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ABSTRACT

KRULL-SCHMIDT PROPERTIES OVER NON-NOETHERIAN RINGS

Let R be a commutative ring and C a class of indecomposable R-modules. The

Krull-Schmidt property holds for C if, whenever G1 ⊕ · · · ⊕ Gn � H1 ⊕ · · · ⊕ Hm for

Gi,Hj ∈ C, then n = m and, after reindexing, Gi � Hi for all i ≤ n. The main purpose

of this thesis is to investigate Krull-Schmidt properties of certain classes of modules over

Non-Noetherian rings. Particularly weakly Matlis domains, strong Mori domains and

Marot rings, all of which are among the class of Non-Noetherian rings, are studied. w-

weak isomorphism types are defined and the conditions when they coincide for torsionless

modules over weakly Matlis domains are discussed. With the help of this comparison, the

Krull-Schmidt property of w-ideals of a strong Mori domain is characterized. Also, the

same property for overrings of a strong Mori domain is examined. Some useful results for

a Marot ring with ascending condition on its regular ideals are obtained. Krull-Schmidt

property on regular ideals of such a ring is studied and a characterization is given. Fur-

thermore, the same property is discussed for overrings of a Marot ring.
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ÖZET

NOETHER OLMAYAN HALKALAR ÜZERİNDE KRULL-SCHMIDT

ÖZELLİKLERİ

R bir değişmeli halka ve C parçalanamaz R-modüllerin bir sınıfı olsun. C için,

Krull-Schmidt özelliği sağlanmasının koşulu, Gi,Hj ∈ C için, G1 ⊕ · · · ⊕ Gn � H1 ⊕
· · · ⊕ Hm ise n = m ve yeniden indekslemeden sonra, tüm i ≤ n için Gi � Hi’dir. Bu

tezin temel amacı Noether olmayan halkalar üzerindeki belirli modüllerin Krull-Schmidt

özelliklerini incelemektir. Özellikle, Noether olmayan halkalar sınıfındaki zayıf Matlis

bölgeleri, güçlü Mori bölgeleri ve Marot halkaları çalışılmıştır. w-zayıf izomorfizmaları

tanımlanmıştır ve zayıf Matlis bölgeleri üzerindeki burulmasız modüller için çakıştıkları

koşullar tartışılmıştır. Bu kıyaslama ile bir Mori bölgesinin w-idealleri için Krull-Schmidt

özelliği karakterize edilmiştir. Ayrıca aynı özellik güçlü Mori halkalarının üst halkaları

için incelenmiştir. Regüler idealleri üzerinde artan zincir koşulu olan bir Marot halkası

için bazı kullanışlı sonuçlar elde edilmiştir. Bu halkaların regüler idealleri için Krull-

Schmidt özelliği çalışılmıştır ve bir karakterizasyon verilmiştir. Ayrıca, aynı özellik Marot

halkalarının üst halkaları için tartışılmıştır.
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CHAPTER 1

INTRODUCTION

Let R be a commutative ring and C a class of indecomposable R-modules. The

Krull-Schmidt property holds for C if, whenever G1⊕· · ·⊕Gn � H1⊕· · ·⊕Hm for Gi,Hj ∈
C, then n = m and, after reindexing, Gi � Hi for all i ≤ n. This property fails generally for

modules over commutative rings, and even the weaker property of cancellation, A ⊕ B �

A ⊕ C ⇒ B � C for R-modules A, B,C, holds only in special situations. Due to that

reason, concern about this property is common in both commutative and non-commutative

algebra. According to the class C, in each section we give a different name to this property

for convenience. We are going to deal with weakly Matlis domains, strong Mori domains

and Marot rings which are among the class of non-Noetherian rings.

If the class of indecomposable ideals of R has Krull-Schmidt property, we say that

R has the UDI property. In other words, let R be a ring and C the class of indecomposable

ideals of R. We say that R has the unique decomposition into ideals (UDI) property if,

whenever

I1 ⊕ I2 ⊕ · · · ⊕ In � J1 ⊕ J2 ⊕ · · · ⊕ Jm

for Ii, J j ∈ C, then n = m and, after a possible reindexing, Ii � Ji for all i ≤ n.

In (Goeters & Olberding, 2001), the authors prove that, for Noetherian integral

domains, the UDI property is almost local, in the sense that a Noetherian integral domain

R has the UDI property if and only if R has at most one non-principal maximal ideal and

R has the UDI property locally at every maximal ideal [ (Goeters & Olberding, 2001),

Theorem 2.8 ]. They also characterize the UDI property for local Noetherian integral

domains in terms of the integral closure, showing that the local domain R has the UDI

property if and only if its integral closure R̃ has at most three maximal ideals, and, if

R̃ has more than one maximal ideal, the maximal ideals of R̃ stand in certain restrictive

relations to the maximal ideal of R.
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In (Ay & Klingler, 2011), Ay and Klingler prove the same almost local nature of

the UDI property for indecomposable reduced Noetherian rings, and they also character-

ize the UDI property for local reduced Noetherian rings in terms of the integral closure

and its maximal ideals.

In a recent paper of Klingler and Omairi, the same results are proven for any ar-

bitrary indecomposable Noetherian ring (Klingler & Omairi, 2020). They examined the

UDI property for arbitrary commutative Noetherian rings, establishing the same almost

local nature of the property and giving an example which shows that the local results do

not extend to commutative Noetherian rings, in general. Moreover, it has been proven that

the UDI property extends to overrings which are finitely generated as modules and arbi-

trary Noetherian integral overrings (Theorem 3.3 and Theorem 3.4, (Klingler & Omairi,

2020)).

Two torsion-free R-modules G and H are said to be locally isomorphic if GM � HM

for all maximal ideals M of R, they are nearly isomorphic if, for every nonzero ideal I of R,

there exists a monomorphism f : G → H such that AnnR(Coker( f )) and I are comaximal,

that is, AnnR(Coker( f ))+ I = R, they are stable isomorphic if G⊕R(n) � H⊕R(n) for some

integer n > 0. These isomorphism types are called weak isomorphism types. In (Goeters

& Olberding, 2002), the authors compare weak isomorphism types for torsionless mod-

ules over an h-local domain (every nonzero nonunit element of R is contained in only

finitely many maximal ideals of R, and every prime ideal of R is contained in a unique

maximal ideal of R). By using these results, they were able to discuss Krull-Schmidt

properties of torsionless modules and ideals over h-local domains [ (Goeters & Olberd-

ing, 2002) Theorem 3.4]. This study is followed by (Ay Saylam & Klingler, 2019), and

the authors compare weak isomorphism types for torsionless modules over a finite char-

acter domain R (every nonzero nonunit element of R is contained in only finitely many

maximal ideals of R).

Inspired by all these studies mentioned above, we define and discuss w-weak iso-

morphism types, the UDwI and UDRI properties. We will introduce all the definitions in

sequel.

The outline of this thesis is as follows:

In Chapter 2, some basic definitions, results and preliminary notions are given.

In Chapter 3, w-weak isomorphism types are compared for torsionless modules

2



over weakly Matlis domains.

Let R be a domain. R is said to be of finite t-character if every nonzero nonunit

of R is contained in only finitely many maximal t-ideals of R. An integral domain R is

a weakly Matlis domain if R is of finite t-character and each prime t-ideal of R is con-

tained in a unique maximal t-ideal. Many useful properties of weakly Matlis domains are

given in (Anderson & Zafrullah, 1999). In Chapter 3, we compare w-weak isomorphism

types, w-versions of weak isomorphism types which are w-locally isomorphism, w-nearly

isomorphism, and stable isomorphism for torsionless w-modules over weakly Matlis do-

mains . This comparison between w-weak isomorphism types helps us to discuss the

Krull-Schmidt properties over some certain modules in the next chapter. We investigate

under what conditions these w-weak isomorphism types for torsionless w-modules over

weakly Matlis domains coincide, which helps us to discuss the UDwI property for strong

Mori domains which will be introduced in the next chapter.

In Chapter 4, UDwI property is defined and characterized for strong Mori do-

mains.

An integral domain R (with quotient field K) has the unique decomposition into

ideals property with respect to the w-operation (abbreviated, the UDwI property) if for

any ideals I1, . . . , In, J1, . . . , Jm of R with

(I1)w ⊕ . . . ⊕ (In)w � (J1)w ⊕ . . . ⊕ (Jm)w,

then n = m and after reindexing, (Ii)w � (Ji)w for each index i. For an ideal I of R,

Iw :=
⋃

(I :K J), where the union is taken over all finitely generated ideals J of R with

J−1 = R. If Iw = I, then I is called a w-ideal. An integral domain R is said to be a

strong Mori domain if R satisfies the ascending chain condition on w-ideals (Wang &

McCasland, 1997), (Wang & McCasland, 1999). The main purpose of this chapter is to

study and to characterize the UDwI property for strong Mori domains. We show that R has

the UDwI property if and only if R is a w-PID, or R has a unique non-principal maximal w-

ideal M such that RM has the UDI property (Ay Saylam & Gürbüz & Hamdi, 2022). After

examining the properties of a strong Mori domain with a unique non-principal maximal

w-ideal, we provide an example. Also it is shown that the UDwI property on R implies the

equivalence of w-weak isomorphisms and isomorphism in a class of R-modules. We end

3



the chapter by investigating overrings (rings between R and K) of strong Mori domains

with UDwI property.

In Chapter 5, the UDRI property is defined and characterized for Marot rings.

Let R be a ring and C the class of regular ideals of R. R has the unique decompo-

sition into regular ideals (UDRI) property if, whenever

I1 ⊕ I2 ⊕ · · · ⊕ In � J1 ⊕ J2 ⊕ · · · ⊕ Jm

for Ii, J j ∈ C, then n = m and, after a possible reindexing, Ii � Ji for all i ≤ n. We

note that regular ideals cannot be written as a sum of two regular ideals, without loss

of generality, we assume regular ideals are indecomposable in the class C. Elements

of R that are not zero divisors are called regular. An ideal of R is called regular if it

contains a regular element. If R is a ring and P is a prime ideal of R, then the regular

localization of R at P, is the ring R(P) = {a/b : a, b ∈ R with b � P, b is regular}. A

ring R is said to be a Marot ring if every regular ideal of R is generated by its regular

elements. In this chapter, we investigate the UDRI property over a Marot ring whose

regular ideals are finitely generated. First, some preliminary results concerning such a

ring are gathered. Then we extend a previous result by Goeters and Olberding Theorem

2.8 (Goeters & Olberding, 2001), and prove that R has the UDRI property if and only

if R has at most one non-principal maximal ideal M and R(M) has the UDRI property

(Ay Saylam & Gürbüz, 2022). Two examples of Marot rings, one satisfying and one not

satisfying the property, are provided. In this chapter we define local isomorphism and

near isomorphism in a different way. We show that the UDRI property on R implies the

equivalence of isomorphism, local and near isomorphism in a class of R-modules. The

last section of the chapter is dedicated to the study of the UDRI property on overrings

(rings between R and quoetient ring of R) of R.
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CHAPTER 2

PRELIMINARIES

This chapter consists of some basic tools about commutative algebra which are

used in this thesis. All rings mentioned below are commutative with identity. All the

stated propositions and theorems can be found in (Wang & Kim, 2016), (Atiyah &

Macdonald, 1969) and (Dummit & Foote 2004).

2.1. Localization

Let R be a ring. A multiplicatively closed subset of R is a subset S of R such that

1 ∈ S and S is closed under multiplication: in other words S is a subsemigroup of the

multiplicative semigroup of R. Define a relation ∼ on R × S as follows:

(r, s) ∼ (r′, s′)⇔ (s′r − sr′)u = 0 for some u ∈ S .

We can verify that this is an equivalence relation on S ×R. Let r/s denote the equivalence

classes of (r, s), and let S −1R denote the set of equivalence classes. We put a ring structure

on S −1R by defining addition and multiplication of these fractions r/s as:

(r1/s1) + (r2, s2) = (r1s2 + r2s1)/s1s2,

(r1/s1)(r2/s2) = r1r2/s1s2.

The ring S −1R is called the ring of fractions of R. If S is the set of all non-zero-divisors

of R, S −1R is called the total quotient ring of R, denoted by T (R). If R is a domain, then

T (R) is a field, which is called the quotient field of R.

Let P be a prime ideal of R. Then S = R \ P is a multiplicatively closed subset of

R. We write RP in this case. One can show that RP is a local ring with unique maximal

5



ideal PRP.

The construction of S −1R can be carried through with an R-module M in place of

the ring R. Define a relation on ∼ on M × S as follows:

(m, s) ∼ (m′, s′)⇔ t(sm′ − s′m) = 0 for some t ∈ S .

This is also an equivalence relation. Let m/s denote the equivalence class of the pair

(m, s), let S −1M denote the set of such fractions, and make S −1M into an S −1R-module

with the addition and multiplication defined as:

(m1/s1) + (m2/s2) = (s2m1 + s1m2)/s1s2,

(m1/s1)(m2/s2) = m1m2/s1s2.

Proposition 2.1 Let M be an R-module, N and P submodules of M. The following holds:

1. S −1M � S −1R ⊗R M.

2. S −1(N + P) = S −1N + S −1P.

3. S −1(N ∩ P) = S −1N ∩ S −1P.

4. S −1(M/N) � (S −1M)/(S −1N).

5. Ann(S −1M) ⊆ S −1(Ann M), and if M is finitely generated Ann(S −1M) = S −1(Ann M).

2.2. Projective, Injective and Flat Modules

An R-module P is called projective if for every R-module epimorpisim f : N → M and

R-module homomorphism g : P → M there exists an R-homomorphism h : P → N such

that f ◦ h = g. In other words; the following diagram commutes.

6



P
h

��
g
��

N
f �� �� M �� 0

Theorem 2.1 The following statements are equivalent:

1. P is projective.

2. Every exact sequence such as 0→ A→ B→ P→ 0 is split.

3. P is a direct summand of a free module, that is, there exist a module P′ and a free

module F such that F � P ⊕ P′.

4. HomR(P,−) is an exact functor, that is, if 0 → A → B → C → 0 is an exact

sequence, then the sequence 0 → HomR(P, A) → HomR(P, B) → HomR(P,C) → 0

is also exact

An R-module E is called injective if for every R-module monomorphism f : K → N and

R-module homomorphism g : K → E there exists an R-homomorphism h : N → E such

that h ◦ f = g. In other words; the following diagram commutes.

0 �� K
f ��

g
��

N

h��
E

Theorem 2.2 The following statements are equivalent:

1. E is injective.

2. Every exact sequence such as 0→ E → B→ C → 0 is split.

3. HomR(−, E) is an exact functor, that is, if 0 → A → B → C → 0 is an exact

sequence, then the sequence 0→ HomR(C, E)→ HomR(B, E)→ HomR(A, E)→ 0

is also exact.

Proposition 2.2 Let R be an integral domain with quotient field K. Then
7



1. K is an injective R-module.

2. Every vector space E over K is an injective R-module.

Definition 2.1 An essential extension of a module M is a module E containing M such

that if N is a nonzero submodule of E, then M ∩ N � 0. In addition, if M � E, then E is

called a proper essential extension of M.

Theorem 2.3 The following statements are equivalent for an extension M ⊆ E of mod-

ules:

1. E is a maximal essential extension of M.

2. E is essential over M and E is injective.

3. E is injective, and there is no injective modules E′ with M ⊆ E′ ⊆ E.

A module E satisfying one of the equivalent conditions in Theorem 2.3 is called the

injective hull or injective envelope of M.

Theorem 2.4 The following statements hold for an R-module M.

1. Any module M has an injective hull.

2. Let E be an injective hull of M, and let E′ be an injective module containing M.

Then there exists a monomorphism g : E → E′ such that g|M = f .

3. The injective hull of M is uniquely determined up to isomorphism.

Let us denote the injective hull of a module M by E(M).

Example 2.1 Let R be an integral domain with quotient field K. Then K is injective by

Proposition 2.2. Then for any nonzero ideal I of R, K is an essential extension of I. In fact,

for any element x = a/b of K, taking a nonzero element c ∈ I, we have (bc)x = ac ∈ I.

Therefore, E(I) = K.

An R-module M is said to be flat if for every monomorphism f : A → B, the

induced homomorphism f ⊗ 1: A ⊗ M → B ⊗ M is also a monomorphism.

Theorem 2.5 The following statements are equivalent:

8



1. M is flat.

2. For any ideal I of R, 0→ I ⊗R M → R ⊗R M is exact.

3. For any finitely generated ideal I of R, 0→ I ⊗R M → R ⊗R M is exact.

4. For any finitely generated ideal I of R, the natural homomorphism σ : I⊗R M → IM

is an isomorphism.

5. For any ideal I of R, the natural homomorphism σ : I ⊗R M → IM is an isomor-

phism.

2.3. Fractional Ideals

Let R be an integral domain with quotient field Q and A be a nonzero R-submodule

of Q. Then A is called a fractional ideal of R if there exists a nonzero element b ∈ R such

that bA ⊆ R. It is easy to see that every nonzero finitely generated submodule of Q is a

fractional ideal.

Let A, B be R-submodules of Q. Define

AB = {
n∑

i=1

aibi | n is a positive integer, ai ∈ A, bi ∈ B}.

which is called the product of submodules A and B.

For an R-submodule of Q, define

A−1 := {x ∈ Q | xA ⊆ R}.

If A is a fractional ideal, then A−1 is also a fractional ideal.

Definition 2.2 Let A be an R-submodule of Q. Then A is called an invertible fractional

ideal if there exists a submodule B of Q such that AB = R. Note that in this case, A is

necessarily a fractional ideal. Take b ∈ B with b � 0. Then bA ⊆ R.

Theorem 2.6 Let A be a non-zero R-submodule of Q. Then the following are equivalent:

9



1. A is invertible.

2. A is projective.

3. A is finitely generated and flat.

4. A is finitely generated, and AP is principal over RP for every prime ideal P of R.

5. A is finitely generated, and AM is principal over RM for every maximal ideal M of

R.

2.4. Chain Conditions

An R-module M is called a Noetherian module if every ascending chain of sub-

modules of M is stationary, that is, if M1 ⊆ M2 ⊆ · · · ⊆ Mn · · · is an ascending chain of

submodules of M, there exists a positive integer m such that for all n ≥ m, then Mn = Mm.

A ring R is called Noetherian if R itself is a Noetherian R-module.

Theorem 2.7 The following statements are equivalent for a ring R:

1. R is Noetherian.

2. R satisfies the ascending chain condition on ideals, that is, any ascending chain of

ideals of R is stationary.

3. R has the maximal condition on ideals, that is, every nonempty set of ideals of R

possesses a maximal element.

4. Every prime ideal of R is finitely generated.

5. Every finitely generated R-module is Noetherian.

Lemma 2.1 Let M be a Noetherian R-module and f : M → M a homomorphism. Then

f is an isomorphism if and only if f is surjective.

An R-module M is called an Artinian module if every descending chain of sub-

modules of M is stationary, that is, if M1 ⊇ M2 ⊇ · · · ⊇ Mn · · · is a descending chain of

submodules of M, there exists a positive integer m such that for all n ≥ m, then Mn = Mm.

A ring R is called Artinian if R itself is a Artinian R-module.

10



Theorem 2.8 (Nakayama’s Lemma):) Let I be an ideal of R such that I ⊆ J(R), and M

a finitely generated module. If M = IM, then M = 0.

Theorem 2.9 Let I be an ideal of R such that I ⊆ J(R), and N be a submodule of an

R-module M.

1. If M/N is finitely generated and M/N = I(M/N), then N = M.

2. If M is finitely generated and N + IM = M, then N = M.

2.5. Discrete Valuation Rings

A discrete valuation on a field K is a function ν : K \ {0} → Z satisfying

(i) ν is surjective,

(ii) ν(x + y) = ν(x) + ν(y) for all x, y ∈ K \ {0},

(iii) ν(x + y) ≥ min{ν(x), ν(y)} for all x, y ∈ K \ {0} with x + y � 0.

