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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by
Zehra ÇAYİÇ
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ABSTRACT

EXACTLY SOLVABLE QUANTUM PARAMETRIC OSCILLATORS

IN HIGHER DIMENSIONS

The purpose of this thesis is to study the dynamics of the generalized quantum

parametric oscillators in one and higher dimensions and present exactly solvable models.

First, time-evolution of the nonclassical states for a one-dimensional quantum paramet-

ric oscillator corresponding to the most general quadratic Hamiltonian is found expli-

citly, and the squeezing properties of the wave packets are analyzed. Then, initial boun-

dary value problems for the generalized quantum parametric oscillator with Dirichlet and

Robin boundary conditions imposed at a moving boundary are introduced. Solutions cor-

responding to different types of initial data and homogeneous boundary conditions are

found to examine the influence of the moving boundaries. Besides, an N-dimensional ge-

neralized quantum harmonic oscillator with time-dependent parameters is considered and

its solution is obtained by using the evolution operator method. Exactly solvable quantum

models are introduced and for each model, the squeezing and displacement properties of

the time-evolved coherent states are studied. Finally, time-dependent Schrödinger equa-

tion describing a generalized two-dimensional quantum coupled parametric oscillator in

the presence of time-variable external fields is solved using the evolution operator method.

The propagator and time-evolution of eigenstates and coherent states are derived expli-

citly in terms of solutions to the corresponding system of coupled classical equations of

motion. In addition, a Cauchy-Euler type quantum oscillator with increasing mass and

decreasing frequency in time-dependent magnetic and electric fields is introduced. Based

on the explicit results, squeezing properties of the wave packets and their trajectories in

the two-dimensional configuration space are discussed according to the influence of the

time-variable parameters and external fields.
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ÖZET

YÜKSEK BOYUTTA TAM ÇÖZÜLEBİLEN KUANTUM

PARAMETRİK OSİLATÖRLER

Bu tezin amacı bir ve yüksek boyutlarda genelleştirilmiş kuantum parametrik osi-

latörlerin dinamiğini çalışmak ve tam çözülebilen modeller sunmaktır. İlk olarak, ikinci

dereceden en genel Hamiltonyen’e karşılık gelen bir boyutlu bir kuantum parametrik osi-

latör için klasik olmayan durumların zamanla evrimi açıkça bulunmuş ve dalga paket-

lerinin sıkışma özellikleri analiz edilmiştir. Daha sonra, hareketli bir sınıra dayatılan

Dirichlet ve Robin sınır koşullarına sahip genelleştirilmiş kuantum parametrik osilatör

için başlangıç sınır değer problemleri tanıtılmıştır. Hareketli sınırların etkisini inceleye-

bilmek için farklı türdeki başlangıç verilerine ve homojen sınır koşullarına karşılık gelen

çözümler bulunmuştur. Ayrıca, zamana bağlı parametrelere sahip N boyutlu bir genelleş-

tirilmiş kuantum harmonik osilatör ele alınmış ve çözümü evrim operatörü yöntemini kul-

lanarak elde edilmiştir. Tam çözülebilen kuantum modeller tanıtılmış ve her bir model için

zamanla evrimleşmiş eş uyumlu durumların sıkışma ve yer değişme özellikleri çalışılmıştır.

Son olarak, evrim operatörü yöntemini kullanarak, zamana bağlı olarak değişen dış alan-

ların varlığında genelleştirilmiş iki boyutlu bir kuantum parametrik bağlaşım osilatörünü

tanımlayan zamana bağlı Schrödinger denklemi çözülmüştür. Üretici ve özdurumların

ve eş uyumlu durumların zamanla evrimi karşılık gelen bağlantılı klasik hareket denk-

lemlerinin sisteminin çözümleri cinsinden açıkça türetilmiştir. Ek olarak, zamana bağlı

manyetik ve elektrik alanlarda artan kütle ve azalan frekansa sahip Cauchy-Euler tipi

bir kuantum osilatör tanıtılmıştır. Açık sonuçlara dayanarak, dalga paketlerinin sıkışma

özellikleri ve iki boyutlu konfigürasyon uzayındaki yörüngeleri, zamana bağlı paramet-

relerinin ve dış alanların etkisine göre tartışılmıştır.
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CHAPTER 1

INTRODUCTION

Quantum harmonic oscillators with explicitly time-dependent Hamiltonians have

attracted substantial interest in the literature since they have applications in many branches

of physics, such as quantum optics, quantum fluid dynamics, ion-traps, cosmology, quan-

tum information and quantum computation. To understand better behavior of such quan-

tum systems, it is always important to have exactly solvable models. The best known one

is the Caldirola-Kanai oscillator with an exponentially increasing mass, which is widely

used to study dissipation in quantum mechanics (Caldirola, 1941), (Kanai, 1948). There

are many powerful approaches for solving one-dimensional non-stationary quantum oscil-

lator problems, such as Feynman path integral (Feynman, 1951), Husimi ansatz (Husimi,

1953), Lewis-Riesenfeld invariant (Lewis & Riesenfeld, 1969), Malkin-Man’ko-Trifonov

(Malkin, Man’ko & Trifonov, 1970), (Malkin, Man’ko & Trifonov, 1971), and Wei-

Norman approaches (Wei & Norman, 1963).

Coherent states and squeezed coherent states of the quantum harmonic oscilla-

tor are known since the beginning of quantum mechanics. Indeed, the ‘non-spreading

wave packets’ of the harmonic oscillator were proposed by Schrödinger (Schrödinger,

1926), and followed by Kennard (Kennard, 1927). Then the same states were derived

as eigenstates of the non-Hermitian annihilation operator â (Iwata, 1951). However, in

the literature, the name ‘coherent states’ appeared for the first time in the paper (Glauber,

1963). For the standard quantum harmonic oscillator (SQHO) defined by the Hamiltonian

Ĥ0 =
p̂2

2
+
ω2

0

2
q̂2,

where q̂ is position operator, and p̂ = −i�∂/∂q is the momentum operator, ω0 > 0 is the

constant frequency and mass is m = 1, coherent states are minimum uncertainty states

with equal uncertainties in both quadratures, whose dynamics most closely resemble the

classical states. According to this, they are known as the most classical states among the
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quantum states. On the other hand, the squeezed coherent states, which can be considered

as generalizations of the coherent states, are one simplest representations of the nonclassi-

cal states. A straightforward technique for describing the nonclassical states is quadrature

squeezing. For states that satisfy the Heisenberg uncertainty relation Δq̂Δp̂ ≥ �/2, a

quadrature is said to be squeezed if uncertainty in that quadrature is smaller than �/2. In

the simplest case, squeezed coherent states obey the minimum uncertainty principle, but

have less uncertainty in one quadrature at the expense of increased uncertainty in the other.

Essential properties of squeezed coherent states were derived in (Stoler, 1970), (Stoler,

1971), (Yuen, 1976) and then extensively investigated by many authors, (Henry, 1988),

(Trifonov, 1994), (Nieto, 1997), (Nieto & Truax, 1993), (Dodonov, 2002), (Dodonov

& Man’ko, 2003), (Malkin & Man’ko, 1979), (Perelomov, 1986).

Coherent and squeezed states of standard quantum harmonic oscillator (SQHO)

can be generated by using different but equivalent approaches. One way to obtain coherent

states is applying the unitary displacement operator D̂(α) = exp
(
αâ† − α∗â

)
, where â†

denotes Hermitian conjugate of the operator â, and α∗ denotes complex conjugate of α,

to the ground state. On the other hand, squeezed states can be found by application of the

unitary squeeze operator Ŝ (z) = exp[(zâ†2 − z∗â2)/2], z ∈ C. Using this formalism, the

displaced and squeezed number states of SQHO, and their time-evolution were derived

explicitly in (Nieto & Simmons, 1979), (Nieto, 1996), (Nieto, 1997). It was shown that

the time-evolved squeezed coherent states of SQHO correspond to wave packets whose

width oscillates with time, the minimum uncertainty is no longer preserved during time-

evolution, and their peak follows the classical trajectory.

Moreover, there are other interesting types of nonclassical states, such as even-

odd coherent states and even-odd displaced squeezed states. As known, coherent states

of SQHO are not orthogonal, but superposition of these states generates new ones, which

are orthogonal and called even-odd coherent states. They were introduced in (Dodonov,

Malkin & Man’ko, 1974). The even-odd coherent states are eigenstates of the operator

â2, and considered as the simplest examples of Schrödinger’s cat states. They can be

obtained by applying the displacement operators D̂+(α) = cosh(αâ† − α∗â) and D̂−(α) =

sinh(αâ† − α∗â), α ∈ C, to the ground state of SQHO. A detailed analysis of the non-

classical properties of these states is given in (Gerry, 1993), (Buzek & Knight, 1991),

(Buzek, Vidiella-Barranco & Knight, 1992). Besides, in (Choi, 2004), time development
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of even-odd coherent states were found by using Lewis-Riesenfeld invariant approach.

The even-odd displaced squeezed states were proposed in (Fan & Zhang, 1994)

and it was shown that even-displaced squeezed states exhibit stronger squeezing than

squeezed coherent states of SQHO. There are two different but equivalent ways of defining

the even-odd displaced squeezed states; one way is taking the superposition of squeezed

coherent states, and the other one is applying the operators D̂+(α), D̂−(α), α ∈ C, on the

squeezed ground state. A comparison of the even-odd coherent states and the even-odd

displaced squeezed states was given in (Nieto, 1996), and the nonclassical properties of

the even-odd displaced squeezed states were discussed in (Zhu, Wang & Li, 1993), (Xin,

Wang, Hirayama & Matumoto, 1994).

There are other possibilities of generating nonclassical states. For example, by

adding to Ĥ0, at some moment of time, a term of the form 1
2
ω2

1q2 − f0q, which clearly

corresponds to change of frequency and displacement, one can construct displaced and

squeezed number states. On the other hand, when the oscillator has time-dependent mass

μ(t) and/or frequency ω(t), squeezing effects appear naturally due to the time-variable

parameters. As a consequence, the evolution operator of the quadratic parametric oscil-

lator can be considered as some kind of generalized squeezing operator (Dodonov &

Man’ko, 2003). In other words, evolution itself is a displacement and squeezing process.

Coherent and squeezed states of this generalized oscillator were investigated in (Choi

& Kim, 2004), (Choi, 2006), (Choi & Nahm, 2007), using Lewis-Riesenfeld invariant

approach (Lewis & Riesenfeld, 1969). In (Atılgan Büyükaşık, 2018), the squeezing and

resonance properties of coherent states for generalized Caldirola-Kanai type models were

investigated.

We consider the time-evolution problem for a quantum parametric oscillator de-

scribed by a generalized quadratic Hamiltonian

Ĥg(t) =
p̂2

2μ(t)
+
μ(t)ω2(t)

2
q̂2 +

B(t)
2

(q̂p̂ + p̂q̂) + D(t)p̂ + E(t)q̂ + F(t)Î, (1.1)

where μ(t), ω(t), B(t), D(t), E(t), F(t) are real-valued parameters depending on time. Re-

cently, in (Atılgan Büyükaşık & Çayiç, 2016 ), by using the Wei-Norman technique

and by properly choosing the ordering of the exponential operators, we found the ex-

act evolution operator for a quantum parametric oscillator described by a Hamiltonian
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with S U(1, 1) ⊕ h(4) group structure. The significance of our results is that, for a time-

dependent one-dimensional Schrödinger equation with the most general quadratic in po-

sition and momentum Hamiltonian, we were able to determine the evolution operator

explicitly in terms of two linearly independent homogeneous solutions and a particular

solution to the corresponding classical equation of motion. This allowed us to give ex-

act description of the quantum dynamics and its relation with the corresponding classical

motion. According to this, we find the time development of the squeezed coherent states

(Atılgan Büyükaşık & Çayiç, 2019 ), the even-odd coherent states, and the even-odd dis-

placed squeezed states. Then, we analyze their squeezing and displacement properties in

detail. We also construct time-dependent quantum dynamical invariants using the evolu-

tion operator formalism and study the relationship between the dynamical invariants and

quantum states.

The Schrödinger equation subjected to time-dependent moving boundary condi-

tions is another interesting problem. Fermi presented this type of problem related to the

study of cosmic radiation in (Fermi, 1949). Then, in many works initial boundary value

problems (IBVPs) with moving boundaries were studied. In general, finding solutions of

such problems is not possible for an arbitrary boundary function. A well-known approach

for solving a moving boundary problem is transforming it into a problem with a fixed

boundary. However, exactly solvable models are rare over a fixed line segment of the

real line, especially when the potential is time-dependent. In (Makowski & Dembinski,

1991), it was shown that even in the case of a free particle bouncing between two infinitely

high walls, there exists an exact solution only when the moving boundary L(t) satisfies

L3L̈ ≡const. Then, in 1992, Makowski introduced a "cut-off oscillator" with a moving

infinite potential wall and a time-dependent frequency (Makowski, 1992). He was able

to find particular solutions only when the boundary s(t) satisfies s̈(t) + ω2(t)s(t) = 0 and

realized that moving boundaries generate additional phase factors in the solution, both

time-dependent and coordinate-dependent phases. Alternatively, the supersymmetry ap-

proach was used to find a class of exactly solvable potentials in (Jana & Roy, 2008).

We introduce an IBVP for a one-dimensional quantum oscillator related to Hamil-

tonian (1.1) defined on a domain s(t) < q < ∞, 0 < t < T, with a Dirichlet boundary

condition imposed at a moving boundary q = s(t). Before finding solutions to prob-

lems with moving boundaries, we first consider an IBVP defined on the fixed half-line
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0 < q < ∞. We note that, time-dependent Schrödinger equation with the most general

quadratic Hamiltonian Ĥg(t) given by (1.1) is not symmetric with respect to space inver-

sion and it is not easy to solve the problem on the fixed half-line with Dirichlet boundary

condition imposed at q = 0. However, when the external fields D(t) = E(t) = 0, the

Schrödinger equation is invariant under space inversion and we solve the Dirichlet IBVP

defined on the fixed half-line analytically. Then, we consider the Dirichlet IBVP for the

generalized quantum parametric oscillator described by Hamiltonian (1.1) in the presence

of all terms and defined on the domain s(t) < q < ∞, 0 < t < T. We prove that if the

boundary can be written as a linear combination of homogenous and particular solutions

of the corresponding classical equation of motion in position space, then it is possible to

find exact analytical solutions to these problems. Indeed, redefining the coordinate allows

us to replace the moving boundary with a fixed one, and consequently, the IBVP with a

moving boundary transforms into a fixed half-line problem. In this case, the boundary s(t)

generates new terms in the Hamiltonian. Although the transformed Schrödinger equation

with the new Hamiltonian is more complicated, by using the Wei-Norman Lie algebraic

approach we solve the IBVP for a certain family of moving boundaries. Furthermore, we

introduce an IBVP for the generalized quantum parametric oscillator with a Robin bound-

ary condition imposed at a boundary q = s(t) on a domain s(t) < q < ∞, 0 < t < T. We

show that if the time-dependent boundary is prescribed in a certain way, the Robin IBVP

can be solved analytically.

We also consider the time-evolution problem for a quantum system in higher di-

mensions. Dynamics in higher dimensions is an extensive area of research since it always

brings new questions and attracts more interest . Based on this motivation, we first con-

sider an N-dimensional quantum harmonic oscillator described by the Hamiltonian

Ĥ(t) ≡
N∑

j=1

⎛⎜⎜⎜⎜⎜⎝ p̂2
j

2μ j(t)
+
μ j(t)ω2

j(t)

2
q̂2

j +
Bj(t)

2

(
q̂ j p̂ j + p̂ jq̂ j

)
+ Dj(t)p̂ j + E j(t)q̂ j + F j(t)

⎞⎟⎟⎟⎟⎟⎠ ,
(1.2)

where all time-dependent parameters are real valued. The corresponding N-dimensional

time-dependent Schrödinger equation is separable, and one can write formal solutions in

terms of solutions to the N one-dimensional time-dependent problems. Such multidimen-

sional quantum harmonic oscillators were studied before by different approaches (Bur-

gan, Feix, Fijalkow & Munier, 1979), (Ray & Hartley, 1982), (Malkin & Man’ko, 1979).
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To solve one-dimensional non-stationary quantum oscillator problem, we use our results

obtained in (Atılgan Büyükaşık & Çayiç, 2016 ), which are based on Wei-Norman Lie

algebraic approach. Then, we focus mainly on the time-development of coherent states

of N-dimensional harmonic oscillator. We also aim to investigate explicitly the influence

of squeezing parameters Bj(t) and the displacement parameters Dj(t), E j(t) on the wave

packets.

Finally, we consider time-evolution problem for a quantum system described by a

generalized two-dimensional quadratic Hamiltonian of the form

Ĥgen(t) =
2∑

j=1

( p̂2
j

2μ(t)
+
μ(t)ω2(t)

2
q̂2

j +
B(t)

2

(
q̂ j p̂ j + p̂ jq̂ j

)
+ Dj(t)p̂ j + E j(t)q̂ j

)
+λ(t)

(
q̂1 p̂2 − q̂2 p̂1

)
, (1.3)

where all time-dependent parameters are real valued. This Hamiltonian is usually used

to describe quantum particles in two-dimensional space and comprises many fundamen-

tal physical systems as subcases. A significant physical and mathematical distinction

can be done according to the coupling parameter λ(t). When λ(t) = 0, one has a two-

dimensional quantum parametric oscillator with time-dependent mass μ(t) > 0, frequency

ω(t), squeezing parameter B(t) and driving forces Dj(t), E j(t), j = 1, 2. Since in that

case Hamiltonian (1.3) is separable, formally one can speak about two independent one-

dimensional oscillators.

Clearly, wave function solutions of the two-dimensional oscillator described by

(1.3) when λ(t) = 0, can be easily written as a product of solutions to the one-dimensional

problem (Malkin, Man’ko & Trifonov, 1970), (Malkin, Man’ko & Trifonov, 1973). On

the other hand, when λ(t) � 0, that is in the presence of the angular momentum opera-

tor L̂ = q̂1 p̂2 − q̂2 p̂1, Hamiltonian (1.3) can be used to describe the motion of a charged

particle in time-dependent magnetic and electric fields. In that context, parameter λ(t)

is known as the Larmor frequency, ω(t) is the modulated frequency, and E j(t), j = 1, 2

are parameters of the external electric field. The problem of a charged particle in mag-

netic and electric fields is addressed in numerous research articles and has applications

in electromagnetic theory, quantum optics, plasma physics, etc. For non-stationary sys-

tems, including a charged particle in a time-dependent electromagnetic field, Lewis and
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Riesenfeld derived explicitly time-dependent quadratic invariants (Lewis & Riesenfeld,

1969). Soon after, Malkin, Man’ko and Trifonov suggested the use of linear in position

and momentum invariants (Malkin, Man’ko & Trifonov, 1969), (Malkin, Man’ko & Tri-

fonov, 1970) and constructed two-dimensional coherent states of Gaussian type, that can

be considered as a generalization of the Glauber coherent states of the one-dimensional

harmonic oscillator. For a recent review of various families of coherent states, squeezed

states and their generalizations for a charged particle in a magnetic field, including Gaus-

sian and non-Gaussian states, one can see the work of Dodonov (Dodonov, 2018).

We solve the two-dimensional quantum parametric oscillator described by the

generalized quadratic Hamiltonian (1.3) using the evolution operator approach (Atıl-

gan Büyükaşık & Çayiç, 2022 ). We find the exact evolution operator by first applying a

simple unitary transformation to decouple the Schrödinger equation, and then using Wei-

Norman Lie algebraic technique. This gives the evolution operator of the problem as a

finite product of unitary exponential operators being generators of a Lie group associated

with the closed Lie algebra describing the Hamiltonian. A crucial point in the Lie al-

gebraic techniques is to find all time-variable coefficients that completely determine the

evolution operator as product of Lie group generators. Usually this requires solution of

a large nonlinear system of ordinary differential equations, which is not always an easy

task, and in most works it is usually solved by quadratures. The utility of our results is

that all time-variable coefficients in the formulation of the evolution operator for the quan-

tum problem are found explicitly in terms of the solutions to the corresponding system

of classical equations of motion. Then, the propagator (Green’s function), time-evolution

of the wave functions, expectations of position and momentum and their uncertainties are

also found in terms of the classical solutions. Furthermore, using the evolution operator

formalism, we also construct linear and quadratic quantum invariants and compare our

results by those obtained using the MMT- and the LR- approaches.

The main goal of this thesis is to provide exact and explicit results of the prescribed

evolution problems that allows us to investigate the influence of the time-dependent pa-

rameters and external terms on the dynamics of the quantum particle. We focus on the

squeezing properties of the wave packets and their trajectories in the presence of time-

dependent driving forces. For this purpose, the thesis is organised as follows.

Chapter 2 provides some essential tools that are useful for our further studies.
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The coordinate representation of the quantum states, such as coherent states, squeezed

coherent states, etc., of the SQHO and their properties are given.

In Chapter 3, we present an IVP for time-dependent Schrödinger equation cor-

responding to the generalized Hamiltonian Ĥg(t) defined by (1.1). Then using the exact

evolution operator of the generalized quantum parametric oscillator, we explicitly obtain

the time-evolution of the squeezed coherent states, even-odd coherent states, and even-odd

displaced squeezed states of the SQHO. We also find the expectation values and uncertain-

ties of position and momentum. This allows us to investigate the nonclassical properties of

quantum states according to the complex parameter α of the displacement operator D̂(α),

the complex parameter z of the squeeze operator Ŝ (z), and the time-dependent parameters

of the Hamiltonian Ĥg(t). As an application, we construct an exactly solvable model for a

generalized Caldirola-Kanai oscillator. We find the time-evolution of the quantum states

and discuss their properties, and construct many illustrative figures.

In Chapter 4, we introduce an IBVP for the generalized quantum parametric os-

cillator described by the Hamiltonian Ĥg(t) given by (1.1) with a Dirichlet boundary con-

dition imposed at a moving q = s(t) in a domain s(t) < q < ∞, 0 < t < T. We first solve

an IBVP for a quantum parametric oscillator with Hamiltonian (1.1) when the external

fields are zero, i.e., D(t) = E(t) = 0, defined on the fixed half-line with the homogeneous

Dirichlet boundary condition imposed at q = 0. Then, to solve the IBVP for the gener-

alized oscillator, we pass to a moving coordinate system and this transforms the moving

IBVP to a fixed half-line problem. We prove that if the boundary can be written as a

linear combination of homogenous and particular solutions of the corresponding classical

equation of motion in position space, then it is possible to find exact analytical solutions

to these problems. We also provide exact solutions of the IBVP for some particular ini-

tial functions and homogeneous boundary condition. As an application, we construct an

exactly solvable quantum model with specific frequency modification and analyze the in-

fluence of the moving boundaries on the solution. Moreover, we introduce and solve an

IBVP for the generalized quantum oscillator with a Robin boundary condition.

In Chapter 5, we provide coordinate representation of the exact time-evolution op-

erator for the N-dimensional Schrödinger equation described by Hamiltonian (1.2). Then,

we find the exact time-evolution of the eigenstates and coherent states. As known, solu-

tions of the quantum dynamical problem are completely determined by the solutions of

8



the corresponding classical equations, which could be exactly solvable or not, depending

on the parameters of the Hamiltonian. Therefore, many properties of the time-evolved

quantum states depend on that parameters. In general, parameters Bj(t) modify the fre-

quency of the classical oscillator and can change it essentially. For this reason, we discuss

the corresponding classical equations and introduce all parameters Bj(t) for which the

structure of the standard harmonic oscillator in position space is preserved. Choosing

sinusoidal parameters Dj(t), we also discuss the classical trajectories of the wave pack-

ets. After that, we introduce exactly solvable models and for every model we give some

examples and illustrative figures.

In Chapter 6, we introduce the classical Hamiltonian corresponding to (1.3) and

find solutions to the associated system of coupled classical equations of motion. Then,

we obtain explicitly the evolution operator and the propagator (Green’s function or fun-

damental solution) for the time-dependent Schrödinger equation with Hamiltonian (1.3)

in terms of the classical solutions. We also describe the exact time-evolution of harmonic

oscillator eigenstates and Glauber coherent states under the influence of the generalized

Hamiltonian (1.3). In addition to this, we find the dynamical invariants for the quantum

problem and compare the results in the present thesis by those obtained by the MMT-

and the LR- techniques. As a generalization of the one-dimensional Cauchy-Euler type

dissipative oscillator in (Atılgan Büyükaşık & Çayiç, 2016 ), we introduce an exactly

solvable Cauchy-Euler type quantum parametric oscillator in time-dependent magnetic

and electric fields, discuss the dynamical properties of the quantum states and using con-

crete numerical values we draw some illustrative plots.

Chapter 7 includes brief discussion and concluding remarks.
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CHAPTER 2

PRELIMINARIES

In this chapter, we briefly recall the main concepts used in quantum mechanics.

Also, for completeness and later use of the results, we review the definition and properties

of coherent states, squeezed states and non-Gaussian oscillatory states for the SQHO.

2.1. Basic Concepts of Quantum Mechanics

In this section, we present the postulates of quantum mechanics and some of their

important consequences.

Postulate 1 The state of a quantum mechanical system is completely specified by a com-

plex valued function ψ(x, t), which depends upon the coordinates of the particle(s) and on

time, in a Hilbert space. This function is called the wave function or state function and

the probability of finding the particle between x and x + dx is proportional to |ψ(x, t)|2dx.

The wave function must satisfy certain mathematical conditions according to its proba-

bilistic interpretation. As known, the net probability of finding a single particle at some

point in space must be unity. So this leads to the normalization condition,
∫ ∞
−∞ |ψ(x, t)|2dx =

1.

Moreover, the function ρ(x, t) = |ψ(x, t)|2 is called the probability density function.

Postulate 2 To every observable in quantum mechanics, there corresponds a linear Her-

mitian operator in a Hilbert space.

This postulate asserts that each quantum observable, such as position, momentum, en-

ergy, etc., is mathematically represented by a linear Hermitian operator in an infinite

dimensional separable Hilbert space. In quantum mechanics, such operators are called

observable operators. As a consequence of this postulate, eigenvalues of the observable

operators are real.
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Postulate 3 If the result of a measurement of an observable operator Â is the number λ,

then λ must be one of the eigenvalues satisfying the eigenvalue equation Âψ = λψ, where

ψ is the corresponding eigenstate.

According to this postulate, the only real values that can be measured for an observable

operator Â are the eigenvalues of Â. Although measurements must always yield an eigen-

value, the initial state before measuring does not have to be an eigenstate of Â. So it is

almost impossible to know which one of these eigenvalues will be obtained in any mea-

surement unless the state of the system is not one of the eigenstates of the operator. To

deal with this difficulty, the average of a large number of measurements under identical

conditions is introduced as follows:

Definition 2.1 The expectation value of an observable corresponding to the operator Â

in a state described by a normalized wave function ψ(x, t) is defined by

〈Â〉ψ ≡ 〈ψ, Âψ〉 =
∫ ∞

−∞
ψ∗Âψdx.

A measurement of an observable Â in the state ψ which leads to the eigenvalue λn, causes

the wave function to collapse into the corresponding eigenstate ψn for any n = 0, 1, 2, . . . .

Thus, measurement affects the state of the system.

Moreover, as a consequence of this postulate, the eigenvectors corresponding to

different eigenvalues of an observable operator Â form a complete orthonormal set, that

is, for all n,m, one has 〈ψn, ψm〉 = δnm and any state vector ψ(x) can be expanded in terms

of eigenvectors {ψn} as

ψ(x) =

∞∑
n=1

cnψn(x) =

∞∑
n=1

〈ψn, ψ〉ψn(x). (2.1)

Namely, the set of eigenvectors {ψn} form an orthonormal basis for the corresponding

Hilbert space. The equation (2.1) implies that for a normalized state vector ψ, ||ψ||2 =∑∞
n=1 |cn|2 = ∑∞

n=1 |〈ψn, ψ〉|2 = 1. Also, one can easily find that 〈Â〉ψ = ∑∞
n=1 |〈ψn, ψ〉|2λn.

Hence, |cn|2 = |〈ψn, ψ〉|2 can be interpreted as the probability that the measurement will

yield the eigenvalue λn of Â in the normalized state ψ(x).
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Postulate 4 The wave function of a system evolves in time according to the time-dependent

Schrödinger equation

i�
∂ψ

∂t
= Ĥψ(x, t),

where Ĥ is a linear Hermitian operator acting in the complex Hilbert space L2(R), called

the Hamiltonian or energy operator.

If we consider an initial value problem (IVP) for a time-dependent Schrödinger equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂ψ

∂t
= Ĥψ(x, t),

ψ(x, t0) = ψ0(x),
(2.2)

then the solution is completely determined by the evolution operator Û(t, t0), which carries

the initial state ψ(x, t0) into the state ψ(x, t) at later time t, that is, ψ(x, t) = Û(t, t0)ψ(x, t0).

Substituting this into the IVP (2.2), one obtains the IVP for the operator equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂

∂t
Û(t, t0) = ĤÛ(t, t0),

Û(t0, t0) = Î,
(2.3)

which can be seen as the definition of the evolution operator. We note that, the evolution

operator of a quantum system with a time-dependent Hermitian Hamiltonian is unitary.

