
′

n(r)

n!
,

where fn(x) =
∏n−1
i=0 (x+ i). Then, [11, Theorem 23] can be restated follows:

Theorem. Suppose that n = kpα is an odd integer where k, α are positive
integers, p is a prime and r is a given positive integer. Put a = k−1

2 , c = d rpα e.

If νp

(
f
′

k(c)
)
≤ νp(k!), then the corresponding hyperharmonic number h

(r)
n is

not an integer. Moreover, if c is not a root of f
′

k(x) modulo p, then h
(r)
n /∈ Z.

In particular, for the polynomial

Fk(x) :=

a∑
i=−a

 a∏
j=−a

(x− j)

 1

x− i

given in [11, Theorem 23], its shift Fk(x+ a) is f
′

k(x). Observe that

Fk(x+ a) =

k−1∑
i=0

k−1∏
j=0

(x+ j)

 1

x+ i
.

Now, as

fk(x) =

k−1∏
i=0

(x+ i)
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we deduce that

f
′

k(x)

fk(x)
=

k−1∑
j=0

1

x+ j
.

Therefore, we obtain that

Fk(x+ a) =

k−1∑
i=0

k−1∏
j=0

(x+ j)

 1

x+ i
= fk(x) · f

′

k(x)

fk(x)
= f

′

k(x).

Under this set up, we can present the following remark.

Remark 3.14. Let n = kpα be an odd integer where k, α are positive integers
and p be a prime number. Also, let r be given. Set a = k−1

2 and c = d rpα e.

Then, for any m < p, if νp

(
f
′

k(c)
)
≤ νp(k!) holds, then we have

h(r)
n − h(s)

m /∈ Z

for any positive integer s. Furthermore, for any positive integers m < p and s,
if c is not a root of f

′

k(x) modulo p, then

h(r)
n − h(s)

m /∈ Z.

Proof. For the first part, suppose that νp(f
′

k(c)) ≤ νp(k!) and m is an integer

less than p. Then by [11, Theorem 23], we have νp

(
h

(r)
n

)
< 0. However, for

any positive integer s, we have

h(s)
m =

f
′

m(s)

m!

with νp

(
h

(s)
m

)
≥ 0 as m < p. Thus, the first part of the proof is done. Now,

for the second part, suppose that c is not a root of f
′

k(x) modulo p, namely, we
have

f
′

k(c) 6≡ 0 (mod p).

Thus, νp(f
′

k(c)) = 0 ≤ νp(k!) as k is an integer. Then, as m < p and s is any
integer, we conclude the result by the first part of the theorem. �

4. Integer hyperharmonic differences and the problem of Mező

In this section, we show that the difference h
(r)
n − h(s)

n can be integers infin-
itely often for some positive integers r 6= s and n as follows.

Proposition 4.1. For any integer n > 1, the difference h
(r)
n −h(s)

n is an integer
whenever r ≡ s (mod n!) for some positive integers r and s. In addition, for

any prime number p ≥ 5 if r ≡ s
(

mod (p−1)!
2

)
, then h

(r)
p − h(s)

p ∈ Z.



HYPERHARMONIC NUMBERS VIA GEOMETRIC AND ANALYTIC METHODS 1133

Proof. Recall that we have

h(r)
n =

f
′

n(r)

n!
,

where fn(x) is defined as
∏n−1
i=0 (x + i). Then, since fn(x) is a polynomial of

degree n, we can write

f
′

n(r) =

n−1∑
i=0

air
i

for some positive integers a0, a1, . . . , an−1. In particular, we have

a0 = (n− 1)!, an−2 =
n(n− 1)2

2
and an−1 = n.

Thus,

h(r)
n − h(s)

n =
f
′

n(r)− f ′n(s)

n!

=

n−1∑
k=0

ak(rk − sk)

n!

=

n−1∑
k=1

ak(r − s)(rk−1 + · · ·+ sk−1)

n!

which is an integer whenever r ≡ s (mod n!) holds. Now, we prove the last

part of the theorem. By Proposition 3.1 if we write f
′

p(r) =
∑p−1
k=0 akr

k, then
we know that all the coefficients ak will be divisible by p except a0 = (p− 1)!.
Thus,

h(r)
p − h(s)

p =

p−1∑
k=0

ak(rk − sk)

p!

=

p−1∑
k=1

pbk(r − s)(rk−1 + · · ·+ sk−1)

p!

=

p−1∑
k=1

bk(r − s)(rk−1 + · · ·+ sk−1)

(p− 1)!
(38)

for some positive integers bk. If r ≡ s
(

mod (p−1)!
2

)
, then we have r − s =

t · (p−1)!
2 for some t ∈ Z. This indicates that

h(r)
p − h(s)

p =

p−1∑
k=1

bkt(r
k−1 + · · ·+ sk−1)

2
.