The subring {x ∈ K | ν(x) ≥ 0} is called the valuation ring of ν.

An integral domain R is called a Discrete Valuation Ring (D.V.R) if R is the

valuation ring of a discrete valuation ν on T (R).

The valuation ν is often extended to all of K by defining ν(0) = +∞, in which case

(ii) and (iii) hold for all a, b ∈ K.

Example 2.2 The localization Z<p> of Z at any nonzero prime ideal < p > is a D.V.R with

respect to the discrete valuation νp on Q defined as follows. Every element a/b ∈ Q \ {0}
can be written uniquely in the form pn(a1)/b1 where n ∈ Z, a1/b1 ∈ Q \ {0} and both a1

and b1 are relatively prime to p. Define

νp

(a
b

)
= νp

(
pn a1

b1

)
= n.

One can easily check that the axioms for a D.V.R. are satisfied.

Theorem 2.10 The following properties of a ring R are equivalent:
11



1. R is a Discrete Valuation Ring.

2. R is a P.I.D. (Principal Ideal Domain) with a unique maximal ideal.

3. R is a U.F.D. (Unique Factorization Domain) with a unique (up to associates) irre-

ducible element.

4. R is a Noetherian integral domain that is also a local ring whose unique maximal

ideal is nonzero and principal.

5. R is a Noetherian, integrally closed, integral domain that is also a local ring of

Krull dimension 1 i.e. R has a unique nonzero prime ideal.

2.6. Star Operations

In this section, we will introduce the concept of star operations and mention fun-

damental definitions and properties. Mainly, we are interested in the most used star oper-

ations v, t and w.

2.6.1. Basic Properties of Star Operations

Let R be an integral domain with quotient field K and let F(R) denote the set of

all fractional ideals of R. A star operation is a mapping ∗ : F(R) → F(R) satisfying: for

any A, B ∈ F(R) and 0 � c ∈ K, we have

1. < c >∗=< c > and (cA)∗ = cA∗ ;

2. If A ⊆ B, then A∗ ⊆ B∗ ;

3. A ⊆ A∗ and (A∗)∗ = A∗.

For any fractional ideal A of R, A is called a fractional ∗-ideal if A∗ = A; A is

called a ∗-ideal of R if A is an ideal of R and A∗ = A.

12



Let ∗ be a star operation over R. Then ∗ is said to be of finite character if for any

fractional ideal A of R,

A∗ =
⋃
{B∗ | B is taken over all finitely generated fractional subideal of A}.

Let R be an integral domain with quotient field K. For nonzero fractional ideals I

and J of R, let (I :K J) := {x ∈ K | xJ ⊆ I}, Define the operations v, t and w as follows :

• Iv := (I−1)−1;

• It :=
⋃

Jv, where J ranges over the set of finitely generated subideals of I;

• Iw :=
⋃

(I :K J), where the union is taken over all finitely generated ideals J of R

with J−1 = R.

One can check that v, t and w-operations are ∗-operations. We note that t and w are star

operations of finite character over R.

Proposition 2.3 Let ∗ be a star operation over an integral domain R, and let A and B be

fractional ideals of R.

1. (AB)∗ = (A∗B)∗ = (AB∗)∗ = (A∗B∗)∗.

2. (A−1)∗ = A−1.

3. (A∗)−1 = A−1. Thus, if A∗ = B∗, then A−1 = B−1.

Definition 2.3 Let ∗ be a star operation over an integral domain R, and let A be a frac-

tional ideal of R. Then A is said to be of ∗-finite type if there is a finitely generated

fractional subideal B of A such that A∗ = B∗.

Definition 2.4 A fractional ideal I of R is a maximal ∗-ideal if it is maximal among all

proper integral ∗-ideals of R.

Theorem 2.11 Let ∗ be a star operation of finite character over an integral domain R.

1. If A is a proper ∗-ideal of R, then there exists a maximal ∗-ideal of R containing A.

2. Every maximal ∗-ideal of R is prime.
13



3. Let A ⊆ R. If A∗ = R, then AP = RP for any maximal ∗-ideal P of R.

4. Let A be a fractional ideal of R. Then A∗ =
⋂

(A∗)P, where P is taken over all

maximal ∗-ideals. In particular, A =
⋂

AM, where M is taken over all maximal

ideals.

2.6.2. ∗-Invertible Fractional Ideals

Let ∗ be a star operation over an integral domain R, and let A be a fractional ideal

of R. Then A is said to be ∗-invertible if there is a fractional ideal B of R such that

(AB)∗ = R.

Theorem 2.12 Let A and B be fractional ideals of R.

1. A is ∗-invertible if and only if (AA−1)∗ = R.

2. If A is a ∗-invertible fractional ideal, then A∗ = Av. Thus, every ∗-invertible frac-

tional ∗-ideal is a v-ideal.

3. If A is a ∗-invertible fractional ideal and (AB)∗ = R, then Bv = A−1. Thus, every

fractional v-ideal B satisfying (AB)∗ = R is uniquely determined.

4. AB is ∗ invertible if and only if A and B are ∗-invertible.

Theorem 2.13 Let ∗ be a star operation of finite character over an integral domain R

and let A be a fractional ideal of R. Then the following are equivalent:

1. A is ∗-invertible.

2. A∗ is ∗-invertible.

3. A is of ∗-finite type, and AP is a principal ideal of RP for any maximal ∗-ideal P of

R.

4. There exists a finitely generated fractional ideal B of R such that (AB)∗ = R.

Corollary 2.1 Let ∗ be a star operation of finite character over an integral domain R,

and let I be a fractional ideal of R.
14



1. If I is ∗-invertible, (I∗)M = IM for any maximal ∗-ideal M of R.

2. If I is a maximal ∗-ideal of R, then I is ∗-invertible if and only if II−1 � I.

Example 2.3 Let R be an integral domain with quotient field K.

• If A is an R-submodule of K, then A−1 is a w-module.

• If A is a fractional t-ideal of R, then At is a w-module. Thus, every t-ideal is a

w-ideal.

Theorem 2.14 Let R be an integral domain.

1. If I is an ideal of R, then Iw = R if and only if It = R.

2. If M is a prime ideal of R, then M is a maximal w-ideal if and only if M is a maximal

t-ideal.

3. If A is a fractional ideal of R, then A is w-invertible if and only if A is t-invertible.

Let Invt(R) be the set of all fractional t-invertible t-ideals of R. Then Invt(R)

becomes an Abelian group with identity R, under the t-product I∗J = (IJ)t, for each I, J ∈
Invt(R). The factor group Invt(R)/Prin(R), where Prin(R) is the group of all principal

ideals of R, is called the t-class group of R and denoted by Clt(R).

Remark 2.1 t-class group of R is trivial if and only if every w-invertible w-ideal is prin-

cipal. Assume that t-class group of R is trivial. Let I be a w-invertible w-ideal of R.

Then I is t-invertible by Theorem 2.14 (3) . Since t is a star operation of finite charac-

ter, Corollary 2.1 implies that (It)M = IM for any maximal t-ideal M of R. By Theorem

2.11, we have that It =
⋂

M∈t−Max(R)(It)M. So, we have It =
⋂

M∈t−Max(R)(I)M. On the other

hand, since I is a w-ideal, and w is a star operation of finite character, we obtain that

I = Iw = ∩M∈w−Max(R)(I)M. Again by Theorem 2.14, t−Max(R) = w−Max(R) implies that

I = Iw = It, that is, I is a t-ideal. Thus, I is principal by assumption. For the converse,

let I be a t-invertible t-ideal. Then I is w-invertible by Theorem 2.14. Also I ⊆ Iw ⊆ It

implies that I is a w-ideal. Hence, I is principal, and so t-class group of R is trivial.
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2.7. w-Modules

An ideal J of R is called a Glaz-Vasconcelos ideal, denoted by J ∈ GV(R), if J is

finitely generated and J−1 = R. An R-module M is called a w-module if Ext1
R(R/J,M) = 0

for any J ∈ GV(R). An R-module M is called a GV-torsion-free module if whenever

Jx = 0 for some J ∈ GV(R) and x ∈ M, we have that x = 0.

Proposition 2.4 The following statements hold for an R-module M:

1. If M is a GV-torsion-free module, then E(M) is a w-module.

2. Let {Mi | i ∈ Γ} be a family of modules. Then
∏

i Mi is a w-module if and only
⊕

i Mi

is a w-module if and only if each Mi is a w-module.

3. Every projective module is a w-module.

Theorem 2.15 Let M be a GV-torsion-free module. Then M is a w-module if and only

whenever Jx ⊆ M, where J ∈ GV(R) and x ∈ E(M), then x ∈ M.

Theorem 2.16 Let M be a GV-torsion-free module. Then M is a w-module if and only

whenever Jx ⊆ M, where J ∈ GV(R) and x ∈ E(M), then x ∈ M.

Theorem 2.17 The following statements are equivalent for a GV-torsion-free module M:

1. M is a w-module.

2. If 0→ M → N → C → 0 is an exact sequence in which N is a w-module, then C is

GV-torsion-free.

3. There exists an exact sequence 0 → M → N → C → 0 such that N is a w-module

and C is GV-torsion-free.

Proposition 2.5 Let M be a GV-torsion-free module. Then for any x ∈ M, Ann(x) is a

w-ideal of R. Thus, for any nonempty subset X of M, Ann(X) is also a w-ideal of R.

Proposition 2.6 Let M be a w-module, N a GV-torsion-free module, and f : M → N a

homomorphism. Then Ker( f ) is a w-submodule of M.

16



Let M be a GV-torsion-free module. Define

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}.

Then it is easy to see that Mw is a submodule of E(M), which is called the w-

envelope (or w-closure) of M.

Theorem 2.18 Let M be a GV-torsion-free module.

1. If N is a w-module with M ⊆ N, then Mw ⊆ N.

2. M is a w-module if and only if Mw = M.

3. If A is a submodule of M, then Aw ⊆ Mw.

4. (Mw)w = Mw. Thus, Mw is the smallest w-submodule of E(M).

5. If I is an ideal of R, then (IM)w = (IwMw)w.

Theorem 2.19 The following statements are equivalent for a module M:

1. M is GV-torsion.

2. If 0 → A → B → M → 0 is an exact sequence in which B is a w-module, then

Aw = B.

3. There exists an exact sequence 0 → A → F → M → 0 such that F is a w-module

and Aw = F.

Theorem 2.20 If I is a proper w-ideal of R, then there is a maximal w-ideal M of R such

that I ⊆ M. Therefore, R has at least one maximal w-ideal, and every maximal w-ideal is

prime.

Theorem 2.21 An R-module M is a GV-torsion module if and only MP = 0 for any

maximal w-ideal P of R.

Theorem 2.22 Let P be a prime w-ideal of R, and let M be a GV-torsion-free module.

Then MP = (Mw)P.
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Theorem 2.23 Let M be a GV-torsion-free module and let A and B be submodules of M.

Then Aw = Bw if and only if AM = BM for any maximal w-ideal M of R.

Proposition 2.7 Let P be prime w-ideal of R, and let N be an RP-module. Then N as an

R-module is a w-module.

Theorem 2.24 Let R be an integral domain, and let M be a torsion-free R-module. Then

Mw =
⋂

P∈w−max(R) MP.

An R-module M is called w-projective if M is of w-finite type, that is, Mw = Nw

for some finitely generated submodule N of M, and MP is a free RP-module for every

maximal w-ideal P of R.

Theorem 2.25 Let R be an integral domain and let I be a finite type fractional ideal of R.

Then I is a w-projective module if and only if I is w-invertible.

2.7.1. w-Exact Sequences

Let M and N be R-modules. A homomorphism f : M → N is called a w−mono-

morphism (respectively, a w-epimorphism, a w-isomorphism) if fM : AM → BM is

a monomorphism (respectively, an epimorphism, an isomorphism) for any maximal w-

ideal M of R.

Theorem 2.26 Let A and B be GV-torsion-free modules, and let f : A → B be a homo-

morphism.

1. f can be uniquely extended to a homomorphism from Aw to Bw.

2. If f is a w-isomorphism and g : Aw → Bw is an extension of f , then g is an isomor-

phism.

A sequence A → B → C of modules and homomorphisms is called a w-exact sequence

if the sequence AM → BM → CM is exact for any maximal w-ideal M of R.

Let M be an R-module. Then M is said to be w-flat if for any w-monomorphism f : A→
B, the induced sequence 1 ⊗ f : M ⊗R A→ M ⊗R B is a w-monomorphism.

Theorem 2.27 The following statements are equivalent for an R-module M:
18



1. M is w-flat.

2. For any w-exact sequence 0 → A → B → C → 0, the induced sequence 0 →
M ⊗R A→ M ⊗R B→ M ⊗R C → 0 is w-exact.

3. M is w-locally flat, that is, MP is a flat RP-module for any maximal w-ideal P of R.

4. The natural homomorphism M ⊗R I → IM is a w-isomorphism for any finite type

ideal I of R.

5. The natural homomorphism M ⊗R I → M is a w-isomorphism for any finite type

ideal I of R.
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CHAPTER 3

W-LOCALLY ISOMORPHIC TORSIONLESS

MODULES OVER WEAKLY MATLIS DOMAINS

In this chapter, we will compare w-weak isomorphism types that are w-locally

isomorphism, w-nearly isomorphism, and stable isomorphism for torsionless w-modules

over weakly Matlis domains (definitions are given below). This comparison will help us

to discuss Krull-Schmidt properties over some certain modules in the next chapter.

We first introduce some definitions and notations. An R-module G is called tor-

sionless if it is isomorphic to a submodule of a finitely generated free module. Any tor-

sionless module over an integral domain is torsion-free. If G is a torsion-free R-module,

then the divisible hull KG of G is K ⊗R G. We identify G with its image in KG. The

rank of G is the dimension of the K-vector space KG. We write G(n) for a direct sum of n

copies of G. We define w-weak isomorphism types which are w-versions of weak isomor-

phism types which are local, stable and near isomorphism. Two torsion-free R-modules

G and H are said to be nearly isomorphic if for every nonzero ideal I of R, there exists

a monomorphism f : G → H such that AnnR(Coker( f )) and I are comaximal, that is,

AnnR(Coker( f ))+ I = R, and two torsion-free R-modules G and H are said to be w-nearly

isomorphic if for every nonzero w-ideal I of R, there exists a monomorphism f : G → H

such that AnnR(Coker( f ) and I are w-comaximal, that is, (AnnR(Coker( f ))+ I)w = R. The

R-modules G and H are called locally isomorphic if GM � HM for all maximal ideals M

of R, and they are called w-locally isomorphic if GM � HM for all maximal w-ideals M of

R. The R-modules G and H are called stable isomorphic if G ⊕ R(n) � H ⊕ R(n) for some

integer n > 0. The R-modules G and H are called power isomorphic if G(n) � H(n) for

some integer n > 0.

Let R be an integral domain. R is said to be of finite t-character if every nonzero

nonunit of R is contained in only finitely many maximal t-ideals of R. Noetherian domains

and Krull domains (i.e., integral domains in which each nonzero ideal is t-invertible) are

domains of finite t-character. An integral domain R is a weakly Matlis domain if R is

of finite t-character and each prime t-ideal of R is contained in a unique maximal t-ideal.
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Krull domains are weakly Matlis, and an integral domain of t-dimension one is a weakly

Matlis domain if and only if it is of finite t-character. We know that the set of maximal

t-ideals and maximal w-ideals coincide. We denote this set by w −Max(R).

Recall that a GV-torsion-free R-module M (if whenever Jx = 0 for some J ∈
GV(R) and x ∈ M, we have that x = 0) is called a w-module if Mw = M, where the

w-envelope of M is the set given by Mw = {x ∈ M ⊗ K | Jx ⊆ M for some J ∈ GV(R)}.
There are various properties of weakly Matlis domains but we frequently use the

following ones in this study:

1. RP ⊗ RP′ = K, where K is the field of fractions of R, for any distinct maximal

w-ideals P and P′ [ (Anderson & Zafrullah, 1999), Lemma 4.1].

2. If M is a GV-torsion-free torsion R-module, then Mw � ⊕P∈w−Max(R)MP [ (El Bagh-

dadi & Kim & Wang, 2014), Corollary 2.4].

In (Goeters & Olberding, 2002), the authors compare weak isomorphism types

which are local, near, and stable isomorphisms for torsionless modules over an h-local

domain R (every nonzero nonunit element of R is contained in only finitely many maximal

ideals of R, and every prime ideal of R is contained in a unique maximal ideal of R). By

using these results, they were able to discuss the Krull-Schmidt properties of torsionless

modules and ideals over h-local domains [ (Goeters & Olberding, 2002), Theorem 3.4].

This study is followed by (Ay Saylam & Klingler, 2019), and the authors compare these

isomorphisms for torsionless modules over a finite character domain R (every nonzero

nonunit element of R is contained in only finitely many maximal ideals of R). We will

investigate under what conditions these w-weak isomorphism types for torsionless w-

modules over weakly Matlis domains coincide. This enables us to characterize the Krull-

Schmidt properties of w-ideals over strong Mori domains which will be introduced in the

next chapter.

Throughout this chapter, R will denote an integral domain with quotient field K,

if otherwise stated.
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3.1. Torsionless w-Modules over Weakly Matlis Domains

In this section, we will deal with torsionless w-modules over weakly Matlis do-

mains. The results we achieve will be a step towards the results we aim for.

Definition 3.1 Let R ⊆ T be an extension of integral domains. Then T is called a w-

linked extension of R if T is a w-module over R. In the case that R ⊆ T ⊆ K, we say that

T is a w-overring of R. Let T be a w-linked extension of R. For any fractional ideal of T ,

define ẇ : A �→ Aw. By the properties of w-modules, ẇ is a w-operation over R, which is

the induced finite character star operation over T . An ideal A of T with Aw = A is called

a ẇ ideal. For any ideal A of T , Aẇ = Aw.

Lemma 3.1 Let R be an integral domain with quotient field K,M a nonempty collection

of maximal w-ideals of R and S :=
⋂

M∈M RM. If R is a weakly Matlis domain, then S is a

weakly Matlis domain, and

ẇ-Spec(S ) = {PS | P is a prime w-ideal of R such that P ⊆ M for some M ∈ M}.
Proof We first show that S is a w-linked overring, that is, S w = S . Let Q be a maximal

w-ideal of R. If Q ∈ M, then S RQ = (
⋂

M∈M RM)RQ = RQ. If Q � M, then S RQ =

(
⋂

M∈M RM)RQ =
⋂

M∈M RMRQ = K since R is a weakly Matlis domain. Hence,

S w =
⋂

Q∈w-Max(R)

S RQ =
⋂
Q∈M

S RQ ∩
⋂

Q∈w-Max(R)\M
S RQ

=
⋂
Q∈M

RQ ∩ K =
⋂
Q∈M

RQ = S .

Next, let P be a prime w-ideal of R such that P ⊆ M for some M ∈ M. Then

PS RM = PRM. Let Q be a maximal w-ideal of R distict from M. If Q ∈ M, then

PS RQ = PRQ = RQ since R is a weakly Matlis domain and M is the unique maximal
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w-ideal of R containing P. If Q �M, then PS RQ = K. Therefore,

(PS )w =
⋂

Q∈w-Max(R)

PS RQ

=PS RM ∩
⋂

Q∈M\{M}
PS RQ ∩

⋂
Q∈w-Max(R)\M

PS RQ

=PRM ∩
⋂
Q∈M

RQ ∩ K

=PRM ∩ S .

We note that (PS )w � S because if (PS )w = S , then PRM ∩ S = S which implies that

PRM ∩ S RM = S RM. Thus, PRM = RM; a contradiction. Hence, (PS )w � S . Since S

is a w-linked extension and PS is a prime ideal of S , [ (Wang & Kim, 2016), Theorem

7.7.7(2)] implies that (PS )ẇ = (PS )w = PS , so PS is a prime ẇ-ideal of S . Now, for

the reverse containment, let Q be a prime ẇ-ideal of S and put P := Q ∩ R. It suffices to

show QRM = PS RM for each maximal w-ideal M of R. If M ∈ M, then S RM = RM and

PS RM = (Q ∩ R)RM = QRM. If M �M, then S RM = K and PS RM = PK = QRM. Thus,

Q = (PS )w � S , and hence Q = (PS )w = PS [ (Wang & Kim, 2016), Theorem 7.7.7(2)].