We also give other essential tools for later use.

Definition 2.2 The uncertainty (ΔÂ)ψ of an observable operator Â is defined by the

square root of the expectation value of
(
Â − 〈Â〉ψ)2 in the normalized state ψ in which

〈Â〉ψ is computed.

Theorem 2.1 (Debnath and Mikusiński, 2005) For any Hermitian operator Â and any

normalized state ψ, we have

(i) (ΔÂ)2 = 〈Â2〉ψ − 〈Â〉2ψ,

(ii) 〈Â2〉ψ = ||Âψ||2.
12



Theorem 2.2 (Uncertainty Principle) (Debnath and Mikusiński, 2005) Let Â and B̂ be

two Hermitian operators on a Hilbert space H, then for any state vector ψ

(ΔÂ)ψ(ΔB̂)ψ ≥ 1

2
| 〈[Â, B̂]〉 |,

where the commutator is defined by [Â, B̂] = ÂB̂ − B̂Â.

Corollary 2.1 For any state vector ψ, the Heisenberg uncertainty principle states that

(Δx̂)ψ(Δp̂)ψ ≥ �
2
.

Definition 2.3 States for which the Heisenberg uncertainty principle holds with equality

are called the minimum uncertainty states.

In what follows, we focus on the properties of dynamical invariants (integrals of

the motion) of a quantum system. As known, solution of the IVP for a time-dependent

Schrödinger equation is completely determined by the evolution operator Û(t, t0). Here,

we give the relation between the dynamical invariants and the evolution operator. The

following definitions and results can be found in the work (Man’ko, 1987).

Definition 2.4 A quantum dynamical invariant (integral of the motion) is an operator

Î(t), acting on the space of states of the physical system, whose expectation value at these

states does not change with time, that is, d〈Î〉ψ/dt = 0.

Proposition 2.1 An operator Î(t) is a dynamical invariant for the Schrödinger equation

(2.2) if and only if

(
∂Î(t)
∂t
− [Ĥ(t), Î(t)]

)
ψ(x, t) = 0

for any ψ(x, t) being arbitrary solution of the Schrödinger equation.

Proposition 2.2 An operator Î(t) is a dynamical invariant for the Schrödinger equation

(2.2) if and only if it has the form Î(t) = Û(t, t0)Î(t0)Û†(t, t0), where Û(t, t0) is the evolution

13



operator for the IVP (2.2).

Proposition 2.3 The eigenvalues of an integral of the motion do not depend on time.

Proposition 2.4 An integral of the motion takes a solution of the Schrödinger equation

into a solution of this same equation.

2.2. Coherent States and Nonclassical States

This section consists of definition and properties of coherent states, which are

considered as the most classical states, see (Perelomov, 1986) for further details. Then,

squeezed coherent states and superposition of two coherent states are given and their

nonclassical properties are analyzed.

2.2.1. Coherent States

First, we consider the SQHO defined by the Hamiltonian

Ĥ0 =
p̂2

2
+
ω2

0

2
q̂2, (2.4)

where ω0 > 0 is the natural frequency, mass is m = 1, q̂ = q is the position operator, and

p̂ = −i�(∂/∂q) is the momentum operator such that [q̂, p̂] = i�. Then, by introducing the

number operator N̂ = â†â, where

â =
√
ω0

2�
q +

√
�

2ω0

∂

∂q
, â† =

√
ω0

2�
q −

√
�

2ω0

∂

∂q
, (2.5)

are the annihilation and the creation operators, respectively, one may rewrite Ĥ0 = �ω0(N̂+

1/2). The operators â, â† and N̂ satisfy the commutation relations [â, â†] = Î, [N̂, â†] = â†,

[N̂, â] = −â. So we have the spectrum generating algebra {Î, â†, â, N̂}.

14



The eigenvalue problem for Ĥ0 is Ĥ0ϕn(q) = Enϕn(q), which is also known as the

time-independent Schrödinger equation. If ϕn(q) is the eigenstate of Ĥ0 corresponding

to eigenvalue En, then âϕn(q) and â†ϕn(q) will also be eigenstates of Ĥ0 corresponding

to eigenvalues En − �ω0 and En + �ω0, respectively. Therefore, the annihilation operator

â reduces the energy of the state, while the creation operator â† raises it. The ground

state of a system is the state with the lowest energy. So the ground state ϕ0(q) of the

SQHO can be found by solving the equation âϕ0(q) = 0. In normalized form, it will be

ϕ0(q) = (ω0/π�)
1/4e−

ω0
2� q2

. Then, by applying the creation operator to the ground state, one

can find all other eigenstates of Ĥ0, which are given as

ϕn(q) = Nne−
ω0
2� q2

Hn(
√
ω0/�q), n = 0, 1, 2, . . . , (2.6)

where En = (n + 1/2)�ω0 are the corresponding eigenvalues, Hn(q) represents the n-th

order Hermite polynomial and Nn = (2nn!)−1/2(ω0/π�)
1/4 is the normalization constant.

The collection of eigenstates {ϕn(q)} of the Hamiltonian Ĥ0 forms an orthonormal basis

for the space L2(R).

Now, we introduce coherent states of SQHO, which are discovered by Schrödinger

as non-spreading wave packets in 1926, (Schrödinger, 1926). Then, after the work of

Glauber (Glauber, 1963), the name ’coherent states’ appeared for the first time. Coher-

ent states of SQHO, which are also called Glauber coherent states, can be defined using

different, but equivalent approaches:

(i) As minimum uncertainty states they satisfy (Δq̂)α(Δp̂)α = �/2 with equal uncer-

tainties in both quadratures (ω0 = 1). Their motion follows the classical trajectory,

and so they are the closest analogs to the classical states.

(ii) Displacement operator coherent states are obtained by applying the unitary dis-

placement operator

D̂(α) = exp(αâ† − α∗â), α ∈ C, (2.7)

where â and â† are define by (2.5), to the ground state ϕ0(q) of the SQHO.
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(iii) Coherent states are also known as the eigenstates of the annihilation operator â

since they satisfy the eigenvalue equation âφα(q) = αφα(q) for any α ∈ C.

Some important properties of coherent states are listed below:

For any α ∈ C, coherent states of the SQHO can be represented in terms of energy eigen-

states (2.6) of Ĥ0 as

φα(q) = e−|α|
2/2

∞∑
n=0

αn

√
n!
ϕn(q). (2.8)

Coherent states of the SQHO are not orthogonal. Actually, for any α, β ∈ C, they satisfy

〈φα(q), φβ(q)〉 = e−
|α|2

2 − |β|
2

2 +α
∗β � 0, (2.9)

and the closure relation
1

π

∫
C

|φα〉〈φα|d2α = Î.

Consequently, the collection of coherent states {φα(q)}α∈C forms an overcomplete set.

The coordinate representation of coherent states can be found explicitly by using

the displacement operator formalism.

Proposition 2.5 The displacement operator D̂(α) can be written as a product of exponen-

tial operators, which are group generators associated with the Heisenberg-Weyl algebra

defined by

Ê1 = iq, Ê2 =
∂

∂q
, Ê3 = iÎ. (2.10)

Proof Using (2.5), the coordinate representation of the displacement operator becomes

D̂(α) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
√

2�

ω0

α1

∂

∂q
+ i

√
2ω0

�
α2q

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.11)

for any α = α1 + iα2, α1, α2 ∈ R. Recall that, Baker-Campbell-Hausdorff (BCH) formula

says that for any operators X̂ and Ŷ , if [X̂, Ŷ] commutes with both X̂ and Ŷ , then eX̂+Ŷ =

e−[X̂,Ŷ]/2eX̂eŶ .
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Indeed, the commutator of the operators Ê1 and Ê2 is [Ê1, Ê2] = −Ê3. So from

BCH formula, the coordinate representation (2.11) of the displacement operator can be

rewritten as a product of exponential operators in the form

D̂(α) = exp(−iα1α2) exp

⎛⎜⎜⎜⎜⎜⎝i
√

2ω0

�
α2q

⎞⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−
√

2�

ω0

α1

∂

∂q

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.12)

�

Then, application of the disentangled form (2.12) of D̂(α) to the ground state ϕ0(q) gives

the well-known coherent states of SQHO

φα(q) =
(
ω0

π�

) 1
4 × exp

[ − iα1α2

]
exp

[
i

√
2ω0

�
α2q

]
× exp

[
− ω0

2�

⎛⎜⎜⎜⎜⎜⎜⎜⎝q −
√

2�

ω0

α1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2 ]

(2.13)

for any α = α1 + iα2, α1, α2 ∈ R.

2.2.2. Squeezed Coherent States

The squeezed coherent states of SQHO are generalizations of the coherent states,

which in the simplest case obey the minimum uncertainty principle, but have less uncer-

tainty in one quadrature at the expense of increased uncertainty in the other. Their main

properties were derived by Stoler (Stoler, 1970), (Stoler, 1971), and Yuen (Yuen, 1976).

Squeezed states can be defined as a result of applying the squeeze operator.

The squeeze operator is a unitary operator mostly known in the form

Ŝ (z) = exp
[
1

2

(
zâ†2 − z∗â2)], z = z1 + iz2, z1, z2 ∈ R, (2.14)

where operators â and â† are given by (2.5), (Stoler, 1970), (Nieto, 1996). In coordinate

representation, it becomes

Ŝ (z1, z2) = exp
[
− i
�ω0

z2

(
−�

2

2

∂2

∂q2
− ω

2
0

2
q2

)
− z1

(
q
∂

∂q
+

1

2

) ]
. (2.15)
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Now, using polar representation z = reiθ,with r ≥ 0, θ ∈ [0, 2π), one can write the squeeze

operator as

Ŝ (r, θ) = exp

[
r
(
i
ω0

2�
(sin θ)q2 − (cos θ)(q

∂

∂q
+

1

2
) + i

�

2ω0

sin θ
∂2

∂q2

)]
. (2.16)

Then, it can be disentangled as a product of exponential operators, which are generators

of the SU(1,1) group corresponding to Lie algebra defined by

K̂− = − i
2

∂2

∂q2
, K̂+ =

i
2

q2, K̂0 =
1

2
(q
∂

∂q
+

1

2
), (2.17)

that is,

Ŝ (r, θ) = exp
[ i
2

fθ(r)q2
]

exp
[
hθ(r)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
gθ(r)

∂2

∂q2

]
, (2.18)

where fθ(r), gθ(r) and hθ(r) are real-valued functions. Indeed, taking the derivative with

respect to r in (2.16) and (2.18), and comparing the results, we find that

fθ(r) =
ω0

� sin θ

(y′1,θ(r)

y1,θ(r)

)
, fθ(0) = 0,

gθ(r) = −� sin θ

ω0

y2
1,θ(0)

(y2,θ(r)

y1,θ(r)

)
, gθ(0) = 0,

hθ(r) = −
(
r cos θ − ln

∣∣∣∣∣ y1,θ(r)

y1,θ(0)

∣∣∣∣∣), hθ(0) = 0,

where y1,θ(r), y2,θ(r) are two independent solutions of the classical inverted oscillator

y′′θ (r) + 2(cos θ)y′θ(r) − (sin2 θ)yθ(r) = 0, r ≥ 0, 0 ≤ θ < 2π, (2.19)

satisfying the initial conditions y1,θ(0) = y0 � 0, y′1,θ(0) = 0; y2,θ(0) = 0, y′2,θ(0) = 1/y0

(prime denotes derivative with respect to r). In terms of solutions of this differential
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equation, the squeeze operator becomes

Ŝ (r, θ) =
√

y0

er cos θy1,θ(r)
exp

[ iω0

2� sin θ

(y′1,θ(r)

y1,θ(r)

)
q2

]
exp

[
−

(
r cos θ − ln

∣∣∣∣∣y1,θ(r)

y0

∣∣∣∣∣)q ∂

∂q

]
exp

[
− i� sin θ

2ω0

y2
0

(y2,θ(r)

y1,θ(r)

)
∂2

∂q2

]
,

and since y1,θ(r) = y0e−r cos θ( cosh r + cos θ sinh r
)
, y2,θ(r) = y−1

0 e−r cos θ sinh r, we have

explicitly

Ŝ (r, θ) =
1√

cosh r + cos θ sinh r
× exp

[ iω0

2�

(
sin θ sinh r

cosh r + cos θ sinh r

)
q2

]
× exp

[
− ln(cosh r + cos θ sinh r)q

∂

∂q

]
× exp

[ i�
2ω0

(
sin θ sinh r

cosh r + cos θ sinh r

)
∂2

∂q2

]
. (2.20)

This form of the operator, which we derived in (Atılgan Büyükaşık & Çayiç, 2019 ),

coincides with the squeeze operator derived by Nieto in (Nieto, 1996), but with slightly

different approach.

The squeezed coherent states of SQHO, which we denote by χ0
α,r,θ(q) are defined

by

χ0
α,r,θ(q) = D̂(α)Ŝ (r, θ)ϕ0(q). (2.21)

Applying first the squeeze operator, then the displacement operator to the ground state,

we explicitly get

χ0
α,r,θ(q) =

√
ω0

π�

e−iα1α2√
S 0

r,θ

× exp
[
− i

2

∫ r

0

sin θ

(S 0
r,θ)

2
dr

]
exp

[
iα2

√
2ω0

�
q
]

× exp
[ iω0

2�
sin θ sinh(2r)

(q − α1

√
2�/ω0

S 0
r,θ

)2]
× exp

[
− ω0

2�

(q − α1

√
2�/ω0

S 0
r,θ

)2]
, (2.22)
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where

S 0
r,θ = er cos θ

√
(y1,θ(r))2 + y4

0
sin2 θ(y2,θ(r))2

y2
0

=
√

cosh 2r + cos θ sinh 2r, (2.23)

denotes the initial squeezing, that is S 0
r,θ is the squeezing coefficient due to the action of

the squeeze operator Ŝ (r, θ) on the ground state. We note that for α = 0, Eq.(2.22) gives

the squeezed ground state, which we denote by χ0
r,θ(q).

It is not difficult to show that for α = α1 + iα2 with α1, α2 being real numbers,

expectation values of coordinate and momentum at squeezed states are the same as for

the coherent states and found as 〈q̂〉α =
√

2�/ω0α1 and 〈p̂〉α =
√

2ω0�α2, respectively.

On the other hand, uncertainties at χ0
α,r,θ(q) are

(Δq̂)0
r,θ =

√
�

2ω0

S 0
r,θ, (Δp̂)0

r,θ =

√
ω0�

2

1

S 0
r,θ

√
1 + sin2 θ sinh2(2r),

(Δq̂Δp̂)0
r,θ =

�

2

√
1 + sin2 θ sinh2(2r).

Clearly, the uncertainties depend on the squeezing parameters r and θ. From these results,

it can be seen that squeezed coherent states are minimum uncertainty states only when

z is real. Moreover, according to some special values of the phase θ in z = r exp(iθ)

uncertainties are as follows:

(1) If θ = 0 and θ = π, (z = ±r), then S 0
r,θ = e±r, and

(Δq̂)0 =

√
�

2ω0

e±r, (Δp̂)0 =

√
ω0�

2
e∓r, (Δq̂Δp̂)0 =

�

2
.

Thus, when z = r, one has minimum uncertainty state, which for large values of

r spreads in position space, and is highly localized in momentum space. When

z = −r, minimum uncertainty state is highly localized in position for large r, at the

expense of spreading in momentum.
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(2) If θ = π/2 and θ = 3π/2, (z = ±ir), then S 0
r,θ =

√
cosh 2r, and

(Δq̂)0 =

√
�

2ω0

√
cosh 2r, (Δp̂)0 =

√
ω0�

2

√
cosh 2r, (Δq̂Δp̂)0 =

�

2
cosh 2r.

In that case, the state is not minimum uncertainty, and uncertainties increase with

increasing r.

Squeezed coherent states of SQHO may be defined in an alternative way following

the approach of Yuen, (Yuen, 1976). In this definition, the state is generated by applying

the displacement operator and then the squeeze operator on the ground state

Υ0
β,r,θ(q) = Ŝ (r, θ)D̂(β)ϕ0(q), β = β1 + iβ2, β1, β2 ∈ R, (2.24)

where D̂(β) and Ŝ (r, θ) are introduced by (2.7) and (2.15), respectively.

Consider the operators

b̂ = λâ + μâ†, b̂† = λâ† + μ∗â, (2.25)

where â and â† are defined by (2.5), λ = cosh r, and μ = −eiθ sinh r with |λ|2 − |μ|2 = 1.

So these operators obey the boson commutation relation [b̂, b̂†] = 1. Recall that any

transformation that leaves the commutator invariant is called a canonical transformation.

The Bogoliubov transformation is a canonical transformation that maps the bosonic

operators â and â† to b̂ and b̂†. In addition, a theorem of von Neumann says that every

canonical transformation can be represented as a unitary transformation, (Von Neumann,

1931). In fact, using the definition of the unitary operator Ŝ (r, θ) given by (2.23) one can

show that the operators b̂ and b̂† satisfy the following relations

b̂ = Ŝ (r, θ)âŜ †(r, θ), b̂† = Ŝ (r, θ)â†Ŝ †(r, θ). (2.26)

As a consequence of this, the operators b̂ and b̂† have similar properties with the operators
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â and â†, and they are called pseudo-annihilation and creation operators.

Proposition 2.6 (Yuen, 1976) The squeezed states Υ0
β,r,θ(q) are eigenstates of the pseudo-

annihilation operator b̂ with complex eigenvalue β, that is,

b̂Υ0
β,r,θ(q) = βΥ0

β,r,θ(q).

Therefore, b̂ and b̂† have the same eigenvalues with respect to χ0
β,r,θ(q) as do â and â†

with respect to the coherent states φβ(q). Note that, the pseudo-annihilation operator b̂ is

defined in terms of the operators â and â† and due to this the squeezed states Υ0
β,r,θ(q) are

called two-photon coherent states (TPCS), (Yuen, 1976).

Remark 2.1 The two definitions (2.21) and (2.24) of the squeezed states yield the same

state if the displacement parameters α, β ∈ C are related by

α = cosh rβ + eiθ sinh rβ∗ (2.27)

for any r ≥ 0, θ ∈ [0, 2π).

2.2.3. Even and Odd Coherent States

Using the operator D̂(α) given by (2.7), one can construct the following displace-

ment operators

D̂+(α) = cosh(αâ† − α∗â) = 1
2

(
D̂(α) + D̂(−α)

)
,

D̂−(α) = sinh(αâ† − α∗â) = 1
2

(
D̂(α) − D̂(−α)

)
,

(2.28)

where â and â† are given by (2.5). Then, the functions defined by

φe
α(q) = D̂+(α)ϕ0(q), φo

α(q) = D̂−(α)ϕ0(q) (2.29)
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are even and odd, respectively, with respect to α and q. Therefore, they are called even

and odd coherent states in (Dodonov,1974). Actually, these states are superpositions of

coherent states

φe
α(q) = N+

(
φ(q, α) + φ(q,−α)

)
, φo

α(q) = N−
(
φ(q, α) − φ(q,−α)

)
, (2.30)

where we denote φα(q) ≡ φ(q, α), and using the property (2.9), it is easy to show that they

are orthogonal, i.e., 〈φe
α(q), φo

β(q)〉 = 0 for any complex numbers α, β. The normalization

constants for even and odd coherent states are respectively

N+ =
e|α|

2/2

2
√

cosh |α|2
, N− =

e|α|
2/2

2
√

sinh |α|2
.

Here, we give some important properties of even and odd coherent states, details of which

can be found in the work (Gerry, 1993).

Proposition 2.7 The annihilation operator â acts on even and odd coherent states as

âφe
α(q) = α

√
tanh |α|2φo

α(q), âφo
α(q) = α

√
coth |α|2φe

α(q),

where α = α1 + iα2, α1, α2 ∈ R, and |α|2 = α2
1 + α

2
2.

Therefore, unlike coherent cases, even and odd coherent states are not eigenstates

of the annihilation operator. The eigenvalue equation for the even-odd coherent states are

given in the following corollary.

Corollary 2.2 Even and odd coherent states are eigenstates of the operator â2, that is

â2φe,o
α (q) = α2φe,o

α (q).

Proposition 2.8 Even and odd coherent states have power series expansions in terms of
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the even and odd eigenstates ϕ2n(q), ϕ2n+1(q), respectively,

φe
α(q) =

1√
cosh |α|2

∞∑
n=0

α2n

√
(2n)!

ϕ2n(q),

φo
α(q) =

1√
sinh |α|2

∞∑
n=0

α2n+1

√
(2n + 1)!

ϕ2n+1(q), α ∈ C.

For any complex number α, the explicit form of normalized even and odd coherent

states are

φe
α(q) =

(
ω0

π�

)1/4 e−α
2/2√

cosh |α|2
cosh

⎛⎜⎜⎜⎜⎜⎝
√

2ω0

�
αq

⎞⎟⎟⎟⎟⎟⎠ exp
(
−ω0

2�
q2

)
, (2.31)

φo
α(q) =

(
ω0

π�

)1/4 e−α
2/2√

sinh |α|2
sinh

⎛⎜⎜⎜⎜⎜⎝
√

2ω0

�
αq

⎞⎟⎟⎟⎟⎟⎠ exp
(
−ω0

2�
q2

)
. (2.32)

Squeezing properties:

As known, squeezing exists in position or momentum variable if the variance of one of

the operators is smaller than the value
√
�/2.

The expectation value of position and momentum operators at the even and odd

coherent states are zero, that is 〈q̂〉e,oα = 0, and 〈p̂〉e,oα = 0 for any α ∈ C. Then, the

variances in position and momentum operators at even coherent states are found as

(Δq̂)e
α =

√
�

2ω0

√
1 + 2|α|2 tanh |α|2 + 2�(α2),

(Δp̂)e
α =

√
ω0�

2

√
1 + 2|α|2 tanh |α|2 − 2�(α2),
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where �(α2) denotes the real part of α2. Using polar representation, α = υeiϑ, (for sim-

plicity take ω0 = 1), the variances at even coherent states are

(Δq̂)e
υ,ϑ =

√
�

2

√
1 + 2υ2(tanh υ2 + cos 2ϑ),

(Δp̂)e
υ,ϑ =

√
�

2

√
1 + 2υ2(tanh υ2 − cos 2ϑ).

So they exhibit squeezing in momentum when ϑ ∈ [0, π/4)
⋃

(3π/4, π) since tanh υ2 < 1

for all υ > 0. Squeezing in position exists when ϑ ∈ (π/4, 3π/4). Moreover, for ϑ = 0,

one has the maximum squeezing in momentum while maximum squeezing in position is

for ϑ = π/2.

The variances in position and momentum operators at odd coherent states become

(Δq̂)o
α =

√
�

2ω0

√
1 + 2|α|2 coth |α|2 + 2�(α2),

(Δp̂)o
α =

√
ω0�

2

√
1 + 2|α|2 coth |α|2 − 2�(α2).

In polar representation, they are

(Δq̂)o
υ,ϑ =

√
�

2

√
1 + 2υ2(coth υ2 + cos 2ϑ),

(Δp̂)o
υ,ϑ =

√
�

2

√
1 + 2υ2(coth υ2 − cos 2ϑ).

Since cothϑ > 1 for any υ > 0, there is no squeezing in odd coherent states.

So, the uncertainty relation at even and odd coherent states follow as

(Δq̂)e
α(Δp̂)e

α =
�

2

√(
1 + 2|α|2 tanh |α|2)2 − 4

(�(α2)
)2
,

(Δq̂)o
α(Δp̂)o

α =
�

2

√(
1 + 2|α|2 coth |α|2)2 − 4

(�(α2)
)2
,
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and they satisfy the Heisenberg uncertainty principle, i.e, (Δq̂Δp̂)e
α > �/2, and (Δq̂Δp̂)o

α >

�/2. These relations show that, even and odd coherent states are not minimum uncertainty

states and the uncertainty relation depends on the value of complex number α.

2.2.4. Even and Odd Displaced Squeezed States

Even and odd displaced squeezed states are constructed by applying the displace-

ment operators D̂+(α) and D̂−(α) defined by equations (2.28) on the squeezed ground

state

χe
α,r,θ(q) = D̂+(α)Ŝ (r, θ)ϕ0(q), χo

α,r,θ(q) = D̂−(α)Ŝ (r, θ)ϕ0(q) (2.33)

for any α ∈ C, r ≥ 0, θ ∈ [0, π). Denoting the squeezed coherent states χ0
α,r,θ(q) ≡

χr,θ(q, α), we notice that even and odd displaced squeezed states are superpositions of

squeezed coherent states

χe
α,r,θ(q) = Ne

(
χr,θ(q, α) + χr,θ(q,−α)

)
, χo

α,r,θ(q) = No
(
χr,θ(q, α) − χr,θ(q,−α)

)
.

Taking, for simplicity, θ = 0, which corresponds to the case z ∈ R in (2.14), normalized

forms of these states become

χe
α,r(q) =

(
ω0

π�

)1/4 e−α
2
r /2

er/2
√

coshαr
cosh

⎛⎜⎜⎜⎜⎜⎝
√

2ω0

�
αrq

⎞⎟⎟⎟⎟⎟⎠ exp

(
−ω0

2�

(
q2

e2r

))
,

χo
α,r(q) =

(
ω0

π�

)1/4 e−α
2
r /2

er/2
√

sinhαr
sinh

⎛⎜⎜⎜⎜⎜⎝
√

2ω0

�
αrq

⎞⎟⎟⎟⎟⎟⎠ exp

(
−ω0

2�

(
q2

e2r

))
,

where we denote αr = e−rα1 + ierα2 with α1, α2 being real numbers.

Expectation values of position and momentum operators at the even and odd dis-

placed squeezed states are zero, that is 〈q̂〉e,oα,r = 0 and 〈p̂〉e,oα,r = 0 for any α = α1 + iα2,
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α1, α2 ∈ R. Then, the uncertainties at even displaced squeezed states become

(Δq̂)e
α,r =

√
�

2ω0

er
√

1 + 2|αr|2 tanh |αr|2 + 2�(α2
r ),

(Δp̂)e
α,r =

√
ω0�

2
e−r

√
1 + 2|αr|2 tanh |αr|2 − 2�(α2

r ).

In polar representation αr = υreϑr , υr ≥ 0, ϑr ∈ [0, 2π), (when ω0 = 1,) uncertainties in

position and momentum operators at even displaced squeezed states become

(Δq̂)e
υr ,ϑr
=

√
�

2
er

√
1 + 2υ2

r (tanh υ2
r + cos 2ϑr),

(Δp̂)e
υr ,ϑr
=

√
�

2
e−r

√
1 + 2υ2

r (tanh υ2
r − cos 2ϑr).

More precisely, for some special values of ϑr, squeezing properties are as follows:

(1) For small values of υr, since tanh υr < 1, squeezing exists in momentum if ϑr = 0

or ϑr = π, while it exists in position for ϑr = π/2 or ϑr = 3π/2.

(2) If ϑr = π/4 or ϑr = 3π/4, these states spread in position space and they are highly

localized in momentum space for large values of υr.

The uncertainties at odd displaced squeezed states are

(Δq̂)o
α,r =

√
�

2ω0

er
√

1 + 2|αr|2 coth |αr|2 + 2�(α2
r ),

(Δp̂)o
α,r =

√
ω0�

2
e−r

√
1 + 2|αr|2 coth |αr|2 − 2�(α2

r ).

In polar representation form, they become

(Δq̂)o
υr ,ϑr
=

√
�

2
er

√
1 + 2υ2

r (coth υ2
r + cos 2ϑr),

(Δp̂)o
υr ,ϑr
=

√
�

2
e−r

√
1 + 2υ2

r (coth υ2
r − cos 2ϑr).
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Since coth υr > 1 for all υr > 0, squeezing just exists in momentum for large values of r,

and there is no squeezing in position space. Finally, uncertainty relations follow as

(Δq̂)e
α(Δp̂)e

α =
�

2

√(
1 + 2|αr|2 tanh |αr|2)2 − 4

(�(α2
r )
)2
,

(Δq̂)o
α(Δp̂)o

α =
�

2

√(
1 + 2|αr|2 coth |αr|2)2 − 4

(�(α2
r )
)2
,

and they satisfy the Heisenberg uncertainty relation, that is, (Δq̂Δp̂)e
α > �/2, and (Δq̂Δp̂)o

α >

�/2. Also, they show that even and odd displaced squeezed states are not minimum un-

certainty states and the uncertainty relation depends on the value of complex number α

and the parameter r of the squeeze operator.

Alternative approach:

By replacing the order of application of the operators in the definition of even-odd dis-

placed squeezed states given by (2.33), one can obtain the following states,

Υe
β,r,θ(q) = Ŝ (r, θ)D̂+(β)ϕ0(q) = Ŝ (r, θ)φe

β(q),

Υo
β,r,θ(q) = Ŝ (r, θ)D̂−(β)ϕ0(q) = Ŝ (r, θ)φo

β(q),

(2.34)

where φe
β(q) and φo

β(q) are given by (2.31) and (2.32), respectively. These states can be

considered as squeezed even-odd coherent states. The definition (2.33) for even-odd

displaced squeezed states and the one (2.34) for squeezed even-odd coherent states yield

the same state if the complex parameters α and β satisfy the equation β = cosh rα −
eiθ sinh rα∗ for any r ≥ 0 and θ ∈ [0, 2π). One can derive the following relations for the

squeezed even-odd coherent states.