Note that h
(r)
p − h(s)

p ∈ Z when t is even. So, assume that t is odd. By the

congruence r ≡ s
(

mod (p−1)!
2

)
we know that r and s have the same parity,
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as p ≥ 5. Therefore, h
(r)
p − h(s)

p ∈ Z, if r is even. So, assume also that r is
odd. In that case, the sum (rk−1 + · · · + sk−1) is even when k is even, as
there are k-many terms in the sum. Thus, it is enough to show that the sum∑(p−1)/2
i=1 b2i−1 is even. Instead, we will prove each odd indexed bk is even.

Observe that fp(x) =
∏p−1
i=0 (x+i) ≡ x`+1(x+1)` (mod 2), where ` = p−1

2 ≥
2. Hence,

f ′p(x) ≡ (`+ 1)x`(x+ 1)` + `x`+1(x+ 1)`−1 (mod 2)

≡ x`(x+ 1)`−1((`+ 1)(x+ 1) + `x) (mod 2)

≡ x`(x+ 1)`−1(`+ x+ 1) (mod 2)

≡

{
x`+1(x+ 1)`−1, if ` is odd

x`(x+ 1)`, if ` is even
(mod 2)

≡


`−1∑
i=0

(
`− 1

i

)
x`+1+i, if ` is odd

∑̀
i=0

(
`

i

)
x`+i, if ` is even

(mod 2) .(39)

In either case, the polynomial f ′p(x) is equivalent to
∑2c
i=0

(
2c
i

)
x2d+i modulo 2

for some positive integers c and d, as ` ≥ 2. Also notice that

f
′

p(x) =

p−1∑
k=0

akx
k = (p− 1)! +

p−1∑
k=1

pbkx
k ≡

p−1∑
k=1

bkx
k (mod 2) ,

since p ≥ 5 is a prime number. Therefore, by congruence (39), we see that bk
is even for all odd k ≤ `. Moreover, for each odd k ≥ `+ 1, we have

bk ≡
(

2c

i

)
(mod 2) ,(40)

for some positive odd integer i. Since i is odd,
(

2c
i

)
= 2c

i ·
(

2c−1
i−1

)
∈ Z and(

2c−1
i−1

)
∈ Z, we deduce that bk is even by congruence (40). In conclusion,

whenever r ≡ s
(

mod (p−1)!
2

)
, we have h

(r)
p − h(s)

p ∈ Z. �

Remark 4.2. For primes p = 2, 3, a variation of Proposition 4.1 can be obtained

as follows: note that for any positive integer r we have h
(r)
2 = r+ 1

2 . Therefore

h
(r)
2 − h

(s)
2 is integer for any r, s ∈ Z>0. Also, by equation (38) one can easily

say that the difference h
(r)
3 − h

(s)
3 is an integer if and only if r and s have the

same parity.

Finally, we present our answer to Problem 1.1: For which n 6= m and r 6= s
does the equality

h(r)
n = h(s)

m

hold?
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Remark 4.3. For m = 2, we have

h(s)
m = h

(s)
2 = s+

1

2

for s ∈ Z>0. Observe that if for some n, r ∈ Z>0, the hyperharmonic number

h
(r)
n is a half-integer, namely

h(r)
n ∈ Z +

1

2
,

then we can find an appropriate s so that

h(r)
n = h

(s)
2

holds. Recall by the last part of the proof of Theorem A that the equality

cannot hold for n = 3, 4. Also, by Proposition 3.1, h
(r)
5 − h(s)

2 cannot be an
integer. However, for n = 6, using the computer algebra system SageMath [18]

we obtained some values of r where h
(r)
6 is a half-integer. In this case, finding

one such example is enough to find infinitely many values of r where h
(r)
6 is

also a half-integer by Proposition 4.1. That is,

h
(r+k·(6!))
6 is a half-integer since h

(r)
6 − h

(r+k·(6!))
6 ∈ Z

for k ∈ Z≥0. Thus, the equality

(41) h
(r)
6 = h

(s)
2

in fact holds and there are infinitely many examples where some of them are
illustrated in Table 2.

Table 2. Several r and s values which are the solutions of (41).

r s h
(r)
6 = h

(s)
2

20 47501 95003/2
55 5228670 10457341/2
75 23275838 46551677/2
100 94231673 188463347/2

Moreover, for n = 6 and m = 3 we can find infinitely many (r, s) tuples such
that

h
(r)
6 − h

(s)
3 ∈ Z

holds. In particular, for r = 15 we have h
(15)
6 = 80507/6 and for s = 1 we have

h
(1)
3 = 11/6. Therefore, we get

h
(15)
6 − h(1)

3 = 13416.

In fact, the set {(15, 2k + 1) : k ∈ Z≥0} of tuples (r, s) yield

h
(r)
6 − h

(s)
3 ∈ Z,
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by Proposition 4.1. Similarly, when m = 4, we can find infinitely many tuples

(r, s) ∈ {(5, 4 + k · (4!)) : k ∈ Z≥0}
so that the corresponding difference is also an integer. Furthermore, for m = 5,

the set {(6, 1 + k · (4!)) : k ∈ Z≥0} of tuples (r, s) yield h
(r)
6 − h

(s)
5 ∈ Z.
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