Since for every M ∈ M, (MS )w � S , every maximal ẇ-ideal Q of S has the

form MS for some M ∈ M Also, M ⊆ MS ∩ R ⊆ MRM ∩ R = M which implies that

M = MS ∩ R. Thus, S is a (w, ẇ)-flat overring of R by [ (El Baghdadi & Fontana, 2004),

Proposition 4.4 (iv)]. Also, we note that ẇ-Max(S ) = w′-Max(S ), where w′ is the w-

operation on S ; to see this, let Q be a maximal ẇ-ideal of S . Since ẇ and w′ are two

star operations on S such that ẇ ≤ w′, Q = Qẇ ⊆ Qw′ = (Qẇ)w′ = (Qw′)ẇ. Thus, Qw′

is a ẇ-ideal, and hence Q = Qw′ . Let Q′ be a maximal w′-ideal of S such that Q ⊆ Q′.

Then Q ⊆ Q′ = Q′w′ = (Q′ẇ)w′ = (Q′w′)ẇ = Q′ẇ implies that Q = Q′. Hence, Q becomes a

maximal w′-ideal.

Moreover, S is a weakly Matlis domain because it is clear that each element of

S is contained in only finitely many maximal ẇ-ideals, and hence maximal w′-ideals of

S by the previous paragraph. To see the second property, let Q be a prime ẇ-ideal of S .

Then Q = (Q∩R)S , where Q∩R ⊆ M for some M ∈ M. If M′S is a maximal ẇ-ideal of

S distinct from MS containing Q, then Q ∩ R ⊆ M′S ∩ R = M′; a contradiction. �
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Lemma 3.2 Let R be a weakly Matlis domain with quotient field K, and let G and H

torsionless R-modules such that H is a w-module. Then the canonical homomorphism

HomR(G,H)M → HomRM (GM,HM)

is an isomorphism for all maximal w-ideals M of R.

Proof We first note that for torsionless R-modules G and H, the canonical homomor-

phism

HomR(G,H) ⊗ K → HomR(G,HK)

is an isomorphism. Let M be a maximal w-ideal of R, and T := HM/H which is a GV-

torsion-free torsion R-module. Consider the following exact sequence

0 �� HomR(G,H)M
α �� HomR(G,HM)

β �� HomR(G,T )M.

Since HomR(G,HM) is an RM-module, HomR(G,HM)M � HomR(G,HM). Since

HomR(G,HM) ⊆ HomR(G,HK) � HomR(G,H) ⊗ K,

HomR(G,HM)/ Im(α) is a torsion module because for each f ∈ HomR(G,HM), there exists

a nonzero r ∈ R such that r f ∈ HomR(G,H) ⊆ HomR(G,H)M = Im(α), which implies

that r( f + Im(α)) = Im(α). Hence, Im(β) is torsion because

Im(β) �
HomR(G,HM)

Ker(β)

�
HomR(G,HM)

Im(α)
.

Since T is a GV-torsion-free torsion module, (El Baghdadi & Kim & Wang, 2014)[Theo-

rem 2.3 (2)] and (Wang & Kim, 2016), Theorem 6.2.6 imply that Tw = ⊕N∈w-Max(R)TN . By

[ (Anderson & Chun, 2014), Theorem 2.3] and the assumption that R is a weakly Matlis
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domain,

t(HomR(G,Tw)) =t(HomR(G,⊕N∈w-Max(R)TN))

�t(⊕N∈w-Max(R) HomR(G,TN))

� ⊕N∈w-Max(R) t(HomR(G,TN)).

Hence,

(t(HomR(G,Tw)))M � ⊕N∈w-Max(R)(t(HomR(G,TN)))M.

Let N be a maximal w-ideal of R distinct from M. Then

(t(HomR(G,TN)))M =t(HomR(G,TN)) ⊗R RM

�t(HomR(G,TN)) ⊗R RN ⊗R RM

�t(HomR(G,TN)) ⊗ K

=0,

where the first isomorphism follows from the fact that t(HomR(G,TN)) is an RN-module.

Since TM = 0, then (t(HomR(G,TM)))M = 0. Therefore,

(t(HomR(G,Tw)))M = 0.

Since HomR(G,T ) ⊆ HomR(G,Tw), we have

t(HomR(G,T )) ⊆ t(HomR(G,Tw))

which implies that

(t(HomR(G,T )))M ⊆ (t(HomR(G,Tw)))M = 0,
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and hence by [ (Anderson & Chun, 2014), Theorem 2.3 (3)],

t(HomR(G,T )M) = (t(HomR(G,T )))M = 0.

Since Im(β) is torsion and a subset of HomR(G,T )M,

Im(β) =t(Im(β))

⊆t(HomR(G,T )M)

=0,

which implies that α is an isomorphism since Im(β) �
HomR(G,HM)

HomR(G,H)M
. Therefore,

HomRM (GM,HM) �HomRM (G ⊗R RM,HM)

�HomR(G,HomRM (RM,HM))

�HomR(G,HM)

�HomR(G,H)M.

�

Lemma 3.3 Let R be a weakly Matlis domain and S :=
⋂

M∈M RM, whereM is a nonempty

collection of maximal w-ideals of R. Then for torsionless R-modules G and H with H a

w-module, we have the isomorphism

[HomR(G,H) ⊗R S ]Q � [HomS (GS ,HS )]Q

for every maximal ẇ ideal Q of S .

Proof It suffices to show that the canonical map

φM : (HomR(G,H) ⊗R S )Q → (HomS (GS ,HS ))Q
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is an isomorphism for each maximal ẇ-ideal Q of S . Let Q be a maximal ẇ-ideal of S .

Then by Lemma 3.1, Q = MS for some M ∈ M. Also, note that S MS = S Q = RM.

Therefore,

(HomR(G,H) ⊗R S )Q �HomR(G,H) ⊗R S ⊗S S Q

�HomR(G,H) ⊗R S ⊗S S MS

�HomR(G,H) ⊗R RM

�HomRM (GM,HM)

�HomS MS (GS M,HS M)

�HomS (GS ,HS ) ⊗S S MS

�(HomS (GS ,HS ))Q,

�

Lemma 3.4 [ (Anderson & Zafrullah, 1999), Theorem 3.3] Let R be an integral domain

of finite t-character and I an ideal of R. Then Iw is of finite type if and only if IM is a

finitely generated ideal of RM for every maximal w-ideal M of R.

Proof Take any nonzero element x ∈ I. Since R is of finite t-character, x is contained

in only finitely maximal w-ideals, say P1, . . . , Pn. Let M be any maximal w-ideal of R

different from Pi for i = 1, 2, . . . , n. Then xRM = RM implies IRM = RM. By assumption,

there exists a finite subset A contained in I which generates IPi . Let X be the finite set

A ∪ {x} and J the ideal of R which is generated by X. By construction of X, we have

IPi = JPi . Hence, by [ (Wang & Kim, 2016), Theorem 7.2.11], Iw = Jw that is Iw is of

finite type. The converse part is true without the condition that R is of finite t-character.

To see that, if I is of w-finite type, then there exists a finitely generated subideal J of I

such that Iw = Jw. Since (Iw)M = IM for every w-maximal ideal M, the result is clear. �

Let us recall the definition of w-projective module. An R-module M is called w-

projective if M is of w-finite type, that is, Mw = Nw for some finitely generated submodule

N of M, and MP is a free RP-module for every maximal w-ideal P of R.

Lemma 3.5 Let R be a finite t-character domain and G a torsionless w-module. If GP is

free RP-module for all maximal w-ideal P of R, then G is a w-projective module.
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Proof If G is a torsionless R-module, there is an embedding φ : G → R(n) for some

positive integer n. If GP is free for all maximal w-ideals P of R, then GP is finitely

generated for all P ∈ w-Max(R). Since G is a w-module, each coordinate of φ(G) is a

w-ideal by [ (Wang & Kim, 2016), Proposition 6.1.13]. Since R is of finite t-character,

localization of coordinates of φ(G) are proper in only finitely many maximal w-ideals of

R and are finitely generated. Hence, by Lemma 3.4, each coordinate is a w-finite type

module and this yields G is a w-projective R-module [ (Wang & Kim, 2016), Theorem

6.7.21]. �

Proposition 3.1 Let R be a weakly Matlis domain and G a torsionless w-module with

rank(G) = 2. If GP is a free RP-module for all maximal w-ideal P of R, then G � R ⊕ N

for some R-module N.

Proof Since G is a torsionless module of rank two, there is a map ϕ = ( f , g) : G → R⊕R

such that the cokernel C := Coker(ϕ) is a torsion R-module, and hence I := Ann(C) � 0.

For all maximal w-ideals P of R such that I � P, the map ϕP = ( fP, gP) is surjective

because CP = 0. Since R is of finite t-character, I is contained in only finitely many

maximal w-ideals P1, . . . , Pn of R, for which fPi is not surjective. Since R is a weakly

Matlis domain, the map τ : HomR(G,R) ⊗R G → R by τ( f , x) = f (x) for f ∈ HomR(G,R)

and x ∈ G, is w-surjective because for all maximal w-ideals P of R,

(Hom(G,R) ⊗R G)P �Hom(G,R) ⊗R GP

�HomR(G,R) ⊗R R(n)
P

� ⊕n HomR(G,R) ⊗R RP

� ⊕n HomRP(GP,RP),

and hence τP : (HomR(G,R) ⊗R G)P → RP is surjective which implies that (Im(τ))w = R.

Thus, Im(τ) � P for all maximal w-ideal P of R. Hence, there exists y ∈ Im(τ) \ P such

that y = τ(h ⊗ x) = h(x) for some h ∈ HomR(G,R) and x ∈ P. Since h(x) � P, it implies

that hP is surjective. In particular, for each i = 1, . . . , n, there exists a homomorphism

hi ∈ HomR(G,R) such that (hi)Pi is surjective. For each i = 1, . . . , n, let ri ∈ ∏
j�i P j,

and set h := r1h1 + . . . + rnhn. Then hPi is surjective for each i = 1, . . . , n. Define

ψ = ( f , h) : G → R ⊕ R. It follows that Im(ψ) has rank two. As above, the cokernel
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D := Coker(ψ) is a torsion R-module, and hence J := Ann(D) � 0. For each maximal

w-ideal Q of R not containing J, ψQ is surjective since DQ = 0. Let Q1, . . . ,Qt be the

maximal w-ideals of R containing J. Note that, by choice of f and h, for every maximal

w-ideal P of R, at least one of fP and hP is surjective. Number the maximal w-ideals

Q1, . . . ,Qt so that hQi is surjective for i = 1, . . . , s but not for i = s+1, . . . , t. Let u = (1, 0)

and v = (0, 1) in R ⊕ R, and denote by ūi and v̄i the images of u and v in DQi . Then for

i = 1, . . . , s, there is an element xi ∈ GQi such that hQi(xi) is unit in RQi so that ψQi(xi) and

u generate RQi ⊕RQi and hence DQi is cyclic generated by ūi. Similarly, for i = s+1, . . . , t,

there is an element xi ∈ GQi such that fQi(xi) is unit in RQi so that ψQi(xi) and v generate

RQi ⊕RQi and hence DQi is cyclic generated by v̄i. Choose r ∈ Q1 · · ·Qs \ (Qs+1 ∪ . . .∪Qt.

We claim that ūi + rv̄i is a generator for DQi for each i = 1, . . . , t. For i = 1, . . . , s, the

claim follows from Nakayama’s Lemma because ūi generates DQi and r ∈ QiRQi . For

i = s + 1, . . . , t, there is an element xi ∈ GQi such that fQi(xi) is a unit while hQi(xi) is a

non-unit in RQi; since r is a unit in RQi , again it follows from Nakayama’s Lemma that

ψQi(xi) = ( fQi(xi), hQi(xi)) and u + rv generate RQi ⊕ RQi and hence DQi is generated by

ūi + rv̄i. Since DP = 0 for maximal w-ideals P of R not containing J, it follows from the

claim that Dw is cyclic, generated by the coset u + rv + (ψ(G))w in Dw. Considering the

exact sequences 0 → (Im(ψ))w → R ⊕ R → R ⊕ R/(Im(ψ))w → 0, and 0 → (Im(ψ))w →
R ⊕ R→ Dw, it follows that Dw = R ⊕ R/(Im(ψ))w.

Thus, for some scalar a ∈ R, β := v − a(u + rv) ∈ (ψ(G))w. Hence, there is a

J ∈ GV(R) such that βJ ⊆ ψ(G). Let j ∈ J and α := jβ = ψ(g) for some g ∈ G. Then

R(u + rv) + Rα = Ru + Rv = R ⊕ R so that R(u + rv) + Rα = R(u + rv) ⊕ Rα with

Rα � R as R-modules. Finally, composing ψ with the projection map to Rα in the direct

sum R(u + rv) ⊕ Rα yields a surjection from G onto Rα (because ψ(g) = α), and since

Rα � R is projective, so the surjection G → R splits which implies that G � N ⊕ R for

some R-module N. �

Remark 3.1 Let R be an integral domain with quotient field K. If M is a w-projective

GV-torsion-free module of rank 1, then M is isomorphic to a w-invertible ideal of R. First

we note that M is torsion-free [ (Wang & Kim, 2016), Theorem 6.7.11]. Since M is

torsion free, f : M → M ⊗ K is injective. This gives M is isomorphic to an R-submodule

of K because dim(M ⊗ K) = 1 implies M ⊗ K � K. Suppose M � Y where Y is an R-

submodule of K. Then Mw � Yw, and since M is w-finite type, Yw = Xw for some finitely
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generated submodule X ⊂ Y . Since X is finitely generated, there exists an element s ∈ R

such that sX ⊆ R. From the containment (sX)w = sXw ⊆ R, we get sY ⊆ sYw ⊆ R. Thus,

we see that Y is a fractional ideal of R. Over any domain, a fractional ideal is isomorphic

to an integral ideal of R, so M � I, where I is an ideal of R. Since I is w-projective by

assumption, I is w-invertible by [ (Wang & Kim, 2016), Theorem 7.2.18].

Corollary 3.1 Let R be a weakly Matlis domain and G a torsionless w-module with

rank(G) ≥ 2. If GP is free RP-module for all maximal w-ideal P of R, then G is iso-

morphic to a direct sum of a free R-module and a w-invertible ideal of R.

Proof By Proposition 3.1, G � R ⊕ G′ for some torsionless module such that G′P is

free for each maximal w-ideal P of R and rank(G′) = rank(G) − 1. By applying the same

argument to G′, we obtain that G is isomorphic to a direct sum of a free R-module and a

w-invertible ideal of R. �

3.2. Comparision of w-Weak Isomorphism Types

In this section, we will compare w-weak isomorphism types for torsionless w-

modules over weakly Matlis domains. Under some assumptions, these isomorphisms

coincide, and under some certain conditions they imply even isomorphism.

First let us recall two important theorems.

Theorem 3.1 ( (Wang & Kim, 2016),Theorem 6.2.6) The following statements are equiv-

alent for a module M:

1. M is GV-torsion.

2. If 0 → A → B → M → 0 is an exact sequence in which B is a w-module, then

Aw = B.

3. There exists an exact sequence 0 → A → F → M → 0 such that F is a w-module

and Aw = F.

In the following theorem, for an R-module M, let ΦM be the canonical map

ΦM : M →
⊕

P∈w−Max R

MP defined as Φ(m) = (· · · ,m ⊗ 1, · · · ), x ∈ M.
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Theorem 3.2 ( (El Baghdadi & Kim &Wang, 2014), Theorem 2.3) Let R be an inte-

gral domain. The following conditions are equivalent:

1. R is a weakly Matlis domain;

2. For every GV-torsion-free torsion module A, there exists an exact sequence

0 −→ A
ΦA−→

⊕
P∈w−Max(R)

AP −→ B→ 0.

for some GV-torsion R-module B;

3. For every nonzero w-submodule L of K, there exists an exact sequence

0 −→ (K/L)
ΦK/L−→

⊕
P∈w−Max(R)

(K/L)P −→ B→ 0

for some GV-torsion R-module B;

4. There exists an exact sequence

0 −→ (K/R)
ΦK/R−→

⊕
P∈w−Max(R)

K/RP −→ B→ 0

for some GV-torsion R-module B.

The following two lemmas are the main tools which are used broadly in a series

of results to compare w-local, w-near, and stable isomorphism of torsionless w-modules

over weakly Matlis domains.

Lemma 3.6 If R is a weakly Matlis domain, and I is w-ideal of R, then (R/I)w is a finite

direct sum of local rings.

Proof Let I be a w-ideal of R. We first claim that (R/I) is GV-torsion-free. Suppose

that J(R/I) = 0 for some J ∈ GV(R). Then for any j ∈ J and x + I ∈ R/I, we have that

j(x + I) = I. This implies Jx ⊆ I. Since I is a w-ideal, we must have x ∈ I. Thus if I is a

w-ideal of a weakly Matlis domain R, then we have the following exact sequence
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0 −→ (R/I)
ΦR/I−→

⊕
P∈w−Max(R)

(R/I)P −→ B→ 0,

where B is a GV-torsion-free module by Theorem 3.2. Thus, by Theorem 3.1, we con-

clude that (R/I)w = ⊕P∈w−Max(R)(R/I)P Since R is a weakly Matlis domain, I is contained

in only finitely many maximal w-ideals of R. Hence (R/I)w is a finite direct sum local

rings.

�

Lemma 3.7 Let R be a weakly Matlis domain, F a finitely generated free R-module and

I a w-ideal of R. If φ is an (R/I)w- automorphism of (F/IF)w such that det(φ) = 1, then φ

lifts to an automorphism of F.

Proof Since R is a weakly Matlis domain, (R/I)w is a finite direct sum of quasilocal

rings by Lemma 3.6. Therefore, the result follows from the same technique used in [Chase

(1962), Lemma 3.1]. �

Lemma 3.8 Let A1, · · · , An be GV-torsion-free R-modules. Then we have

(A1 ⊕ . . . ⊕ An)w = (A1)w ⊕ . . . (An)w.

Proof Take any element a ∈ (A1 ⊕ . . . ⊕ An)w. Then x ∈ (A1 ⊕ . . . ⊕ An) ⊗ K such that

xJ ⊆ A1 ⊕ . . . ⊕ An for some J ∈ GV(R). Let x = (a1, . . . , an) for some ai ∈ Ai ⊗ K.

Now aJ = (a1, . . . , an)J = (a1J, . . . , anJ) ⊆ A1 ⊕ . . . ⊕ An implies that aiJ ⊆ Ai for each

i = 1, . . . , n. Thus, ai ∈ (Ai)w for i = 1, . . . , n, and hence a ∈ (A1)w ⊕ . . . ⊕ (An)w. For

the reverse containment, assume that (a1, . . . , an) ∈ (A1)w ⊕ . . . ⊕ (An)w. Then for each

i = 1, . . . , n, ai ∈ Ai ⊗ K and aiJi ⊆ Ai for some Ji ∈ GV(R). Set J := J1 · · · Jn. Then J ∈
GV(R) by [ (Wang & McCasland, 1997), Lemma 1.1], and (a1, . . . , an)J ⊆ A1 ⊕ . . . ⊕ An.