Proposition 2.9 (Xin, Wang, Hirayama & Matumoto, 1994) The pseudo-annihilation

operator b̂ acts on squeezed even and odd coherent states as

b̂Υe
β(q) = β

√
tanh |β|2Υo

β(q), b̂Υo
β(q) = β

√
coth |β|2Υe

β(q), β ∈ C.

Corollary 2.3 (Xin, Wang, Hirayama & Matumoto, 1994) Squeezed even and odd co-
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herent states are eigenstates of the operator b̂2, that is,

b̂2Υe,o
β (q) = β2Υe,o

β (q), β ∈ C.

Therefore, the squeezed even-odd coherent states are eigenstates of the operator b̂2 corre-

sponding to the eigenvalue β2 with β being complex number.
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CHAPTER 3

DYNAMICS OF THE GENERALIZED

ONE-DIMENSIONAL QUANTUM PARAMETRIC

OSCILLATOR

In this chapter, we consider an initial value problem for the Schrödinger equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥg(t)Ψ(q, t), t > 0,

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞,
(3.1)

with the most general quadratic Hamiltonian

Ĥg(t) =
−�2

2μ(t)
∂2

∂q2
+
μ(t)ω2(t)

2
q2 − i�

B(t)
2

(q
∂

∂q
+
∂

∂q
q) − i�D(t)

∂

∂q
+ E(t)q + F(t), (3.2)

where μ(t) > 0, ω2(t) > 0, B(t),D(t), E(t), and F(t) are real-valued parameters depending

on time. Since the Hamiltonian Ĥg(t) is a linear combination of generators of the S U(1, 1)

and the Heisenberg-Weyl Lie algebras, the evolution operator for the Schrödinger equa-

tion can be obtained using the Wei-Norman algebraic approach (Wei & Norman, 1963),

and for details one can see (Atılgan Büyükaşık & Çayiç, 2016 ). It is a product of expo-

nential operators, corresponding to multiplication, displacement, squeeze and generalized

rotation as follows

Ûg(t, t0) = exp

(
i
�

∫ t

t0
ζ(s)ds

)
× exp

(
ipp(t)q

)
× exp

(
−xp(t)

∂

∂q

)
× exp

(
i
μ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
)

q2

)
× exp

(
ln

∣∣∣∣∣ x1(t0)

x1(t)

∣∣∣∣∣ (q ∂

∂q
+

1

2

))
× exp

(
i
2
�x2

1(t0)

(
x2(t)
x1(t)

)
∂2

∂q2

)
, (3.3)
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where

ζ(t) =
−μ(t)

2

[(
ẋp(t) − B(t)xp(t)

)2 − ω2(t)x2
p(t) − D2(t) +

2F(t)
μ(t)

]
. (3.4)

Here, x1(t), x2(t) are linearly independent homogeneous solutions of the classical equation

of motion

ẍ +
μ̇

μ
ẋ +

(
ω2(t) −

(
Ḃ + B2 +

μ̇

μ
B
))

x = Ḋ +
(
μ̇

μ
+ B

)
D − 1

μ
E, (3.5)

satisfying the initial conditions x1(t0) = x0 � 0, ẋ1(t0) = x0B(t0), x2(t0) = 0, ẋ2(t0) =

1/μ(t0)x0, and xp(t) is a particular solution of (3.5) satisfying xp(t0) = 0, ẋp(t0) = E(t0).

The corresponding equation for momentum is

p̈ −
˙(μω2)

μω2
ṗ +

(
ω2 +

(
Ḃ − B2 −

˙(μω2)

μω2
B
))

p = −μω2D − Ė +
( ˙(μω2)

μω2
+ B

)
E (3.6)

with homogeneous solutions p1(t) = μ(t)
(
ẋ1(t)−B(t)x1(t)

)
, p2(t) = μ(t)

(
ẋ2(t)−B(t)x2(t)

)
,

and particular solution pp(t) = μ(t)
(
ẋp(t) − B(t)xp(t) − D(t)

)
.

3.1. Time-Evolved Coherent States

First, we recall the generalized time-evolved coherent states which are found by

applying the displacement and evolution operators to the ground state, that is Φα(q, t) =

Ûg(t, t0)D̂(α)ϕ0(q). To be able to compare with the generalized squeezed coherent states

derived in next sections, we give their explicit representation as found in (Atılgan Büyükaşık
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& Çayiç, 2016 ), that is,

Φα(q, t) =
(
ω0

π�

)1/4 1√
ε(t)
× exp

[
−1

2

(
(ε∗(t))2

|ε(t)|2 α
2 + |α|2

)]
× exp

[
i
�

∫ t

t0
ζ(s)ds

]
× exp

[
iμ(t)
�

(
ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xp(t)
)2

]
× exp

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
α

ε(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|ε(t)|2
⎤⎥⎥⎥⎥⎥⎦ , (3.7)

where

ε(t) =
x1(t)
x0

+ iω0x0x2(t) = |ε(t)|eiν(t), (3.8)

whose modulus and phase are

|ε(t)| =
√

x2
1
(t)

x2
0

+ (ω0x0)2x2
2
(t), ν(t) =

∫ t

t0

dξ
μ(ξ)|ε(ξ)|2 (3.9)

and ζ(t) is given by (3.4). The corresponding probability densities become

ρα(q, t) =
√
ω0

π�

1

|ε(t)| exp
[
−

(
ω0

�

)(q − 〈q̂〉α(t)
|ε(t)|

)2]
, (3.10)

where the squeezing coefficient |ε(t)| is given by (3.9) and expectation values are

〈q̂〉α(t) =

√
2�

ω0

(
α1

x0

x1(t) + α2(ω0x0)x2(t)
)
+ xp(t), (3.11)

〈p̂〉α(t) =

√
2�

ω0

(
α1

x0

p1(t) + α2(ω0x0)p2(t)
)
+ pp(t), (3.12)
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showing that the center of the wave packets follows the classical trajectory. Then, uncer-

tainties in terms of |ε(t)| are of the form

(Δq̂)α(t) =

√
�

2ω0

|ε(t)|,

(Δp̂)α(t) =

√
ω0�

2

1

|ε(t)|

√
1 +

μ2(t)|ε(t)|4
ω2

0

(
d ln |ε(t)|

dt
− B(t)

)2

,

(Δq̂)α(Δp̂)α(t) =
�

2

√
1 +

μ2(t)|ε(t)|4
ω2

0

(
d ln |ε(t)|

dt
− B(t)

)2

.

We note that, if x1(t), x2(t) are solutions of the simple harmonic oscillator ẍ + ω2
0x = 0

corresponding to Hamiltonian Ĥ0 = p̂2/2 + ω2
0q̂2, then we have |ε(t)| = 1 so there is

no squeezing of the wave packets. However, in general |ε(t)| depends on time, which

shows that time-evolution of coherent states do not preserve the minimum uncertainty,

and squeezing properties depend on parameters μ(t), ω2(t) and B(t) of the Hamiltonian.

3.2. Quantum Dynamical Invariants

In what follows, we construct time-dependent linear invariants for the quantum

system using the evolution operator formalism. It is based on the fact that, if time-

development of a given quantum system is described by the unitary evolution operator

Û(t, t0), then any operator of the form Â(t) = Û(t, t0)Â(t0)Û†(t, t0) is an integral of motion

or a dynamical invariant, (Man’ko, 1987).

For the generalized quantum parametric oscillator with Hamiltonian Ĥg(t) given

by (3.2), using the evolution operator (3.3), one can find dynamical invariants that are

linear in coordinate and momentum

Â(t) = Ûg(t, t0) â Û†g(t, t0), Â†(t) = Ûg(t, t0) â† Û†g(t, t0), (3.13)

where the lowering and raising operators, â and â† are given by (2.5). Explicit calculations
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give us

Â(t) =
−i√
2ω0�

[
μ(t)

(
ε̇(t) − B(t)ε(t)

)(
q̂ − xp(t)

) − ε(t)(p̂ − pp(t)
)]
, (3.14)

Â†(t) =
i√

2ω0�

[
μ(t)

(
ε̇∗(t) − B(t)ε∗(t)

)(
q̂ − xp(t)

) − ε∗(t)(p̂ − pp(t)
)]
, (3.15)

where ε(t) is defined by equation (3.8), and it is a complex solution of the homogeneous

part of equation (3.5), that is

ε̈(t) +
μ̇

μ
ε̇(t) +

(
ω2(t) −

(
Ḃ(t) + B2(t) +

μ̇

μ
B(t)

))
ε(t) = 0 (3.16)

satisfying the IC’s ε(t0) = 1, ε̇(t0) = B(t0) + iω0/μ(t0). Therefore, using the Wronskian

W(t) = W(ε(t), ε∗(t)) = ε(t)ε̇∗(t) − ε∗(t)ε̇(t) = −2iω0/μ(t), we can show that the linear

invariants Â(t) and Â†(t) that are explicitly given by equations (3.14) and (3.15) satisfy

commutation relations [Â(t), Â†(t)] = 1, and that can be seen also as generalized lowering

and raising operators.

Moreover, coherent states Φα(q, t) found in (3.7) by construction are eigenstates

of the generalized lowering operator Â(t) corresponding to complex eigenvalue α. Indeed,

if φα(q) are eigenstates of â so that âφα(q) = αφα(q), then

Â(t)Φα(q, t) = Û(t, t0)âÛ†(t, t0)Û(t, t0)φα(q) = αÛ(t, t0)φα(q),

from which it follows Â(t)Φα(q, t) = αΦα(q, t) for any α ∈ C.

3.3. Time-Evolved Squeezed Coherent States

In this section, we obtain time evolution of squeezed coherent states under the

generalized evolution operator Ûg(t, t0), (Atılgan Büyükaşık & Çayiç, 2019 ). First, we
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give the time evolution of the squeezed ground state, that is,

χr,θ(q, t) = Ûg(t, t0)Ŝ (r, θ)ϕ0(q) = Ûg(t, t0)χ0
r,θ(q), (3.17)

which explicitly becomes

χr,θ(q, t) =
(
ω0

π�

) 1
4 1√|Qr,θ(t)|

× exp
[
− i

2

∫ r

0

sin θdr
(S 0

r,θ)
2

]
× exp

[
− i

2

∫ t

t0

ω0dt
μ(s)|Qr,θ(s)|2

]
× exp

[ i
�

∫ t

t0
ζ(s)ds

]
× exp

[ i
�

pp(t)q
]

× exp
[ iω0

2�

[
sin θ sinh(2r) +

( x2
0ω0

(
1 + sin2 θ sinh2(2r)

)
(S 0

r,θ)
2

) x2(t)
x1(t)

](q − xp(t)
|Qr,θ(t)|

)2]
× exp

[ iμ(t)
2�

( ẋ1(t)
x1(t)

− B(t)
)
(q − xp(t))2

]
× exp

[
− ω0

2�

(q − xp(t)
|Qr,θ(t)|

)2]
. (3.18)

Next, the time evolution of the squeezed coherent states under the generalized evolution

operator Ûg(t, t0) is found according to

χα,r,θ(q, t) = Ûg(t, t0)D̂(α)Ŝ (r, θ)ϕ0(q) = Ûg(t, t0)χ0
α,r,θ(q),

and this gives the generalized time-dependent squeezed coherent states in the form

χα,r,θ(q, t) =
(
ω0

π�

) 1
4 1√|Qr,θ(t)|

exp
[
− i

2

∫ r

0

sin θdr
(S 0

r,θ)
2

]
exp

[
− i

2

∫ t

t0

ω0dt
μ(s)|Qr,θ(s)|2

]
exp

[ i
�

∫ t

t0
ζ(s)ds

]
exp

[ i
�

pp(t)q
]

exp
[ iμ(t)

2�

( ẋ1(t)
x1(t)

− B(t)
)
(q − xp(t))2

]
exp

{ iω0

2�

[
sin θ sinh(2r) +

( x2
0ω0

(
1 + sin2 θ sinh2(2r)

)
(S 0

r,θ)
2

) x2(t)
x1(t)

]
×
( (q − xp(t)) − √2�/ω0x−1

0 x1(t)λ(α, r, θ)
|Qr,θ(t)|

)2}
exp

[
− ω0

2�

( (q − xp(t)) − √2�/ω0x−1
0 x1(t)λ(α, r, θ)

|Qr,θ(t)|
)2]
, (3.19)
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where λ(α, r, θ) = λ1(α, r, θ) + iλ2(α, r, θ) with

λ1(α, r, θ) = α1 −
sin θ sinh(2r)S 0

r,θ

1 + sin2 θ sinh2(2r)
α2, λ2(α, r, θ) =

S 0
r,θ

1 + sin2 θ sinh2(2r)
α2.

For both states (3.18) and (3.19), the initial squeezing coefficient S 0
r,θ is given by (2.23),

and Qr,θ(t) is denoted as

Qr,θ(t) =

⎛⎜⎜⎜⎜⎜⎝S 0
r,θ

x0

x1(t) +
x0ω0 sin θ sinh(2r)

S 0
r,θ

x2(t)

⎞⎟⎟⎟⎟⎟⎠ + i

⎛⎜⎜⎜⎜⎜⎝ x0ω0

S 0
r,θ

x2(t)

⎞⎟⎟⎟⎟⎟⎠ , (3.20)

with

|Qr,θ(t)| =
√√⎛⎜⎜⎜⎜⎜⎝S 0

r,θ

x0

x1(t) +
x0ω0 sin θ sinh(2r)

S 0
r,θ

x2(t)

⎞⎟⎟⎟⎟⎟⎠2

+

⎛⎜⎜⎜⎜⎜⎝ x0ω0

S 0
r,θ

x2(t)

⎞⎟⎟⎟⎟⎟⎠2

(3.21)

being the generalized squeezing coefficient, for which we note the following properties:

(i) It depends on the squeezing parameters r ≥ 0 and θ ∈ [0, 2π) of the squeeze opera-

tor.

(ii) It depends on the solutions x1(t) and x2(t) of the classical equation of motion, which

in turn depend on the time-variable parameters μ(t), ω2(t) and B(t) of the Hamilto-

nian.

(iii) At initial time t = t0, the generalized squeezing reduces to the initial squeezing, that

is |Qr,θ(t0)| = S 0
r,θ.

(iv) For r = 0, we have S 0
r,θ

∣∣∣
r=0
= 1 and |Qr,θ(t)|

∣∣∣
r=0
= |ε(t)|. That is, when the squeezing

parameter r is zero, the generalized squeezing coefficient |Qr,θ(t)| reduces to the

squeezing coefficient |ε(t)| defined by (3.9) for the coherent states.

Now, probability densities at time-evolved squeezed coherent states become

ρα,r,θ(q, t) =
√
ω0

π�

1

|Qr,θ(t)| exp
{
−

[√
ω0

�

(q − 〈q̂〉α(t)
|Qr,θ|

)]2}
, (3.22)

36



where expectation values of position and momentum are the same as for the coherent

states, and given by (3.11) and (3.12), but uncertainties and uncertainty product become

(Δq̂)r,θ(t) =

√
�

2ω0

|Qr,θ(t)|,

(Δp̂)r,θ(t) =

√
ω0�

2

1

|Qr,θ(t)|

√
1 +

μ2(t)|Qr,θ(t)|4
ω2

0

(d ln |Qr,θ(t)|
dt

− B(t)
)2

,

(Δq̂Δp̂)r,θ(t) =
�

2

√
1 +

μ2(t)|Qr,θ(t)|4
ω2

0

(d ln |Qr,θ(t)|
dt

− B(t)
)2

.

Therefore, time-evolved squeezed coherent states satisfy the Heisenberg uncertainty rela-

tion, that is, (Δq̂Δp̂)r,θ(t) > �/2. However, they are not minimum uncertainty states. The

squeezing properties of these states depend on the time-dependent parameters μ(t), ω(t)

and B(t) of the Hamiltonian Ĥg(t) given by (3.2) as in the time-dependent coherent states.

Also, the squeezing depends on the parameters r and θ of the squeeze operator.

We also consider the case in which the phase θ = 0 in order to compare the results

with those to be obtained later. When θ = 0, the time-evolved squeezed coherent states

become

χα,r(q, t) =
(
ω0

π�

)1/4 1√
εr(t)
× exp

[
−1

2

(
(ε∗r (t))2

|εr(t)|2 α
2
r + |αr|2

)]
× exp

[
i
�

∫ t

t0
ζ(s)ds

]
× exp

[
iμ(t)
�

(
ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |εr(t)| − B(t)
) (

q − xp(t)
)2

]
× exp

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
αr

εr(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|εr(t)|2
⎤⎥⎥⎥⎥⎥⎦ , (3.23)

where the complex parameter αr = e−rα1 + ierα2, α1, α2 ∈ R depends on r ≥ 0, and the

corresponding probability densities are found as

ρα,r(q, t) =
√
ω0

π�

1

|εr(t)| exp

⎧⎪⎪⎨⎪⎪⎩−
[√

ω0

�

(
q − 〈q̂〉α(t)
|εr(t)|

)]2
⎫⎪⎪⎬⎪⎪⎭ .
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Furthermore, in this case, the generalized squeezing coefficient turns out to be

|εr(t)| = |Qr,θ(t)|
∣∣∣
θ=0
=

√
e2r x2

1
(t) + ω2

0
e−2r x2

2
(t), (x0 = 1) (3.24)

but the expectation value of position 〈q̂〉α(t) is the same as in (3.11).

Recall that the squeezed coherent states of SQHO can be defined alternatively

following Yuen’s approach. The states generated by this approach are called two-photon

coherent states, which we denote by Υ0
β,r,θ(q) = Ŝ (r, θ)D̂(β)ϕ0(q) for any β ∈ C, r ≥ 0, θ ∈

[0, 2π). The squeezed coherent states χ0
α,r,θ(q) and two-photon coherent states Υ0

β,r,θ(q) are

equivalent when α = cosh rβ + eiθ sinh rβ∗ for any α, β ∈ C, r ≥ 0, θ ∈ [0, 2π). Moreover,

two-photon coherent states of SQHO are eigenstates of the pseudo-annihilation operator

b̂ which is defined as a linear combination of the annihilation and creation operator â, â†

in the form b̂ = cosh râ − eiθ sinh râ†. It is possible to find a relation between the time-

dependent dynamical invariants Â(t), Â†(t) given by (3.14), (3.15), respectively, and time-

evolved squeezed coherent states. For this, we first find the time-evolved two-photon

coherent states that can be obtained according to

Υβ,rθ(q, t) = Ûg(t, t0)Ŝ (r, θ)D̂(β)ϕ0(q) = Ûg(t, t0)Υ0
β,r,θ(q). (3.25)

Since the squeeze operator and the displacement operator do not commute and satisfy

the equation D̂(α)Ŝ (r, θ) = Ŝ (r, θ)D(cosh rαeiθ sinh rα∗), the definition (3.25) will give us

time-dependent squeezed coherent states when β = cosh rα − eiθ sinh rα∗.

Then, we construct the following time-dependent operators

B̂(t) = Ûg(t, t0) b̂ Û†g(t, t0), B̂†(t) = Ûg(t, t0) b̂† Û†g(t, t0), (3.26)

where the pseudo-annihilation and creation operators b̂ and b̂† are given by (2.25). The

following proposition asserts that the operators B̂(t) and B̂†(t) can be written as a linear

combination of the operators Â(t) and Â†(t) formulated by (3.14) and (3.15), respectively.

Proposition 3.1 There exists a Bogoliubov transformation between the dynamical invari-
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ants Â(t), Â†(t) and the operators B̂(t), B̂†(t).

Proof Using the equations in (2.25), we obtain

B̂(t) = Ûg(t, t0) b̂ Û†g(t, t0)

= Ûg(t, t0)
(
(cosh r)â − (eiθ sinh r)â†

)
Û†g(t, t0)

= (cosh r)Ûg(t, t0) â Û†g(t, t0) − (eiθ sinh r)Ûg(t, t0) â† Û†g(t, t0)

= (cosh r)Â(t) − (eiθ sinh r)Â†(t),

and analogously we get B̂†(t) = (cosh r)Â†(t) − (e−iθ sinh r)Â(t). Let us denote u = cosh r

and v = eiθ sinh r. Then |u|2 − |v|2 = 1 and this implies that the commutator leaves

invariant under this transformation, i.e, [B̂(t), B̂†(t)] = 1. So this is a canonical Bogoliubov

transformation. �

The commutator [B̂(t), B̂†(t)] = 1 provides B̂(t) and B̂†(t) with properties exactly similar

to those of Â(t) and Â†(t). In addition, there is an eigenvalue equation that time-dependent

two-photon coherent satisfies, given as follows:

Proposition 3.2 Time-dependent two photon coherent states Υβ,r,θ(q, t) are eigenstates of

the operator B̂(t).

Proof By using the definitions of the operator B̂(t) and time-dependent two photon

coherent states Υβ,r,θ(q, t), we have

B̂(t)Υβ,r,θ(q, t) = Ûg(t, t0) b̂ Û†g(t, t0)Ûg(t, t0) Ŝ (r, θ) D̂(β)ϕ0(q).

Indeed, since b̂ = Ŝ (r, θ) â Ŝ †(r, θ), and φβ(q) are eigenstates of â, the desired result fol-

lows as

B̂(t)Υβ,r,θ(q, t) = Ûg(t, t0) Ŝ (r, θ) â Ŝ †(r, θ) Ŝ (r, θ) D̂(β)ϕ0(q)

= Ûg(t, t0) Ŝ (r, θ) â φβ(q)

= β Ûg(t, t0) Ŝ (r, θ) φβ(q)

= βΥβ,r,θ(q, t),
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which shows that the states Υβ,r,θ(q, t) are eigenstates of the operator B̂(t) corresponding

to complex eigenvalue β. �

By taking the phase θ as zero, we write the time-evolved two-photon coherent

states in explicit form

Υβ,r(q, t) =
(
ω0

π�

)1/4 1√
εr(t)
× exp

[
−1

2

(
(ε∗r (t))2

|εr(t)|2 β
2 + |β|2

)]
× exp

[
i
�

∫ t

t0
ζ(s)ds

]
× exp

[
iμ(t)
�

(
ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |εr(t)| − B(t)
) (

q − xp(t)
)2

]
× exp

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
β

εr(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|εr(t)|2
⎤⎥⎥⎥⎥⎥⎦ . (3.27)

The corresponding probability densities are

ρβ,r(q, t) =
√
ω0

π�

1

|εr(t)| exp

⎧⎪⎪⎨⎪⎪⎩−
[√

ω0

�

(
q − 〈q̂〉β(t)
|εr(t)|

)]2
⎫⎪⎪⎬⎪⎪⎭ ,

where the generalized squeezing coefficient |εr(t)| is defined by (3.24) and expectation

values are found as

〈q̂〉β(t) =
√

2�

ω0

(
β1er x1(t) + ω0β2e−r x2(t)

)
+ xp(t),

〈p̂〉β(t) =
√

2�

ω0

(
β1er p1(t) + ω0β2e−r p2(t)

)
+ pp(t).

Comparing the states (3.27) with the ones obtained by (3.23), we realize that the squeez-

ing coefficients are the same for both of them. Therefore, the uncertainties and the un-

certainty product at these states remain the same. (Note also that, the uncertainties and

the uncertainty product are independent of the complex parameters α or β.) However,

the expectation values at the two-photon coherent states depend on the squeezing param-

eters r ≥ 0 and θ ∈ [0, 2π), while the expectation values at squeezed coherent states are

independent of them.
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3.4. Time-Evolved Even and Odd Coherent States

The even and odd coherent states for SQHO are defined by applying the displace-

ment operators D̂+(α) and D̂−(α) to the ground state ϕ0(q), that is, φe
α(q) = D̂+(α)ϕ0(q)

and φo
α(q) = D̂−(α)ϕ0(q), where D̂+(α), D̂−(α) are given by (2.28). In this section, we

solve the IVP (3.1) for the generalized parametric oscillator by taking the initial states to

be the even-odd coherent states for SQHO.

First, if the initial state of the IVP (3.1) is taken to be Ψ0(q) = φe
α(q), then time

evolved even coherent states are found as Φe
α(q, t) = Ûg(t, t0)φe

α(q), and explicitly

Φe
α(q, t) =

(
ω0

π�

)1/4 1√
cosh(|α|2)ε(t)

× exp

(
− ε
∗(t)

2ε(t)
α2

)
× exp

(
i
�

∫ t

t0
ζ(s)ds

)
× exp

[
iμ(t)
�

(
ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xp(t)
)2

]
× cosh

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
α

ε(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|ε(t)|2
⎤⎥⎥⎥⎥⎥⎦ . (3.28)

The corresponding probability densities become

ρe
α(q, t) =

√
ω0

π�

1

2 cosh(|α|2)|ε(t)| × exp

⎡⎢⎢⎢⎢⎣(�(αε∗(t))
)2 − (�(αε∗(t))

)2

|ε(t)|2
⎤⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎣−ω0

�

(
q − xp(t)
|ε(t)|

)2⎤⎥⎥⎥⎥⎦ × ⎧⎪⎪⎨⎪⎪⎩cosh

⎛⎜⎜⎜⎜⎜⎝2
√

2ω0

�
�(αε∗(t))

q − xp(t)
|ε(t)|

⎞⎟⎟⎟⎟⎟⎠
+ cos

⎛⎜⎜⎜⎜⎜⎝2
√

2ω0

�
�(αε∗(t))

q − xp(t)
|ε(t)|

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (3.29)

where the squeezing coefficient |ε(t)| is given by (3.9), �(.) and �(.) represents the real

and imaginary parts of the given complex functions, respectively.

Expectation values of position and momentum at time-evolved even coherent states

are 〈q̂〉e(t) = xp(t), 〈p̂〉e(t) = pp(t), where xp(t) and pp(t) are the particular solutions of

the classical equations of motion in position and momentum spaces, which are found as

(3.5) and (3.6), respectively. So they depend on all of the time-variable parameters of the
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Hamiltonian Ĥg(t) given by (3.2). However, the uncertainties and the uncertainty product

(for details, see Appendix A)

(Δq̂)e
α(t) =

√
�

2ω0

|ε(t)|
√
Πe

q(t), (Δp̂)e
α(t) =

√
ω0�

2

1

|ε(t)|
√
Πe

p(t),

(Δq̂)e
α(Δp̂)e

α(t) =
�

2

√
Πe

q(t)Πe
p(t),

(3.30)

where

Πe
q(t) = 1 + 2|α|2 tanh |α|2 + 2

|ε(t)|2�(αε∗(t))2,

Πe
p(t) =

⎛⎜⎜⎜⎜⎝1 + μ2(t)|ε(t)|4
ω2

0

(
d ln |ε(t)|

dt
− B(t)

)2⎞⎟⎟⎟⎟⎠ (
1 + 2|α|2 tanh |α|2

)
+

2|ε(t)|2
ω2

0

�
[
α2(μ(t)(ε̇∗(t) − B(t)ε∗(t))

)2
]
,

depend just on the values μ(t), ω(t), B(t) and the complex parameter α.

Next, we take the initial state of the IVP (3.1) as Ψ0(q) = φo
α(q), then time evolved

odd coherent states will be Φo
α(q, t) = Ûg(t, t0)φo

α(q), and explicitly we found

Φo
α(q, t) =

(
ω0

π�

)1/4 1√
cosh(|α|2)ε(t)

× exp

(
− ε
∗(t)

2ε(t)
α2

)
× exp

(
i
�

∫ t

t0
ζ(s)ds

)
× exp

[
iμ(t)
�

(
ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xp(t)
)2

]
× sinh

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
α

ε(t)

⎤⎥⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|ε(t)|2
⎤⎥⎥⎥⎥⎥⎦ . (3.31)
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The corresponding probability densities become

ρo
α(q, t) =

√
ω0

π�

1

2 cosh(|α|2)|ε(t)| × exp

⎡⎢⎢⎢⎢⎣(�(αε∗(t))
)2 − (�(αε∗(t))

)2

|ε(t)|2
⎤⎥⎥⎥⎥⎦

exp

⎡⎢⎢⎢⎢⎣−ω0

�

(
q − xp(t)
|ε(t)|

)2⎤⎥⎥⎥⎥⎦ × ⎧⎪⎪⎨⎪⎪⎩cosh

⎛⎜⎜⎜⎜⎜⎝2
√

2ω0

�
�(αε∗(t))

q − xp(t)
|ε(t)|

⎞⎟⎟⎟⎟⎟⎠
− cos

⎛⎜⎜⎜⎜⎜⎝2
√

2ω0

�
�(αε∗(t))

q − xp(t)
|ε(t)|

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (3.32)

where the squeezing coefficient |ε(t)| is given by (3.9).

Expectation values of position and momentum at time-evolved odd coherent states

are the same as for time-evolved even coherent states, that is, 〈q̂〉o(t) = xp(t), 〈p̂〉o(t) =

pp(t). On the other hand, the uncertainties and the uncertainty product are

(Δq̂)o
α(t) =

√
�

2ω0

|ε(t)|
√
Πo

q(t), (Δp̂)o
α(t) =

√
ω0�

2

1

|ε(t)|
√
Πo

p(t),

(Δq̂)o
α(Δp̂)o

α(t) =
�

2

√
Πo

q(t)Πo
p(t)

(3.33)

where

Πo
q(t) = 1 + 2|α|2 coth |α|2 + 2

|ε(t)|2�(αε∗(t))2,

Πo
p(t) =

⎛⎜⎜⎜⎜⎝1 + μ2(t)|ε(t)|4
ω2

0

(
d ln |ε(t)|

dt
− B(t)

)2⎞⎟⎟⎟⎟⎠ (
1 + 2|α|2 coth |α|2

)
+

2|ε(t)|2
ω2

0

�
[
α2(μ(t)(ε̇∗(t) − B(t)ε∗(t))

)2
]
.

Therefore, they depend on the time-dependent parameters μ(t), ω(t) and B(t) of the Hamil-

tonian Ĥg(t) and the parameter α ∈ C.
Below, using the dynamical invariants defined by (3.14) and (3.15), we give some

important properties of time dependent even-odd coherent states.

Proposition 3.3 The generalized lowering operator Â(t) acts on the time-dependent even-
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odd coherent states as

Â(t)Φe
α(q, t) = α

√
tanh |α|2Φo

α(q, t), Â(t)Φo
α(q, t) = α

√
coth |α|2Φe

α(q, t) (3.34)

for any α ∈ C.

Proof From the definition of the invariant Â(t), we have Â(t) = Ûg(t, t0)âÛ†g(t, t0). Also,

time-dependent even coherent states are defined as Φe
α(q, t) = Ûg(t, t0)φe

α(q). So by apply-

ing Â(t) to the states Φe
α(q, t), and using Proposition 2.7, we obtain

Â(t)Φe
α(q, t) = Ûg(t, t0)âÛ†g(t, t0)Ûg(t, t0)φe

α(q)

= Ûg(t, t0)âφe
α(q)

= α
√

tanh |α|2Ûg(t, t0)φo
α(q)

= α
√

tanh |α|2Φo
α(q, t)

for any α ∈ C, which proves the first part of the proposition. Similarly, we can show the

other part:

Â(t)Φo
α(q, t) = Ûg(t, t0)âÛ†g(t, t0)Ûg(t, t0)φo

α(q)

= Ûg(t, t0)âφo
α(q)

= α
√

coth |α|2Ûg(t, t0)φe
α(q)

= α
√

coth |α|2Φe
α(q, t)

for any α ∈ C. �

Therefore, as expected, the time-evolved even-odd coherent states are not eigenstates of

the generalized lowering operator Â(t).

Corollary 3.1 Time-dependent even and odd coherent states are eigenstates of the oper-

ator Â2(t).
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Proof From the previous proposition, we obtain

Â2(t)Φe
α(q, t) = Â(t)Â(t)Φe

α(q, t)

= α
√

tanh |α|2Â(t)Φo
α(q, t)

=
(
α

√
tanh |α|2

) (
α

√
coth |α|2

)
Φe
α(q, t)

= α2Φe
α(q, t),

and

Â2(t)Φo
α(q, t) = Â(t)Â(t)Φo

α(q, t)

= α
√

coth |α|2Â(t)Φe
α(q, t)

=
(
α

√
coth |α|2

) (
α

√
tanh |α|2

)
Φo
α(q, t)

= α2Φo
α(q, t)

for any α ∈ C. Therefore, even-odd coherent states are eigenstates of the operator Â2(t)

corresponding to the eigenvalue α2, α ∈ C. �

3.5. Time-Evolved Even and Odd Displaced Squeezed States

The even-odd displaced squeezed states of standard harmonic oscillator are con-

structed by using the displacement operators D̂+(α), D̂−(α) and the squeeze operator

Ŝ (r, θ) as χe
α,r,θ(q) = D̂+(α)Ŝ (r, θ)ϕ0(q), and χo

α,r,θ(q) = D̂−(α)Ŝ (r, θ)ϕ0(q), where α ∈ C,

r ≥ 0, θ ∈ [0, 2π), and ϕ0(q) is the ground state of the standard Hamiltonian Ĥ0. So they

are quantum superposition of squeezed coherent states χ0
α,r(q) given by (2.21). In what

follows, we solve the IVP (3.1) for the generalized oscillator with IC’s (i) Ψ0(q) = χe
α,r(q),

(ii) Ψ0(q) = χo
α,r(q), where for simplicity, we take θ = 0 to find time evolution of even-odd

displaced squeezed states.
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If Ψ0(q) = χe
α,r(q), then time-evolved even displaced squeezed states will be

χe
α,r(q, t) = Ûg(t, t0)χe

α,r(q), and explicitly

χe
α,r(q, t) =

(
ω0

π�
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∗
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⎤⎥⎥⎥⎥⎥⎦ . (3.35)

The corresponding probability density ρe
α,r(q, t) = |χe

α,r(q, t)|2 is then

ρe
α,r(q, t) =
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where the squeezing coefficient |εr(t)| is defined by (3.24), and αr = e−rα1+ ierα2 with α1,

α2 being real constants.

Expectation values of position and momentum are the same as for the time-evolved

even coherent states, i.e., 〈q̂〉e = xp(t), and 〈p̂〉e = pp(t). So they do not depend on the

squeezing parameter r and the complex number α.However, uncertainties and uncertainty

product
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(3.37)
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where

Πe
q(t) = 1 + 2|α|2 tanh |αr|2 + 2

|εr(t)|2�(αrε
∗
r (t))2,

Πe
p(t) =
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]
,

depend on r ≥ 0, the complex number αr = e−rα1 + ierα2, α1, α2 ∈ R and also on the

parameters μ(t), ω(t), and B(t) of the Hamiltonian (3.2).

Now, if Ψ0(q) = χo
α,r(q) in(3.1), then we can find the time-evolved odd displaced

squeezed states by using the generalized evolution operator as χo
α,r(q, t) = Ûg(t, t0)χo

α,r(q).

After doing calculations, they are found explicitly

χo
α,r(q, t) =

(
ω0

π�

)1/4 1√
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dt

ln |εr(t)| − B(t)
) (

q − xp(t)
)2

]
× sinh

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
αr

εr(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|εr(t)|2
⎤⎥⎥⎥⎥⎥⎦ . (3.38)

The probability is then

ρo
α,r(q, t) =

√
ω0
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2 cosh(|αr|2)|εr(t)| × exp
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where r ≥ 0, αr = e−rα1 + ierα2, α1, α2 ∈ R and |εr(t)| is given by (3.24).

Expectation values of position and momentum in time-evolved odd displaced

squeezed states are 〈q̂〉o = xp(t), and 〈p̂〉o = pp(t). The corresponding uncertainties and
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uncertainty product are of the form
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(3.40)

where
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|εr(t)|2�(αrε
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]

with αr = e−rα1 + ierα2, α1, α2 ∈ R.
Furthermore, by replacing the order of application of the operators Ŝ (r, θ) and

D̂±(β), in the definition of the even-odd displaced squeezed states χe,o
β,r,θ(q) for any β ∈ C,

r ≥ 0 and θ ∈ [0, 2π), we construct time-dependent squeezed even-odd coherent states

Υe,o
β,r,θ(q). Here, by taking θ = 0, we apply the generalized evolution operator Ûg(t, t0) to

the squeezed even-odd coherent states of SQHO and obtain their time evolution.

First, we find the exact form of the time evolved squeezed even coherent states

Υe
β,r(q, t) = Ûg(t, t0)Υe

β,r(q) as
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ẋp(t) − B(t)xp(t) − D(t)

)
q
]

× exp

[
iμ(t)
2�

(
d
dt

ln |εr(t)| − B(t)
) (

q − xp(t)
)2

]
× cosh

⎡⎢⎢⎢⎢⎢⎣
√

2ω0

�

(
q − xp(t)

)
β

εr(t)

⎤⎥⎥⎥⎥⎥⎦ × exp

⎡⎢⎢⎢⎢⎢⎣−ω0

2�

(
q − xp(t)

)2

|εr(t)|2
⎤⎥⎥⎥⎥⎥⎦ . (3.41)
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Then, the probability density follows as
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where the squeezing coefficient |εr(t)| is given by (3.24).

The change in the order of application of the squeeze operator Ŝ (r, θ) and the dis-

placement operator D̂+(β) does not affect expectation values. So expectation of position

and momentum are the same as for time evolved even displaced squeezed states, that

is, 〈q̂〉e(t) = xp(t), 〈p̂〉e(t) = pp(t), where xp(t) and pp(t) are particular solutions of the

classical equations of motion. However, uncertainties and uncertainty product are

(Δq̂)e
β,r(t) =

√
�

2ω0
|εr(t)|

√
Πe

q(t), (Δp̂)e
β,r(t) =

√
ω0�

2
1
|εr(t)|

√
Πe

p(t),

(Δq̂)e
β,r(Δp̂)e

α(t) = �
2

√
Πe

q(t)Πe
p(t)

(3.43)

where
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,

depend on the squeezing parameter r ≥ 0, and the complex number β.
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Now, we find time-evolved squeezed odd coherent statesΥo
β,r(q, t) = Ûg(t, t0)Υo
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explicitly as
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and the corresponding probability density is
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with the squeezing coefficient |εr(t)| defined by (3.24).

Expectation values of position and momentum in these states are 〈q̂〉o(t) = xp(t),

〈p̂〉o(t) = pp(t), while uncertainties and uncertainty product become

(Δq̂)o
β,r(t) =

√
�

2ω0
|εr(t)|

√
Πo

q(t), (Δp̂)o
β,r(t) =

√
ω0�

2
1
|εr(t)|

√
Πo

p(t),

(Δq̂)o
β,r(Δp̂)e

α(t) = �
2

√
Πo

q(t)Πo
p(t),

(3.46)

where

Πo
q(t) = 1 + 2|β|2 coth |β|2 + 2

|εr(t)|2�(βε∗r (t))2,
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and

Πo
p(t) =

⎛⎜⎜⎜⎜⎝1 + μ2(t)|εr(t)|4
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In Section 2.3, we have defined the operators B̂(t) = Ûg(t, t0)b̂Û†g(t, t0) and B̂†(t) =

Ûg(t, t0)b̂†Û†g(t, t0), where the pseudo-annihilation and creation operators b̂ and b̂† are

given by (2.25). Now, we give the relations between these operators and time evolved

squeezed even-odd coherent states.

Proposition 3.4 The operator B̂(t) acts on the time evolved squeezed even-odd coherent

states as

B̂(t)Υe
β,r(q, t) = β

√
tanh |β|2Υo

β,r(q, t), B̂(t)Υo
β,r(q, t) = β

√
coth |β|2Υe

β,r(q, t) (3.47)

for all β ∈ C and r ≥ 0.

Proof By using the definition of operator B̂(t), and Υe
β,r(q, t) = Ûg(t, t0)Υe

β,r(q), for any

β ∈ C and r ≥ 0, we can write

B̂(t)Υe
β,r(q, t) = Ûg(t, t0)b̂Û†g(t, t0)Ûg(t, t0)Υe

β,r(q).

Since the evolution operator Ûg(t, t0) is unitary, it satisfies Ûg(t, t0)Û†g(t, t0) = Î. So using

Proposition 2.9, we obtain

B̂(t)Υe
β,r(q, t) = β

√
tanh |β|2Ûg(t, t0)Υo

β,r(q)

= β
√

tanh |β|2Υo
β,r(q, t),

and in a similar way we can show that B̂(t)Υo
β,r(q, t) = β

√
coth |β|2Υe

β,r(q, t). �

From this proposition we conclude the following property.
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Corollary 3.2 Time-evolved squeezed even-odd coherent states are eigenstates of the op-

erator B̂2(t).

Proof The proof follows directly from the Proposition 3.47. For any β ∈ C and r ≥ 0,

we have

B̂2(t)Υe
β,r(q, t) = β

√
tanh |β|2B̂(t)Υo

β,r(q, t) = β
2Υe

β,r(q, t)

and

B̂2(t)Υo
β,r(q, t) = β

√
coth |β|2B̂(t)Υe

β,r(q, t) = β
2Υo

β,r(q, t).

�

Therefore, time-evolved squeezed even-odd coherent states are eigenstates of the operator

B̂2(t) corresponding to the eigenvalue β2 for any β ∈ C.

3.6. Exactly Solvable Models

In this section, we apply our results to find and analyze the behavior of the time-

evolved quantum states obtained in the previous parts. For this, we introduce and dis-

cuss an exactly solvable quantum model for a generalized Caldirola-Kanai oscillator

(Caldirola, 1941), (Kanai, 1948), described by the Hamiltonian

Ĥ(t) =
−�2

2
e−γt ∂

2

∂q2
+
ω2

0

2
eγtq2 − i�

B(t)
2

(
q
∂

∂q
+
∂

∂q
q
)
− E0eγt cos(ωt)q, (3.48)

where ω0 is a constant frequency, μ(t) = eγt, γ > 0, is the exponentially increasing mass,

B(t) is a real-valued parameter depending on time, and driving force is taken to be of

sinusoidal form with E0 and ω being arbitrary real constants. We have seen that parameter

B(t) can essentially modify the original frequency of the classical oscillator (3.5), and

therefore it changes solutions x1(t) and x2(t), which determine the squeezing coefficient

|ε(t)| given by (3.9). Thus, B(t) influences the uncertainties and expectation values of
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position and momentum as well. Besides, for squeezed coherent states and even-odd

displaced squeezed states, the squeezing properties depend not only on the homogenous

solutions x1(t), x2(t) of the classical equation (3.5), but also on the coefficient z = reiθ.

Our goal is to investigate the influence of these parameters on the squeezing properties of

the wave packets. Since the corresponding classical equation is

ẍ + γẋ +
(
ω2

0 −
(
Ḃ(t) + B2(t) + γB(t)

))
x = E0 cos(ωt), (3.49)

by requiring that

−(Ḃ(t) + B2(t) + γB(t)
)
= Λ2

0, (3.50)

where Λ2
0 > −ω2

0, we can preserve the Caldirola-Kanai type oscillator structure. Accord-

ing to this, we choose B(t) = −(γ/2)+Ω′B tanh(Ω′Bt), whereΩ′B =
√
γ2/4 − Λ2

0
and −ω2

0 <

Λ2
0 < γ2/4. Note that, B(t) takes its minimum value at t = 0 with B(0) = −γ/2, and as

t → ∞, it increases and asymptotically approaches the upper bound −γ/2 +
√
γ2/4 − Λ2

0
.

For this choice of B(t), equation (3.49) takes the form

ẍ + γẋ + (ω2
0 + Λ

2
0)x = E0 cos(ωt), (3.51)

with constant frequency ω2
0 + Λ

2
0 > 0, Λ2

0− being the frequency modification in position

space, andΩ2
d = ω

2
0+Λ

2
0−γ2/4 gives the frequencyΩd of the modified damped oscillator.

Depending on the sign of Ω2
d, we have three cases:

(i) Ω2
d < 0 (overdamping),

(ii) Ω2
d = 0 (critical damping),

(iii) Ω2
d > 0 (underdamping).

Here, we shall treat explicitly only the more interesting case of underdamping. When

Ω2
d > 0, homogenous solutions of the classical equation (3.51) satisfying the required
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initial conditions x1(0) = 1, ẋ1(0) = −γ/2, and x2(0) = 0, ẋ2(0) = 1 are

x1(t) = e−γt/2 cos(Ωdt), x2(t) =
1

Ωd
e−γt/2 sin(Ωdt),

and particular solution is

xp(t) = Ahe−γt/2 cos(Ωdt − βh) + Ap cos(ωt − δp), (3.52)

where Ah and θh are constants such that xp(t) satisfies the initial conditions xp(0) =

0, ẋp(0) = 0. The amplitude and phase shift of the steady-state part are

Ap =
E0√

((ω2
0
+ Λ2

0
) − ω2)2 + γ2ω2

, δp = tan−1

(
γω

(ω2
0
+ Λ2

0
) − ω2

)
.

For given γ andω0, the driving frequencyω at which the amplitude Ap(ω) takes maximum

is known as resonance frequency. For this model, the resonance frequency ω = ωres and

the maximum amplitude are found as

ωres =

√
(ω2

0
+ Λ2

0
) − γ2/2, Ap(ωres) =

D0√
(ω2

0
+ Λ2

0
)γ2 − γ4

4

,

provided that ω2
0 + Λ

2
0 − γ2/2 > 0.

A. Time-evolved squeezed coherent states

For the squeezed coherent states χα,r,θ(q, t), α = α1 + iα2, α1, α2 ∈ R, r ≥ 0, θ ∈ [0, 2π),

the probability densities are found in the form

ρα,r,θ(q, t) =
√
ω0

π�

1

|Qr,θ(t)| exp
[
−

(
ω0

�

)(q − 〈q̂〉α(t)
|Qr,θ(t)|

)2]
,
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where the expectation value of position is

〈q̂〉α(t) =

√
2�

ω0

e−γt/2

(
α1 cos(Ωdt) +

α2ω0

Ωd
sin(Ωdt)

)
+ xp(t)

with xp(t) is given by (3.52), and the generalized squeezing coefficient is found as

|Qr,θ(t)| = e−γt/2

√√⎛⎜⎜⎜⎜⎜⎝S 0
r,θ cos(Ωdt) +

ω0 sin θ sinh(2r)

ΩdS 0
r,θ

sin(Ωdt)

⎞⎟⎟⎟⎟⎟⎠2

+

⎛⎜⎜⎜⎜⎜⎝ ω0

ΩdS 0
r,θ

sin(Ωdt)

⎞⎟⎟⎟⎟⎟⎠2

,

which depends on r, θ and the modified frequency Ωd. In particular, when r = 0, one gets

the squeezing coefficient for the time-evolved coherent states Φα(q, t), that is,

|Qr,θ(t)|
∣∣∣
r=0
≡ |ε(t)| = e−γt/2

√
cos2(Ωdt) +

ω2
0

Ω2
d

sin2(Ωdt).

For the special choices of the phase θ = 0 and θ = π(z = ±r), we have the squeezing

coefficient

|εr(t)| = e−γt/2

√
e±2r cos2(Ωdt) +

ω2
0

Ω2
d

e∓2r sin2(Ωdt),

and uncertainties become

(Δq̂)r(t) =
√
�/2ω0|εr(t)|,

(Δp̂)r(t) =

√
ω0�

2

1

|εr(t)|

√
1 +

e2γt|εr|4
ω2

0

(
d
dt

ln |εr(t)| + γ
2
−ΩB tanh(ΩBt)

)2

,

(Δq̂Δp̂)r(t) =
�

2

{
1 +

1

ω2
0

[
ΩB tanh(ΩBt)

(
e±2r cos2(Ωdt) +

ω2
0

Ω2
d

e∓2r sin2(Ωdt)
)

+
1

2

(
Ωde±2r − ω

2
0

Ωd
e∓2r

)
sin(2Ωdt)

]2
⎫⎪⎪⎬⎪⎪⎭

1/2

.
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In Fig.3.1(a), we show that for given values γ, ω0 and Λ2
0, when r increases, the

amplitude of oscillations of (Δq̂)r(t) increases. As an example, in Fig.3.2(a), we plot the

probability density ρα,r(q, t) of the ground state (α = 0) without displacement (xp(t) = 0)

and observe oscillatory squeezing of the width. Fig.3.2(b) exhibits the displacement of

the wave packet due to the nonzero complex parameter α = i when xp(t) = 0. Finally,

in Fig.3.2(c), we plot ρα,r(q, t) of the ground state (α = 0) under periodic displacement

xp(t) = 3 cos(15t/2 − tan−1(
√

15))/2 at resonance frequency ω =
√

15/2.

(a) (b)

(c)

Figure 3.1. For ω0 =
√

12, γ = 1, Λ2
0 = −31/4,Ωd = 2,Ω′B = 2

√
2, r = 0, 1, 3/2, θ = 0.

(a)Uncertainty (Δq̂)r(t), (b)Uncertainty (Δp̂)r(t), (c) Uncertainty product

(Δq̂Δp̂)r.
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(a) (b)

(c)

Figure 3.2. Probability density ρα,r(q, t) with γ = 1, ω0 =
√

12, � = 1, r = 1, θ = 0,
Λ2

0 = −31/4, (a) α = 0, xp(t) = 0, (b) α = i, xp(t) = 0, (c) α = 0, xp(t) at

resonance frequency ωres =
√

15/2, E0 = 3.
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B. Time-evolved even-odd coherent states

The probability densities for the even-odd coherent states Φe,o
α (q, t) are given by (3.29)

and (3.32), respectively, with the squeezing coefficient

|ε(t)| = e−γt/2

√
cos2(Ωdt) +

ω2
0

Ω2
d

sin2(Ωdt),
ω2

0

Ω2
d

> 1.

When Λ2
0 → γ2/4, we have Ω2

d → ω2
0 and |ε(t)| approaches the limiting squeezing e−γt/2.

In other words, for given γ andω0, when frequencyΩd increases, amplitude of oscillations

of |ε(t)| decreases. Knowing the explicit form of |ε(t)| allows us to find the uncertainties

and uncertainty product at time-evolved even-odd coherent states using the equations in

(3.30) and (3.33).

In Fig.3.3 and Fig.3.4, we give plots of the probability densities ρe
α(q, t) and ρo

α(q, t),

which corresponds to α = 0 in (3.29) and (3.32). Precisely, Fig.3.3-(a) and Fig.3.4-(a)

show the evolution when xp(t) = 0. Comparing these figures, we observe that while the

probability density at odd coherent states vanishes at q = 0, the probability density at

even coherent states does not. Besides, Fig.3.3-(b) and Fig.3.4-(b) exhibit how the trajec-

tories oscillate according to the particular solution xp(t) = cos(
√

47t/2 − tan−1(
√

47)) at

resonance frequency ωres =
√

23/2.

(a) (b)

Figure 3.3. Probability density ρe
α(q, t) with γ = 1, ω0 =

√
12, � = 1, Λ0 = 0, α = 0,

(a) xp(t) = 0, (b) xp(t) at resonance frequency ωres =
√

23/2, E0 =
√

47/2.
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(a) (b)

Figure 3.4. Probability density ρo
α(q, t) with γ = 1, ω0 =

√
12, � = 1, Λ0 = 0, α = 0,

(a) xp(t) = 0, (b) xp(t) at resonance frequency ωres =
√

23/2, E0 =
√

47/2.

C. Time-evolved even-odd displaced squeezed states

The probability densities for the even-odd displaced squeezed states χe,o
α,r(q, t) are given by

(3.36) and (3.39), respectively, with the squeezing coefficient

|εr(t)| = e−γt/2

√
e2r cos2(Ωdt) +

ω2
0

Ω2
d

e−2r sin2(Ωdt),
ω2

0

Ω2
d

> 1.

Then, we can find the uncertainties and uncertainty product at time-evolved even-odd

coherent states using the equations in (3.37) and (3.40). For these states, the squeezing

properties depend also on the parameter r ≥ 0. Clearly the amplitude of oscillations of

(Δq̂)e,o
r grows when r increases.

In the previous example, we show the time evolution of even-odd coherent states.

Even-odd displaced squeezed states are obtained by squeezing them. Therefore, we plot

the probability densities at time evolved even-odd displaced squeezed states and observe

the squeezing according to the parameter r, see Fig.3.5 and Fig.3.6.
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(a) (b)

Figure 3.5. Probability density ρe
α,r(q, t) with γ = 1, ω0 =

√
12, � = 1,Λ0 = 0, r = 1/6,

α = 0, (a) xp(t) = 0, (b) xp(t) at resonance frequency ωres =
√

23/2,

E0 =
√

47/2.

(a) (b)

Figure 3.6. Probability density ρo
α,r(q, t) with γ = 1, ω0 =

√
12, � = 1,Λ0 = 0, r = 1/6,

α = 0, (a) xp(t) = 0, (b) xp(t) at resonance frequency ωres =
√

23/2,

E0 =
√

47/2.
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CHAPTER 4

INITIAL-BOUNDARY VALUE PROBLEMS FOR

ONE-DIMENSIONAL QUANTUM PARAMETRIC

OSCILLATORS WITH MOVING BOUNDARIES

In this chapter, we present an initial-boundary value problem (IBVP) for a one-

dimensional generalized quantum parametric oscillator. We start with a Dirichlet bound-

ary condition imposed at a moving boundary and show that if the boundary function is

given as a linear combination of the homogenous and particular solutions of the corre-

sponding classical equation of motion in position space, the problem can be solved ana-

lytically. As an application, we construct an exactly solvable quantum model with specific

frequency modification and analyze the influence of the moving boundaries on the solu-

tion. Moreover, we introduce and solve an IBVP for the generalized quantum oscillator

with a Robin boundary condition.

4.1. Dirichlet IBVP for a Quantum Parametric Oscillator on the

Fixed Half-Line

In this section, we first consider an IBVP for a one-dimensional quantum para-

metric oscillator defined on the fixed half-line 0 < q < ∞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥ(t)Ψ(q, t), 0 < q < ∞, 0 < t < T,

Ψ(q, 0) = Ψ0(q), 0 < q < ∞
Ψ(0, t) = 0, 0 < t < T,

(4.1)
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whereΨ(q, t) is the wave function at time 0 < t < T , Ψ0(q) is the initial state at time t = 0,

and Ĥ(t) is a quadratic Hamiltonian given by

Ĥ(t) =
p̂2

2μ(t)
+
μ(t)ω2(t)

2
q̂2 +

B(t)
2

(
q̂p̂ + p̂q̂

)
(4.2)

with all time-dependent parameters being real-valued functions and μ(t) > 0. We note

that, the Schrödinger equation defined by (4.1) is invariant under space inversion and we

can find an exact analytical solution of the Dirichlet IBVP on the half-line as given in the

following proposition.

Proposition 4.1 The Dirichlet IBVP for a quantum parametric oscillator given by (4.1)

has solution of the form

Ψ(q, t) =
1√
x1(t)

× exp
[ iμ(t)

2�

(
ẋ1(t)
x1(t)

− B(t)
)

q2
]
× ϕ(η(q, t), τ(t)

)
, (4.3)

where x1(t) and x2(t) are two linearly independent solutions of the homogenous classical

equation of motion

ẍ +
μ̇

μ
ẋ +

(
ω2 −

(
Ḃ + B2 +

μ̇

μ
B
))

x = 0, t > 0, (4.4)

satisfying the initial conditions x1(0) = 1, ẋ1(0) = B(0), x2(0) = 0, ẋ2(0) = 1/μ(0),

respectively,

η(q, t) =
q

x1(t)
, τ(t) = −�

(
x2(t)
x1(t)

)
, 0 < t < T, (4.5)

and ϕ(η, τ) is solution of the Dirichlet IBVP for free Schrödinger equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
i
∂ϕ

∂τ
=

1

2

∂2ϕ

∂η2
, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = Ψ0(η), 0 < η < ∞,
ϕ(0, τ) = 0, 0 < τ < τ(T ).

(4.6)
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Proof First, consider the following IVP defined on the whole real line

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥ(t)Ψ(q, t), −∞ < q < ∞, 0 < t < T,

Ψ(q, 0) = Ψ0(q), −∞ < q < ∞,
(4.7)

where the Hamiltonian Ĥ(t) is given by (4.2). IVP (4.7) is a special case of IVP (3.1)

defined in the previous chapter. So using Eq. (3.3), we can write the explicit form of the

evolution operator for IVP (4.7) in the form

Û(t, t0) = exp

(
i
μ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
)

q2

)
× exp

(
ln

∣∣∣∣∣ x1(t0)

x1(t)

∣∣∣∣∣ (q ∂

∂q
+

1

2

))
× exp

(
i
2
�x2

1(t0)

(
x2(t)
x1(t)

)
∂2

∂q2

)
, (4.8)

where x1(t) and x2(t) are linearly independent solutions of the classical equation (4.4)

satisfying the initial conditions x1(0) = 1, ẋ1(0) = B(0), x2(0) = 0, ẋ2(0) = 1/μ(0),

respectively. Then, by applying Û(t, t0) to the given initial function Ψ0(q), we can find the

solution of IVP (4.7) as

Ψ(q, t) =
1√
x1(t)

× exp
[ iμ(t)

2�

(
ẋ1(t)
x1(t)

− B(t)
)

q2
]
× ϕ(η(q, t), τ(t)

)
, (4.9)

where ϕ(η, τ) is solution of the Dirichlet IVP for free Schrödinger equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i
∂ϕ

∂τ
=

1

2

∂2ϕ

∂η2
, −∞ < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = Ψ0(η), −∞ < η < ∞.
(4.10)

Then, Ψ(q, t) found by (4.9) satisfies the initial condition Ψ(q, 0) = Ψ0(q) also on the

interval 0 < q < ∞. We note that, τ(t) is positive and strictly increasing for 0 < t < T ,

so that τ = τ(t), 0 < t < T if and only if t = t(τ) for 0 < τ < τ(T ). Therefore, solution

(4.9) will satisfy the boundary condition in (4.1) only when the function ϕ(η, τ) satisfies

ϕ(0, τ) = 0. Hence, (4.9) satisfies IBVP (4.1) if ϕ(η, τ) satisfies IBVP (4.6) for the free

Schrödinger equation. �
63



The Dirichlet IBVP (4.1) has solution

ϕ(η, τ) =

∫ ∞

0

G(η, ξ, τ)ϕ(ξ, 0)dξ, (4.11)

where G(η, ξ, τ) = K(η − ξ, τ) − K(η + ξ, τ) is the Green’s function with K(η, τ) being the

propagator of the free Schrödinger equation defined by

K(η, τ) =

√
i

2πτ
exp

(−iη2

2τ

)
. (4.12)

As a consequence of Proposition 4.1, Dirichlet IBVP (4.1) for a quantum parametric

oscillator defined on the fixed half-line has solution with integral representation of the

form

Ψ(q, t) =
1√
x1(t)

× exp
[ iμ(t)

2�

(
ẋ1(t)
x1(t)

− B(t)
)

q2
]
×

∫ ∞

0

G(η(q, t), ξ, τ(t))Ψ0(ξ)dξ, (4.13)

where η(q, t) and τ(t) are given by (4.5). Thus, the exact form of the solution can be found

if the integral converges for the given initial data.