That is, (a1, . . . , an) ∈ (A1 ⊕ . . . ⊕ An)w. Thus (A1)w ⊕ . . . ⊕ (An)w ⊆ (A1 ⊕ . . . ⊕ An)w. �

Before the next lemma, we note that if M is an R-module and N is a w-submodule

of M, one can easily show that M/N is a GV-torsion-free R-module.
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Lemma 3.9 Let R be a weakly Matlis domain, and let F1 and F2 be finitely generated free

R-modules of the same rank n. Suppose that G is a w-submodule of F1 with rank n and H

is w-submodule of F2 with rank n. If (F1/G)w � (F2/H)w, then there is an isomorphism

α : (F1 ⊕ R)→ (F2 ⊕ R) such that α(G ⊕ R) = H ⊕ R.

Proof Since F1 and F2 are finitely generated free modules of the same rank, there is

an isomorphism φ : F1 → F2. So, F1/G � F2/φ(G) implies (F1/G)w � (F2/φ(G))w �

(F2/H)w. To prove the lemma, it is enough to assume that there is a rank n free R-module

F such that (F/G)w � (F/H)w, where G,H ⊆ F. Let I = AnnR(F/G)w. Then I is a w-ideal.

Since Ann(M) = Ann(Mw) for an R-module M, we have that IF ⊆ G. Since R is a weakly

Matlis domain, I is contained in only finitely many maximal w-ideals, say P1, . . . , Pn. By

[ (El Baghdadi & Kim & Wang, 2014), Corollary 2.4], we have the following primary

decomposition of the modules , (F/IF)w = ⊕n
i=1(F/IF)Pi , (G/IF)w = ⊕n

i=1(G/IF)Pi and

(H/IF)w = ⊕n
i=1(H/IF)Pi . (F/G)w � (F/H)w implies (F/G)p � (F/H)P for every maximal

w-ideal P of R. Thus, we have

(F/IF)w

(G/IF)w
�

n⊕
i=1

(F
G

)
Pi

�
n⊕

i=1

( F
H

)
Pi

�
(F/IF)w

(H/IF)w
.

It is clear that (F/IF)w is a finitely generated free (R/I)w-module, and we know that (R/I)w

is a direct sum of quasilocal rings. By [ (Goeters & Olberding, 2001), Lemma 2.1], there

exists an automorphism β : (F/IF)w → (F/IF)w such that β((G/IF)w) = (H/IF)w. Since

u = det β is a unit in (R/I)w, β can be extended to an automorphism β′ of (F/IF)w⊕ (R/I)w

such that β′((G/IFw)) ⊕ (R/I)w = (H/IF)w ⊕ (R/I)w, where β′ = β ⊕ u−1, u−1 is the

multiplication map by u−1. We note that detβ′ = 1. Let F′ = F ⊕ R, then F′/IF′ =

(F ⊕ R)/(IF ⊕ I) implies (F′/IF′)w = ((F ⊕ R)/(IF ⊕ I))w by [ (Wang & Kim, 2016),

Theorem 6.3.2]. Thus, by Lemma 3.7, β′ lifts to an automorphism of α of F ⊕ R such

that β′(((F ⊕ R)/(IF ⊕ I)))w = (α(F ⊕ R)/(IF ⊕ I))w. Since (α(G ⊕ R)/(IF ⊕ I))w =

β′(((G ⊕ R)/(IF ⊕ I)))w = ((H ⊕ R)/(IF ⊕ I))w, for any maximal w-ideal, we have (α(G ⊕
R)/(IF⊕I)P = (H⊕R)/(IF⊕I)P which gives (α(G⊕R))P = (H⊕R)P. Since G⊕R � α(G⊕R)

and G and H are w-modules, so are α(G ⊕ R) and H ⊕ R. Hence α(G ⊕ R) = (H ⊕ R). �

Lemma 3.10 Let R be a weakly Matlis domain, and let F be a free R-module of rank

n. If G is a w-submodule of F with rank n and H is a torsionless w-module, that is w-
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locally isomorphic to G, then there exists a w-projective w-submodule P of KH such that

(F/G)w � (P/H)w.

Proof Since G has rank n, we have dim(K ⊗ G) = dim(K ⊗ F) = n. So KG is an

n-dimensional subspace of KF, and hence KF = KG. Since F is finitely generated, there

exist x1, . . . , xn ∈ F such that F = Rx1 + . . . + Rxn. For each xi/1 ∈ KF = KG, so

xi/1 = gi/si for some gi ∈ G, si ∈ R. Then we can write sixi = gi since F is torsionless.

Let s = s1 · · · sn. It is clear that sF ⊆ G. Since G and H are w-locally isomorphic, H is a

torsionless module of rank n. Thus, there exists an injection of H into F, and composing

this with multiplication by s yields an injection of H into G, that is, H is isomorphic to an

R-submodule of G, so replacing H by its image under this isomorphism, we can assume

H ⊆ G. Since H has rank n, we have KF = KH, and by a similar argument, there is an

element b ∈ R, bF ⊆ H. Therefore, I = Ann(F/H)w � 0.

Since R is a weakly Matlis domain, I is contained in only finitely many maxi-

mal w-ideals, say M1, . . . ,Mt. If M � Mi, then FM = HM = GM since F/G is finitely

generated. On the other hand, for each index i, 1 ≤ i ≤ t, there is an isomorphism of

RMi-modules φi : GMi → HMi . Since Hom(G,H) ⊗ RMi � HomRMi
(GMi ,HMi) by Lemma

3.2, φi corresponds to a sum f1 ⊗ r1

s1
+ . . . + fk ⊗ rk

sk
where f1, . . . , fk ∈ Hom(G,H),

r1, . . . , rk ∈ R, s1, . . . , sk ∈ R \ Mi. Let bi = s1 · . . . · sk ∈ R \ Mi so that biφi corre-

sponds to ( f1
bir1

s1
+ . . . + fk

birk
sk

) ⊗ 1RMi
= σi ⊗ 1RMi

= biφi = ϕi.

Since φi is an isomorphism and bi is a unit in RMi , ϕi is an isomorphism between

GMi and HMi . Also ϕi = σi ⊗ 1RMi
, σi ∈ Hom(G,H) implies that ϕi(G) ⊆ H. Here, we

identify G and H with their images in G ⊗ RMi = GMi and H ⊗ RMi = HMi . Identifying

GMi ⊗K and HMi ⊗K with KH = KG = KF, let ϕ̃i = ϕi⊗1K . Then ϕ̃i is an automorphism

of KF because ϕi is an isomorphism between two RMi-modules of rank n. Since FMi is

a free RMi-module of rank n, so is ϕ̃i(FMi) = Fi. Since ϕ̃i(FMi) = Fi and ϕ̃i(GMi) = HMi ,

ϕ̃i induces an isomorphism FMi/GMi � Fi/HMi . Let P = F1 ∩ . . . ∩ Ft ∩ F. Since each

Fi � R(n)
Mi

, P is w-module by [ (Wang & McCasland, 1997), Proposition 1.4] and [ (Wang

& Kim, 2016), Proposition 6.2.18]. For any Mi � M ∈ w − Max(R), PM = FM since

(Fi)M = ϕ̃i((FMi)M) = ϕ̃i(KF) = KF. For each index i, 1 ≤ i ≤ t, PMi = Fi since

(Fi)M j = ϕ̃i((FMi)M j = ϕ̃i(KF) = KF when i � j and (Fi)Mi = ϕ̃i(FMi) = Fi. Therefore,

PM is a free RM-module for every maximal w-ideal M of R.

Now, we need to show that P is torsionless. If M � Mi is a maximal w-ideal of
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R, then we have HM = PM = FM by construction of P. For each index i, 1 ≤ i ≤ t,

HMi = ϕi(GMi) ⊆ ϕ̃i(FMi) = Fi = PMi . Therefore, H ⊆ P because P and H are w-modules.

We also have bP ⊆ H since bPM = bHM and bPMi = bFi = ϕ̃i(bFMi) ⊆ ϕ(GMi) = HMi .

Thus, bP is a torsionless module, and bP � P implies that P is also torsionless. Hence, by

Lemma 3.5, P is a w-projective module. Finally, since R is a weakly Matlis domain, we

have the decompositions of the modules (F/G)w =
⊕

M∈w−Max(R)
(F/G)M and (P/H)w =⊕

M∈w−Max(R)
(P/H)M, and this gives the desired isomorphism.

�

Recall the t-class group of R. Let Invt(R) be the set of all fractional t-invertible

t-ideals of R and Prin(R) be the set all principal fractional ideals of R. Then Invt(R)

becomes an Abelian group with identity R, under the t-product I ∗ J = (IJ)t, for each

I, J ∈ Invt(R). The factor group Invt(R)/Prin(R) is called the t-class group of R and

denoted by Clt(R). Note that t-class group of R is trivial if and only if every w-invertible

w-ideal is principal by Remark 2.1.

The next proposition will be needed in the next chapter when determining Krull-

Schmidt properties of w-ideals of a strong Mori domain. It shows that under some as-

sumptions, w-locally isomorphism implies isomorphism. The assumptions on R with

trivial t-class group and one of the modules has a direct summand isomorphic to an ideal

of R make a remarkable contribution to this result.

Proposition 3.2 Let R be a weakly Matlis domain with trivial t-class group. If G and H

are w-locally isomorphic torsionless w-modules, and G has a direct summand isomorphic

to an ideal of R, then G � H.

Proof Since G has a direct summand isomorphic to a nonzero ideal of R, we can assume

G = X⊕Ig, where I is an ideal of R and g ∈ G. Since G is torsionless, X is also torsionless.

So, there exists a finitely generated free module F′ such that A ⊆ F′. By the proof of

Lemma 3.10, we can write A ⊆ F′ ⊆ KA ⊆ KG. Define the free module F = F′ ⊕ Rg.

Clearly, G ⊆ F. Then, there exists a w-projective w-module P such that (F/G)w � (P/H)w

again by Lemma 3.10. Then P = F̃⊕J, where J is a w-invertible ideal of R, and F̃ is a free

R-module by Corollary 3.1. Since the t-class group of R is trivial, J is principal. So, there

exists a free module F2 such that (F/G)w � (F2/G)w such that (F/G)w � (F2/H)w. Since

F and F2 has rank n, F � F2, and without loss of generality, we may assume H ⊆ F and

(F/G)w � (F/H)w. Now, we have (F/G)w � (F′/X)w ⊕ (R/J)w by [ (Wang & Kim, 2016),
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Theorem 6.3.2]. Let I = Ann(F/G)w. Since R is a weakly Matlis domain, following a

similar argument as in Lemma 3.9, we get (F/IF)w/(G/IF)w � (F/IF)w/(H/IF)w. Thus,

by (Goeters & Olberding, 2001), Lemma 2.1, there is an automorphism φ : (F/IF)w →
(F/IF)w such that φ((G/IF)w) = (H/IF)w. If u = det φ, then u is a unit in (R/I)w, and we

can define a new automorphism ψ : (F/IF)w → (F/IF)w such that ψ = (a, b) = (a, u−1b)

for all a ∈ (F/IF)w and b ∈ (R/I)w, where u−1 is the multiplication map by u−1. Then

ψ((G/IF)w) = (H/IF)w. Since detψ = u · u−1 = 1, by [ (Goeters & Olberding, 2001),

Lemma 2.2], ψ lifts to an automorphism α of F such that ψ((F/IF)w) = (α(F)/IF)w.

Therefore, α(G) = H by a similar argument as in the proof of Lemma 3.9. �

Lemma 3.11 Let R be a weakly Matlis domain, I a nonzero ideal of R and n a positive

integer. If (In)w � R, then I(n)
w � R(n).

Proof Assume that (In)w � R. Then (In)w = xR for some x ∈ R. Hence, In is of finite

type. Since In is w-locally free, In is w-projective, and hence In is w-invertible by [ (Wang

& Kim, 2016), Theorem 7.2.18]. Thus, I is w-invertible, and hence I(n)
w is w-projective. By

Corollay 3.1, there exist a free module F and a w-invertible ideal J such that I(n)
w � F ⊕ J.

Taking the n-th exterior powers of I(n)
w and F ⊕ J, (Iw)n � J � R, and hence I(n)

w � R(n) by [

(Kaplansky, 1952), Lemma 1]. �

Now, we are going to show that given two torsionless w-modules over a weakly

Matlis domain with torsion t-class group, w-locally isomorphism implies power isomor-

phism.

Proposition 3.3 Let R be a weakly Matlis domain with torsion t-class group. If G and

H are w-locally isomorphic torsionless w-modules , then there exists n > 0 such that

G(n) � H(n).

Proof By Lemma 3.10, there exist w-projective w-modules P1 and P2 such that

(P1/G)w � (P2/H)w. Since P1 and P2 are w-projective modules, there exist free R-

modules F1 and F2 and w-invertible ideals J1 and J2 such that P1 � F1 ⊕ J1 and P2 �

F2 ⊕ J2 by Corollary 3.1. We note that J1 and J2 are w-ideals by [ (Wang & Kim, 2016),

Proposition 6.1.13]. Let J be a w-invertible w-ideal. Since t-class group of R is torsion,

there exists a positive integer k such that (Jk)w = R. Thus, J(k) � R(k) by Lemma 3.11.

Following this argument, there exists a positive integer k such that P(k)

1
and P(k)

2
are free

R-modules. Set F := P(k)

1
, A := G(k) and B := H(k). Since (P1/G)w � (P2/H)w, we
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may assume that (F/A)w � (F/B)w as in the proof of Lemma 3.9. Put I := Ann(F/A)w.

Then (F/IF)w/(A/IF)w � (F/IF)w/(B/IF)w by the proof of Lemma 3.9. Hence, there

exists an automorphism φ : (F/IF)w → (F/IF)w such that φ((A/IF)w) = (B/IF)w by [

(Goeters & Olberding, 2001), Lemma 2.1]. Let m be the rank of (F/IF)w as a finitely

generated free (R/I)w-module and u := det φ. Since u is a unit in (R/I)w, we can de-

fine an automorphism ψ : (F(m)/IF(m))w → (F(m)/IF(m))w such that ψ ((x1, x2 . . . , xm)) =(
u−1φ(x1), φ(x2), . . . , φ(xm)

)
. Then detψ = u−m(det φ)m = 1. Thus, ψ lifts to an automor-

phism α of F(m) such that ψ(F(m)/IF(m)) = (α(F(m))/IF(m))w by Lemma 3.7. We note that

ψ(A(m)/IF(m))w = (B(m)/IF(m))w. Hence, α(G(m)) = H(m) again by a similar argument as in

the prooof of Lemma 3.9. �

Now, we are ready to prove one of the main theorems of this chapter. This theorem

shows that w-locally isomorphism for two torsionless w-modules coincides with stable

isomorphism for weakly Matlis domains with trivial t-class group, and they imply power

isomorphism. In the next section, we will provide an example to mention the signifance

of these assumptions.

Theorem 3.3 (Stable Isomorphism) Let R be a weakly Matlis domain with trivial t-class

group, and let G and H be rank n torsionless w-modules. The following statements are

equivalent :

(a) G and H are w-locally isomorphic.

(b) (F1/G)w � (F2/H)w for some free R-modules F1 and F2 with G ⊆ F1 ⊆ KG and

H ⊆ F2 ⊆ KH.

(c) G and H are stably isomorphic.

(d) G ⊕ A � H ⊕ A for some finitely generated R-module A.

Also, the statements (a) − (d) imply

(e) G(m) � H(m) for some m > 0.

Proof (a) ⇒ (b) Since the t-class group of R is trivial, every w-projective w-module

is free by the proof of Lemma 3.2. So the proof follows from Lemma 3.10 and Lemma

3.1. (b) ⇒ (c) is a consequence of Lemma 3.9. (c) ⇒ (a) follows from the fact that if

M and N are modules over a quasilocal ring S , then M ⊕ S � N ⊕ S implies M � N [
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(Vasconcelos, 1965), Proposition 1.7]. This proves the equivalence of (a)− (c). (c)⇒ (d)

is clear. (d) ⇒ (a) is a consequence of that fact finitely generated modules cancel over

quasilocal domains [ (Estes & Guralnick, 1982), Theorem 2.5]. (a) ⇒ (e) follows from

Proposition 3.3.

�

Recall that two torsion-free R-modules G and H are said to be w-nearly isomorphic

if for every nonzero w-ideal I of R, there exists a monomorphism f : G → H such that

AnnR(Coker( f )) and I are w-comaximal, that is, (AnnR(Coker( f )) + I)w = R.

Remark 3.2 Let D be an integral domain with finitely many maximal w-ideals. Then,

D is a semilocal domain such that these maximal w-ideals are maximal ideals of D by [

(Zafrullah, 2006), Proposition 7]. Let J be a w-invertible w-ideal of D. Then (JJ−1)w = D.

We have JJ−1 ⊆ (JJ−1)w = D. If JJ−1 is contained in a maximal ideal M of D, then

(JJ−1)w ⊆ Mw = M contradicts with the assumption. So, JJ−1 = D, that is, J is invertible.

Since D is semilocal, J is principal. Hence the t-class group of D is trivial.

One of our aims is to determine when w-locally isomorphism implies w-nearly

isomorphism for torsionless w-modules over weakly Matlis domains, and we have accom-

plished our purpose with the next theorem. We note that w-nearly isomorphism implies

w-locally isomorphism without the assumption R is a weakly Matlis domain.

Theorem 3.4 (w-Near Isomorphism) Let R be a weakly Matlis domain, and let G and H

be torsionless w-modules of rank n. The following are equivalent :

(a) G and H are w-locally isomorphic.

(b) (P1/G)w � (P2/H)w for some w-projective w-modules P1 and P2 with G ⊆ P1 ⊆ KG

and H ⊆ P2 ⊆ KH.

(c) G is w-nearly isomorphic to H.

Proof (a) ⇒ (b) is a consequence of Lemma 3.10. (b) ⇒ (a) Suppose (P1/G)w �

(P2/H)w. Let M be a maximal w-ideal of R. Then, we have (P1/G)M � (P2/H)M. Since

G and H have rank n, G ⊆ P1 ⊆ KG and H ⊆ P2 ⊆ KH, (P1)M and (P2)M have rank n.

So, without loss of generality, we can assume that F/GM � F/HM where F is a finitely

generated RM-module of rank n. Thus, by [ (Goeters & Olberding, 2001), Lemma 2.1],

we get an isomorphism between GM and HM.
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(a) ⇒ (c) Now, assume that G and H are w-locally isomorphic. Let I be a w-ideal of

R. Since R is a weakly Matlis domain, I is contained in finitely many maximal w-ideals,

say M1, . . . , Mn. By Lemma 3.1 maximal ẇ-ideals of S̃ are of the form S̃ Mi, so S̃ is a

semilocal domain by [ (Zafrullah, 2006), Proposition 7]. By the Remark 3.2, S̃ has trivial

t-class group. Consider the S̃ -modules GS̃ and HS̃ . We claim that GS̃ and HS̃ are w′-

locally isomorphic modules. We can write S̃ = S −1R, where S = R \ ∪n
i=1Mi, so we have

GS̃ = S −1G and HS̃ = S −1H. Since S −1G⊗(S −1R)S −1 Mi � S −1G⊗RMi � S −1R⊗G⊗RMi �

GMi and S −1H ⊗ (S −1R)S −1 Mi � S −1H ⊗ RMi � S −1R ⊗ H ⊗ RMi � HMi we conclude that

GS̃ and HS̃ are ẇ-locally isomorphic. Since S̃ has trivial t-class group, by Theorem 3.3,

GS̃ ⊕ S̃ � HS̃ ⊕ S̃ . Now, we can cancel S̃ from both sides since S̃ is semilocal [ (Estes &

Guralnick, 1982), Theorem 2.5]. By Lemma 3.3, there exists an embedding f : G → H

such that fMi(GMi) = HMi for all i = 1, 2, . . . , n. Since (H/ Im f )Mi = 0 for all i and

Ann((H/ Im f )Mi) ⊆ (Ann(H/ Im f ))Mi , we get (Ann(H/ Im f ))Mi = RMi . Consequently,

Ann Coker f � Mi for each i. Hence, I is w-comaximal with Ann Coker f .