4.2. Dirichlet IBVP for a Generalized Quantum Parametric

Oscillator with Moving Boundary

In this section, we consider an IBVP for a time-dependent Schrödinger equation

defined on the interval s(t) < q < ∞ and with Dirichlet boundary condition imposed at

q = s(t), 0 < t < T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥg(t)Ψ(q, t), s(t) < q < ∞, 0 < t < T,

Ψ(q, 0) = Ψ0(q), s(0) < q < ∞
Ψ(s(t), t) = 0, 0 < t < T,

(4.14)
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whereΨ(q, t) is the wave function at time 0 < t < T , Ψ0(q) is the initial state at time t = 0,

and Ĥg(t) is the most general quadratic Hamiltonian given by

Ĥg(t) =
p̂2

2μ(t)
+
μ(t)ω2(t)

2
q̂2 +

B(t)
2

(
q̂p̂ + p̂q̂

)
+ D(t)p̂ + E(t)q̂ + F(t) (4.15)

with all time-dependent parameters being real-valued functions and μ(t) > 0.

Proposition 4.2 Let the Dirichlet IBVP for a generalized quantum parametric oscillator

with moving boundary be given by (4.14). If the boundary function s(t) in the IBVP (4.14)

is of the form

s(t) = xg(t) ≡ c1x1(t) + c2x2(t) + xp(t), c ≡ (c1, c2) ∈ R2, (4.16)

where x1(t) and x2(t) are two linearly independent homogenous solutions and xp(t) is a

particular solution of the classical equation of motion

ẍ +
μ̇

μ
ẋ +

(
ω2 −

(
Ḃ + B2 +

μ̇

μ
B
))

x = Ḋ +
(
μ̇

μ
+ B

)
D − 1

μ
E, t > 0, (4.17)

satisfying the initial conditions x1(0) = 1, ẋ1(0) = B(0), x2(0) = 0, ẋ2(0) = 1/μ(0), and

xp(0) = 0, ẋp(0) = D(0), respectively, then the IBVP (4.14) has solution of the form

Ψ(q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)] × ϕ(ηg(q, t), τ(t)
)
,

(4.18)

where Lg(t) denotes a Lagrangian function for the moving boundary given as

Lg(t) =
1

2�

[
μ(t)

((
ẋg(t) − B(t)xg(t) − D(t)

)2 − ω2(t)x2
g(t)

)
− 2

(
E(t)xg(t) + F(t)

)]
, (4.19)
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the coordinate transformations are denoted as

ηg(q, t) =
q − xg(t)

x1(t)
, τ(t) = −�

(
x2(t)
x1(t)

)
, 0 < t < T, (4.20)

and ϕ(η, τ) is solution of the Dirichlet IBVP for free Schrödinger equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i
∂ϕ

∂τ
=

1

2

∂2ϕ

∂η2
, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
(−ic2

�
η
)
Ψ0(η + c1), 0 < η < ∞,

ϕ(0, τ) = 0, 0 < τ < τ(T ).

(4.21)

Proof Assume that the boundary function s(t) is given by (4.16). Define a new co-

ordinate q̃ = q − s(t) and denote Ψ̃(q̃, t) = Ψ(q, t). After performing time and space

differentiations

∂Ψ

∂t
= −ṡ(t)

∂Ψ̃

∂q̃
+
∂Ψ̃

∂t
,

∂Ψ

∂q
=
∂Ψ̃

∂q̃
,

∂2Ψ

∂q2
=
∂2Ψ̃

∂q̃2
,

we obtain the following IBVP defined on 0 < q̃ < ∞ for function Ψ̃(q̃, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
i�
∂Ψ̃

∂t
= Ĥs

g(t)Ψ̃,

Ψ̃(q̃, 0) = Ψ0(q̃ + c1), 0 < q̃ < ∞,
Ψ̃(0, t) = 0, 0 < t < T,

(4.22)

where

Ĥs
g(t) = − �

2

2μ(t)
∂2

∂q̃2
+
μ(t)ω2(t)

2
q̃2 − i�

2
B(t)

(
1 + 2q̃

∂

∂q̃

)
+i�

(
ṡ(t) − B(t)s(t) − D(t)

)
∂

∂q̃
+

(
μ(t)ω2(t)s(t) + E(t)

)
q̃

+

(
μ(t)ω2(t)

2
s2(t) + E(t)s(t) + F(t)

)
. (4.23)
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To solve IBVP (4.22), we first consider the following IVP defined on the whole real line

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ i�
∂Ψ̃

∂t
= Ĥs

g(t)Ψ̃, 0 < t < T,

Ψ̃(q̃, 0) = Ψ0(q̃ + c1), −∞ < q̃ < ∞,
(4.24)

where the Hamiltonian Ĥs
g(t) is given by (4.23). We can find the exact form of the evolu-

tion operator for IVP (4.24) defined as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�

d
dt

Û s
g(t, t0) = Ĥs

g(t)Û s
g(t, t0), 0 < t < T,

Û s
g(t0, t0) = Î,

(4.25)

by using the Wei-Norman Lie algebraic approach. In fact, Hamiltonian (4.23) can be

expressed as a finite linear combination of Lie algebra generators as

Ĥs
g(t) = −i

[
�

2

μ(t)
K̂− + μ(t)ω2(t)K̂+ + 2�B(t)K̂0

+�

(
− ṡ(t) + B(t)s(t) + D(t)

)
Ê2 +

(
μ(t)ω2(t)s(t) + E(t)

)
Ê1

+

(
μ(t)ω2(t)

2
s2(t) + E(t)s(t) + F(t)

)
Ê3

]
, (4.26)

where Heisenberg-Weyl algebra generators Ê1, Ê2, Ê3 are given by (2.10) and the gener-

ators K̂,K̂+, K̂0 of the S U(1, 1) algebra are given by (2.17). Then, the evolution operator

Û s
g(t, t0) for IVP (4.24) can be written as a product of exponential operators of the form

Û s
g(t, t0) = exp

(
c(t)Ê3

)
× exp

(
a(t)
�

Ê1

)
× exp

(
(s(t) − b(t))Ê2

)
× exp

(
f (t)K̂+

)
× exp

(
2h(t)K̂0

)
× exp

(
g(t)K̂−

)
× exp

(
−c2

�
Ê1

)
,
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where f (t), g(t), h(t) and a(t), b(t), c(t) being real-valued functions to be determined. Per-

forming time differentiation, we obtain

d
dt

Û s
g(t, t0) =

(
ċÊ3

)
e

a(t)
�

Ê1 e(s(t)−b(t))Ê2 e f (t)K̂+ e2h(t)K̂0 eg(t)K̂− e−
c2
�

Ê1

+ec(t)Ê3

(
ȧ(t)
�

Ê1

)
e

a(t)
�

Ê1 e(s(t)−b(t))Ê2 e f (t)K̂+ e2h(t)K̂0 eg(t)K̂− e−
c2
�

Ê1

+ec(t)Ê3 e
a(t)
�

Ê1

(
(ṡ(t) − ḃ(t))Ê2

)
e(s(t)−b(t))Ê2 e f (t)K̂+ e2h(t)K̂0 eg(t)K̂− e−

c2
�

Ê1

+ec(t)Ê3 e
a(t)
�

Ê1 e(s(t)−b(t))Ê2

(
ḟ (t)K̂+

)
e f (t)K̂+ e2h(t)K̂0 eg(t)K̂− e−

c2
�

Ê1

+ec(t)Ê3 e
a(t)
�

Ê1 e(s(t)−b(t))Ê2 e f (t)K̂+
(
2ḣ(t)K̂0

)
e2h(t)K̂0 eg(t)K̂− e−

c2
�

Ê1

+ec(t)Ê3 e
a(t)
�

Ê1 e(s(t)−b(t))Ê2 e f (t)K̂+ e2h(t)K̂0

(
ġ(t)K̂−

)
eg(t)K̂− e−

c2
�

Ê1 . (4.27)

Bu using the Baker-Campbell-Hausdorff relation

eξÂ B̂ e−ξÂ = B̂ + ξ[Â, B̂] + (ξ2/2)[Â, [Â, B̂]] + (ξ3/3!)[Â, [Â, [Â, B̂]]] + . . . ,

we can rewrite Eq. (4.27) in the form

i�
d
dt

Ûg(t, t0) = i�
[(

ċ +
1

�
a(ṡ − ḃ) +

1

2
ḟ (s − b)2 +

1

�
ḣa(s − b) − f ḣ(s − b)2

+ġe−2h
(

1

2�2
a2 − 1

�
f a(s − b) +

1

2
f 2(s − b)2

))
Ê3

+

(
ḃ − ṡ − ḣ(s − b) + ġe−2h

(
− 1

�
a + f (s − b)

))
Ê2

+

(
1

�
ȧ − ḟ (s − b) − 1

�
ḣa + 2 f ḣ(s − b) + ġe−2h

(
1

�
f a − f 2(s − b)

))
Ê1

+

(
ḟ − 2 f ḣ + f 2ġe−2h

)
K̂+

+2
(
ḣ − f ġe−2h

)
K̂0 +

(
ġe−2h

)
K̂−

]
Ûg(t, t0). (4.28)

Using equations (4.26) and (4.28), we compare both sides of the operator equation (4.25)

and obtain that Û s
g(t, t0) is solution of the problem if the unknown functions f (t), g(t), h(t)
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satisfy the nonlinear system

ḟ (t) +
�

μ(t)
f 2(t) + 2B(t) f (t) +

μ(t)ω2(t)
�

= 0, f (0) = 0,

ġ(t) +
�

μ(t)
e2h(t) = 0, g(0) = 0,

ḣ(t) +
�

μ(t)
f (t) + B(t) = 0, h(0) = 0,

(4.29)

and a(t), b(t), c(t) satisfy the nonlinear system

ȧ(t) + B(t)a(t) + μ(t)ω2(t)b(t) + E(t) = 0, a(0) = c2,

ḃ(t) − B(t)b(t) − a(t)
μ(t)
− D(t) = 0, b(0) = c1,

ċ(t) − a2(t)
2�μ(t)

+
μ(t)ω2(t)

2�
s2(t) +

1

�

(
E(t)s(t) + F(t)

)
= 0, c(0) = 0.

(4.30)

Indeed, (4.29) and (4.30) are two independent systems, one for f , g, h and second for

a, b, c. We realize that the first equation in the system (4.29) is an IVP for the non-linear

Riccatti equation, and using substitution f (t) = μ(t)(ẋ/x−B)/�, it transforms to the linear

second-order homogeneous differential equation

ẍ +
μ̇

μ
ẋ +

(
ω2 −

(
Ḃ + B2 +

μ̇

μ
B
))

x = 0, (4.31)

with initial conditions x(0) = 1, ẋ(0) = B(0). We denote the solution of the IVP as x1(t)

and assuming that all coefficients in Eq. (4.31) are continuous on time interval containing

t = 0, we denote a second solution by x2(t) satisfying the initial conditions x2(0) = 0,

ẋ2(0) = 1/μ(0). Abel’s differential equation identity gives us

x2(t) = x1(t)
∫ t

0

1

μ(s)x2
1
(s)

ds.
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Then, the solution of system (4.29) is found in terms of two linearly independent solutions

x1(t) and x2(t) of classical equation of motion (4.17) as

f (t) =
μ(t)
�

(
ẋ1(t)
x1(t)

− B(t)
)
,

g(t) = −�
(

x2(t)
x1(t)

)
,

h(t) = − ln |x1(t)|.

(4.32)

On the other hand, to solve system (4.30), we take derivative of the first line and use the

equation in the second line, which gives

b̈ +
μ̇(t)
μ(t)

ḃ +
(
ω2 −

(
Ḃ + B2 +

μ̇

μ
B
))

b = Ḋ +
(
Ḃ +

μ̇

μ

)
D − 1

μ
E, (4.33)

which is the same as the classical equation (4.17) with initial conditions b(0) = c1, ḃ(0) =

c1B(0) + c2/μ(0) + D(0). It implies that b(t) and the boundary function s(t) satisfy the

same differential equation with the same initial conditions, that means b(t) = s(t). Then,

the solution of the system (4.30) is found as

a(t) = μ(t)
(
ẋg(t) − B(t)xg(t) − D(t)

)
,

b(t) = s(t) = xg(t),

c(t) =
1

2�

∫ t

0

μ(ξ)
((

ẋg(ξ) − B(ξ)xg(ξ)
)2 − ω2(ξ)x2

g(ξ)
)
− 2

(
E(ξ)xg(ξ) + F(ξ)

)
dξ.

(4.34)

After finding expressions for all unknown functions, the explicit form of the evolution

operator becomes

Û s
g(t, t0) = exp

(
i
∫ t

0

Lg(ξ)dξ
)
× exp

(
iμ(t)

(
ẋg(t) − B(t)xg(t) − D(t)

)
q̃
)

× exp
(
i
μ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
)

q̃2
)
× exp

(
− ln |x1(t)|

(
q̃
∂

∂q̃
+

1

2

) )
× exp

( i�
2

(
x2(t)
x1(t)

)
∂2

∂q̃2

)
.

(4.35)
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By applying this form of the evolution operator to the initial function Ψ0(q̃+ c1) in (4.24),

we can find the solution of IVP (4.24) as

Ψ̃(̃q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
)

q̃2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)
q̃
]
× ϕ

( q̃
x1(t)

,−� x2(t)
x1(t)

)
,

(4.36)

where ϕ(η, τ) satisfies the IVP for free Schödinger equation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
i
∂ϕ

∂τ
=

1

2

∂2ϕ

∂η2
, −∞ < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
(−ic2

�
η
)
Ψ0(η + c1), −∞ < η < ∞.

(4.37)

Now, Ψ̃(̃q, t) satisfies the homogeneous boundary condition Ψ̃(0, t) = 0 whenever ϕ(η, τ)

satisfies ϕ(0, τ) = 0. So the function Ψ̃(̃q, t) found by (4.36) will be the solution of

IBVP (4.22) on the fixed half-line if the function ϕ(η, τ) solves IBVP (4.21) for the free

Schrödinger equation. By back substitution q̃ = q− xg(t), we obtain solution (4.18) of the

IBVP, satisfying the IC in (4.14). Therefore, solution (4.18) will satisfy the Dirichlet BC

in (4.14) if ϕ(η, τ) satisfies the Dirichlet BC given in (4.21), completing the proof. �

As a result of Proposition 4.2, the Dirichlet IBVP (4.14) with moving boundary

for a quantum parametric oscillator has solution with integral representation given as

Ψ(q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
×

∫ ∞

0

G(ηg(q, t), ξ, τ(t))Ψ0(ξ + c1)e−ic2ξ/�dξ, (4.38)

provided the integral converges for the given initial data.

We notice that solution properties depend on the initial data, the time-dependent

parameters of Hamiltonian (4.15), and the moving boundary s(t).Here, in the case s(t) = 0

and D(t) = E(t) = F(t) = 0, the problem reduces to the one defined on the fixed half-line
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which we consider in Proposition 4.1. Therefore, the effect of the moving boundary can be

seen by comparing solutions given by (4.38) and (4.13). We observe that the boundary s(t)

causes a shift in the position coordinate. Also, there are extra time-dependent exponentials

generated by the effect of the moving boundary in the solution. One of them includes the

Lagrangian Lg(t) ≡ L(x(t), ẋ(t), t) and from the Euler-Lagrange equation

d
dt

(
∂L
∂ẋ

)
(x(t), ẋ(t), t) − ∂L

∂x
(x(t), ẋ(t), t) = 0, (4.39)

one can obtain the classical equation of motion (4.17). So the Lagrangian Lg(t) describes

the motion of the boundary point. The other exponent depends linearly on the position

variable. Since the arguments of both of these exponentials are pure imaginary, they

contribute to the phase factor in the solution.

Finally, we note that if the parameters D(t) and E(t) of Hamiltonian (4.15) are

nonzero, then the Schrödinger equation for the generalized quantum parametric oscillator

in (4.14) is not invariant under space inversion. In this case, it is not easy to solve the

corresponding IBVP on the fixed half-line 0 < q < ∞ with Dirichlet boundary condition

imposed at q = 0. However, solutions of some particular half-line IBVP’s can be found

as a consequence of Proposition 4.2 when the particular solution of the corresponding

classical equation of motion is zero, that is xp(t) = 0. Here, we write some particular

cases which could be of interest:

i) D(t) = E(t) = 0.

ii) B(t) = − μ̇(t)
μ(t) , D(t)−constant and E(t) = 0.

iii) B(t) = − μ̇(t)
μ(t) and Ḋ(t) = E(t)

μ(t) .

For each case, by letting c1 = c2 = 0 in solution (4.38), one can obtain solutions of the

corresponding IBVP on the fixed half-line.

To get better insight into the problem, in what follows, we give solutions of

the IBVP (4.14) corresponding to a certain initial data Ψ0(q) and homogenous Dirich-

let boundary condition Ψbc(t) = 0.
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IBVP 1- Eigenstates type initial condition: Here, we consider IBVP (4.14) with a family

of initial functions that is parametrized by ξ ≡ (ξ1, ξ2) ∈ R2

Ψ0
ξ,n(q) = Nn exp

(
i
ξ2

�
(q − ξ1)

)
exp

(
−ω0

2�
(q − ξ1)2

)
Hn

(√
ω0

�
(q − ξ1)

)
, s(0) < q < ∞,

(4.40)

where ξ1 controls shifting, ξ2 controls the phase factor, ω0 > 0, Nn = (ω0/π�)
1/4(2nn!)−1/2,

and Hn(q) are Hermite polynomials for all n = 0, 1, 2, . . .. For the given boundary s(t) =

xg(t) = c1x1(t) + c2x2(t) + xp(t), c = (c1, c2) ∈ R2 and parameter c = ξ, the IBVP has

solution of the form (4.18), where ηg(q, t), τ(t) are given by (4.20), and ϕ(η, τ) is solution

of the IBVP (4.21) with initial condition

ϕ(η, 0) = Nn exp
(
−ω0

2�
η2

)
Hn

(√
ω0

�
η

)
, η > 0, (4.41)

being the normalized eigenstates of the SQHO whose Hamiltonian is Ĥ0 = (p̂2+ω2
0q̂2)/2,

and ϕ(0, τ) = 0. So, IBVP (4.21) has solution with integral representation of the form

ϕn(η, τ) = Nn

∫ ∞

0

√
i

2πτ

(
e−

i
2τ (η−ξ)2 − e−

i
2τ (η+ξ)2

)
exp

(
−ω0

2�
ξ2

)
Hn

(√
ω0

�
ξ

)
dξ (4.42)

for all n = 0, 1, 2, . . . . We notice that for odd n = 2k + 1, k = 0, 1, 2, . . . , one has

ϕ2k+1(η, τ) = N2k+1

∫ ∞

−∞

√
i

2πτ
e−

i
2τ (η−ξ)2

exp
(
−ω0

2�
ξ2

)
H2k+1

(√
ω0

�
ξ

)
dξ, (4.43)

and so we can find the exact form of the solution. Then,

Ψ2k+1(q, t) =

√
2

|ε(t)|N2k+1 × exp
[
− i

(
2k +

3

2

)
ν(t)

]
× exp

(
i
∫ t

0

Lg(ξ)dξ
)

× exp
[ iμ(t)

2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
× exp

[
− ω0

2�

(
q − xg(t)

)2

|ε(t)|2
]
× H2k+1

(√
ω0

�

(
q − xg(t)
|ε(t)|

))
, (4.44)
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and the corresponding probability density becomes

ρ2k+1(q, t) =
2N2

2k+1

|ε(t)| exp
[
− ω0

�

(
q − xg(t)

)2

|ε(t)|2
]
H2

2k+1

(√
ω0

�

(
q − xg(t)
|ε(t)|

))
, (4.45)

where |ε(t)| is the squeezing coefficient defined by (3.9). Thus, for k = 0, 1, 2, . . . ,

Ψ2k+1(q, t) found by (4.44) is an exact solution to IBVP (4.14).

IBVP 2- Coherent states type initial condition: Now, for IBVP (4.14) we take the

following family of initial data

Ψ0
α(q) = Ae−iα1α2 exp

⎛⎜⎜⎜⎜⎜⎝i
√

2ω0

�
α2q

⎞⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−ω0

2�

⎛⎜⎜⎜⎜⎜⎜⎜⎝q −
√

2�

ω0

α1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , s(0) < q < ∞, (4.46)

where A is a real constant, α = α1 + iα2, α1, α2 ∈ R. If s(t) = xg(t) is the moving

boundary, then solution is of the form (4.18), where η(q, t), τ(t) are given by (4.20) and

ϕ(η, τ) is solution of IBVP (4.21) with

ϕα̃(η, 0) = Aα̃ exp

⎛⎜⎜⎜⎜⎜⎝
√

2ω0

�
α̃η

⎞⎟⎟⎟⎟⎟⎠ exp
(−ω0

2�
η2

)
, η > 0, (4.47)

where α̃ = α− √1/(2ω0�)(ω0c1+ ic2), c1, c2 ∈ R and ϕ(0, τ) = 0. Actually, one may write

ϕα(η, 0) as a linear combination of even and odd coherent states of SQHO

ϕα̃(η, 0) = A1φ
e
α̃(η) + A2φ

o
α̃(η), (4.48)

where A1, A2 ∈ R and φe
α̃(η), φo

α̃(η) are given by (2.31) and (2.32), respectively. Then, we

can write solution of IBVP (4.21) in the form

ϕα̃(η, τ) =

∫ ∞

0

√
i

2πτ

(
e−

i
2τ (η−ξ)2 − e−

i
2τ (η+ξ)2

)(
A1φ

e
α̃(ξ) + A2φ

o
α̃(ξ)

)
dξ. (4.49)
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Taking A1 = 0, we can find the exact form of the solution by taking the following integral

ϕα̃(η, τ) = A2

∫ ∞

−∞

√
i

2πτ
e−

i
2τ (η−ξ)2

φo
α̃(ξ)dξ. (4.50)

Thus, one family of normalized solutions of Dirichlet IBVP (4.14) is

Ψo
α̃(q, t) =

(
ω0

π�

)1/4 1√
ε(t) sinh |α̃|2

× exp
(
− (ε∗(t))2

2|ε(t)|2 α̃
2
)

× exp
(
i
∫ t

0

Lg(ξ)dξ
)
× exp

[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
× exp

[ iμ(t)
2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xg(t)
)2
]

× sinh
(√

2ω0

�

1

ε(t)
(
q − xg(t)

)
α̃
)
× exp

(
− ω0

2�

(q − xg(t))2

|ε(t)|2
)
, (4.51)

and the corresponding probability density function becomes

ρo
α(q, t) =

√
ω0

π�

1

|ε(t)| sinh |α|2 × exp
((�(αε∗(t))

)2 − (�(αε∗(t))
)2

|ε(t)|2
)

× exp
(
− ω0

�

(q − xg(t))2

|ε(t)|2
) ⎧⎪⎪⎨⎪⎪⎩cosh

(
2

√
2ω0

�
�(αε∗(t))

q − xg(t)
|ε(t)|2

)
− cos

(
2

√
2ω0

�
�(αε∗(t))

q − xg(t)
|ε(t)|2

)⎫⎪⎪⎬⎪⎪⎭ , (4.52)

where |ε(t)| is given by Eq.(3.9).

The probability density function (4.52) is in the same form as the probability den-

sity at time-evolved odd coherent states (3.32), obtained in the previous chapter. However,

the boundary s(t) causes a difference in the displacement of the position. Then, we also

realize differences in the phase factors by comparing solution (4.51) and time-evolved

odd coherent states given by (3.31).
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4.3. Exacatly Solvable Caldirola-Kanai Model for the Dirichlet IBVP

In this section, we consider an exactly solvable model

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
i� ∂

∂tΨ(q, t) = Ĥ(t)Ψ(q, t), s(t) < q < ∞, t > 0,

Ψ(q, 0) = Ψ0(q), s(0) < q < ∞,
Ψ(s(t), t) = 0, t > 0,

(4.53)

with moving boundary s(t), and the Hamiltonian

Ĥ(t) =
e−γt

2
p̂2 +

ω2
0eγt

2
q̂2 + e−γtD(t)p̂ − eγtE(t)q̂, (4.54)

where μ(t) = eγt, γ > 0, is the exponentially increasing mass, D(t), E(t) are arbitrary real-

valued parameters depending on time. The corresponding classical equation of motion

ẍ + γẋ + ω2
0x = e−γtḊ + E, t > 0 (4.55)

where γ > 0 is the damping coefficient and ω0 > 0 is the natural frequency, that is the

frequency of the undamped oscillator (γ = 0), has homogenous solutions

x1(t) =
ω0

Ω0

e−γt/2 cos(Ω0t − δ0), x2(t) =
1

Ω0

e−γt/2 sin(Ω0t),

satisfying the initial conditions x1(0) = 1, ẋ1(0) = 0, x2(0) = 0, ẋ2(0) = 1, and Ω0 =√
ω2

0
− γ2/4 is the frequency of the damped oscillator and δ0 = tan−1(γ/(2Ω0)) is the

phase shift.

Periodic forces (B(t) = 0): If the driving forces are taken to be D(t) = 0, E(t) =

E0 cos(ωt), where ω is the driving frequency and E0 is a real constant, then the particular

solution of (4.55) will be

xp(t) = Ahe−γt/2 cos(Ω0t − θh) + Ap cos(ωt − δp), (4.56)
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where Ah and θh are constants such that xp(t) satisfies the initial conditions xp(0) =

0, ẋp(0) = 0. The amplitude and phase shift of the steady-state part are

Ap =
E0√

(ω2
0
− ω2)2 + γ2ω2

, δp = tan−1

(
γω

ω2
0
− ω2

)
, (4.57)

and resonance frequency and maximum amplitude are found as

ωres =

√
ω2

0
− γ2/2, Ap(ωres) =

E0√
γ2(ω2

0
− γ2/4)

, ω2
0 − γ2/2 > 0. (4.58)

Example 1

First, we consider the IBVP (4.53) with an initial data of harmonic oscillator eigenstate

type given by (4.40) for odd n = 2k+1, k = 0, 1, 2, . . . . If s(t) = xg(t) = c1x1(t)+ c2x2(t)+

xp(t), c = (c1, c2) ∈ R2 and the parameter ξ = c in (4.40), then the probability densities

will be found by (4.45) with the squeezing coefficient

|ε(t)| = ω0

Ω0

e−γt/2
√

cos2(Ω0t − δ0) + sin2(Ω0t), (4.59)

which is smooth and oscillatory for t > 0. We note that, the amplitude of oscillations

can be increased by increasing the value of the frequency ω0. When γ → 0, one has

ω2
0/Ω

2
0 → 1, δ0 → 0 so that |ε(t)| → 1. However, when γ > 1, the amplitude of oscillations

in |ε(t)| decreases and approaches zero as time goes to infinity.

In Fig.4.1-(i), we plot time evolution of the probability density ρn(q, t), n = 3 on

the fixed domain 0 < q < ∞ for s(t) = 0 and D(t) = E(t) = 0. We observe that the

probability density function is equal to zero on the fixed boundary q = 0. This figure

shows the evolution of the Gaussian wave packet on its domain and without displacement

in position. Since n = 3, we observe also the trajectory of a moving zero for q > 0. In

Fig.4.1, we also give plots of time evolution of the probability density ρn(q, t) for n = 3,

when c1 = 0, c2 = 1 (ii) without external parameters, that is xp(t) = 0, (iii) with periodic

xp(t) = (4/
√

47) cos(
√

23/2t − tan−1(
√

46)) at resonance frequency (transient parts are

neglected in the figures). Fig.4.1-(ii) exhibits that the boundary point oscillates in time
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with decreasing amplitude. However, in Fig.4.1-(iii), the boundary point will continue to

oscillate with a constant amplitude after a certain time due to the moving boundary s(t) =

x2(t) + xp(t). We observe also how the trajectories of moving zeros oscillate according to

the displacement (ii) s(t) = x2(t), (iii) s(t) = xg(t) = x2(t) + xp(t).

Example 2

Now, in the IBVP (4.53) we take the initial function as of the form (4.46), then the prob-

ability densities are given by Eq. (4.52) with the squeezing coefficient |ε(t)| given by

(4.59). In Fig.4.2-(i), we show the probability density ρo
α(q, t) for α = i, when the bound-

ary s(t) = 0, and we observe that the function is zero on the fixed boundary q = 0. In

Fig.4.2-(ii), we plot ρo
α̃(q, t) for α̃ = i, when c1 = 0, c2 = 2 without external parame-

ters, that is xp(t) = 0. Due to the moving boundary s(t) = 2x2(t), one can see that the

boundary point oscillates and as time increases the amplitude of oscillations decreases

and approaches to zero. Fig.4.2-(iii) shows ρo
α̃(q, t) for α̃ = i, when c1 = 0, c2 = 2 with

periodic xp(t) = (4/
√

47) cos(
√

23/2t − tan−1(
√

46)) at resonance frequency. According

to this, the amplitude of oscillations of the boundary point will not approach to zero as

time increases.
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(i) (ii)

(iii)

Figure 4.1. Probability density ρn(q, t) given by (4.45) for n = 3, γ = 1, ω0 =
√

12, � =
1, when (i) s(t) = 0 and xp(t) = 0, (ii) s(t) = 2x2(t) and xp(t) = 0, (iii)
s(t) = 2x2(t) + xp(t) with periodic xp(t) at resonance frequency ωres =√

23/2, E0 = 2.
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(i) (ii)

(iii)

Figure 4.2. Probability density ρo
α̃(q, t) given by (4.52) for α̃ = i, γ = 1, ω0 =

√
12, � =

1 when (i) s(t) = 0 and xp(t) = 0, (ii) s(t) = 2x2(t) and xp(t) = 0, (iii)
s(t) = 2x2(t) + xp(t) with periodic xp(t) at resonance frequency ωres =√

23/2, E0 = 2.

80



4.4. Robin IBVP for a Generalized Quantum Parametric Oscillator

with Moving Boundary

Now, we consider an IBVP for the generalized quantum parametric oscillator de-

fined on a time-dependent domain s(t) < q < ∞ 0 < t < T, with Robin BC imposed at a

moving boundary q = s(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥg(t)Ψ(q, t), s(t) < q < ∞, 0 < t < T,

Ψ(q, 0) = Ψ0(q), s(0) < q < ∞,
∂Ψ

∂q
(s(t), t) − i

�
β(t)Ψ(s(t), t) = 0, 0 < t < T,

(4.60)

where Ĥg(t) is the generalized Hamiltonian given by (4.15) and β(t) is a real valued func-

tion of time.

Proposition 4.3 Consider the Robin IBVP with the moving boundary for the generalized

quantum parametric oscillator given by (4.60). If the boundary function s(t) is of the form

(4.16), and the function β(t) is given by

β(t) = pg(t) ≡ c1 p1(t) + c2 p2(t) + pp(t), c1, c2 ∈ R, (4.61)

where p1(t) = μ(t)
(
ẋ1(t)− B(t)x1(t)

)
and p2(t) = μ(t)

(
ẋ2(t)− B(t)x2(t)

)
are two linearly in-

dependent homogeneous solutions and pp(t) = μ(t)
(
ẋp(t)−B(t)xp(t)−D(t)

)
is a particular

solution of the classical equation of motion in momentum space

p̈ −
˙(μω2)

μω2
ṗ +

(
ω2 +

(
Ḃ − B2 −

˙(μω2)

μω2
B
))

p = −μω2D − Ė +
( ˙(μω2)

μω2
+ B

)
E, (4.62)
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then IBVP (4.60) has solution of the form

Ψ(q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)] × ϕ(ηg(q, t), τ(t)
)
,

(4.63)

where the Lagrangian Lg(t) and coordinate transformations ηg(t), τ(t) are defined by

(4.19) and (4.20), respectively. Here, ϕ(η, τ) is solution of the following IBVP for the

free Schrödinger equation with a homogeneous Neumann boundary condition

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i
∂ϕ

∂τ
=

1

2

∂2ϕ

∂η2
, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
(−ic2

�
η
)
Ψ0(η + c1), 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < τ(T ).

(4.64)

Proof Suppose the boundary function s(t) and the function β(t) are of the form (4.16)

and (4.61), respectively. Let q̃ = q − s(t) and denote Ψ̃(q̃, t) = Ψ(q, t). Then, we obtain an

IBVP for Ψ̃(q̃, t) = Ψ(q, t) defined on the fixed half-line 0 < q̃ < ∞ Ψ̃(q̃, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i�
∂Ψ̃

∂t
= Ĥs

g(t)Ψ̃,

Ψ̃(q̃, 0) = Ψ0(q̃ + c1), 0 < q̃ < ∞,
∂Ψ̃

∂q̃
(0, t) − i

�
β(t)Ψ̃(0, t) = 0, 0 < t < T,

(4.65)

where Ĥs
g(t) is given by (4.23). So following the same steps in the proof of Proposition

4.2, we obtain the function Ψ̃(q̃, t) as

Ψ̃(̃q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
)

q̃2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)
q̃
]
× ϕ

( q̃
x1(t)

,−� x2(t)
x1(t)

)
,

(4.66)
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where ϕ(η, τ) satisfies (4.37) with the prescribed initial condition. Now, Ψ̃(̃q, t) satisfies

the homogeneous boundary condition in (4.65) whenever ϕ(η, τ) satisfies the Neumann

boundary condition ϕη(0, τ) = 0. So the function Ψ̃(̃q, t) found by (4.66) will be the solu-

tion of IBVP (4.65) on the fixed half-line if the function ϕ(η, τ) solves the Neumann IBVP

(4.64) for the free Schrödinger equation. By doing back substitution q̃ = q− xg(t), we get

solution (4.63) to IBVP (4.60) satisfying the prescribed IC there. Thus, solution (4.63)

will satisfy the Robin BC in (4.60) if ϕ(η, τ) satisfies the Neumann BC given in (4.64). �

To be able to find the exact solution of the IBVP (4.60), one has to solve IBVP

(4.64) with Neumann boundary condition. Solution of IBVP (4.64) is found as

ϕ(η, τ) =

∫ ∞

0

N(η, ξ, τ)ϕ(ξ, 0)dξ, (4.67)

where N(η, ξ, τ) = K(η−ξ, τ)+K(η+ξ, τ) with K(η, τ) being the propagator of the system

given by (4.12). Then, as a consequence of Proposition (4.3), the Robin IBVP (4.60) has

solution with integral representation of the form

Ψ(q, t) =
1√
x1(t)

× exp
[
i
∫ t

0

Lg(ξ)dξ
]
× exp

[ iμ(t)
2�

(
ẋ1(t)
x1(t)

− B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
×

∫ ∞

0

N(ηg(q, t), ξ, τ(t))Ψ0(ξ + c1)e−ic2ξ/�dξ. (4.68)

Therefore, exact and explicit solutions to the IBVP (4.60) can be found only when the

integral in (4.68) converges for the given initial data.

In what follows, we give solutions of the IBVP (4.60) corresponding to some

particular initial functions Ψ0(q) and homogenous boundary condition Ψbc(t) = 0.

IBVP 1- Eigenstates type initial condition: First, we consider IBVP (4.60) with the

family of initial functions Ψ0
ξ,n(q) given by (4.40). For the given boundary function s(t) =

xg(t), IBVP (4.60) has the solution of the form (4.63), and ϕ(η, τ) is the solution to IBVP

(4.64), with initial condition ϕ(η, 0) given by (4.41). Then, solution of IBVP (4.64) will
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be of the form (4.42), and for n = 2k, k = 0, 1, 2, . . . , one has

ϕ2k(η, τ) = N2k

∫ ∞

−∞

√
i

2πτ
e−

i
2τ (η−ξ)2

exp
(
−ω0

2�
ξ2

)
H2k

(√
ω0

�
ξ

)
dξ, (4.69)

and normalized solutions of the IBVP with moving boundary for the generalized oscillator

are found as

Ψ2k(q, t) =

√
2

|ε(t)|N2k exp
[
− i

(
2k +

3

2

)
ν(t)

]
× exp

(
i
∫ t

0

Lg(ξ)dξ
)

× exp
[ iμ(t)

2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xg(t)
)2
]

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
× exp

[
− ω0

2�

(
q − xg(t)

)2

|ε(t)|2
]
× H2k

(√
ω0

�

(
q − xg(t)
|ε(t)|

))
, (4.70)

and the corresponding probability densities become

ρ2k(q, t) =
2N2

2k

|ε(t)| exp
[
− ω0

�

(
q − xg(t)

)2

|ε(t)|2
]
× H2

2k

(√
ω0

�

(
q − xg(t)
|ε(t)|

))
, (4.71)

where |ε(t)| is the squeezing coefficient defined by (3.9).

IBVP 2- Coherent states type initial condition: Now, for IBVP (4.60), we take the

initial functionsΨ0
α(q) of coherent states type given by (4.46). If s(t) = xg(t) is the moving

boundary, then solution will be of the form (4.63). Here, ϕ(η, τ) is the solution of IBVP

(4.64) with initial condition ϕα̃(η, 0), given by (4.47). We can write ϕα̃(η, 0) as a linear

combination of even and odd coherent states of SQHO as ϕα̃(η, 0) = A1φ
e
α̃(η) + A2φ

o
α̃(η),

where A1, A2 ∈ R and φe
α̃(η), φo

α̃(η) are given by (2.31) and (2.32), respectively. Then,

solution of IBVP (4.64) in integral representation will be

ϕα̃(η, τ) =

∫ ∞

0

√
i

2πτ

(
e−

i
2τ (η−ξ)2 − e−

i
2τ (η+ξ)2

)(
A1φ

e
α̃(ξ) + A2φ

o
α̃(ξ)

)
dξ. (4.72)
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Here, taking A2 = 0, we can find the exact form of the solution by taking the following

integral

ϕα̃(η, τ) = A1

∫ ∞

−∞

√
i

2πτ
e−

i
2τ (η−ξ)2

φe
α̃(ξ)dξ. (4.73)

So, we obtain

Ψe
α̃(q, t) =

(
ω0

π�

)1/4 1√
ε(t) sinh |α̃|2

exp
(
− (ε∗(t))2

2|ε(t)|2 α̃
2
)
× exp

(
i
∫ t

0

Lg(ξ)dξ
)

× exp
[ iμ(t)
�

(
ẋg(t) − B(t)xg(t) − D(t)

)(
q − xg(t)

)]
× exp

[ iμ(t)
2�

(
d
dt

ln |ε(t)| − B(t)
) (

q − xg(t)
)2
]

× cosh
(√

2ω0

�

1

ε(t)
(
q − xg(t)

)
α̃
)
× exp

(
− ω0

2�

(q − xg(t))2

|ε(t)|2
)
, (4.74)

and the corresponding probability densities

ρe
α̃(q, t) =

√
ω0

π�

1

|ε(t)| sinh |α̃|2 exp
((�(α̃ε∗(t))

)2 − (�(α̃ε∗(t))
)2

|ε(t)|2
)

× exp
(
− ω0

�

(q − xg(t))2

|ε(t)|2
)
×

{
cosh

(
2

√
2ω0

�
�(α̃ε∗(t))

q − xg(t)
|ε(t)|2

)
+ cos

(
2

√
2ω0

�
�(α̃ε∗(t))

q − xg(t)
|ε(t)|2

)}
, (4.75)

where |ε(t)| is given by Eq.(3.9).

Therefore, one family of normalized solutions of Robin IBVP (4.60) for the gener-

alized oscillator with moving boundary is of the form (4.74). We realize that the probabil-

ity density function (4.75) and the probability density at time-evolved even coherent states

found by (3.29) are similar. The only difference is in the displacement of the position,

which is a consequence of the boundary s(t). However, solution (4.74) and time-evolved

even coherent states (3.28) also differ in their phase factors.
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CHAPTER 5

TIME-EVOLVED COHERENT STATES OF

N-DIMENSIONAL GENERALIZED QUANTUM

HARMONIC OSCILLATORS

In this chapter, we consider N-dimensional generalized quantum harmonic oscil-

lator with time-dependent parameters and obtain its solution using the evolution operator

approach. Time-evolution of eigenstates and coherent states under the generalized evo-

lution operator is found explicitly. Then, we introduce exactly solvable quantum models

with special time-variable parameters for which the structure of the corresponding classi-

cal harmonic oscillator in position space is preserved. For each model, we study squeez-

ing properties of the time-evolved coherent states according to the frequency modification

and describe their displacement under the influence of external sinusoidal forces.

5.1. The Classical Problem

In this section, we consider a generalized N-dimensional oscillator described by

the Hamiltonian Hcl(t) =
∑N

j=1 Hj(x j, pj, t), where

Hj(x j, pj, t) =
p2

j

2μ j(t)
+
μ j(t)ω2

j(t)

2
x2

j + Bj(t)x j p j + Dj(t)pj + E j(t)x j + F j(t), (5.1)

and μ j(t) > 0, ω2
j(t), Bj(t),Dj(t), E j(t) and F j(t), j = 1, 2, . . . ,N, are real-valued parame-

ters depending on time. The corresponding Hamilton’s equations of motion are

ẋ j =
∂Hj

∂pj
= Bj(t) +

pj

μ j(t)
+ Dj(t),

ṗ j = −∂Hj

∂x j
= −(μ j(t)ω2

j(t)x j + Bj(t)pj + E j(t)
)
, j = 1, 2, . . . ,N.
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Then, for each j = 1, 2, . . . ,N, we have the classical equations of motion in position space

ẍ j +
μ̇ j

μ j
ẋ j +

(
ω2

j −
(
Ḃ j + B2

j +
μ̇ j

μ j
B j

))
x j = −E j

μ j
+ Ḋ j +

( μ̇ j

μ j
+ Bj

)
Dj, (5.2)

and oscillator equation in momentum space

p̈ j−
˙(μ jω

2
j)

μ jω
2
j

ṗ j+

⎛⎜⎜⎜⎜⎜⎜⎝ω2
j + Ḃ j − B2

j −
˙(μ jω

2
j)

μ jω
2
j

B j

⎞⎟⎟⎟⎟⎟⎟⎠ pj = −μ jω
2
j D j− Ė j+

⎛⎜⎜⎜⎜⎜⎜⎝ ˙(μ jω
2
j)

μ jω
2
j

+ Bj

⎞⎟⎟⎟⎟⎟⎟⎠ E j. (5.3)

We notice that the parameter Bj(t) of the mixed term in Hamiltonian (5.1) leads to modi-

fication of the original frequency ω2
j(t), and the external parameters Bj(t),Dj(t), E j(t) all

contribute to the forcing term of the oscillator for j = 1, 2, . . . ,N.

We denote x(1)
j (t), x(2)

j (t) to be two linearly independent homogenous solutions

and x(p)

j (t) to be a particular solution of the corresponding classical equation of mo-

tion in position space given by (5.2), satisfying the initial conditions x(1)
j (t0) = x0 � 0,

ẋ(1)
j (t0) = x0Bj(t0), x(2)

j (t0) = 0, ẋ(2)
j (t0) = 1/

(
x0μ j(t0)

)
, and x(p)

j (t0) = 0, ẋ(p)

j (t0) = E j(t0),

respectively, for j = 1, 2, . . . ,N. Furthermore, we let p(1)
j (t), p(2)

j (t) denote two homoge-

neous solutions of the oscillator equation in momentum space given by (5.3), then they

can be found in terms of the solutions of the classical equations in position space as

p(1)
j (t) = μ j(t)

(
ẋ(1)

j (t) − Bj(t)x(1)
j (t) − Dj(t)

)
,

p(2)
j (t) = μ j(t)

(
ẋ(2)

j (t) − Bj(t)x(2)
j (t) − Dj(t)

)
,

and particular solution will be

p(p)

j (t) = μ j(t)
(
ẋ(p)

j (t) − Bj(t)x(p)

j (t) − Dj(t)
)
. (5.4)

This establishes solutions to the classical problem, whose quantization using the

usual replacement x j → q̂ j, pj → p̂ j, x j p j → (q̂ j p̂ j + p̂ jq̂ j)/2, j = 1, 2, . . . ,N is discussed

in next sections.
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5.2. Generalized Quantum Parametric Oscillator

We consider the evolution problem describing a generalized N-dimensional quan-

tum parametric oscillator in the presence of time-variable external fields given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩ i� ∂
∂tΨ(q, t) = Ĥ(t)Ψ(q, t), q ∈ RN , t > t0,

Ψ(q, t0) = Ψ0(q), q ∈ RN ,
(5.5)

where Ψ(q, t) := Ψ(q1, q2, . . . , qN , t) is the wave function at time t > t0; at t = t0, the initial

state is Ψ0(q) := Ψ0(q1, q2, . . . , qN) and time-dependent Hamiltonian Ĥ(t) is defined by

Ĥ(t) ≡
N∑

j=1

Ĥ j(t), (5.6)

where

Ĥ j(t) =
p̂2

j

2μ j(t)
+
μ j(t)ω2

j(t)

2
q̂2

j +
Bj(t)

2

(
q̂ j p̂ j + p̂ jq̂ j

)
+ Dj(t)p̂ j + E j(t)q̂ j + F j(t), (5.7)

with q̂ j = qj, is the position operator, p̂ j = −i�∂/∂qj is the momentum operator for

j = 1, 2, . . . ,N.

We note that, [Ĥi, Ĥ j] = 0 for all i, j = 1, 2, . . . ,N, and due to this, we have the

following proposition.

Proposition 5.1 The IVP for an N-dimensional generalized quantum parametric oscilla-

tor given by (5.5) has solution of the form

Ψ(q, t) =
N∏

j=1

Ψ j(qj, t), (5.8)
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where

Ψ j(qj, t) =

√
x0

x(1)
j (t)

exp

(
i
�

∫ t

t0
ζ j(s)ds

)
exp

[
iμ j(t)

(
ẋ(p)

j (t) − Bj(t)x(p)

j (t)Dj(t)
)

qj

]
exp

⎡⎢⎢⎢⎢⎢⎢⎣ iμ j(t)
2�

( ẋ(1)
j (t)

x(1)
j (t)

− Bj(t)
)(

qj − x(p)

j (t)
)2

⎤⎥⎥⎥⎥⎥⎥⎦ϕ j(η j(qj, t), τ j(t)). (5.9)

Here, x(1)
j (t), x(2)

j (t) are two linearly independent homogenous solutions and x(p)

j (t) is a

particular solution of the corresponding classical equation of motion in position space

given by (5.2) satisfying the prescribed initial conditions, and ϕ j(qj, t) is solution of N-

dimensional Schrödinger equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i ∂
∂tϕ j(qj, t) = − ∂2

∂q2
j
ϕ j(qj, t), qj ∈ R, t > 0,

ϕ(qj, 0) = Ψ0(qj), qj ∈ R.
(5.10)

Also, we denote

ζ j(t) =
−μ j(t)

2

[(
ẋ(p)

j (t) − Bj(t)x(p)

j (t)
)2 − ω2

j(t)
(
x(p)

j (t)
)2 − D2

j(t) +
2F j(t)
μ j(t)

]
, (5.11)

and the coordinate transformations

η j(qj, t) =

⎛⎜⎜⎜⎜⎜⎜⎝ x0

x(1)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ (
qj − x(p)

j (t)
)
, τ j(t) = �x2

0

⎛⎜⎜⎜⎜⎜⎜⎝ x(2)
j (t)

x(1)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ , j = 1, 2, . . . ,N. (5.12)

Proof The dynamics of the quantum system described by Schrödinger equation (5.5) is

contained in the evolution operator defined as

i�
d
dt

Û(t, t0) = Ĥ(t)Û(t, t0), Û(t0, t0) = Î. (5.13)

Exact form of Û(t, t0) can be found by using Wei-Norman Lie algebraic process. We

can write the Hamiltonian Ĥ(t) given by (5.6) as a linear combination of Lie algebra
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generators as

Ĥ(t) = −i
N∑

j=1

(
�

2

μ j(t)
K̂ (−)

j + μ j(t)ω2
j(t)K̂ (+)

j + 2�Bj(t)K̂ (0)
j

+ �Dj(t)Ê(2)
j + E j(t)Ê(1)

j + F j(t)Ê(3)
j

)
,

where operators

Ê(1)
j = iq j, Ê(2)

j =
∂

∂qj
, Ê(3)

j = iÎ,

are generators of Heisenberg-Weyl algebra and

K̂ (−)
j = −

i
2

∂2

∂q2
j

, K̂ (+)
j =

i
2

q2
j , K̂ (0)

j =
1

2

(
qj

∂

∂qj
+

1

2

)
,

are generators of the su(1,1) algebra for each fixed j = 1, 2, . . . ,N, . Then, the evolution

operator is

Û(t, t0) =

N∏
j=1

Û j(t, t0), (5.14)

where for each j = 1, 2, . . . ,N the operator Û j(t, t0) can be expressed as product of expo-

nential operators

Û j(t, t0) = ec j(t)Ê(3)
j e

a j(t)
�
Ê(1)

j e−b j(t)Ê(2)
j e f j(t)K̂ (+)

j e2h j(t)K̂ (0)
j eg j(t)K̂ (−)

j ,

with f j(t), gj(t), hj(t) and aj(t), bj(t), c j(t) being real-valued functions to be determined.

Substituting (5.14) and (5.6) into (5.13) and performing necessary calculations, we find

that Û(t, t0) is a solution of (5.13) if the unknown functions f j(t), gj(t), hj(t) satisfy the
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nonlinear system

ḟ j +
�

μ j(t)
f 2

j + 2Bj(t) f j +
μ j(t)ω2

j (t)

�
= 0, f j(t0) = 0,

ġ j +
�

μ j(t)
e2h j = 0, gj(t0) = 0,

ḣ j +
�

μ j(t)
f j + Bj(t) = 0, hj(t0) = 0,

(5.15)

and aj(t), bj(t), c j(t) satisfy the nonlinear system

ȧ j + Bj(t)aj + μ j(t)ω2
j(t)bj + E j(t) = 0, aj(t0) = 0,

ḃ j − Bj(t)bj − 1
μ j(t)

aj − Dj(t) = 0, bj(t0) = 0,

ċ j +
1

2�μ j(t)
a2

j +
D j(t)
�

aj − μ j(t)ω2
j (t)

2�
b2

j +
F j(t)
�
= 0, c j(t0) = 0, j = 1, 2, . . . ,N.

(5.16)

Then, for each j = 1, 2, . . . ,N, the solution of system (5.15) is found in terms of two

linearly independent solutions x(1)
j (t) and x(2)

j (t) of classical system (5.2) as

f j(t) =
μ j(t)
�

⎛⎜⎜⎜⎜⎜⎜⎝ ẋ(1)
j (t)

x(1)
j (t)

− Bj(t)

⎞⎟⎟⎟⎟⎟⎟⎠ , gj(t) = −�x2
0

⎛⎜⎜⎜⎜⎜⎜⎝ x(2)
j (t)

x(1)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ , hj(t) = − ln

∣∣∣∣∣∣∣ x
(1)
j (t)

x0

∣∣∣∣∣∣∣ .
On the other hand, for each j = 1, 2 . . .N, the solution of system (5.16) is obtained in

terms of particular solutions of systems (5.2) and (5.3) as

aj(t) = p(p)

j (t), bj(t) = x(p)

j (t), c j(t) =
1

�

∫ t

t0
ζ j(s)ds.

Therefore, for each j = 1, 2, . . . ,N, we find

Û j(t, t0) = exp

(
i
�

∫ t

t0
ζ j(s)ds

)
exp

(
ip(p)

j (t)qj

)
exp

(
−x(p)

j (t)
∂

∂qj

)
exp

⎛⎜⎜⎜⎜⎜⎜⎝iμ j(t)
2�

⎛⎜⎜⎜⎜⎜⎜⎝ ẋ(1)
j (t)

x(1)
j (t)

− Bj(t)

⎞⎟⎟⎟⎟⎟⎟⎠ q2
j

⎞⎟⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎝ln
∣∣∣∣∣∣∣ x0

x(1)
j (t)

∣∣∣∣∣∣∣
(
qj

∂

∂qj
+

1

2

)⎞⎟⎟⎟⎟⎟⎟⎠ exp

⎛⎜⎜⎜⎜⎜⎜⎝ i
2
�x2

0

⎛⎜⎜⎜⎜⎜⎜⎝ x(2)
j (t)

x(1)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ ∂2

∂q2
j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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which determines Û(t, t0) explicitly. We note that,

exp

⎛⎜⎜⎜⎜⎜⎝− iξ j

2

∂2

∂q2
j

⎞⎟⎟⎟⎟⎟⎠Ψ0(qj) = ϕ(qj; ξ j), (5.17)

where for j = 1, 2, . . . ,N, the function ϕ(qj; z j) satisfies the Schrödinger equation (5.10).

Using (5.17) and the expressions for the shift and dilatation operators respectively,

exp

(
ξ j

∂

∂qj

)
φ(qj) = φ(qj + ξ j), exp

(
ξ jq j

∂

∂qj

)
φ(qj) = φ(eξ jq j) (5.18)

for any function φ(qj), j = 1, 2, . . . ,N, the evolution operator (5.17) is applied to the initial

function Ψ0(qj) , that is Ψ j(qj, t) = Û j(t, t0)Ψ0(qj). Then, we obtain solution (5.9) of the

IVP for N-dimensional generalized quantum parametric oscillator given by (5.5). �

Therefore, knowing explicitly the evolution operator allows us to obtain solution

of the IVP (5.5) for any given initial function. In what follows we show the exact time-

development of harmonic oscillator eigenstates and Glauber coherent states.

5.3. Time-Evolution of Harmonic Oscillator Eigenstates

First, we solve IVP (5.5) by taking the initial function to be the eigenstates ϕn(q)

of the N-dimensional simple harmonic oscillator, whose Hamiltonian is Ĥ0 =
∑N

j=1(p̂2
j +

ω2
0q̂2

j)/2. As known, these eigenstates correspond to eigenvalues En = En1
+ En2

+ . . . +

EnN = �ω0(n1 + n2 + . . . + nN + N/2), and for n = (n1, n2, . . . , nN) we have

ϕn(q) = ϕn1
(q1)ϕn2

(q2) . . . ϕnN (qN), n1, n2, . . . , nN = 0, 1, 2, ...,

with

ϕn j(qj) = Nn je
−ω0

2� q2
j Hn j

(√
ω0

�
qj

)
, j = 1, 2, . . . ,N,
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where Hn j(
√
ω0/�qj) are Hermite polynomials and Nn j = (ω0/π�)

1/4(2n jn j!)
−1/2 are the

normalization constants. According to this, time-evolved eigenstates of the N-dimensional

oscillator (5.5) with Hamiltonian (5.6) are of the form

Ψ(q, t) = Û(t, t0)ϕn(q) =

N∏
j=1

Û j(t, t0)ϕn j(qj) =

N∏
j=1

Ψn j(qj, t), (5.19)

and using the equations (5.18) and (5.17), Ψn j(qj, t) are explicitly found as

Ψn j(qj, t) = Nn j

1√|ε j(t)|
exp

(
− iEn j

�ω0

ν j(t)
)

exp
{ i
�

[ ∫ t

t0
ζ j(s)ds − μ j(t)

2

(
Bj(t) − d

dt
ln |ε j(t)|

)(
qj − x(p)

j (t)
)2
+ p(p)

j (t)qj

]}
exp

[
− ω0

2�

(
qj − x(p)

j (t)
)2

|ε j(t)|2
]
Hn j

⎛⎜⎜⎜⎜⎜⎜⎝
√
ω0

�

qj − x(p)

j (t)

|ε j(t)|

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.20)

and the corresponding probability densities

ρn j(qj, t) = N2
n j

1

|ε j(t)| exp

⎡⎢⎢⎢⎢⎢⎢⎣−ω0

�

(
qj − x(p)

j (t)
)2

|ε j(t)|2
⎤⎥⎥⎥⎥⎥⎥⎦ H2

j

⎛⎜⎜⎜⎜⎜⎜⎝
√
ω0

�

qj − x(p)

j (t)

|ε j(t)|

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.21)

where

ε j(t) =
x(1)

j (t)

x0

+ i(ω0x0)x(2)
j (t) = |ε j(t)|eiν j(t), (5.22)

with modulus and phase

|ε j(t)| =
√√

(x(1)
j (t))2

x2
0

+ (ω0x0)2(x(2)
j (t))2, ν j(t) =

∫ t

t0

ω0

μ j(s)|ε j(s)|2 ds (5.23)
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for each j = 1, 2, . . . ,N. Here, the expectation values of position and momentum at states

Ψn(q, t) are

〈q̂ j〉n(t) = 〈Ψn(q, t)|q̂ j|Ψn(q, t)〉 = 〈Ψn j(qj, t)|q̂ j|Ψn j(qj, t)〉 = x(p)

j (t),

〈p̂ j〉n(t) = 〈Ψn(q, t)|p̂ j|Ψn(q, t)〉 = 〈Ψn j(qj, t)|p̂ j|Ψn j(qj, t)〉 = p(p)

j (t),

showing that they do not depend on the wave number n = (n1, n2, . . . , nN) and are com-

pletely determined by the external forces. Then, the uncertainties in position and momen-

tum are found as

(Δq̂ j)n(t) =

√
�

ω0

(
nj +

1

2

)
|ε j(t)|,

(Δp̂ j)n(t) =

√
ω0�

(
nj +

1

2

)
1

|ε j(t)|2
√

1 +
|ε j(t)|4
ω2

0

(
d ln |ε j(t)|

dt
− Bj(t)

)2

,

and the uncertainty relation in state Ψn(q, t) becomes

(Δq̂ j)n(Δp̂ j)n(t) = �
(
nj +

1

2

) √
1 +
|ε j(t)|4
ω2

0

(
d ln |ε j(t)|

dt
− Bj(t)

)2

. (5.24)

5.4. Time-Evolution of Glauber Coherent States

The coherent states of the simple N-dimensional harmonic oscillator with Hamil-

tonian Ĥ0 are usually defined using the unitary displacement operator

D̂(α) =

N∏
j=1

D̂ j(α j) =

N∏
j=1

exp(α jâ
†
j − α∗j â j), (5.25)
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where α = (α1, α2, . . . , αN) and α j = α
(1)
j + iα(2)

j , with α(1)
j , α

(2)
j being real constants and

â j and â†j are the annihilation and creation operators given as

â j =

√
ω0

2�
qj +

√
�

2ω0

∂

∂qj
, â†j =

√
ω0

2�
qj −

√
�

2ω0

∂

∂qj
, j = 1, 2, . . . ,N. (5.26)

By applying the displacement operator D̂(α) to the ground states ϕ0(q) one can find the

well-known coherent states of the simple N-dimensional harmonic oscillator

φα(q) =

N∏
j=1

φα j(qj),

where

φα j(qj) =
(
ω0

π�

) 1
4

exp
[ − iα(1)

j α
(2)
j
]
exp

[
iα(2)

j

√
2ω0

�
qj

]
exp

[
− ω0

2�

(
qj −

√
2�

ω0

α(1)
j

)2]
.