(c)⇒ (a) Suppose G is w-nearly isomorphic to H, and let M be a maximal w-ideal. Then,

there exists a monomorphism f : G → H such that (M + Ann Coker f )w = R. Localizing

at M, we get (M + Ann Coker f )M = RM. Since RM is a local ring with a unique maximal

ideal MM, we must have (Ann Coker f )M = RM. So, Ann Coker f is not contained in M.

Thus, there exists an element x ∈ Ann Coker f such that x � M. Since x ∈ Ann Coker f ,

xH ⊆ Im f . Again localizing at M, we have HM = xHM ⊆ (Im f )M = Im fM ⊆ HM, and

this yields Im fM = HM. Hence, G and H are w-locally isomorphic.

�

Finally, we can give a necessary and sufficient condition on a weakly Matlis do-

main R to prove when w-weak isomorphism types are equivalent.

Corollary 3.2 Let R be a weakly Matlis domain with trivial t-class group. Suppose that

G and H are torsionless w-modules of the same rank. Then the following are equivalent:

(a) G and H are w-locally isomorphic.

(b) G and H are w-nearly isomorphic.

(c) G and H are stable isomorphic.

Proof The proofs follow immediately from Theorems 3.3 and 3.4. �
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3.3. Examples

In this section, we will provide two examples to point out the importance of the as-

sumptions in Theorems 3.3 and 3.4. Furthermore, for domains that are not weakly Matlis

domains, we mention another approach to w-locally isomorphism that asserts something

that is generally weaker than w-nearly isomorphism.

Example 3.1 Let D be a w-Dedekind domain, that is, D is strong Mori and DM is a

valuation domain for every M ∈ w − Max(R). D is of finite t-character by [ (Wang &

McCasland, 1999), Theorem 1.9]. Let P be a prime t-ideal of R, and suppose P ⊂ M

for some M ∈ t − Max(R). Then PM is a prime ideal of RM. Since RM is a valuation

domain, we must have PM = MM, and this implies P = M. Thus, a w-Dedekind domain

is a weakly Matlis domain. Let I be non-pincipal w-invertible w-ideal of D. Since I is

w-invertible, I and R are w-locally isomorphic. But I ⊕ R � R ⊕ R, that is, I and R are

not stable isomorphic by [ (Kaplansky, 1952), Lemma 1]. Since I is w-invertible w-ideal

but not principal, t-class group of D is not trivial. Thus, the assumption of trivial t-class

group in Theorem 3.3 cannot be dropped.

Example 3.2 There exist integral domains which are not weakly Matlis domains for

which Theorem 3.4 fails. An example of such a domain is a domain R such that there

is a w-invertible w-ideal I such that Iw = Jw for some finitely generated subideal J which

J is not two generated. To see that, assume w-locally isomorphic torsionless R-modules

are w-nearly isomorphic. Let I be a w-invertible w-ideal. Then I is w-isomorphic to R.

Take any non-zero element a ∈ I. Then there exists a monomorphism f : R→ I such that

(Ra+Ann Coker f )w = R. Let b = f (1). We claim that I = (aR+bR)w. We show that these

two ideals are w-locally equal. Take any M ∈ w −Max(R). If Ann Coker f � M, we have

IM = bRM, and if Ann Coker f ⊆ M, we have Ra � M, which implies IM = RM = aRM.

Thus, Iw = I = (aR + bR)w by Theorem 2.23, as we desired. Also, we note that R is

not a weakly Matlis domain by [ (Anderson & Zafrullah, 1993), Theorem 2.2]. Thus, the

comparisons in Theorem 3.4 cannot be true if R is not a weakly Matlis domain.

Before our next example, let us recall the following corollary :

Corollary 3.3 ( (Wang, 1997),Corollary 2.8) Let M be a torsion-free module such that
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M is of w-finite type, that is, Mw = Nw for some finitely generated submodule N of M. Let

C be a w-module. Then

HomR(M,C)P = HomRP(MP,CP)

for each P ∈ w −Max(R).

Example 3.3 For domains which are not weakly Matlis domains, we mention another ap-

proach to w-locally isomorphism which asserts something that is generally weaker than

w-nearly isomorphism: For any given torsionless R-modules G and H are w-locally iso-

morphic if and only if for any given finite set of maximal w-ideals {M1, . . . ,Mn}, there

is an embedding f : G → H such that Ann(Coker f ) � Mj for all j ≤ n. Suppose

G and H are torsionless R-modules, and H is of w-finite type. Suppose that G is w-

locally isomorphic to H, and the set of maximal w-ideals {M1, . . . ,Mn} is given. Since

Hom(GM j ,HM j) = [Hom(G,H)]M j , for every j ∈ {1, 2, . . . , n}, there exists f j : G → H

such that ( f j)M j is an isomorphism. Let ri ∈∏
j�i Mj \Mi. Set f := r1 f1 + . . .+ rn fn. Note

that (ri( fi))M j ⊆ MjHM j , and (r j( f j))M j(GM j) = r jHM j = HM j since r j is a unit in RM j . So,

we can define a surjective homomorphism

ϕ j :
GM j

MjGM j

→ HM j

MjHM j

where ϕ j(x + MjGM j) = fM j(x) + MjHM j . Since fM j(GM j) + MjHM j = HM j , and HM j

is finitely generated, by Nakayama’s Lemma we obtain that fM j(GM j) = HM j . So fM j is

surjective. Since G and H are w-locally isomorphic, they have the same rank. Thus fM j is

an isomorphism, and so f is a monomorphism. Consequently, Ann(Coker f ) � Mj. The

converse part is clear.
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CHAPTER 4

UNIQUE DECOMPOSITIONS INTO W-IDEALS

FOR STRONG MORI DOMAINS

A commutative ring R has the unique decompositions into ideals (UDI) property

if for any indecomposable ideals I1, . . . , In, J1, . . . , Jm of R, such that

I1 ⊕ . . . ⊕ In � J1 ⊕ . . . ⊕ Jm,

then n = m and after reindexing, Ii = Ji for each index i. In (Goeters & Olberding,

2001), the UDI property has been classified for Noetherian integral domains. Goeters

and Olberding showed that a Noetherian integral domain R has the UDI property if and

only if R is a PID or R has exactly one non-principal maximal ideal M and RM has the

UDI property. Also, some characterizations of Noetherian local domains with the UDI

property have been investigated in [ (Goeters & Olberding, 2001), Theorem 3.2]. In (Ay

& Klingler, 2012,A), the UDI property has generalized for reduced Noetherian rings, and

recently in (Klingler & Omairi, 2020), Klingler and Omairi examined the UDI property

for arbitrary commutative Noetherian rings, establishing the same almost local nature of

the property and giving an example which shows that the local results do not extend to

commutative Noetherian rings in general. Moreover, in [ (Klingler & Omairi, 2020),

Theorems 3.3 and 3.4], it was proven that the UDI property extends to overrings which

are finitely generated as modules and which are arbitrary Noetherian integral overrings.

We first introduce the definitions, basic concepts and main theorems that will be

convenient. Throughout this chapter, R will denote an integral domain with quotient field

K. Let us recall the following definitions. A ring S is said to be an overring of R if

R ⊆ S ⊆ K. An ideal J of R is called a Glaz-Vasconcelos ideal, denoted by J ∈ GV(R),

if J is finitely generated and J−1 = R. A GV-torsion-free R-module is called a w-module

if whenever Jx ⊆ M (J ∈ GV(R), x ∈ M ⊗ K), then x ∈ M. I is called a w-ideal if I is

a w-module over R. A module M is said to be of w-finite type if M is a w-module and
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M = Nw, where N is a finitely generated submodule of M.

In (Wang & McCasland, 1997) and (Wang & McCasland, 1999), Wang and

McCasland introduced the concept of strong Mori domains; an integral domain R is said

to be a strong Mori domain if R satisfies the ascending chain condition on w-ideals. A

module M is said to be a strong Mori module if M satisfies ascending chain condition on

w-submodules. The following theorems and propositions are mainly used in our proofs.

Theorem 4.1 ( (Wang & McCasland, 1997), Theorem 4.3) The following are equivalent

for a domain R:

1. R is a strong Mori domain.

2. Each w-ideal is of w-finite type.

3. Each prime w-ideal is of w-finite type.

Proposition 4.1 ( (Wang & McCasland, 1997), Proposition 4.6) If R is a strong Mori

domain, then RP is Noetherian for every maximal w-ideal P of R.

Theorem 4.2 ( (Wang &McCasland, 1997), Theorem 4.4) For a w-module M the follow-

ing are equivalent:

1. M is a strong Mori module.

2. Each w-submodule of M is of finite type.

3. M and each prime w-submodule of M are of finite type.

Proposition 4.2 ( (Wang & McCasland, 1997), Theorem 4.5) A domain R is a strong

Mori domain if and only if every finite type w-module over R is a strong Mori module.

It is worth noting that a strong Mori domain need not be Noetherian; the polyno-

mial ring R = F[X1, X2, . . .] in countably many indeterminates over any field F provides

us an example of a strong Mori domain which is not Noetherian. In fact, a strong Mori

domain with Krull dimension one is Noetherian.

The main purpose of this chapter is to study and to characterize the UDwI property

(Krull-Schmidt property of w-ideals) for strong Mori domains. We show that if a domain

R has the UDwI property, then R has at most one non-principal maximal w-ideal. For that
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reason, we examine the features of such domains. Then we continue with investigating

overrings of strong Mori domains with UDwI property.

4.1. UDwI Property for Strong Mori Domains

We say that an integral domain R has the unique decomposition into ideals prop-

erty with respect to the w-operation (abbreviated, UDwI property) if for any ideals I1, . . . , In,

J1, . . . , Jm of R with

(I1)w ⊕ . . . ⊕ (In)w � (J1)w ⊕ . . . ⊕ (Jm)w,

then n = m and after reindexing, (Ii)w � (Ji)w for each index i.

The trivial examples of integral domains with the UDwI property are PIDs and

Noetherian domains with the UDI property. Also, strong Mori domains with dimension

one which have UDwI property satisfy UDI property because the d (identity operation)

and w operations are the same on one dimensional Noetherian domians (Mimouni, 2005).

We start by an important tool. We note that this proposition holds for any integral

domain R.

Proposition 4.3 Let R be an integral domain with the UDwI property. Then at most one

maximal w-ideal of R is non-principal.

Proof Suppose that P1 and P2 are two distinct maximal w-ideals of R. Then (P1+P2)w =

R implies that P1 ∩ P2 = P1P2, and P1 ∩ P2 is also a w-ideal. Let us recall that for any

GV-torsion-free R-module M, we have that Mw =
⋂

P∈w−Max(R) MP. By using this equality

for P1⊕P2 and R⊕ (P1P2), we obtain P1⊕P2 � R⊕P1P2. Since R has the UDwI-property,

P1 or P2 must be isomorphic to R. Hence R has at most one non-principal maximal w-

ideal. �

We recall from (El-Baghdadi, 2010) that an integral domain R is called a w-

principal ideal domain (for short, w-PID) if every w-ideal is principal. The polynomial

ring F[X,Y] in two indeterminates over any field F is an example of a w-PID which is not

a PID [ (El-Baghdadi, 2010), Theorem 2.5].
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Lemma 4.1 ( (Wang&McCasland, 1999), Lemma 1.5) Let M be a torsion-free R-module,

and let A, B be submodules of M. Then (A + B)w = (Aw + Bw)w.

Lemma 4.2 Let R be a strong Mori domain. Then the following statements hold.

1. R is a w-PID if and only if every maximal w-ideal of R is principal.

2. For every principal maximal w-ideal N of R, RN is a DVR.

Proof (1) Assume that each maximal w-ideal of R is principal. To show that R is a w-

PID, it is enough to show that for each nonzero element a, b of R, (aR + bR)w is principal

by Lemma 4.1 If (aR + bR)w = R, then there is nothing to prove. If (aR + bR)w = R is not

cyclic, then it is contained in a maximal w-ideal, say P. Then by assumption P = cR for

some c ∈ R. Since aR + bR ⊆ (aR + bR)w, a = ca1, b = cb1 for some a1, b1 ∈ R. Note

that aR and bR are contained in a1R and b1R, respectively. Since R is a domain, these

containments are proper. Also note that if (a1R + b1R)w is principal, then (aR + bR)w is

principal because of the equalities a = ca1, b = cb1, so that (a1R + b1R)w is not principal

either. Iterating this process, we obtain two sequences anR and bnR which ascend properly.

Thus, we get a contradiction. Hence, by induction this is equivalent to every w-ideal of

finite type being principal.

(2) Let N be a principal maximal w-ideal of R. Then RN is a Noetherian local

domain whose unique maximal ideal is principal. Hence, RN is DVR by Theorem 2.10. �

Recall from the previous chapter that an integral domain R is a weakly Matlis

domain if R is of finite t-character (every nonzero nonunit of R is contained in only finitely

many maximal t-ideals of R) and each prime t-ideal of R is contained in a unique maximal

t-ideal.

Lemma 4.3 Let R be a strong Mori domain with a unique non-principal maximal w-ideal

M. Then the following statements hold.

1. R is a weakly Matlis domain.

2. Every w-ideal of R not contained in M is principal.

3. Every w-invertible w-ideal of R is principal, that is, the t-class group of R is trivial.

Proof (1) First note that R is of finite t-character by [ (Wang & McCasland, 1999),

Theorem 1.9]. Let P be a nonzero prime t-ideal of R contained in a principal maximal
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t-ideal N = aR. Since RN is a DVR by Lemma 4.2, prime ideals and maximal ideals of RN

coincide. Since PRN is a prime ideal of RN , and RN is local, we must have PRN = NRN

which implies that P = N. Otherwise, P is contained in M exclusively, and it follows that

R is a weakly Matlis domain.

(2) Let I be a nonzero w-ideal of R such that I � M. Since R is a weakly Matlis

domain by part (1), I is contained in only finitely many maximal w-ideals which are all

principal. Say I ⊆ N1, . . . ,Nt, where Ni = aiR for all i = 1, . . . , t. Since RNi is a DVR,

IRNi = aki
i RNi for some ki > 0. Set the ideal J := (ak1

1
· · · akt

t )R. Since J is principal, Jw = J.

Also note that JP = IP for every maximal w-ideal P of R. Recall that Mw = ∩P∈w−Max(R)MP

holds for any GV-torsion-free R-module M. Hence, I = Iw = Jw = J implying that I is

principal.

(3) Let I be a w-invertible w-ideal of R. Then (II−1)w = R implies that there exists

an element q ∈ I−1 such that qI � M. Since (qI)w = qIw = qI, we can say that qI is also

a w-ideal. Thus from part (2), qI is a principal ideal. Since qI � I, we conclude that I is

also principal.

�

Lemma 4.4 Let R be a strong Mori domain with a unique non-principal maximal w-ideal

M. If G and H are torsion-free R-modules of finite type such that GM � HM, then G and

H are w-locally isomorphic.

Proof Since G and H are of w-finite type, there exist finitely generated submodules

G′,H′ of G and H, respectively, such that G = G′w, and H = H′w. Then for any maximal

w-ideal P, GP = (G′)P implies that GP and HP are finitely generated RP-modules. Let N

be a principal maximal w-ideal of R. Then RN is a PID and GN , and HN are finitely gen-

erated torsion-free RN-modules. We note that G and H have the same rank. Since every

finitely generated torsion-free module over a PID is free, GN and HN are free modules

with the same rank. Hence, GN � HN . Therefore, by assumption, G and H are w-locally

isomorphic. �

From the previous chapter, without any restriction we know that if G and H are

w-nearly isomorphic w-modules, then G and H are w-locally isomorphic by Theorem 3.4.

Also, if R is weakly Matlis domain with trivial t-class group, then w-locally isomorphism

implies nearly w-isomorphism again by Theorem 3.4. Since a strong Mori domain with

a unique non-principal maximal w-ideal is a weakly Matlis domain with trivial t-class
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group by Lemma 4.3, the following lemma is immediate from Lemma 4.4 and Theorem

3.4. However, we will prove it with a new approach. Before proving the result, we state a

proposition and a lemma which will be useful in our proof.

Proposition 4.4 ( (Wang, 1997), Proposition 2.1) Let M be a torsion-free module and C

a w-module over R. Then HomR(M,C) is a w-module, and HomR(M,C) = HomR(Mw,C).

Corollary 4.1 ( (Wang, 1997),Corollary 2.8) Let M be a torsion-free module such that M

is of w-finite type, that is, Mw = Nw for some finitely generated submodule N of M. Let C

be a w-module. Then

HomR(M,C)P = HomRP(MP,CP)

for each P ∈ w −Max(R).

Lemma 4.5 Let R be a strong Mori domain with a unique non-principal maximal w-ideal

M. If G and H are torsion-free modules of finite type such that GM � HM, then G and H

are w-nearly isomorphic.

Proof Let I be a nonzero w-ideal of R and Ω = {N0,N1, . . . ,Nn} the set of maximal

w-ideals of R containing I. By Lemma 4.3, M = Ni for some i = 0, . . . , n; say N0, and

GNi � HNi for each i by Lemma 4.4. Proposition 4.4 and Corollary 4.1 imply that for each

i, there exists a map fi : G → H such that ( fi)Ni : GNi → HNi is an isomorphism. Since

(Ni +
∏

j�i N j)w = R for each i, there exists a J ∈ GV(R) such that J ⊆ Ni +
∏

j�i N j.

Note that J � Ni for each i because Jw = Jt = Jv = R. Pick a ∈ J such that a � Ni

and hence aHNi = HNi for each i. Then a = ai + bi for some ai ∈ Ni and bi ∈ ∏
j�i N j,

and hence 1 = λai + λbi, where λ = 1
a . Hence, ( fi)Ni = λai( fi)Ni + λbi( fi)Ni . Since

Im(aiλ( fi)Ni) ⊆ λNiHNi , we have

HNi = Im(( fi)Ni) ⊆ λNiHNi + Im(λbi( fi)Ni) ⊆ HNi .

Hence,

HNi = aHNi = NiHNi + Im(bi( fi)Ni).

Thus, by Nakayama’s Lemma, Im(bi( fi)Ni) = HNi . Let g := b0 f0 + . . .+ bn fn. Note that for

j � i, Im(bj( f j)Ni) ⊆ NiHNi , and Im(bi( fi)Ni) = HNi since bi is a unit in RNi . Thus, we can
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define a surjection

φi :
GMi

MiGMi

→ HMi

MiHMi

,

where φi(x + MiGMi) = gMi(x) + MiHMi . Hence, Im(gNi) = HNi again by Nakayama’s

Lemma. Since GNi is a Noetherian RNi-module and GNi � HNi , gNi is an isomorphism.

Now we show that g : G → H is injective. Since gNi is an isomorphism from GNi onto

HNi , (Ker(g))Ni = Ker(gNi) = 0. Since R is a strong Mori domain, and G is w-finite type

w-module, G is a strong Mori module by [ (Wang & McCasland, 1997), Theorem 4.5].

That is, for every submodule X of G, there exists a finitely generated submodule of X

such that Xw = X′w . So 0 = (Ker(g))Ni = YNi for some finitely generated submodule Y of

Ker g, where Yw = (Ker g)w. Thus, there exists an element t ∈ R \ Ni such that tY = 0.

Since G is torsion-free, we have that Y = 0, and so Ker f = 0. Therefore, there is an

embedding g : G → H such that gNi is an isomorphism for each i = 0, . . . , n. Hence,

(Coker(g))Ni = Coker(gNi) = 0, and hence Ann(Coker)g � Ni for each i. Therefore,

(Ann Coker f + I)w = R. �

Now, we are ready to prove the equivalence w-weak isomorphism types for torsion-

free w-modules of finite type.

Theorem 4.3 Assume that R is a strong Mori domain with the UDwI property with a

unique non-principal maximal w-ideal M. Let G and H be torsion-free modules of finite

type such that H is isomorphic to a finite direct sum of ideals of R. Then the following

statements are equivalent.

1. GM � HM.

2. G and H are w-locally isomorphic.

3. G and H are w-nearly isomorphic.

4. G and H are isomorphic.

Proof (1) ⇒ (2) follows from Lemma 4.4, (1) ⇒ (3) follows from Lemma 4.5, and

(3)⇒ (2) follows from Lemma 4.3 and Theorem 3.4. (2)⇒ (1) and (4)⇒ (1) are trivial.

Since every w-invertible w-ideal of R is principal by Lemma 4.3, (1) ⇒ (4) follows from

Lemma 4.3 and Proposition 3.2. �
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Theorem 4.4 Assume that R is a strong Mori domain.

1. If R has the UDwI property, then RQ has the UDI property for every maximal w-

ideal Q of R.

2. R has the UDwI property if and only if R is a w-PID, or R has a unique non-

principal maximal w-ideal M such that RM has the UDI property.

Proof (1) First note that by Proposition 4.3, R has at most one non-principal maximal

w-ideal. For each maximal w-ideal N of R which is principal, RN is a DVR by Lemma

4.2, and hence has the UDI property. Assume that M is the unique non-principal maximal

w-ideal of R. Let I′1, . . . , I
′
n, J
′
1, . . . , J

′
m be ideals of RM such that

I′1 ⊕ . . . ⊕ I′n � J′1 ⊕ . . . ⊕ J′m.

Put Ii := I′i ∩ R, J j := J′j ∩ R for each i = 1, . . . , n, j = 1, . . . ,m. Then I′i = IiRM and

J′j = J jRM for each i, j, and

(⊕n
i=1Ii)wRM = (⊕n

i=1Ii)RM � (⊕m
j=1J j)RM = (⊕m

j=1J j)wRM.

Since every w-ideal of R is of finite type, Lemma 3.8 implies that (⊕n
i=1Ii)w and (⊕m

j=1J j)w

are modules of finite type. Thus,

(⊕n
i=1Ii)w � (⊕m

j=1J j)w

by Theorem 4.3. Hence, by assumption, n = m and (Ii)w � (Ji)w for each i. Therefore,

(Ii)wRM � (Ji)wRM

which implies I′i = IiRM � JiRM = J′i .

(2) If R has the UDwI property, then R has at most one non-principal maximal

w-ideal by Proposition 4.3. If all the maximal w-ideals of R are principal, then R is a
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w-PID by Lemma 4.2. Otherwise, let M be the unique non-principal maximal w-ideal of

R. Then RM has the UDI property by (1).

If R is a w-PID, then clearly R has UDwI. Assume that R is not a w-PID and M

is the unique non-principal maximal w-ideal of R such that RM has the UDI property. Let

I1, . . . , In, J1, . . . , Jm be ideals of R with

(I1)w ⊕ . . . ⊕ (In)w � (J1)w ⊕ . . . ⊕ (Jm)w.

Then

⊕n
i=1IiRM � ⊕m

j=1J jRM.

Hence, by assumption, n = m and (Ii)wRM = IiRM � JiRM = (Ji)wRM for each i. There-

fore, (Ii)w � (Ji)w by Theorem 4.3. �

4.2. Examples

By Theorems 2.4 and 2.5 of (Badawi, 2003) and Theorem 2.12 of (Kim & Wang,

2012), it is possible to construct some examples of non-Noetherian strong Mori rings

by means of trivial extensions. Let D be a commutative ring with 1 and M a unitary

D-module. Then D ∝ M with coordinate-wise addition and multiplication

(d1,m1)(d2,m2) = (d1d2, d1m2 + d2m1)

is a commutative ring with 1 called the idealization of M or the trivial extension of D by

M. If R is a Noetherian domain with quotient field K such that

1. dim R = 1 and R has infinitely many maximal ideals (for example, Z), or

2. dim R ≥ 2,

Then D = R ∝ K is a non-Noetherian strong Mori ring.
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Lemma 4.6 Let R be an integral domain with quotient field K and D = R ∝ K the trivial

extension of R by K. Then w-Max(D) = {P ∝ K | P ∈ w-Max(R)}.
Proof Let P be a maximal w-ideal of R. Then (P ∝ K)w = P ∝ K since for each

(a, b) ∈ (P ∝ K)w, (a, b)J ⊆ P ∝ K for some J ∈ GV(D). Note that J = I ∝ K

for some I ∈ GV(R) by [ (Huckaba, 1988), Theorem 25.10]. For each ( j1, j2) ∈ J,

(a, b)( j1, j2) = (p, k) for some p ∈ P and k ∈ K. Thus, a ∈ P and b = k−a j2
j1
∈ K

which implies that (a, b) ∈ P ∝ K. Thus, there exists a maximal w-ideal Q of D such that

P ∝ K ⊆ Q. Note that Q = P′ ∝ K for some prime ideal P′ of R by (Anderson & Winders,

2009), Theorem 3.2. Also, Q = Iw ∝ K where I = {r ∈ R | (r, k) ∈ R ∝ K for some k ∈ K}
by (Chang & Kim 2017), Proposition 2.2. Hence, Q = P′ ∝ K where P′ is a prime

w-ideal of R. It implies that P ⊆ P′ and hence P = P′, and P ∝ K = Q is a maximal

w-ideal of D. For the converse, let Q be a maximal w-ideal of D. Then Q = P ∝ K

for some prime w-ideal P of R. Let P′ be a maximal w-ideal of R containing P. Since

(P′ ∝ K)w = P′ ∝ K, P ∝ K = P′ ∝ K implies that P = P′ which is a maximal w-ideal of

R. �

Proposition 4.5 Assume that R is a Noetherian domain with quotient field K such that

dim R = 1 and R has infinitely many maximal ideals. If R has the UDI property, then

D = R ∝ K is a non-Noetherian strong Mori ring such that D has at most one non-

principal maximal w-ideal.

Proof If R is a Noetherian domain of dimension one with infinitely many maximal

ideals, then D = R ∝ K is a non-Noetherian strong Mori ring by [ (Badawi, 2003),

Theorem 2.4] and [ (Kim & Wang, 2012), Theorem 2.12]. Let Q be a maximal w-ideal of

D. Since dim R = 1, the w-operation is the identity operation on R and hence Q = P ∝ K

for some maximal ideal P of R by Lemma 4.6. Since R has the UDI property, D has at

most one non-principal maximal w-ideal. �

Example 4.1 Let R = Z[2i], where i =
√−1. Then the ring of integers in Q(i) is Z[i],

the Gaussian integers. Example 4.6(b) of (Goeters & Olberding, 2001), for the cases

d = −1 and p = 2, implies that R has the UDI property and hence R has at most one

non-principal maximal ideal. Since i � Z[2i], R is not integrally closed. Hence, R has a

unique non-principal maximal ideal which is (2, 2i) = 2Z[i]. Since the w-operation is the

identity operation on R by [ (Anderson & Zafrullah, 1991), Theorem 4.17], [ (Mimouni,
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2005), Corollary 2.11] and Proposition 4.5 implies that the trivial extension of R by its

quotient field Q(i), D = R ∝ Q(i), is a non-Noetherian strong Mori ring such that D has at

most one non-principal maximal w-ideal.

4.3. UDwI for Overrings

Let R ⊆ T be an extension of integral domains. Then T is called a w-linked

extension of R if T is a w-module over R. In the case that R ⊆ T ⊆ K, we say that T is a

w-overring of R.

It is well-known that the restriction of w to the set of the T -submodules of K is a

star operation on T , denoted by ẇ such that for a T -submodule I of K, Iẇ = Iw.

Recall that w′ is the w-operation over T , that is, for any fractional ideal A of T , we

have that

Aw′ = {x ∈ K | xJ ⊆ A for some J ∈ GV(T )}

In general, ẇ ≤ w′ on T which means that for any fractional ideal A of T , we have

that Aẇ ⊆ Aw′ or Aw ⊆ Aw′ . Since GV(R) and GV(T ) need not be equal, w′ and ẇ are not

the same.

Lemma 4.7 Let R be a strong Mori domain and T a w-overring of R. If N is a maximal

w′-ideal of T that contracts to a principal maximal w-ideal of R, then N is principal.

Proof Assume that P is a principal maximal w-ideal of R such that P = N ∩ R; say

P = xR for some x ∈ P. Since RP is a DVR by Lemma 4.2, and TP is an overring of RP,

RP = TP. Thus, PRP = xRP ⊆ NP � TP = RP which implies that (xT )P = NP. Now, let Q

be a maximal w-ideal of R different from P. Then x � Q, and hence TQ = (xT )Q ⊆ NQ ⊆
TQ which implies NQ = (xT )Q. Therefore, NQ = (xT )Q for each maximal w-ideal Q of R,

and hence N = xT by [ (Wang & McCasland, 1997), Proposition 3.4]. �

Lemma 4.8 Assume that R is a strong Mori domain with a unique non-principal maximal

w-ideal M and T is a w-overring of R. Let N be a maximal w′-ideal of T , lying over M

such that NM is principal. Then N is principal.
52



Proof Let NM = aTM for some a ∈ T . We may assume that a ∈ N since a
1
= n

t for

some n ∈ N and t ∈ R \ M, hence there exists s ∈ R \ M such that sat = sn ∈ N which

implies a ∈ N. We claim that N = aT . To see this, it suffices to show that NQ = (aT )Q for

every maximal w-ideal Q of R [ (Wang & McCasland, 1997), Proposition 3.4]. Let a = b
c

and X = {Pα} be the set of maximal w-ideals of R which contain b. Since R is of finite

t-character, X is finite. Also, we note that M ∈ X since b = cn for some n ∈ N which

implies b ∈ N ∩ R = M. Now, let P ∈ X be a maximal w-ideal of R which is different

from M, hence P = πR for some π ∈ P. Since R is a strong Mori domain, we may assume

that n is the largest positive integer such that πn|b. Thus b = πnr for some r ∈ R \ P. Since

b ∈ P and π � M, r ∈ M and aTM =
b
c TM =

πnr
c TM =

r
cTM. So, by replacing a by r

c , we

conclude that NQ = (aT )Q for every maximal w-ideal Q of R. �

Proposition 4.6 Assume that T is a w-overring of an integral domain R which is of finite

type. If R has the UDwI property, then T has the UDw′I property.

Proof Since T is a w-module of finite type, T = Xw for some finitely generated sub-

module X of T . Suppose X = R(a1/b1) + . . . + R(ak/bk) for some ai/bi ∈ X. Setting

b = b1 · · · bn, we get bX ⊆ R which implies bT ⊆ R. Suppose that (I1)w′ ⊕ . . . ⊕ (In)w′ �

(J1)w′ ⊕ . . . ⊕ (Jm)w′ , where I1, . . . , In, J1, . . . , Jm are ideals of T . Let (Ii)w′ = Xi and

(Jk)w′ = Yk for i = 1, · · · , n, k = 1, · · · ,m. Note that Xi,Yk are w-modules over R. Then

we have bX1⊕ . . .⊕bXn � bY1⊕ . . .⊕bYm. From the above argument, bXi, bYk are w-ideals

of R. Since R has the UDwI property, we have n = m, and bXi � bYi for each index i as

R-modules. Therefore, Xi � Yi as R-modules which are also T -isomorphisms by [ (Ay &

Klingler, 2012), Lemma 1.1]. Thus, T has UDw′I property. �

Theorem 4.5 Let R be a strong Mori domain with w-dim R = 1 and T a w-overring of R.

If R has the UDwI property, then T has the UDw′I property.

Proof First, T is a strong Mori domain with w′-dim T ≤ 1 by [ (Wang & McCasland,

1999), Theorem 3.4]. If every maximal w-ideal of R is principal, then R is a w-PID by

Lemma 4.2. This implies that T is w′-Bezout domain by [ (El-Baghdadi, 2010), Theorem

3.7]. Since T is strong Mori w′-Bezout domain, T is a w′-PID. So, we may assume that

R has a unique non-principal maximal w-ideal; say M. It suffices to show that T has at

most one non-principal maximal w′-ideal and TQ has the UDI property for every maximal

w′-ideal Q of T so that Theorem 4.4 implies that T has the UDw′I property. Let Q be a
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maximal w′-ideal of T , and put P := Q ∩ R. Then P is a prime w-ideal of R by Theorem

7.7.4. (Wang & Kim, 2016). Since w-dim(R) = 1, then P is a maximal w-ideal of R. If

Q is a principal ideal of T , then TQ is a DVR by Lemma 4.2 and hence it has the UDI

property. So we may assume that Q is a non-principal maximal w′-ideal of T . Then

P = M and QM is non-principal by Lemmas 4.7 and 4.8. We note that both TQ and TM, as

overrings of one dimensional Noetherian domain RM, have the UDI property by [ (Goeters

& Olberding, 2001), Proposition 4.2]. Hence, TM has at most one non-principal maximal

ideal by (Goeters & Olberding, 2001), Theorem 2.8. Let Q1 and Q2 be two distinct non-

principal maximal w′-ideals of T . Then, for i = 1, 2, QiTM is non-principal by Lemmas

4.7 and 4.8. Let PiTM be a maximal ideal of TM such that QiTM ⊆ PiTM, where Pi is

a prime ideal of T maximal with respect to Pi ∩ (R \ M) = ∅. Since dim TQi = 1 and

TQi � (TM)QiTM , QiTM = PiTM; a contradiction. Therefore, T has at most one non-

principal maximal w′-ideal. �

Let T be a w-overring of R. Following (Wang & Kim, 2016), we say that R ⊆ T

is a w-extension if every element x ∈ T is w-integral over R, that is, there is a nonzero

finitely generated ideal I of R such that xIw ⊆ Iw. The set of elements of T which are

w-integral over R is called the w-integral closure of R in T , denoted by Rw
T . As in (Wang

& Kim, 2016), the w-global transform of R, Rwg, is defined as follows:

Rwg = {x ∈ K | xP1 · · · Pk ⊆ R for some P1, · · · , Pn ∈ w-Max(R)}.

Theorem 4.6 Let T be a w-extension of a strong Mori domain R such that T ⊆ Rwg. If R

has the UDwI property, then T has the UDẇI property.

Proof Since T ⊆ Rwg, T is also a strong Mori domain by (Wang & Kim, 2016),

Theorem 7.10.12. By the same method as in the proof of Theorem 4.5, we may assume

that R has a unique non-principal maximal w-ideal M. Let Q be a maximal ẇ-ideal of T .

Since ẇ and w′ are two star operations on T such that ẇ ≤ w′, Q = Qẇ ⊆ Qw′ = (Qẇ)w′ =

(Qw′)ẇ. Thus Qw′ is a ẇ-ideal, and hence Q = Qw′ . Let Q′ be a maximal w′-ideal of T

such that Q ⊆ Q′. Then Q ⊆ Q′ = Q′w′ = (Q′ẇ)w′ = (Q′w′)ẇ = Q′ẇ implies that Q = Q′.

Hence, Q becomes a maximal w′-ideal. So, by Lemmas 4.7 and 4.8, we may take Q and

QTM to be non-principal and assume that Q ∩ R = M. So, TQ is a Noetherian domain.
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Since Q ∩ R = M, M ∩ (T \ Q) = ∅, and hence TM = (TQ)MTQ is a Noetherian domain.

Then RM ⊆ TM is an integral extension by (Wang & Kim, 2016), Theorem 7.7.13. Hence,

TM has the UDI property by [ (Klingler & Omairi, 2020), Theorem 3.4]. Therefore, TM

has at most one non-principal maximal ideal by [ (Goeters & Olberding, 2001), Theorem

2.8]. To show that T has at most one non-principal maximal ẇ-ideal, let Q1 and Q2 be two

distinct non-principal maximal ẇ-ideals of T . Then, for i = 1, 2, QiTM is non-principal by

Lemmas 4.7 and 4.8. Let PiTM be a maximal ideal of TM such that QiTM ⊆ PiTM, where

Pi is a prime ideal of T maximal with respect to Pi∩(R\M) = ∅. Then Pi∩R = M = Qi∩R

by [ (Wang & Kim, 2016), Theorems 7.7.18 and 7.7.9 (3)]. Hence, for each i, (Pi)ẇ = Pi

by [ (Wang & Kim, 2016), Theorem 7.7.7 (3)] which implies that Pi = Qi since Pi and Qi

are incomparable ẇ-ideals (Wang & Kim, 2016), Theorem 7.7.18. Therefore, Q1TM and

Q2TM are two distinct non-principal maximal ideals of TM, which is a contradiction.

�
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CHAPTER 5

UNIQUE DECOMPOSITIONS INTO REGULAR

IDEALS FOR MAROT RINGS

In the previous chapter, we recall that the UDI property and define the UDwI

property which is a Krull-Schmidt property of w-ideals. In a similar way, we define

UDRI property in this chapter. Let R be a ring and C the class of regular ideals of R. R

has the unique decomposition into regular ideals (UDRI) property if, whenever

I1 ⊕ I2 ⊕ · · · ⊕ In � J1 ⊕ J2 ⊕ · · · ⊕ Jm

for Ii, J j ∈ C, then n = m and, after a possible reindexing, Ii � Ji for all i ≤ n. We note that

regular ideals cannot be written as a sum of two regular ideals, wlog, we assume regular

ideals are indecomposable in class C.

In this chapter, we show that a Marot ring R has the UDRI property if and only if

R has a unique non-principal regular maximal ideal M and R(M) has UDRI property (Ay

Saylam & Gürbüz, 2022). We emphasize that if every ideal is regular then these rings can

be considered as Noetherian domains, and our result coincide with the characterization

given in (Goeters & Olberding, 2001). We also provide an example satisfying the UDRI

property and an example which does not satisfy this property. Next, we compare local and

near isomorphisms (definitions are given below) for some classes of modules and prove

they imply isomorphism if R has the UDRI property. We also show that if R has the UDRI

property and R′ is an overring of R which is a finitely generated R-module, then R′ has the

UDRI property. Lastly, we prove that if R has the UDRI property with reg − dim(R) ≤ 2,

then R̃, the integral closure of R, has the UDRI property.
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5.1. Definitions and Fundamental Tools

Let R be a commutative ring with unity. Elements of R that are not zero divisors are

called regular. An ideal of R is called regular if it contains a regular element. The integral

clouse of R, denoted by R̃, is a ring which is the set of all integral elements of R. The total

quotient ring Q(R) of R is defined as Q := Q(R) = {a/b : a, b ∈ R with b regular}. A ring

S is called an overring of R if R ⊆ S ⊆ Q. If I is a nonzero ideal of R, (R : I) = {q ∈
Q | qI ⊆ R} is an R-submodule of Q. If R is a ring and P is a prime ideal of R, then the

regular localization of R at P, is the ring R(P) = {a/b : a, b ∈ R with b � P, b is regular}.
If an ideal is contained in a unique maximal ideal, then it is called colocal. A ring R is

said to be of finite character if every nonzero regular ideal is contained in only finitely

many maximal ideals of R. We call R h-local if R is of finite character and each nonzero

regular prime ideal of R is contained in a unique maximal ideal of R. The regular height

of a regular prime ideal P of R, abbreviated reg − ht(P), is defined to be the supremum of

the length of chains consisting of regular prime ideals contained in P plus 1. The regular

dimension of R, abbreviated reg−dimR, is sup{reg−ht(P)|Pis a regular prime ideal of R}.
Two torsion-free R-modules G and H are called nearly isomorphic if for every

regular ideal I of R, there is an embedding f : G → H such that I + Ann(Coker f ) = R.

Two R-modules G and H are called locally isomorphic if for every regular maximal ideal

M of R, G(M) � H(M)

A ring R is called a Marot ring if every regular ideal can be generated by a set of

regular elements. This propery was defined by Marot in (Marot, 1977).

Theorem 5.1 ( (Huckaba, 1988),Theorem 7.1) The following conditions on a ring R are

equivalent:

1. R is a Marot ring.

2. Every pair of elements {a, b} in R with b regular has the property that the ideal

< a, b > admits a finite system of regular elements as generators.

3. Every regular R-module contained in Q admits a system of regular elements as

generators.