Then, time-evolved coherent states become

Φα(q, t) = Û(t, t0)φα(q) =

N∏
j=1

Û j(t, t0)φα j(qj) =

N∏
j=1

Φα j(qj, t). (5.27)

For j = 1, 2, . . . ,N, Φα j(qj, t) are found as

Φα j(qj, t) =
(
ω0

π�

)1/4 1√
ε j(t)

exp
{
− 1

2

( (ε∗j (t))
2

|ε j(t)|2 α
2
j + |α j|2

)}
exp

{ i
�

[ ∫ t

t0
ζ j(s)ds − μ j(t)

2

(
Bj(t) − d

dt
ln |ε j(t)|

)(
qj − x(p)

j (t)
)2
+ p(p)

j (t)qj

]}
exp

[
− ω0

2�

(
qj − x(p)

j (t)
)2

|ε j(t)|2
]

exp
{√

2ω0

�

1

ε j(t)
(
qj − x(p)

j (t)
)
α j

}
,
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and we have

ρα j(qj, t) = |Φα j(qj, t)|2 =
√
ω0

π�

1

|ε j(t)|2 exp
{
− ω0

�

(
qj − 〈q̂ j〉α j(t)

)2

|ε j(t)|2
}
,

where the squeezing coefficient |ε j(t)| is found by (5.23) and displacements in j-direction

determined by the expectation values at coherent states Φα j(qj, t) as

〈q̂ j〉α j(t) =

√
2�

ω0

⎛⎜⎜⎜⎜⎜⎜⎝α(1)
j

x0

x(1)
j (t) + α(2)

j (ω0x0)x(2)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ + x(p)

j (t), (5.28)

(5.29)

〈p̂ j〉α j(t) =

√
2�

ω0

⎛⎜⎜⎜⎜⎜⎜⎝α(1)
j

x0

p(1)
j (t) + α(2)

j (ω0x0)p(2)
j (t)

⎞⎟⎟⎟⎟⎟⎟⎠ + p(p)

j (t). (5.30)

The uncertainties for q̂ j and p̂ j at coherent states Φα(q, t) are precisely

(Δq̂ j)α(t) =

√
�

2ω0

|ε j(t)|, (5.31)

(5.32)

(Δp̂ j)α(t) =

√
ω0�

2

1

|ε j(t)|

√
1 +
|ε j(t)|4
ω2

0

(
d ln |ε j(t)|

dt
− Bj(t)

)2

, (5.33)

and the uncertainty product becomes

(Δq̂ j)α(Δp̂ j)α(t) =
�

2

√
1 +
|ε j(t)|4
ω2

0

(
d ln |ε j(t)|

dt
− Bj(t)

)2

. (5.34)

As a result, we can say that time-evolved coherent states of the generalized har-

monic oscillator are N-dimensional shifted and squeezed Gaussian wave packets, which in
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general do not preserve the minimum uncertainty. Their squeezing properties in different

directions are controlled by the squeezing coefficients |ε j(t)|, which depends on the choice

of the parameters μ j(t), ω2
j(t) and Bj(t), j = 1, 2, . . . ,N. On the other hand, the displace-

ment properties of coherent states depend also on parameters Dj(t), E j(t), j = 1, 2, . . . ,N.

Therefore, for time-evolved coherent states the center of the wave packets in position

space will follow the general classical trajectory, that is the parametric curve in RN , given

by

Q̄g(t) :=
(〈q̂1〉α1

(t), 〈q̂2〉α2
(t), ..., 〈q̂N〉αN (t)

)
, t ≥ 0, (5.35)

and in momentum space the general trajectory will be

P̄g(t) :=
(〈p̂1〉α1

(t), 〈p̂2〉α2
(t), ..., 〈p̂N〉αN (t)

)
, t ≥ 0, (5.36)

where 〈q̂ j〉α j(t) and 〈p̂ j〉α j(t) are defined by (5.28) and (5.30), respectively. In particular,

when there are no external forces, that is Dj(t) = 0, E j(t) = 0 for all j = 1, 2, ...,N,

coherent state packets in position space will follow the classical trajectory

Q̄α(t) :=
(
xα1

(t), xα2
(t), ..., xαN (t)

)
, t ≥ 0, (5.37)

determined by the homogeneous solutions xα j(t) and values of α j, j = 1, 2, ...,N. Simi-

larly, in momentum space trajectory will be

P̄α(t) :=
(
pα1

(t), pα2
(t), ..., pαN (t)

)
, t ≥ 0. (5.38)

On the other hand, when α j = 0 for all j = 1, 2, ...,N, which corresponds to the ground

state, and there are external forces due to nonzero parameters Dj(t) or E j(t), the classical
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trajectories of the coherent states will be determined only by the particular solutions, i.e.,

Q̄p(t) :=
(
xp,1(t), xp,2(t), ..., xp,N(t)

)
, t ≥ 0,

P̄p(t) :=
(
pp,1(t), pp,2(t), ..., pp,N(t)

)
, t ≥ 0.

We note that, classical trajectories of the time-evolved eigenstate packets (5.21) are also

given by Q̄p(t), P̄p(t).

5.5. On the Classical Harmonic Oscillator

In this section, we consider a generalized N-dimensional oscillator related with

the classical Hamiltonian

Hcl(t) =
N∑

j=1

⎛⎜⎜⎜⎜⎜⎝ p2
j

2
+
ω2

0

2
x2

j + Bj(t)x j p j + E j(t)x j

⎞⎟⎟⎟⎟⎟⎠ , (5.39)

where mass is mj = 1 for each j = 1, 2, . . . ,N. For this classical oscillator, we first

interpret the free motion and introduce all possible cases of frequency modification, which

preserve the structure. Then, we discuss the influence of the external forces.

5.5.1. Free Motion and Frequency Modification

The homogeneous classical equations of motion in position space corresponding

to the Hamiltonian (5.39) are

ẍ j +
(
ω2

0 −
(
Ḃ j(t) + B2

j(t)
))

x j = 0, j = 1, 2, . . . ,N, (5.40)

and to preserve the original harmonic oscillator structure, we shall choose Bj(t) to satisfy

the equation (Ḃ j(t) + B2
j(t)) = −Λ2

j , where Λ2
j > −ω2

0 is the frequency modification in
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position space for j = 1, 2, · · · ,N. Then, (5.40) takes the form

ẍ j + Ω
2
j x j = 0 (5.41)

with modified natural frequency Ω2
j = ω

2
0 + Λ

2
j > 0 for each j = 1, 2, . . . ,N, On the other

hand, the homogeneous equation for the corresponding momentum becomes

p̈ j +
(
ω2

0 + Υ
2
j(t)

)
pj = 0, j = 1, 2, . . . ,N, (5.42)

where Υ2
j(t) ≡ Ḃ j(t) − B2

j(t) is the modification of the frequency in momentum space.

Now, according to above assumptions, all possibilities for Bj(t) are as follows:

• Bj(t) = 0, (standard harmonic oscillator).

• Bj(t) = B0
j− constant such that 0 < (B0

j)
2 < ω2

0.

• Bj(t) = Λ′j tanh(Λ′jt + β
′
j), Λ

′
j =

√
|Λ2

j |, where −ω2
0 < Λ

2
j < 0, β′j−arbitrary phase.

• Bj(t) = (t + bj)
−1, bj-arbitrary.

• Bj(t) = −Λ j tan(Λ jt + β j), Λ j =
√
Λ2

j , where Λ2
j > 0, β j−arbitrary.

We note that, in the last three cases, the choice of time-dependent Bj(t), leads to constant

frequency modification in position space by construction, but in momentum space it will

depend on time.

Lissajous orbits: For the above special choices of Bj(t), the position equation is given by

(5.41) for each j = 1, 2, ...,N. Then, when there are no external forces, the coherent wave

packets (3.10) in position space will be localized along the classical trajectory

Q̄α(t) =
(
Aα1

cos(Ω1t − γα1
), Aα2

cos(Ω2t − γα2
), ..., AαN cos(ΩNt − γαN )

)
, (5.43)

where amplitudes Aα j , frequenciesΩ j and phases γα j will change according to Bj(t). These

trajectories, especially for N = 2 and N = 3, are well-known as the Lissajous orbits,

(Goldstain, Safko & Poole). If Ω j = r jΩ, for some Ω > 0, and r j are rational numbers for
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all j = 1, 2, ...,N, then Lissajous orbits will be periodic. Otherwise, they are not periodic,

and when time increases and tends to infinity, they will pass through every point of a box

in space. On the other hand, classical trajectories in momentum space in some cases will

be more complicated, as we will see in next sections.

5.5.2. Forced Motion

In this part, we shall consider the response of the quantum oscillator to sinusoidal

driving forces, that is E j(t) = −F j cos(Ω′jt), where Ω′j is the driving frequency, and F j-

real constant for each j = 1, 2, ...,N. The corresponding classical equations with modified

frequencies and forcing terms are

ẍ j(t) + Ω2
j x j(t) = F j cos(Ω′jt), Ω j =

√
ω2

0
+ Λ2

j , j = 1, 2, ...,N, (5.44)

with particular solutions xp, j(t), j = 1, 2, ...,N, which depend on the frequencies Ω j and

Ω′j, as follows:

Beats: If Ω′j � Ω j, then particular solution satisfying the IC’s xp, j(0) = 0 and ẋp, j(0) = 0

is of the form

xp, j(t) = Fp, j

[
cos(Ω′jt) − cos(Ω jt)

]
= 2Fp, j sin

( (Ω j −Ω′j)t
2

)
sin

( (Ω j + Ω
′
j)t

2

)
, (5.45)

where Fp, j = F j/(Ω
2
j − Ω′2j ) gives the maximum amplitude of the bounded oscillations.

Special case of interest occurs, when driving frequency Ω′j is relatively close to Ω j, so

that |Ω j −Ω′j| is very small compared with (Ω j + Ω
′
j). Then one can observe formation of

beats in qj− direction. That is, xp, j(t) oscillates rapidly with frequency (Ω j + Ω
′
j)/2, and

has slowly varying sinusoidal amplitude 2Fp, j sin((Ω j − Ω′j)t/2), known as the envelope

or modulation of the oscillations.

Resonance: If Ω′j = Ω j, that is the modified natural frequency is equal to the driving
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frequency, then particular solution satisfying prescribed IC’s becomes

xp, j(t) =
F j

2Ω j
t sin(Ω jt), (5.46)

which describes oscillations whose amplitude grows linearly with time t, and leads to

resonance phenomena in qj− direction.

Since we consider multidimensional oscillators, in general one can consider mod-

els with different type of behavior in different directions according to parameters Bj(t)

and Dj(t). For example, it is possible that beats occur in all directions, so that trajectory of

the center of the wave packets will be confined in a bounded domain. But, it can happen

that we have beats in one-direction, and resonance in another direction, so that motion in

one direction is bounded, but in another direction it is unbounded. Clearly dynamics in

multi-dimensional problems contain many possibilities according to various parameters.

In what follows, to understand better some typical properties, we shall discuss special

models, which behavior in different directions is of the same type according to Bj(t).

5.6. N-Dimensional Standard Quantum Harmonic Oscillator

To be able to compare different models, in this section we recall some basic results

for the N-dimensional SQHO with Bj(t) = 0 for all j = 1, 2, ...,N, under the influence of

linear external forces, whose Hamiltonian is

Ĥ0(t) =
N∑

j=1

p̂2
j

2
+
ω2

0

2
q̂2

j − F j cos(Ω′jt)q̂ j.

Corresponding classical equations of motion for position are

ẍ j(t) + ω2
0x j(t) = F j cos(Ω′jt), j = 1, 2, . . . ,N, (5.47)
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with homogeneous solutions x1, j(t) = x0, j cos(ω0t) and x2, j(t) = (1/ω0x0, j) sin(ω0t), satis-

fying the prescribed initial conditions. Then, momentum equations become

p̈ j(t) + ω2
0 pj(t) = −F jΩ

′
j sin(Ω′jt), j = 1, 2, . . . ,N, (5.48)

with solutions p1, j(t) = −x0, jω0 sin(ω0t) and p2, j(t) = (1/x0, j) cos(ω0t).

It follows that the probability density for time-evolved coherent states is of the

form

ρα(q, t) =
(√

ω0

π�

)N

× exp
{
−

N∑
j=1

(√
ω0

�

(
qj − 〈q̂ j〉α j(t)

))2}
, (5.49)

with |ε j(t)| = 1, for all j = 1, 2, . . . ,N, and uncertainties are

(Δq̂ j)α = (Δq̂ j)α j =

√
�

2ω0

, (Δp̂ j)α = (Δp̂ j)α j =

√
ω0�

2
, (Δq̂ j)α(Δp̂ j)α =

�

2
,

showing that there is no squeezing of the wave packets both in coordinate and momentum,

and uncertainty product is minimum in each direction.

Expectations of position and momentum in j-direction are found using (5.28) and

(5.30). Therefore, when there are no external forces, i.e. E j(t) = 0 for all j = 1, 2, . . . ,N,

coherent wave packets (5.49) will follow the trajectory Q̄α(t) defined by (5.37), which for

this model becomes

Q̄α(t) =
(
Aα1

cos(ω0t − θα1
), Aα2

cos(ω0t − θα2
), . . . , AαN cos(ω0t − θαN )

)
,

and the trajectory in momentum space will be

P̄α(t) =
(−Aα1

ω0 sin(ω0t − θα1
),−Aα2

ω0 sin(ω0t − θα2
), . . . ,−AαNω0 sin(ω0t − θαN )

)
,

with amplitude Aα j =
√

2�/ω0

√
α2

1, j + α
2
2, j =

√
2�/ω0 |α j| and phase θα j = arctan(α2, j/α1, j).
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Since frequency is the same in every direction, for SQHO both Q̄α(t) and P̄α(t) are simple

curves, that is N-dimensional generalizations of lines, circles or ellipses.

Meanwhile, when E j(t) � 0, particular solutions contributing to expectations, can

be found according to the driving frequencies Ω′j, as follows:

a) If Ω′j � ω0, then xp, j(t) is found by (5.45), with Ω j = ω0 for all j = 1, 2, ...,N, and

pp, j(t) =
F j

(ω2
0
−Ω′2j )

(
−Ω′j sin(Ω′jt) + ω0 sin(ω0t)

)
. (5.50)

b) If Ω′j = ω0, then xp, j(t) is found by (5.46) and

pp, j(t) =
F j

2ω0

(
sin(ω0t) + ω0t cos(ω0t)

)
. (5.51)

These well-known results for the standard harmonic oscillator, show that coherent states

(i) (ii)

Figure 5.1. (i) Probability density ρα(q, t), α1 = 2
√

2, α2 = i2
√

2 at times t = nπ/4 for

n = 0, 1, · · · , 8, � = ω0 = 1, xp, j(t) = 0 for j = 1, 2. (ii) Contour plot of

density and trajectory Q̄α(t) = (4 cos(t), 4 cos(t)), t ∈ [0, 2π].

are displaced Gaussian wave packets, they are minimum uncertainty states, and there is

no squeezing of the wave packets. As an example for N=2, in Fig.5.1 we show time-
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development of probability density ρα(q, t) = ρα1
(q1, t)ρα2

(q2, t), α1 = 2
√

2, α2 = i2
√

2, at

times t = nπ/4, where n = 0, 1, · · · , 8, and which center follows the circular orbit Q̄α(t),

in case when there are no external forces.

5.7. Exactly Solvable Models

In this section, we introduce some exactly solvable models for the evolution prob-

lem (5.5) related with the Hamiltonian

Ĥ(t) =
N∑

j=1

p̂2
j

2
+
ω2

0

2
q̂2

j +
Bj(t)

2

(
q̂ j p̂ j + p̂ jq̂ j

)
− F j cos(Ω′jt)q̂ j, (5.52)

where Bj(t) are real valued time-dependent parameters and F j,Ω
′
j are real constants for

each j = 1, 2, . . .N.

5.7.1. Model with B0
j− constants

First, we consider quantum oscillator with Hamiltonian (5.52) by taking the squeez-

ing parameters as Bj(t) ≡ B0
j− constants such that 0 < (B0

j)
2 < ω2

0 for all j = 1, 2, . . . ,N.

The corresponding classical equation in position space is of the form (5.44), with modi-

fied frequencyΩ j =
√
ω2

0
− (B0

j)
2 smaller than the natural frequency, that is 0 < Ω j < ω0,

and solutions

x1, j(t) =
x0, jω0

Ω j
cos(Ω jt − β j), x2, j(t) =

1

x0, jΩ j
sin(Ω jt), β j = arctan(B0

j/Ω j). (5.53)

Then, the classical equation in momentum space becomes

p̈ j(t) + Ω2
j p j(t) = −F j

(
Ω′j sin(Ω′jt) + B0

j cos(Ω′jt)
)
, (5.54)
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with the same modified frequency Ω j, and its homogeneous solutions are

p1, j(t) = −
x0, jω

2
0

Ω j
sin(Ω jt), p2, j(t) =

1

x0, j

(
cos(Ω jt) −

B0
j

Ω j
sin(Ω jt)

)
. (5.55)

Thus, both position and momentum solutions oscillate with the same frequencies.

Probability density for time-evolved coherent states is of the form (5.28), with

squeezing coefficient

|ε j(t)| =
√
ω2

0

Ω2
j

(
cos2(Ω jt − β j) + sin2(Ω jt)

)
,

ω2
0

Ω2
j

> 1, (5.56)

which is also periodic and oscillatory. In terms of |ε j(t)|, uncertainties at time-evolved

coherent states are found by (5.31-5.33) and uncertainty product becomes

(Δq̂ j)α j(Δp̂ j)α j(t) =
�

2

(
1 +

ω2
0

4Ω2
j

[
sin(2(Ω jt − β j)) − sin(2Ω jt)

+
2B0

j

Ω j

(
cos2(Ω jt − β j) + sin2(Ω jt)

)]2)1/2

.

From (5.56), we see that when |B0
j | approaches zero, one has (ω0/Ω j)→ 1, β j → 0, so that

(Δq̂ j)α j(t) →
√
�/2ω0, (Δp̂ j)α j(t) →

√
�ω0/2 and the uncertainty product approaches the

minimum �/2, as for the standard harmonic oscillator. For given ω0, when |B0
j | increases

and approaches ω0, then Ω j tends to zero, and amplitude of oscillations increases.

Now, when E j(t) = 0 for all j = 1, 2, ...,N, then coherent wave packets in position

space will follow the trajectory

Q̄α(t) = (Aα1
cos(Ω1t − γα1

), Aα2
cos(Ω2t − γα2

), ..., AαN cos(ΩNt − γαN )), (5.57)
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(i) (ii)

Figure 5.2. Model B0
j-const: (i) Probability density ρα(q, t) for B0

1
=

√
3

2
, B0

2
=√

15
4
, Ω1 =

1
2
, Ω2 =

1
4
, α1 = α2 = 2. (ii) Contour plot of probabil-

ity density and Lissajous orbit Q̄α(t) = (xα1
(t), xα2

(t)) = (4
√

2 cos( t
2
−

arctan(
√

3)), 8
√

2 cos( t
4
− arctan(

√
15))).

where 0 < Ω j < ω0, for each j, with amplitudes and phases

Aα j =

√
2�

ω0

√
(α1, jB0

j + α2, jω0)2 + (α1, jΩ j)2

Ω j
, γα j = arctan

(Bj,0

Ω j
+
α2, jω0

α1, jΩ j

)
, (5.58)

and in momentum space, the corresponding trajectory P̄α(t) will be of the form (5.38),

with

pα j(t) =

√
2�

ω0

[
−
(
α1, j

(ω2
0

Ω j

)
+α2, jω0

B0
j

Ω j

)
sin(Ω jt)+α2, jω0 cos(Ω jt)

]
, j = 1, 2, ...,N. (5.59)

Thus, when there are no external forces classical trajectories both in position and momen-

tum space will be of Lissajous type.

However, if there are external forces, expectation values and general trajectories

Q̄g(t) and P̄g(t) of the wave packets are determined according to the values of the driving

frequencies. If Ω′j � Ω j, then xp, j(t) is given by (5.45) and pp, j(t) = ẋp, j(t) − B0
j xp, j(t).
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If Ω′j = Ω j, then xp, j(t) is given by (5.46), where pp, j(t) =
F j

2Ω j

(
(1 − B0

j) sin(Ω jt) +

Ω jt cos(Ω jt)
)
, for each j = 1, 2, ...,N.

As an example, in Fig.5.2 we plot time-evolution of probability density at times

t = nπ/3 for n = 0, 1, · · · , 24, when there are no external forces. It explicitly shows the

changes of the width and amplitude of the wave packets due to the non-zero squeezing

parameters, and its contour plot confirms that the center of the wave packet follows the

classical Lissajous orbit Q̄α(t).

5.7.2. Model 1

Now, we introduce quantum oscillator with Hamiltonian (5.52), where squeez-

ing parameters for all j = 1, 2, · · · ,N are of the form Bj(t) = Λ′j tanh(Λ′jt), with 0 <

(Λ
′
j)

2 < ω2
0. In that case the modified frequency Ω j =

√
ω2

0
− (Λ′j)2 is less than the natural

frequency, that is 0 < Ω j < ω0, like in previous model with B0
j− constants. The corre-

sponding classical equation in position space is of the form (5.44), with homogeneous

solutions x1, j(t) = x0, j cos(Ω jt), x j,2(t) = (1/Ω jx0, j) sin(Ω jt), but the classical equation in

momentum space becomes

p̈ j(t) + (ω2
0 + Υ

2
j(t))pj = F j(Ω

′
j sin(Ω′jt) − Λ′j tanh(Λ′jt) cos(Ω′jt)), (5.60)

where Υ2
j(t) = Λ

′2
j (1 − 2 tanh2(Λ′j(t)) is the time-dependent frequency modification in

momentum space. When t → ∞, Υ2
j(t) → −Λ′2j , which means as time increases fre-

quency modification in momentum space approaches the frequency modification in posi-

tion space.

Probability density for time-evolved coherent states is of the form (3.10), with

squeezing coefficients

|ε j(t)| =
√

cos2(Ω jt) +
ω2

0

Ω2
j

sin2(Ω jt),
ω2

0

Ω2
j

> 1, (5.61)

where if Ω j → ω0, then |ε j(t)| → 1. Meanwhile, when Ω j → 0, that is when the modified
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frequency decreases, then amplitude of oscillations of |ε j(t)| increases. The uncertainties

for q̂ j and p̂ j in terms of |ε j(t)| and Bj(t) will be of the form (5.31-5.33), and the uncertainty

relation becomes

(Δq̂ jΔp̂ j)α =
�

2

√√
1 +

1

ω2
0

[
Λ′j tanh(Λ′jt)

(
cos2(Ω jt) +

ω2
0

Ω2
j

sin2(Ω jt)
)
+

( Λ2
j

2Ω j

)
sin(2Ω jt)

]2

.

(5.62)

Therefore, there is a periodic oscillatory squeezing in position coordinates for each j =

1, 2, ...,N, and period in each direction will depend on the values of Ω j. However, the

squeezing in momentum, and the uncertainty products are not periodic and become more

complicated due to influence of Bj(t).

(i) (ii)

Figure 5.3. Model 1: (i) Probability density ρα(q, t) forΩ1 = 1/2,Ω2 = 1/3, α1 = α2 =

1, � = ω0 = 1 and xp, j(t) = 0 for j = 1, 2. (ii) Contour plot and Lissajous

orbit Q̄α(t) = (
√

2 cos(t/2),
√

2 cos(t/3)), t ∈ [0, 6π].

When there are no external forces wave packets in position space will follow the

Lissajous trajectory

Q̄α(t) =
(
Aα1

cos(Ω1t − θα1
), Aα2

cos(Ω2t − θα2
), ..., AαN cos(ΩNt − θαN )

)
,
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(i) (ii) (iii)

Figure 5.4. Model 1: (i) Resonance in q1 direction: xp,1(t) = 1
50

t sin( t
2
).

(ii) In q2 direction: xp,2(t) = − sin( t
4
) sin(3

4
t).

(iii) Trajectory Q̄p = (xp,1(t), xp,2(t)) for t ∈ [0, 20π].

and in momentum space trajectory will be P̄α(t) defined by (5.38), with

pα j(t) = Aα j

(
−Ω j sin(Ω jt − θα j) − Λ′j tanh(Λ′jt) cos(Ω jt − θα j)

)
, j = 1, 2, . . . ,N, (5.63)

where amplitudes and phases are

Aα j =

√
2�/ω0Ω

2
j

√
(α1, jΩ j)2 + (α2, jω0)2, θα j = arctan(α2, jω0/α1, jΩ j). (5.64)

When there are external forces, expectations and trajectories will be determined according

to the following cases. If Ω′j � Ω j, then xp, j(t) is given by (5.45) and pp, j(t) = ẋp, j(t) −
Λ′j tanh(Λ′jt)xp, j(t). If Ω′j = Ω j, then xp, j(t) is given by (5.46) and pp, j(t) = (F j/2Ω j)

(
(1 −

Λ′jt tanh(Λ′jt)) sin(Ω jt) + Ω jt cos(Ω jt)
)
.

As an example, in Fig.(5.3-i) we plot probability density ρα(q, t) at different times

t = nπ for n = 0, 1, . . . , 6, and observe their width and amplitude changes due to the

squeezing parameters. Fig.5.3-(ii) shows the corresponding contour plot and the Lissajous

orbit of the center of the coherent wave packet. In Fig.5.4, we show possible trajectory

of ground state (α1 = α2 = 0) wave packet ρα(q, t), under the influence of forces D1(t) =

−F1 cos(Ω′1t), D2(t) = −F2 cos(Ω′2t), where Ω1 = Ω
′
1 = 1/2, Ω2 = 1/2,Ω′2 = 1, F1 =

1/50, F2 = −3/8. It is a perpendicular superposition of resonance in q1−direction and

periodic oscillations in q2−direction.
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5.7.3. Model 2

In this section, we introduce quantum oscillator with Hamiltonian (5.52), where

squeezing parameters for all j = 1, 2, ...,N, are of the form Bj(t) = 1/(t+bj), bj− arbitrary

nonzero constants. We note that, if bj < 0, then one will have singularity at positive time

t = bj. Substituting Bj(t) in (5.40), we see that it does not modify the natural frequency

ω0, and the classical equation in position space becomes ẍ j(t)+ω2
0x j(t) = F j cos(Ω′jt), j =

1, 2, ...,N, which is same as for the SQHO (Bj(t) = 0), see eq.(5.47). But here, initial

conditions change according to bj as x1, j(0) = x0, j � 0, ẋ1, j(0) = x0, j/bj ; x2, j(0) =

0, ẋ2, j(0) = 1/x0, j, and this is reflected in the amplitude and phase of the solutions as

follows

x1, j(t) = x0, j

√
1 +

1

ω2
0
b2

j

cos(ω0t − δ j), x2, j(t) =
1

ω0x0, j
sin(ω0t), (5.65)

where δ j = arctan(1/ω0bj). On the other hand, classical equation in momentum space is

p̈ j(t) +
(
ω2

0 −
2

(t + bj)2

)
pj(t) = F j(Ω

′
j sin(Ω′jt) −

(
1

t + bj

)
cos(Ω′jt)), (5.66)

with frequency modification Υ2
j(t) = −2/(t+bj)

2 depending on time. Its solutions become

p1, j(t) = −x0 j

√
1 +

1

ω2
0
b2

j

(
ω0 sin(ω0t − δ j) +

1

t + bj
cos(ω0t − δ j)

)
, (5.67)

p2, j(t) =
1

ω0x0 j

(
ω0 cos(ω0t) − 1

t + bj
sin(ω0t)

)
. (5.68)

Probability density for time-evolved coherent states is of the form (3.10), with periodic

and oscillatory squeezing coefficient

|ε j(t)| =
√(

1 +
1

ω2
0
b2

j

)
cos2(ω0t − δ j) + sin2(ω0t), (5.69)
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whose period is same for all j = 1, 2, ...,N. Here, when |bj| → ∞, one has σ j(t) → 1 and

amplitude of oscillations decreases, approaching the constant values as for the SQHO. On

the other hand, by letting |bj| → 0, one can increase amplitude of oscillations, without

changing their frequencies, which are independent of bj. In terms of |ε j(t)| uncertainties

are as found in (5.31-5.33) and the uncertainty relation at coherent states is found explic-

itly as

(Δq̂ j)α j(Δp̂ j)α j(t) =
�

2

{
1 +

1

4ω2
0

[(
2

t + bj

)(1 + (ω0bj)
2

(ω0bj)2
cos2(ω0t − δ j) + sin2(ω0t)

)
+

1 + (ω0bj)
2

ω0b2
j

sin(2(ω0t − δ j)) − ω0 sin(2ω0t)
]2}1/2

.