We note that each overring of a Marot ring is also a Marot ring by [ (Huckaba,

1988), Corollary 7.3].
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Valuation rings with zero divisors were defined by Manis (Manis, 1967). A valu-

ation is a map v from a ring K onto a totally ordered group G and a symbol ∞ such that

for all x, y ∈ K:

• v(xy) = v(x) + v(y)

• v(x + y) ≥ min{v(x), v(y)}

• v(1) = 0 and v(0) = ∞.

The ring R = Rv = {x ∈ K : v(x) ≥ 0} together with the ideal P = Pv = {x ∈ K : v(x) >

0} denoted (R, P) is called a valuation pair of K. R is called a valuation ring of K and G

is called the value group of G. If G is isomorphic to the group of integers, R is called a

discrete rank one valuation ring. In the presence of the Marot property, valuation rings

have some similar properties with valuation domains :

Proposition 5.1 (Glaz, 2002)[Proposition 4.1] Let R be a Marot ring. Assume that R �

Q. Then the following conditions are equivalent:

1. R is a valuation ring.

2. For each regular element x ∈ Q, either x ∈ R or x−1 ∈ R.

3. R has only one regular maximal ideal and each of its finitely generated regular ideal

is principal.

5.2. Properties of Marot Rings Whose Regular Ideals are Finitely

Generated

In this section, we will give some properties of Marot rings whose regular ideals

are finitely generated. We use some of these properties for the proofs of our results in the

next section. We start with an important tool which we use in the proofs of our results.

Theorem 5.2 For a commutative ring R, the following are equivalent :

(i) Every regular prime ideal is finitely generated.
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(ii) Every regular ideal is finitely generated.

(iii) Every ascending chain of regular ideals is stationary.

(iv) Every nonempty set of regular ideals in R has a maximal element.

Proof (i) ⇒ (ii) Suppose that every regular prime ideal of R is finitely generated and

there exists a regular ideal which is not finitely generated. Let Γ be the set regular ideals

which are not finitely generated.

By assumption Γ � ∅. We consider ordering Γ by inclusion. Let Φ be a totally

ordered subset of Γ. Set J =
⋃

I∈Φ I which is a regular ideal of R. We claim that J is not

finitely generated. To prove it, suppose that J is finitely generated, say J is generated by

j1, . . . , jn. SinceΦ is a chain, there exists an index N such that R j1+. . .+R jn = J ⊆ IN ⊆ J

impyling IN is finitely generated which is a contradiction. So, J is not finitely generated.

Hence, J ∈ Φ and is an upper bound for Φ in Γ. By Zorn’s Lemma, Γ has a maximal

element, say P.

We claim that P is a prime ideal. Let a, b be elements of R such that a, b ∈ R \ P

with ab ∈ P. Since P ⊂ P+Ra and P is maximal, we have that P+Ra is finitely generated.

Suppose that P + Ra is generated by p1 + r1a, . . . , pn + rna where pi ∈ P and ri ∈ R. Set

the ideal K = (P : a) = {r ∈ R | ra ∈ P}. We have that P ⊂ P + Rb ⊆ K, and, by the

maximality of P, K is finitely generated implying that aK is finitely generated.

Now we claim that P = Rp1+. . .+Rpn+aK. Clearly , Rp1+. . .+Rpn+aK ⊆ P. Take

any p ∈ P ⊂ P+Ra. Then p = c1(p1+r1a)+. . .+cn(pn+rna) implies (c1r1+. . .+cnrn)a ∈ P

i.e c1r1 + . . . + cnrn ∈ (P : a) = K, so p ∈ Rp1 + . . . + Rpn + aK. Thus we have that

P = Rp1 + . . . + Rpn + aK that is P is finitely generated which is a contradiction. So

ab � P and P is prime ideal. Thus we get a regular prime ideal which is not finitely

generated. This contradicts to the assumption. So, all regular ideals of R must be finitely

generated.

(ii)⇒ (i) : Clear.

(iii) ⇒ (ii) Suppose that I is a regular ideal and I is not finitely generated. Then

there exists a regular element x1 ∈ I. Set I1 = Rx1. Then I1 ⊂ I and I1 � I since I

is not finitely generated. So, there exists an element x2 ∈ I \ I1. Set I2 = Rx1 + Rx2.

By continuing this way, we obtain a chain of regular ideals, and since this chain is not

stationary, the ascending chain condition does not hold for this chain.
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(ii)⇒ (iii) Suppose that every regular ideal of R is finitely generated. Let

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

be an arbitrary infinite chain of regular ideals. Let I =
⋃∞

i=1. Then I is also a regular ideal.

By assumption I is finitely generated, say I = Rx1 + . . . + Rxn such that xi ∈ Ini for some

ni. So, there exists N ∈ N such that x1, . . . , xn ∈ IN . But then IN = I and this shows that

Im = IN for all m ≥ N. Hence, the ascending chain condition holds for regular ideals.

(ii)⇔ (iv) : Immediate from Zorn’s lemma. �

From now on, R denotes a Marot ring which has the ascending chain condition

on its regular ideals, and therefore it also satisfies all the equivalent conditions stated in

Theorem 5.2.

Proposition 5.2 Every nonzero regular ideal I of R contains a finite product of regular

prime ideals.

Proof Let Λ be the set of regular ideals Ii of R such that Ii does not contain a finite

product of regular prime ideals, and order Λ by inclusion. Since R has the ascending

chain condition on its regular ideals, Λ has a maximal element, say I. Then I is regular

but not a prime ideal. So, there exist elements x, y ∈ R such that xy ∈ I but x � I , y � I.

Since I � I + Rx and I � I + Ry and I is maximal, we have that I + Rx � Λ, I + Ry � Λ,

and they contain a finite product of regular prime ideals. But then (I + Rx)(I + Ry) =

I2 + Iy + Ix + Rxy ⊂ I implies that I contains a finite product of regular prime ideals, too.

This contradicts to the assumption. �

Corollary 5.1 R is h-local if and only if every regular prime ideal is colocal.

Proof Suppose that every regular prime ideal of R is colocal, and let I be a regular ideal

of R. Then I contains a finite product of regular prime ideals by Proposition 5.2, that is,

there exist prime ideals P1, . . . , Pn such that P1 · · · Pn ⊆ I. Suppose I ⊆ M1, . . . ,Mn, . . .,

then, without loss of generality, P1 ⊆ M1, P2 ⊆ M2, . . . , Pn ⊆ Mn and Pi � Mj when

i � j since Pi’s are colocal prime ideals. Thus, I can be contained in at most n maximal

ideals. �

Lemma 5.1 Every regular ideal of R is a finite intersection of irreducible regular ideals.
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Proof Let Γ be the set regular ideals Ii of R such that Ii is not a finite intersection

of irreducible regular ideals and order Γ by inclusion. Suppose that Γ � ∅, so Γ has a

maximal element, say M. Then M is reducible, that is, M = M1 ∩ M2. Since M ⊂ M1

and M ⊂ M2, M1 and M2 are also regular ideals but they are not in Γ by the maximality

of M. Thus, M1 and M2 are finite intersection of irreducible regular ideals, and so is M.

This gives a contradiction. �

For our next result, we give a definition. An ideal P of any commutative ring R is

primary for its regular elements if whenever x and y are regular elements of R such that

xy ∈ P, then x ∈ P or y ∈ Rad(P).

Theorem 5.3 ( (Huckaba, 1988), Theorem 7.10) Let R be Marot ring. Then a regular

ideal Q of R is primary if and only if Q is primary for its regular elements.

Proposition 5.3 Every irreducible regular ideal of R is primary.

Proof Let I be a regular ideal of R. We claim that I is primary for its regular elements.

Suppose that a, b are regular elements of R such that ab ∈ I and a � I. We will show that

bn ∈ I for some n ∈ Z. Define the ideals Ii = {x | xbi ∈ I}. Then I0 = I ⊆ I1 ⊆ I2 ⊆ . . .
is an ascending chain of regular ideals of R. So, this chain must be stationary, that is,

there exists n ∈ Z such that In = Im for all m ≥ n. Let Q = I + Ra and J = I + Rbn.

We claim that I = Q ∩ J. One direction is clear. For the other direction, take y ∈ Q ∩ J.

Then y = i1 + ua = i2 + vbn where i1, i2 ∈ I, u, v ∈ R. This implies that ua − vbn ∈ I and

uab − vbn+1 ∈ I. Since ab ∈ I and In = Im for all m ≥ n, we get vbn ∈ I. Thus, y ∈ I and

I = Q ∩ J. Since I is irreducible, I = Q or I = J. I = Q is not possible since a ∈ Q but

a � I. Hence I = J and bn ∈ I. By Theorem 5.3, I is primary. �

Corollary 5.2 Every regular ideal of R has a primary decomposition.

Proof Immediately follows from Lemma 5.1 and Proposition 5.3. �

Proposition 5.4 If every regular maximal ideal of R is principal, then every regular ideal

is principal.

Proof Let I be a regular ideal. Then I is finitely generated, and since R is Marot ring,

it must be generated by finitely many regular elements. So, we only need to show that

aR + bR is principal, where a, b ∈ R are regular elements. If aR + bR = R, then we are

done. If not, aR + bR ⊆ M, where M is a maximal ideal of R. Since a and b are regular
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elements, M is also a regular ideal. So, by assumption, M = cR for some regular element

c ∈ R. Then, we can write a = a1c, b = b1c for some a1, b1 ∈ R. We note that a1, b1 are

also regular elements, and aR is properly contained in a1R. Now, if a1R + b1R = R, then

aR + bR = cR. If not, we repeat the process. After a finite number of steps we will find

that aR + bR is principal. �

Lemma 5.2 For every regular ideal I of R, the number of minimal prime ideals over I is

finite.

Proof Let Γ be the set of regular ideals Ii such that the number of minimal prime ideals

over Ii is infinite. Suppose that Γ � ∅. Since R has the ascending chain condition on its

regular ideals, Γ has a maximal element, say Q. Clearly, Q is not a prime ideal. So, there

exist a, b ∈ R such that ab ∈ Q with a � Q, b � Q. Define the ideals I = Q + aR and

J = Q + bR. Since Q � I,Q � J, we get I, J � Γ but IJ ⊆ Q. This implies that any prime

ideal minimal over Q is minimal over either I or J. But the number of minimal prime

ideals over I and J are finite. So, we get a contradiction. �

5.3. The UDRI Property

In this section, R denotes a Marot ring whose regular ideals are finitely generated

unless otherwise stated. In these rings, we will characterize the UDRI property. We start

with an important tool.

Lemma 5.3 If R has the UDRI property, then R has at most one non-principal regular

maximal ideal.

Proof Let M1 and M2 be two distinct regular maximal ideals of R. Then we have the

exact sequence

0→ M1 ∩ M2

f→ M1 ⊕ M2

g→ M1 + M2 = R→ 0

where the homomorphisms f and g are defined as f (x) = (x, x) for every x ∈ M1 ∩ M2,

and g((a, b)) = a − b for every (a, b) ∈ M1 ⊕ M2. Since g is onto, there exists an element

x ∈ M1⊕M2 such that g(x) = 1. Now define a homomorphism φ : R→ M1⊕M2 such that
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φ(a) = ax for every a ∈ R. One can easily show that g ◦ φ = idR which implies that this

exact sequence splits. Thus, we have M1 ⊕ M2 � R ⊕ (M1 ∩ M2). Since R has UDRI, one

of M1 or M2 is isomorphic to R, that is, one of them is principal. �

Now, we give an example of a Marot ring whose regular ideals are finitely gener-

ated with more than two non-principal regular maximal ideals. First of all, let us recall

the A+B construction. Let D be an integral domain and P a nonempty set of prime ideals

with index setA. Let I = A×N, and for each i = (α, n) ∈ I, let Ki = Kα be the quotient

field of D/Pα. For B =
∑

Ki, form a ring R = D + B from D × B by defining addition and

multiplication as (r, b) + (s, c) = (r + b, s + c), and (r, b)(s, c) = (rs, rb + sc + bc). (See

(Lucas, 2016) for further details.)

Example 5.1 ( (Lucas, 2016), Example 2.4) Let D = Z[
√

10]. This is a Dedekind

domain which is not a PID. Both M = 2D +
√

10D and N = 5D +
√

10D are maximal

ideals, and neither is principal. Let P = Max(D)\ {M,N}, and let R = D+B be the ring of

the form A+B corresponding to D and P. Then R is a Marot ring whose regular ideals are

finitely generated and the only regular maximal ideals are MR = M + B and NR = N + B,

and neither is principal. So, by Lemma 5.3, R does not satisfy UDRI.

Proposition 5.5 Let M be the unique regular maximal ideal of R. If M is principal, then

every regular ideal of R is of the form Mn, where n ∈ N.
Proof Suppose that M =< m >, where m is a regular element of R, and let J be a

nonzero regular ideal. Assume that J ⊆ Mn for every n ∈ Z+. Then J ⊆ ∩∞i=1Mi. First, we

note that Mi � M j whenever i � j. Let I = ∩∞i=1Mi. Then IM = I. If I � 0, then I =< t >

for some regular element t. Since t ∈ IM, there exist n ∈ Z+ and xi ∈ I, yi ∈ M such that

t =
∑n

i=1 xiyi, and this implies that M contains a unit. So, I = 0. Hence, there exists n ∈ Z
such that J ⊆ Mn but J � Mn+1. Since J � Mn+1 and R is a Marot ring, there exists a

regular element j ∈ J \Mn+1. Then, we have that j = mnt for some t ∈ R, and t � 0. If t is

a unit, we are done. If t is not unit and t ∈ M, then j ∈ Mn+1. So, t � M, and this implies

t is not regular. But then this would contradict with being j regular. Hence, t must be a

unit. Therefore, < j >=< mn >= Mn. Since < j >⊆ J ⊆ Mn =< mn >, we get J = Mn. �

Remark 5.1 Let R be a Marot ring and M a regular maximal ideal of R. Then we have

the following:
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(1) Every regular ideal of R(M) is of the form IR(M) where I is a regular ideal of R with

I ⊆ M.

(2) MR(M) is the unique regular maximal ideal of R(M).

The prooof of the remark is as follows. Let I be a regular ideal of R. Then there

exists a regular element x ∈ I. If x � M, then IR(M) = R(M). If x ∈ M, then IR(M) is an

ideal of R(M), and x/1 is a regular element contained in IR(M). For the converse part, let X

be a regular ideal of R(M). Then X = JR(M) for some ideal J of R. Since JR(M) is regular,

it contains a regular element x/y, where x ∈ J, and x must be regular in R. This implies J

is a regular ideal of R. If J is not contained in M, then there exists a regular element j ∈ J

such that j � M which yields JR(M) = R(M). From part (1), we can conclude that MR(M)

is a regular ideal of R(M). Assume MR(M) ⊆ YR(M). If Y � M, then there exists a regular

element y ∈ Y \ M since R is a Marot ring. Thus, YR(M) = R(M). Suppose A(M) is a proper

regular ideal of R(M). Then A is a regular ideal of R. Take any regular element a ∈ A.

Since A(M) is proper, a ∈ M. Thus, every regular element of A is contained in M. Since R

is a Marot ring, we must have A ⊆ M. Hence, every regular ideal of R(M) is contained in

M(M).

Lemma 5.4 For any commutative ring R, if P is a regular principal prime ideal of R such

that P ⊆ N, where N is a principal maximal ideal, then P = N.

Proof Suppose that P =< p > and N =< n >, where p, n are regular elements. Then

p = nt for some t ∈ R. Since P is a prime ideal, we have n ∈ P or t ∈ P. If n ∈ P, then we

are done. If t ∈ P, then t = kp, for some k ∈ R. This gives p = nkp. Since p is regular,

this implies N = R. Hence, P = N. �

Lemma 5.5 If N is a principal regular maximal ideal of R, then N does not contain a

regular prime ideal properly.

Proof If P is a regular prime ideal such that P ⊂ N, then PR(N) is a regular prime ideal

of R(N). Since R(N) has a unique regular maximal ideal NR(N) which is principal , PR(N)

must be principal by Proposition 5.4. So, by Lemma 5.4, we must have PR(N) = NR(N),

and this implies P = N. �

64



Proposition 5.6 If R has finitely many non-principal regular maximal ideals, then R is of

finite character.

Proof Let I be a regular ideal of R, and suppose that I is contained in a principal

maximal ideal of R, say N. In R/I, N/I is both a maximal ideal and a minimal prime

ideal of R/I by Lemma 5.5. Since there are only finitely many minimal prime ideals

containing I by Lemma 5.2, I can be contained in only finitely many principal regular

maximal ideals. Hence, I can be contained in only finitely many regular maximal ideals.

�

Lemma 5.6 If P is a principal regular maximal ideal of R, then R(P) is a discrete rank

one valuation ring.

Proof Let P be a principal regular maximal ideal of R. Since R(P) has a unique regular

maximal ideal PR(P) which is principal, every regular ideal of R(P) is of the form PnR(P),

where n is a positive integer by Proposition 5.5. For any regular element x ∈ R(P), define

a valuation map as follows:

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ R(P) \ PR(P),

n if x ∈ PnR(P) \ Pn+1R(P),

∞ if x ∈ ∩PnR(P).

It can be easily shown that v(0) = ∞, v(1) = 0 and v(xy) = v(x) + v(y), and v(x + y) ≥
min{v(x), v(y)} for any regular elements x, y ∈ R. So, each regular element in R(P) has a

finite v-value, and v may be extended to a valuation on Q(R(P)). We can see that R(P) =

{x ∈ Q(R(P)) | v(x) ≥ 0} and PR(P) = {x ∈ Q(R(P)) | v(x) > 0}. Thus, (R(P), PR(P)) is a

discrete rank one valuation ring. �

Lemma 5.7 If M is a regular maximal ideal of R such that every other regular maximal

ideal other than M is principal, then R is h-local.

Proof It is enough to show that every regular prime ideal is colocal by Corollary 5.1.

Let P be a regular prime ideal. If P ⊆ N, where N � M is maximal ideal, then PR(N) is a

regular prime ideal of R(N). Since NR(N) is the unique regular maximal ideal of R(N) and

principal, we have PR(N) is also principal by Proposition 5.4. So by 5.4 we get PR(N) =

NR(N) which implies P = N. Otherwise, P is contained in M. Thus, R is h-local. �
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Theorem 5.4 (, Huckaba, 1988, Theorem 6.1) Let R be a ring and S an R-submodule of

Q. If {Mσ} is the set of regular maximal ideals of R and S contains a regular element of

R, then S =
⋂

S R(Mσ).

Lemma 5.8 If M is a regular maximal ideal of R such that every other regular maximal

ideal other than M is principal, then every regular ideal of R which is not contained in M

is principal.

Proof Let I be a regular ideal which is not contained in M. Since R is h-local by Lemma

5.7, I is contained in only finitely many maximal ideals , say N1, . . . ,Nt, all of which are

principal. Then IR(Ni) = aki
i R(Ni) for some ki ∈ N where Ni =< ai > by Proposition 5.5.

So, IR(N) = (ak1

1
· · · akt

t R)(N) for all regular maximal ideals of R. Therefore, by Theorem

5.4, I = ak1

1
· · · akt

t R, that is, I is principal. �

Now, we prove that, for direct sum of regular ideals, nearly isomorphism implies

locally isomorphism. We note that the following lemma holds for all Marot rings without

the assumption that their regular ideals are finitely generated.

Lemma 5.9 Let R be a Marot ring, and let G and H direct sum of regular ideals. If G

and H are nearly isomorphic, then they are locally isomorphic.

Proof Suppose that G and H are nearly isomorphic, where G = I1 ⊕ · · · ⊕ In and

H = J1 ⊕ · · · ⊕ Jk for some regular ideals Ii, Jk. Let M be a regular maximal ideal of R and

f : G → H an embedding such that M+Ann(Coker f ) = R. Since I1⊕· · ·⊕In = G � Im f =

J̃1 ⊕ · · · ⊕ J̃k, where J̃i are regular ideals, Ann(H/Im f ) is regular. By regular localization,

we obtain M(M) + Ann(Coker f )(M) = R(M). We conclude that R(M) = Ann(Coker f )(M)

since R(M) has a unique regular maximal ideal M(M). So Ann(Coker f ) is not contained in

M. Since R is a Marot ring, there exists a regular element x ∈ Ann(Coker f ) \ M. Since

xH ⊆ Im f , we get that H(M) = xH(M) ⊆ Im f(M) ⊆ H(M). Hence, H(M) = Im f(M), and f(M)

is surjective. �

Before the next proposition, we recall an important result that is related to h-local

Marot rings. An R-module T is called torsion R-module if it is annihilated by a regular

element of R.

Theorem 5.5 (Klingler & Omairi, 2021) The following conditions are equivalent for a

Marot ring R.
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1. R is an h-local ring.

2. Every torsion R-module T is canonically isomorphic to ⊕T(M), where M ranges over

the maximal ideals M of R.

The following proposition plays an important role in classifying the UDRI prop-

erty. It shows that for the modules that are direct sum of regular ideals of R, locally

isomorphism implies isomorphism.

Proposition 5.7 Let G and H be R-modules that are direct sum of regular ideals, and

suppose R has a unique non-principal regular maximal ideal M. If G(M) � H(M), then

G � H.

Proof First, suppose that G and H are regular ideals. Since G(M) � H(M), there exists an

isomorphism φ : G(M) → H(M). Since G is torsion-free, G ⊆ G(M), and so we can consider

its restriction φ : G → H(M). Since G is finitely generated, there exists a regular element

s � M such that f = sφ maps G into H. The map f(M) is also an isomorphism because s is

a unit in R(M). So, we have (Ker f )(M) = Ker f(M) = 0, and this implies Ker f = 0.

Now let I = Ann(H/ Im f ). Since f(M) is onto, we have IR(M) = R(M) and so I

is a regular ideal which is not contained in M. So, I is principal by Theorem 5.8. Let

I = tR. By Lemma 5.7, t is contained in only finitely many maximal ideals which all are

principal, say Ni, i = {1, 2, . . . , n}. Also, again, since R is h-local, R/tR and H/tH have a

decomposition such that R/tR � ⊕n
i=1(R/tR)(Ni) and H/tH � ⊕n

i=1(H/tH)(Ni) (Klingler &

Omairi, 2021). We know that H(Ni) � R(Ni), and this implies (tH)(Ni) � (tR)(Ni). Thus, we

get R/tR � H/tH. Since t ∈ I, tH ⊆ Im f . So, there is a surjection α : R → H/ Im f

defined by α(r) = rx, where x is a generator of H/ Im f . We note that Kerα = tR = I, and

we have H/tH � H/ Im f . Since R/tR is Artinian, H/tH and H/ Im f have the same finite

length but since tH ⊆ Im f , we conclude that H � tH = Im f � G.

We claim that G and H cannot have different number of summands. Suppose that

G = J1 ⊕ · · · ⊕ Jn and H = I1 ⊕ · · · ⊕ Ik with G(M) � H(M). By the first part, there exists an

injection ϕ : G → H, and so G � Imϕ = X1 ⊕ · · · ⊕ Xk where Xi are regular ideals. Take

any principal regular maximal ideal N. Then we have R(n)

(N)
� R(k)

(N)
which implies k = n.

Assume that G = J1 ⊕ J2 and H = I1 ⊕ I2 with G(M) � H(M). Let f be the

injective map from G into H such that f(M) is an isomorphism. Set Im f = X1 ⊕ X2 and

Π : I1 ⊕ I2 → I1. Define g = Π ◦ f . Since Π(M), f(M) are onto, we get (X1)(M) � (I1)(M). By
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the first part of the proof, we get X1 � I1. Similary, I2 � X2 and so G � H. By induction,

we are done. �

Proposition 5.8 Assume R has a unique non-principal regular maximal ideal M and G

and H be direct sum of regular ideals of R. Then the following are equivalent:

(a) G is nearly isomorphic to H.

(b) G(M) � H(M).

(c) G and H are locally isomorphic.

(d) G is isomorphic to H.

Proof Follows from Lemma 5.9 and Proposition 5.7. �

Finally, we are ready to give a necessary and sufficient condition for R to satisfy

the UDRI property.

Theorem 5.6 R has the UDRI property if and only if R has at most one non-principal

regular maximal ideal M and R(M) has the UDRI property.

Proof R must have at least one regular maximal ideal since if every regular maximal

ideal of R is principal, then every regular ideal is principal by Proposition 5.4, and in

this case R has UDRI. By Lemma 5.3, R has at most one regular maximal ideal, say M.

Suppose that I′1 ⊕ · · · ⊕ I′n � J′1 ⊕ · · · ⊕ J′m, where I′i and J′k are regular ideals of R(M). Since

every regular ideal of R(M) is of the form I(M), where I is a regular ideal of R, we can write

R-modules G = I1 ⊕ · · · ⊕ In and H = J1 ⊕ · · · ⊕ Jm, where I′i = IiR(M), J′i = JiR(M) so that

G(M) � H(M). By Proposition 5.8, G � H, and by assumption, m = n, and after a possible

reindexing, Ii � Ji implying that I′i � J′i .

For the converse, suppose that the R-modules G = I1⊕· · ·⊕ In and H = J1⊕· · ·⊕Jm

are isomorphic, where Ii, Jk are regular ideals of R. Then, we can write G(M) � H(M) so

that G(M) and H(M) are direct sum of regular ideals of R(M). By assumption, m = n, and

after a possible reindexing, IiR(M) � JiR(M). Again, by Proposition 5.8, Ii � Ji. �

Example 5.2 Let D = Z[
√

10]. Define the set

X = {I ∈ Max(D) | I is a principal maximal ideal}.
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Since 17D ∈ X, X � ∅. Choosing P = Max(D) \ (X ∪ {M}), where M = 2D +
√

10D,

we construct the ring R = D + B of the form A + B corresponding to D and P. Then R is

a Marot ring whose regular ideals are finitely generated and R has a unique regular non-

principal maximal ideal which is MR = M + B. Since R(MR) is a discrete valuation ring

[ (Lucas, 2016),Example 2.7], R(MR) has UDRI property. Thus, R has UDRI by Theorem

5.6.

5.4. UDRI for Overrings

Througout this section, R is assumed to be a Marot ring whose regular ideals are

finitely generated. Our purpose is to show that if R has the UDRI property and reg −
dim(R) ≤ 2 then R̃, the integral closure of R, has the UDRI property. We start by the

following useful lemma for the next result.

Lemma 5.10 Let R′ be an overring of R and N a regular maximal ideal of R which

contracts to a regular principal maximal ideal of R. Then N is principal.

Proof Let P = N ∩ R = xR be the maximal ideal where x ∈ P is a regular element

of R. Since R(P) has a unique regular maximal ideal which is principal, R(P) is a discrete

rank one valuation ring. Since (Q(R))(P) ⊂ Q(R(P)) and R′ is an overring of R, we have

the inclusions R(P) ⊂ R′(P) ⊂ (Q(R))(P) ⊂ Q(R(P)) which implies R′(P) is an overring of

R(P). So, we conclude that R′(P) = R(P) or R′(P) = Q(R(P)) because R(P) is a Marot discrete

rank one valuation ring by [ (Huckaba, 1988), Lemma 8.1]. Suppose that R′(P) = Q(R(P)).

Since N is a regular maximal ideal in R′, N(P) is regular maximal ideal in R′(P) = Q(R(P)).

But every regular element in Q(R(P)) is a unit, and this implies N(P) = R′(P), which is a

contradiction. Therefore, we must have R(P) = R′(P). We claim that N = xR′. Since N

is a regular R-submodule of Q(R), we need to show that N and xR′ are locally equal by

Theorem 5.4. If M � P is a regular maximal ideal, x � M implies (xR′)(M) = R′(M), and

since R′(M) = xR′(M) ⊆ N(M) ⊆ R′(M), we get N(M) = R′(M) = (xR′)(M). Also, we have

P(P) = (xR)(P) = xR(P) = xR′(P) ⊆ N(P) ⊆ R′(P) = R(P).
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Since P(P) is maximal in R(P), we have P(P) = N(P), and it follows that N(P) =

xR(P) = xR′(P) = (xR′)(P). Thus, N = ∩N(M) = ∩(xR′)(M) = xR implies that N = xR′.

�

We are ready to show that if R has the UDRI property and reg − dim(R) ≤ 2 then

R̃, the integral closure of R, has the UDRI property. For the proof of this result, we state

some helpful lemmas which are valid for a commutative ring R.

Lemma 5.11 ( (Klingler & Omairi, 2020), Lemma 3.1) If φ : I → J is an isomorphism

of R-ideals, and R′ is an overring of R finitely generated as an R-module, then φ extends

uniquely to an isomorphism φ′ : R′I → R′J of R′-ideals.

We show that the UDRI property passes to finitely generated overrings.

Lemma 5.12 If R has the UDRI property and R′ is an overring of R which is a finitely

generated R-module, then R′ has the UDRI property.

Proof Suppose I1 ⊕ . . . In � J1 ⊕ . . . Jm, where Ii, Jk are regular ideals of R′. Since R′ is

finitely generated as an R-module, there exists a regular element d ∈ R such that dR′ ⊆ R.

So, we get the isomorphism dI1 ⊕ . . . ⊕ dIn � dJ1 ⊕ . . . ⊕ dJm where dIi, dJk are regular

ideals of R. Since R has UDRI, we get n = m and after reindexing dIi � dJi. Since d

is regular, we have Ii � Ji as R-modules. By Lemma 5.11, Ii � Ji as R′-ideals which

completes the proof. �

Proposition 5.9 If R has the UDRI property and reg − dim(R) ≤ 2, then R̃ has the UDRI

property.

Proof Suppose that φ : H1 ⊕ H2 ⊕ · · · ⊕ Hm → K1 ⊕ K2 ⊕ · · · ⊕ Kn is an isomorphism,

where Hi, 1 � i � m, and Kt, 1 � t � n, are regular ideals of R̃. Let {hα} be the union

of generating sets of the ideals Hi and {kβ} the union of generating sets of the ideals Kt.

These sets are finite and subsets of regular elements of R̃ by [ (Chang, 1999), Theorem

7]. Then, there are elements rα,β ∈ R̃ such that φ(hα) =
∑
β rα,βkβ for each index α and

elements sβ,α ∈ R̃ such that kβ =
∑
α sβ,αφ(hα). Let R′ be the overring of R defined as

R′ =
∑

R[hα] +
∑

R[kβ] +
∑

R[rα,β] +
∑

R[sβ,α]. Since these elements are integral over

R, R′ is finitely generated as an R-module by [ (Atiyah & Macdonald, 1969), Proposition

5.1] and so R′ has UDRI by Lemma 5.12. Hence, we can replace R′ by R and assume that

all of the elements hα, kβ, rα,β, sβ,α are regular elements in R.
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For each index α, let Iα be the R-ideal generated by the elements of {hα} which

generate Hi as an R̃ ideal and for each index β, let Jβ be the R-ideal generated by the

elements of {kβ} which generate Kt as an R̃ ideal. Then we see that R̃Iα = Hα and R̃Jβ =

Kβ. Let ϕ be the restriction of φ to I1⊕· · ·⊕ Im. Then we get ϕ(I1⊕· · ·⊕ Im) = J1⊕· · ·⊕ Jn,

and ϕ is an isomorphism of direct sums of regular ideals of R.

By assumption, we have m = n and renumbering if necessary, there is an R-

isomorphism ϕi : Ii → Ji. Take any x ∈ Hα and y ∈ Kβ. Then we can write these elements

as x =
∑
α rαhα and y =

∑
β sβkβ for some rα, sβ ∈ R̃ using the generating sets given

above. Let R′ be the overring defined as R′ =
∑

R[rα] +
∑

R[sβ]. Since these elements

are integral over R, R′ is finitely generated as an R-module, and therefore ϕi extends to

an R′-isomorphism ϕ′i : R′Ii → R′Ji. Since ϕ′i(x) is independent of the choice of finite

extension of R containing x, we define ϕ̃i(x) = ϕ′i(x). Then ϕ̃i is injective since each

extension of ϕ to a finitely generated overring is injective, and since y ∈ Im(ϕ′i), it follows

that ϕ̃i is surjective. Also for any x, y ∈ Hα and r ∈ R̃, we have ϕ̃i(x + y) = ϕ̃i(x) + ϕ̃i(y)

and ϕ̃i(rx) = rϕ̃i(x) implying that ϕ̃i is an R̃-isomorphism. �
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CHAPTER 6

CONCLUSION

In this thesis Krull-Schmidt properties over Non-Noetherian rings are investigated.

Mainly, weakly Matlis domains, strong Mori domains, and Marot rings are studied, all

of which are among the group of Non-Noetherian rings. Firstly w-weak isomorphism

types are defined, and the connections between these isomorphism types are characterized

for torsionless modules over weakly Matlis domains. By using the comparison of w-

weak isomorphism types, Krull-Schmidt property on w-ideals of a strong Mori domain is

examined. Applying the obtained results, these properties are also discussed for overrings

of strong Mori domains. Some preliminary results about Marot rings satisfying ascending

chain condition on regular ideals are obtained. Furthermore, Krull-Schmidt property on

regular ideals of a Marot ring and overrings of a Marot ring are studied.

72



REFERENCES

Anderson, D. D., Winders, M. 2009: Idealization of a module. Journal of Commutative
Algebra, 1(1), 3-56.

Anderson, D. D., Zafrullah, M. 1999: Independent locally-finite intersections of local-

izations. Houston J. Math, 25(3), 433-452.

Anderson, D. D., Zafrullah, M. 1991: Almost Bezout domains. Journal of Algebra,

142(2), 285-309.

Anderson, D. D., Chun, S. 2014: The set of torsion elements of a module. Communi-
cations in Algebra , 42(4), 1835-1843.

Anderson, D. D., Zafrullah, M. 1993: On t-invertibility III. Communications in Alge-
bra, 21(4), 1189-1201.

Atiyah, M.F., Macdonald, I.G. 1969: Introduction to Commutative Algebra. Boston,
MA, USA: Addition-Wesley Publishing Company.

Ay, B., Klingler, L. (2011): Unique decomposition into ideals for reduced commutative

Noetherian rings. Trans. Am. Math. Soc. 363 (7): 3703-3716.

Ay, B. and Klingler, L. 2012: Unique decomposition into ideals for reduced commuta-

tive Noetherian rings II. J. Pure Appl. Algebra, 216(4), 743-751.

Ay Saylam, B., Klingler, L. 2019: Locally isomorphic torsionless modules over do-

mains of finite character. J. Algebra and Its Applications, 18(07), 1950138.

Ay Saylam, B. and Gürbüz, E. 2022: Unique decomposition into regular ideals for

Marot rings. Communications in Algebra

Ay Saylam, B., Gürbüz, E. and Hamdi,H. 2022: Unique decomposition into w ideals

for strong Mori domains. J. Algebra and Its Applications. (to appear)

Ay Saylam, B., Gürbüz, E. and Hamdi,H. 2022: w-locally isomorphic torsionless mod-

ules over weakly Matlis domain.(in preparation)

Badawi, A. 2003: On nonnil-Noetherian rings. Communications in Algebra, 31, 1669-

1677.

Chang, G.W. 1999: Integral closure of a Marot ring whose regular ideals are finitely

generated. Communications in Algebra, 27(4): 1783-1795.

73



Chang, G. W., Kim, H. 2017: The w-FF property in trivial extensions. Bull. Iranian
Math. Soc. 43(7), 2259-2267.

Chase, S. U. 1962: Torsion-free modules over K[X,Y]. Pacific Journal of Math., 12,

437-447.

Dummit, D. S., Foote, R.M. 2004: Abstract Algebra. John Wiley and Sons Inc.

El Baghdadi, S., Kim, H., and Wang, F. 2014. Injective modules over Prüfer v-

multiplication domains. Communications in Algebra, 42(1), 286-298.

El Baghdadi, S., Fontana, M. 2004: Semistar linkedness and flatness, Prüfer semistar

multiplication domains. Communications in Algebra, 32(3), 1101-1126.

El-Baghdadi, S. 2010: Semistar GCD domains. Communications in Algebra, 38(8),
3029-3044.

Estes, D., Guralnick, R. 1982: Module Equivalences : local to global when primitive

polynomials represents units. Journal of Algebra, 77, 138-157.

Evans, E. 1973: Krull-Schmidt and cancellation over local rings. Pac. J. Math., 46(1),
115-121.

Glaz, S. 2002: Controlling the zero divisors of a commutative ring. Marcel Dekker
Lecture Notes in Pure and Applied Mathematics, 231: 191-212.

Goeters, P., Olberding, B. 2001: Unique decomposition into ideals for Noetherian

domains. Journal of Pure and Applied Algebra, 165, 169-182.

Goeters, P., Olberding, B. 2002: On Locally Isomorphic Torsion-Free Modules. Com-
mutative Rings (Nova Sci. Publ., Hauppauge, NY), 83-94.

Goeters, P., Olberding, B. 2002: The Krull-Schmidt Property for Ideals and Modules

over Integral Domains. Rocky Mountain J. Math., 32, 1409-1429.

Glaz, S., Vasconcelos, W. V. 1977: Flat ideals II. Manuscripta Math. 22(4), 325-341.

Huckaba, J.A. 1988: Commutative rings with zero divisors. Marcel Dekker, New York

Kaplansky, I. 1949: Elementary divisors and modules. Trans. Am. Math. Soc., 66 (2),
464-491.

Kaplansky, I. 1952: Modules over Dedekind rings and valuation rings. Trans. Amer.
Math. Soc., 72(2), 327-340.

74



Kim, H., Wang, F. G. 2012: On ϕ-strong Mori rings. Houston J. Math, 38, 359-371.

Klingler, L., Omairi, A. 2020: Unique decomposition into ideals for commutative

Noetherian rings. Journal of Pure and Applied Algebra, 224(9):106364.

Klingler, L., Omairi, A. 2021: h-local Rings. Commutative Algebra: 150 years with
Roger and Sylvia, 773.

Lucas, T.G. 2016: Addivitely regular rings and Marot rings. Palestine Journal of Math-
ematics, 5 (1), 90-99.

Manis, M.E. 1967: Extension Of valuation theory. Bull. Amer. Math. Soc., 73 735-736.

Marot, J. 1977: Ph.D Thesis: Sur Les Anneaux Universeillement Japonais, Univ. Paris-

Sud.

Mimouni, A. 2005: Integral domains in which each ideal is a w-ideal. Communications
in Algebra, 33(5), 1345-1355.

Serre, J. P. 1979: Local Fields. Berlin, Springer-Verlag

Wang, F. 1997: On w-projective modules and w-flat modules. Algebra Colloq., 4(1),
111-120.

Yin, H., Wang, F., Zhu, X., Chen, Y. 2011: w-modules over commutative rings. J.
Korean Math. Soc. 48, 207-222.

Vasconcelos, W.V. 1965: On local and stable cancellation, An. Acad. Bras. Ciencios,

37, 389-393.

Wang, F., McCasland, R. 1997: On w-modules over strong Mori domains. Commun.
Algebra, 25 (4), 1285-1306.

Wang, F., McCasland, R. 1999: On strong Mori domains. J. Pure Appl. Algebra, 135
(2), 155-165.

Wang, F., Kim, H. 2016: Foundations of commutative rings and their modules.

Springer Singapore

Zafrullah, M. 2006: What v-coprimality can do for you. Multiplicative Ideal Theory in
Commutative Algebra, Springer US, 387-404.

75



VITA

Date and Place of Birth: 22.07.1990, Izmir-TURKEY

EDUCATION

2016 - 2022 Doctor of Philosophy in Mathematics

Graduate School of Engineering and Sciences, Izmir Institute of Technology,

Izmir -Turkey

Thesis Title: Krull-Schmidt Properties over Non-Noetherian Rings

Supervisor: Prof. Dr. Başak Ay Saylam
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