(i) (ii)

Figure 5.5. Model 2: (i) Probability density ρα(q, t), α1 = α2 = 1, b1 = 1, b2 = 3,
� = ω0 = 1, xp, j(t) = 0 for j = 1, 2 and t = nπ/3, where n = 0, 1, 2, ...6. (ii)
Contour plot and elliptic trajectory Q̄α(t) = (2 cos(t−π/4), (2

√
5/3) cos(t−

arctan(1/3))), t ∈ [0, 2π].

In this model, when there are no external forces the expectations and trajectory of

the wave packets are given by

Q̄α(t) =
(
Aα j cos(ω0t − γα j), Aα j cos(ω0t − γα j), ..., Aα j cos(ω0t − γα j)

)
,
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(i) (ii) (iii)

Figure 5.6. Model 2: (i) xp,1(t) = sin(−0.05t) sin(1.05t), ω0 = 1,Ω′1 = 1.1. (ii)
xp,2(t) = sin(−0.15t) sin(1.15t), ω0 = 1,Ω′2 = 1.3. (iii) Trajectory Q̄p =

(xp,1(t), xp,2(t)) for t ∈ [0, 20π], which is a perpendicular superposition of

two beats.

which are either lines or ellipses, like for the SQHO model, but in momentum space

trajectory P̄α(t) is found using pα j(t) = −Aα j

(
ω0 sin(ω0t − γα j) +

1
t+b j

cos(ω0t − γα j)
)

with

Aα j =

√
2�

ω0

√( α1, j

ω0bj
+ α2, j

)2

+ α2
1, j, γα j = arctan

(
1

ω0bj
+
α2, j

α1, j

)
. (5.70)

When there are external forces, expectations and trajectories are as follows. If Ω′j � ω0,

then xp, j(t) is given by (5.45) with Ω j = ω0 for all j = 1, 2, ...,N, and pp, j(t) = ẋp, j(t)− (t+

bj)
−1xp, j(t). IfΩ′j = ω0, then xp, j(t) is given by (5.46) and pp, j(t) = ẋp, j(t)− (t+bj)

−1xp, j(t).

In Fig.5.5-(i), we plot probability density ρα(q, t) for N = 2, b1 = 1 and b2 = 3,

α1 = α2 = 1, showing the width and amplitude changes at different times t = nπ/3, where

n = 0, 1, 2, ...6. Contour plot of the density in Fig.5.5-(ii), shows that the wave packet is

localized along the classical orbit Q̄α(t), which in that example is an ellipse. In Fig.5.6,

we plot a trajectory of the wave packets under the influence of special external forces. It

is a perpendicular superposition of two beats.
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5.7.4. Model 3

The last model, which we consider is quantum oscillator with Hamiltonian (5.52)

by taking the squeezing parameters for all j = 1, 2, ...,N, as Bj(t) = −Λ j tan(Λ jt), Λ2
j >

0. In this model, Bj(t) are periodic with singularities at times t = ((n − 1/2)π)/Λ j, n =

1, 2, .... The corresponding classical equations in position space are of the form (5.44),

with homogeneous solutions x1, j(t) = x0, j cos(Ω jt), and x2, j(t) = (1/Ω jx0, j) sin(Ω jt), and

modified frequency greater than the natural frequency, that is Ω j =
√
ω2

0
+ Λ2

j > ω0, for

all j = 1, 2, ...,N. Then, classical equations in momentum space become

p̈ j +
(
ω2

0 + Υ
2
j(t)

)
pj = F j(Ω

′
j sin(Ω′jt) + Λ j tan(Λ jt) cos(Ω′jt)), j = 1, 2, ...,N, (5.71)

where we have time-dependent frequency modification Υ2
j(t) = −Λ2

j(1+2 tan2(Λ jt)), with

singularities at times t = ((n−1/2)π)/Λ j, n = 1, 2, .... Probability density for time-evolved

coherent states is found according to (3.10), with squeezing coefficient

|ε j(t)| =
√

cos2(Ω jt) +
ω2

0

Ω2
j

sin2(Ω jt), Ω j > ω0, (5.72)

and the uncertainties for q̂ j and p̂ j at time-evolved coherent states are given by (5.31-5.33).

Then, the uncertainty product is

(Δq̂ j)(Δp̂ j)α j =
�

2

√√
1 +

1

ω2
0

[
Λ j tan(Λ jt)

(
cos2(Ω jt) +

ω2
0

Ω2
j

sin2(Ω jt)
)
− Λ

2
j

2Ω j
sin(2Ω jt)

]2

.

(5.73)

It follows that, uncertainty in position is smooth and periodic, but uncertainty in momen-

tum and the uncertainty product have singularities due to singularities in Bj(t). Moreover,

(Δq̂ j)α j(t) oscillates bellow the value (Δq̂ j)α j = 1/
√

2, and (Δp̂ j)α j(t) oscillates above it.

Also, for given ω0 both frequency Ω j and amplitude of oscillations can be increased by

increasing the value of Λ2
j > 0.

For this model, when E j(t) = 0 for all j = 1, 2, ...,N, the center of the wave packets
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(i) (ii)

Figure 5.7. Model 3: (i) Probability densities ρα(q, t) with α1 = α2 = 1+i, � = ω0 = 1,
xp, j(t) = 0 for j = 1, 2 and t = nπ/6, n = 0, 1, 2, ..., 6. (ii) Contour plot and

the trajectory Q̄α(t), t ∈ [0, π].

will follow the Lissajous trajectories

Q̄α(t) = (Aα j cos(Ω jt − θα j), Aα j cos(Ω jt − θα j), ..., Aα j cos(Ω jt − θα j)),

but in momentum space trajectories P̄α(t) are more complicated, having singularities, and

are found using

pα j(t) = Aα j

(
−Ω j sin(Ω jt − θα j) + Λ j tan(Λ jt) cos(Ω jt − θα j)

)
. (5.74)

with amplitudes Aα j and phases θα j given by (5.64).

The influence of the external force Dj(t) = −F j cos(Ω′jt) on the expectation values

will be as follows. If Ω′j � Ω j, then xp, j(t) is given by (5.45) and pp, j(t) = ẋp, j(t) +

Λ j tan(Λ jt)xp, j(t). If Ω′j = Ω j, then xp, j(t) is given by (5.46) and pp, j(t) = (F j/2Ω j)((1 +

Λ jt tan(Λ jt)) sin(Ω jt) + Ω jt cos(Ω jt)).

As an example, for N = 2, when there are no external force, in Fig.5.7, we show
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the probability density ρα(q, t), with Ω1 = 2, Ω2 = 4, α1 = α2 = 1+ i at different times t =

nπ/8 for n = 0, 1, . . . , 8 and the contour plot showing that the center of the wave packets

follow the classical Lissajous orbit Q̄α(t) = (
√

5/2 cos(2t − arctan(1/2)),
√

17/8 cos(4t −
arctan(1/4)). In Fig.5.8-(i), we show a trajectory of the wave packets ρα(q, t) under the

influence of external forces. And it is a perpendicular superposition of two beats. In

Fig.5.8-(ii), we show the trajectory Q̄α(t) = (cos(2t), cos(πt)), which is a Lissajous orbit,

of the wave packets with no external force.

(i) (ii)

Figure 5.8. Model 3 with external force Dj(t) = −F j cos(Ω′jt), j = 1, 2, (i) The tra-

jectory Q̄p(t) = (sin((0.05)t) sin((1.05)t), sin((0.1)t) sin((2.1)t)) with Ω1 =

1.1,Ω′1 = 1,Ω2 = 2.2,Ω′2 = 2,α1 = α2 = 0 and � = ω0 = 1, t ∈ [0, 10π].
(ii) The trajectory Q̄α(t) = (cos(2t), cos(πt)) with Ω1 = 2,Ω2 = π,α1 =

α2 = 1/
√

2 and � = ω0 = 1, t ∈ [0, 60π].
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CHAPTER 6

A GENERALIZED TWO-DIMENSIONAL

QUANTUM PARAMETRIC OSCILLATOR IN THE

PRESENCE OF VARIABLE MAGNETIC AND

ELECTRIC FIELDS

In this chapter, we introduce time-dependent Schrödinger equation describing

a generalized two-dimensional quantum parametric oscillator in the presence of time-

variable external fields. We solve the corresponding evolution problem by using Wei-

Norman Lie algebraic approach, (Atılgan Büyükaşık & Çayiç, 2022 ). Then, we derive

the propagator and time-evolution of the eigenstates and coherent states explicitly in terms

of solutions to the corresponding system of coupled classical equations of motion. In ad-

dition, using the evolution operator formalism, we construct linear and quadratic quantum

dynamical invariants that provide connection of the present results by those obtained in

(Malkin, Man’ko & Trifonov, 1970) and (Lewis & Riesenfeld, 1969). Lastly, as an ex-

actly solvable model, we introduce a Cauchy-Euler type quantum oscillator with increas-

ing mass and decreasing frequency and in time-dependent magnetic and electric fields.

Based on the explicit results for the uncertainties and expectations, squeezing properties

of the wave packets and their trajectories in the two-dimensional configuration space are

discussed according to the influence of the time-variable parameters and external fields.

6.1. The Classical Problem

First, we consider a classical two-dimensional oscillator described by the Hamiltonian

Hcl(t) =
P2

2μ(t)
+
μ(t)ω2(t)

2
X2 + B(t)X · P + D(t) · P + E(t) · X + λ(t)L(X,P),
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where X = (X1, X2)T is the position vector, P = (P1, P2)T is the momentum vector and

L(X,P) = X1P2 − X2P1. Also, μ(t) > 0, ω2(t), B(t) are real-valued parameters depending

on time, D(t) = (D1(t),D2(t))T , E(t) = (E1(t), E2(t))T are vectors of real-valued time-

dependent functions, and λ(t) is a coupling parameter. Here, we use the dot product

notation u · v = u1v1 + u2v2 for any two vectors u = (u1, u2)T , v = (v1, v2)T , and u2 = u · u.
The corresponding Hamilton’s equations of motion are

Ẋ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Ẋ1

Ẋ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂Hcl
∂P1

∂Hcl
∂P2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡ P
μ(t)
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝B(t) −λ(t)

λ(t) B(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ X + D(t),

Ṗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Ṗ1

Ṗ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−

∂Hcl
∂X1

−∂Hcl
∂X2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡ −
⎧⎪⎪⎪⎨⎪⎪⎪⎩μ(t)ω2(t)X +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ B(t) λ(t)

−λ(t) B(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ P + E(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where ’dot’ denotes derivative with respect to time. Then, the system of classical equa-

tions of motion in position space becomes

Ẍ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
μ̇

μ
2λ

−2λ μ̇

μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ẋ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ΩX(t) μ̇

μ
λ + λ̇

− μ̇
μ
λ − λ̇ ΩX(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ X = FX(t), (6.1)

and for λ(t) � 0 it is a system of coupled second-order differential equations. In (6.1), we

have

ΩX(t) = ω2(t) −
(
Ḃ(t) + B2(t) +

μ̇

μ
B(t) + λ2(t)

)
,

and the forcing vector term

FX(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
μ̇

μ
+ B(t) λ(t)

λ(t) μ̇

μ
+ B(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ D(t) + Ḋ(t) − 1

μ(t)
E(t).

We note that, if D = 0, then λ(t) does not influence the forcing vector FX(t). Also, in

momentum space, the system of oscillator equations becomes

P̈ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ −
˙(μω2)

μω2 2λ

−2λ − ˙(μω2)

μω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ṗ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ΩP(t) λ̇ − ˙(μω2)

μω2 λ

−λ̇ + ˙(μω2)

μω2 λ ΩP(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ P = FP(t), (6.2)
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where

ΩP(t) = ω2(t) +
(
Ḃ(t) − B2(t) − ( ˙μω2)

μω2
B(t) − λ2(t)

)
,

and the forcing term

FP(t) = −μ(t)ω2(t)D(t) − Ė(t) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
( ˙μω2)

μω2 + B(t) −λ(t)

−λ(t) ( ˙μω2)

μω2 + B(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ E(t).

Here, in momentum space, the forcing FP(t) will be affected by λ(t) in the presence of

electric fields. To solve the systems (6.1) and (6.2), it is convenient to introduce the

transformation of variables

x = Rθ(t)X, p = Rθ(t)P, (6.3)

where

Rθ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.4)

is a rotation matrix, and the rotation angle is defined as

θ(t) =
∫ t

t0
λ(s)ds. (6.5)

Under transformation in (6.3), the coupled system (6.1) reduces to the decoupled system

of two non-interacting damped oscillators

ẍ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
μ̇

μ
0

0
μ̇

μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ẋ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ωx(t) 0

0 Ωx(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ x = F̃x(t), (6.6)
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with the same damping parameter Γ(t) = μ̇(t)/μ(t), and the same frequency

Ωx(t) = ω2(t) −
(
Ḃ(t) + B2(t) +

μ̇

μ
B(t)

)
,

which is independent on λ(t). On the other hand, the new forcing term becomes

F̃x(t) = −Ẽ
μ
+

˙̃D +
(
μ̇

μ
+ B

)
D̃,

and the relations between parameters D(t),E(t) and D̃(t), Ẽ(t) are found as

D̃(t) = Rθ(t)D(t), Ẽ(t) = Rθ(t)E(t). (6.7)

Similarly, in momentum space we have

p̈ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
˙(μω2)

μω2
0

0
˙(μω2)

μω2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ṗ +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ωp(t) 0

0 Ωp(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ p = F̃p(t), (6.8)

where the frequency and the forcing term are

Ωp(t) = ω2(t) +
(
Ḃ(t) − B2(t) − ˙(μω2)

μω2 B(t)
)
,

F̃p(t) = − ˙̃E +
(

˙(μω2)

μω2 + B
)
Ẽ − μω2D̃.

Since the unforced part of each equation in the decoupled system (6.6) is same and it is

of the form

ẍ(t) +
μ̇

μ
ẋ(t) + Ωx(t)x(t) = 0, (6.9)

let x(h)

1
(t) and x(h)

2
(t) denote two linearly independent solutions of the homogeneous Eq.(6.9),
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satisfying the initial conditions, respectively

x(h)

1
(t0) = x0 � 0, ẋh

1(t0) = x0B(t0),

x(h)

2
(t0) = 0, ẋ(h)

2
(t0) =

1

x0μ(t0)
. (6.10)

Then, x(h)(t) = (x(h)

1
(t), x(h)

2
(t))T will become solution of the homogeneous part of system

(6.6) with IC’s (6.10). For system (6.6) in the presence of forcing terms, we let x(p)(t) =

(x(p)

1
(t), x(p)

2
(t))T denote particular solution satisfying the initial conditions

x(p)(t0) = 0, ẋ(p)(t0) = D̃(t0).

Furthermore, if p(h)

1
(t) and p(h)

2
(t) are two homogeneous solutions of the system of oscilla-

tor equations in momentum space given by (6.8), then they can be found in terms of the

solutions of the classical equation in position space as

p(h)(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ p(h)

1
(t)

p(h)

2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = μ(t)
(
ẋ(h)(t) − B(t)x(h)(t) − D̃(t)

)
,

and particular solution will be

p(p)(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ p(p)

1
(t)

p(p)

2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = μ(t)
(
ẋ(p)(t) − B(t)x(p)(t) − D̃(t)

)
.

As a result, it follows that

X(h)(t) ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ X(h)

1
(t)

X(h)

2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = RT
θ (t)x(h)(t)
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is a homogeneous solution to the coupled system (6.1) satisfying IC’s

X(h)(t0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝x0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ẋ(h)(t0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ x0B(t0)

x0λ(t0) + 1
x0μ(t0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.11)

and

X(p)(t) ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ X(p)

1
(t)

X(p)

2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = RT
θ (t)x(p)(t)

is a particular solution to the forced coupled system (6.1), satisfying IC’s

X(p)(t0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Ẋ(p)(t0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ D1(t0)

D2(t0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.12)

This establishes solutions to the classical problem, whose quantization using the usual

replacement X→ q̂, P→ p̂, X.P→ (q̂.p̂)/2 is discussed in the next section.

6.2. Solution to the Generalized Quantum Parametric Oscillator

In this section, we consider time-dependent Schrödinger equation describing a gener-

alized two-dimensional quantum parametric oscillator in the presence of time-variable

external fields given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂

∂t
Ψ(q, t) = Ĥgen(t)Ψ(q, t), q ∈ R2, t > t0,

Ψ(q, t0) = Ψ0(q), q ∈ R2,
(6.13)

where Ψ(q, t) := Ψ(q1, q2, t) is the wave function at time t > t0, Ψ
0(q) := Ψ0(q1, q2) is the

initial state at time t0, and the explicitly time-dependent Hamiltonian Ĥgen(t) is

Ĥgen(t) =
−�2

2μ(t)
∇2 +

μ(t)ω2(t)
2

q̂2 − i�B(t)
(
1+ q̂ · ∇)− i�D(t) · ∇+E(t) · q̂+ λ(t)L̂. (6.14)
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Here, q̂ = (q̂1, q̂2)T is the position vector operator with q̂ j = qj, j = 1, 2, p̂ = (p̂1, p̂2)T =

−i�∇ is the momentum vector operator with ∇ = (∂/∂q1, ∂/∂q2)T , and L̂ = q̂1 p̂2 − q̂2 p̂1 is

the angular momentum operator, which satisfies the following commutation relations

⎡⎢⎢⎢⎢⎢⎢⎣L̂, 2∑
j=1

p̂2
j

⎤⎥⎥⎥⎥⎥⎥⎦ = 0,

⎡⎢⎢⎢⎢⎢⎢⎣L̂, 2∑
j=1

q̂2
j

⎤⎥⎥⎥⎥⎥⎥⎦ = 0,

⎡⎢⎢⎢⎢⎢⎢⎣L̂, 2∑
j=1

(q̂ j p̂ j + p̂ jq̂ j)

⎤⎥⎥⎥⎥⎥⎥⎦ = 0,

and

[L̂, q̂1] = iq̂2, [L̂, q̂2] = −iq̂1, [L̂, p̂1] = ip̂2, [L̂, p̂2] = −ip̂1,

showing that L̂ does not commute with the position and momentum operators.

Proposition 6.1 The IVP for a two-dimensional generalized quantum parametric oscil-

lator given by (6.13) has solution of the form

Ψ(q, t) = ϕ (η(q, t), τ(t))
√

x0/x(h)

1
(t) exp

(
i
�

∫ t

t0
ζc(s)ds

)
exp

⎡⎢⎢⎢⎢⎢⎣ i
�

⎛⎜⎜⎜⎜⎜⎝μ(t)
2

⎛⎜⎜⎜⎜⎜⎝ ẋ(h)

1
(t)

x(h)

1
(t)
− B(t)

⎞⎟⎟⎟⎟⎟⎠ ∣∣∣q − X(p)(t)
∣∣∣2 + �P(p)(t).q

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ (6.15)

where

η(q, t) =

∣∣∣∣∣∣∣ x0

x(h)

1
(t)

∣∣∣∣∣∣∣ Rθ(t)(q − X(p)(t)), τ(t) = �x2
0

⎛⎜⎜⎜⎜⎜⎝ x(h)

2
(t)

x(h)

1
(t)

⎞⎟⎟⎟⎟⎟⎠ ,

ζc(t) =
−∣∣∣P(p)(t)

∣∣∣2
2μ(t)

− D(t).P(p)(t) +
μ(t)ω2(t)

2

∣∣∣X(p)(t)
∣∣∣2, (6.16)
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and ϕ(q, t) is solution of two-dimensional free Schrödinger equation

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i
∂

∂t
ϕ(q, t) = −1

2
∇2ϕ(q, t), q ∈ R2, t > 0,

ϕ(q, 0) = Ψ0(q), q ∈ R2.
(6.17)

Proof Clearly, in the presence of angular momentum operator, the Hamiltonian Ĥgen(t)

is coupled, but one can overcome this difficulty by introducing a unitary transformation

Ûθ(t, t0) = exp
( i
�
θ(t)L̂

)
,

where θ(t) is given by (6.5). Indeed, if we introduce new wave function as

ψ(q, t) = Ûθ(t, t0)Ψ(q, t),

then IVP (6.13) transforms to the IVP

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i�
∂

∂t
ψ(q, t) = Ĥdec(t)ψ(q, t), q ∈ R2, t > t0,

ψ(q, t0) = Ψ0(q), q ∈ R2
(6.18)

with decoupled Hamiltonian

Ĥdec(t) = − �
2

2μ(t)
∇2 +

μ(t)ω2(t)
2

q̂2 − i�B(t)
(
1 + q̂ · ∇) − i�D̃(t) · ∇ + Ẽ(t) · q̂, (6.19)

where parameters D̃(t), Ẽ(t) are defined in terms of D(t), E(t) by the relations in (6.7).

Therefore, the original IVP (6.13) is reduced to solving the IVP (6.18).

The dynamics of the quantum system described by Schrödinger equation (6.18) is

contained in the evolution operator defined as

i�
d
dt

Ûdec(t, t0) = Ĥdec(t)Ûdec(t, t0), Ûdec(t0, t0) = Î. (6.20)
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Exact form of Ûdec(t, t0) can be found by using Wei-Norman Lie algebraic process. In-

deed, the Hamiltonian Ĥdec(t) given by (6.19) for the decoupled oscillator can be written

as time-dependent linear combination of Lie algebra generators as

Ĥdec(t) = −i
(
�

2

μ(t)
K̂ (−) + μ(t)ω2(t)K̂ (+) + 2�B(t)K̂ (0) + �D̃(t) · Ê(2) + Ẽ(t) · Ê(1)

)
,

where we denote the vector operators

Ê(1) =
(
Ê(1)

1
, Ê(1)

2

)T
= i (q1, q2)T = iq,

Ê(2) =
(
Ê(2)

1
, Ê(2)

2

)T
= (∂/∂q1, ∂/∂q2)T = ∇,

Ê(3) =
(
Ê(3)

1
, Ê(3)

2

)T
= (i, i)T = iÎ,

with Ê(1)
j , Ê(2)

j , Ê(3)
j being generators of Heisenberg-Weyl algebra for j = 1, 2, and the

operators

K̂ (−) = K̂ (−)

1
+ K̂ (−)

2
= − i

2

(
∂2

∂q2
1

+
∂2

∂q2
2

)
= − i

2
∇2,

K̂ (+) = K̂ (+)

1
+ K̂ (+)

2
=

i
2

(
q2

1 + q2
2

)
=

i
2

q2,

K̂ (0) = K̂ (0)

1
+ K̂ (0)

2
=

1

2

(
1 + q1

∂

∂q1

+ q2

∂

∂q2

)
=

1

2

(
1

2
+ q.∇

)

with K̂ (−)
j , K̂ (+)

j , K̂ (0)
j being generators of the SU(1,1) algebra. Then, the evolution can be

expressed as product of exponential operators

Ûdec(t, t0) = exp
(
c(t) · Ê(3)

)
× exp

(
a(t)
�
· Ê(1)

)
× exp

(
−b(t) · Ê(2)

)
× exp

(
f (t)K̂ (+)

)
× exp

(
2h(t)K̂ (0)

)
× exp

(
g(t)K̂ (−)

)
, (6.21)

with a(t),b(t), c(t) being vectors of real-valued functions and f (t), g(t), h(t) being real-

valued functions to be determined. Substituting (6.21) and (6.19) into (6.20) and perform-

ing necessary calculations, we find that Ûdec(t, t0) is a solution of (6.20) if the unknown
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functions f (t), g(t), h(t) satisfy the nonlinear system

ḟ + �

μ(t) f 2 + 2B(t) f + μ(t)ω2(t)
�
= 0, f (t0) = 0,

ġ + �

μ(t)e
2h = 0, g(t0) = 0,

ḣ + �

μ(t) f + B(t) = 0, h(t0) = 0,

(6.22)

and a(t),b(t), c(t) satisfy the nonlinear system

ȧ + B(t)a + μ(t)ω2(t)b + Ẽ(t) = 0, a(t0) = 0,

ḃ − B(t)b − 1
μ(t)a − D̃(t) = 0, b(t0) = 0,

ċ + 1
2�μ(t)a

◦2 + 1
�

(
D̃(t) ◦ a

)
− μ(t)ω2(t)

2�
b◦2 = 0, c(t0) = 0,

(6.23)

where we use Hadamard product notation u ◦ v = (u1v1, u2v2)T for any two vectors u =

(u1, u2)T , v = (v1, v2)T and u◦2 = (u2
1, u

2
2)T . Then, the solution of system (6.22) is found

in terms of two linearly independent solutions x(h)

1
(t) and x(h)

2
(t) of the decoupled classical

system (6.6) as

f (t) =
μ(t)
�

⎛⎜⎜⎜⎜⎜⎝ ẋ(h)

1
(t)

x(h)

1
(t)
− B(t)

⎞⎟⎟⎟⎟⎟⎠ ,
g(t) = −�x2

0

⎛⎜⎜⎜⎜⎜⎝ x(h)

2
(t)

x(h)

1
(t)

⎞⎟⎟⎟⎟⎟⎠ ,
h(t) = − ln

∣∣∣∣∣∣∣ x
(h)

1
(t)

x0

∣∣∣∣∣∣∣ .
On the other hand, for each j = 1, 2 the solution of system (6.23) is obtained in terms of

particular solutions of systems (6.6) and (6.8) as

a(t) = p(p)(t),

b(t) = x(p)(t),

c(t) =
1

�

∫ t

t0

(−(p(p)(s))◦2

2μ(s)
−

(
D̃(s) ◦ p(p)(s)

)
+
μ(s)ω2(s)

2
(x(p)(s))◦2

)
ds.
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Therefore, we find Ûdec(t, t0) explicitly as

Ûdec(t, t0) = exp

(
i
�

∫ t

t0
ζdec(s)ds

)
× exp

(
ip(p)(t) · q

)
× exp

(
−x(p)(t) · ∇

)
× exp

⎛⎜⎜⎜⎜⎜⎝iμ(t)
2�

⎛⎜⎜⎜⎜⎜⎝ ẋ(h)

1
(t)

x(h)

1
(t)
− B(t)

⎞⎟⎟⎟⎟⎟⎠ |q|2⎞⎟⎟⎟⎟⎟⎠ × exp

⎛⎜⎜⎜⎜⎜⎝ln
∣∣∣∣∣∣∣ x0

x(h)

1
(t)

∣∣∣∣∣∣∣ (1 + q · ∇)

⎞⎟⎟⎟⎟⎟⎠
× exp

⎛⎜⎜⎜⎜⎜⎝ i
2
�x2

0

⎛⎜⎜⎜⎜⎜⎝ x(h)

2
(t)

x(h)

1
(t)

⎞⎟⎟⎟⎟⎟⎠∇2

⎞⎟⎟⎟⎟⎟⎠ ,
where

ζdec(t) =
−∣∣∣p(p)(t)

∣∣∣2
2μ(t)

− D̃(t) · p(p)(t) +
μ(t)ω2(t)

2

∣∣∣x(p)(t)
∣∣∣2. (6.24)

According to the decoupling procedure discussed before, the evolution operator for IVP

(6.13) will be of the form

Ûgen(t, t0) = Û†θ (t, t0)Ûdec(t, t0), (6.25)

satisfying the operator equation

i�
d
dt
Ûgen(t, t0) = Ĥgen(t)Ûgen(t, t0), Ûgen(t0, t0) = Î.

We note the action of the angular momentum operator on given initial function as

exp
(
− i
�
θ(t)L̂

)
φ0(q) = φ0(Rθ(t)q). (6.26)

The action of shifting and dilatation operators, respectively

exp (u(t) · ∇) φ0(q) = φ0(q + u(t)), exp (ξq · ∇) φ0(q) = φ0(eξq), (6.27)
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for any arbitrary vector of function u(t) and ξ constant. And, we have also

exp
( iξ

2
∇2

)
φ0(q) = φ(q; ξ), (6.28)

where the function φ(q; z) satisfies the free Schrödinger equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1
2
∇2φ(q; z) = i ∂

∂zφ(q; z)

φ(q; z)|z=0 = φ0(q).

Then, the solution of IVP (6.13) is determined as Ψ(q, t) = Ûgen(t, t0)Ψ0(q). �

6.2.1. The Propagator

Solution of the IVP (6.13) can be written also in the form

Ψ(q, t) =
∫
R2

Kgen(q, t; q′, t0)Ψ0(q′)dq′,

where Kgen(q, t; q′, t0) denotes the propagator of the system. The propagator is the kernel

of the integral transform that converts a given initial function to a wave function solution

at later times. Using the evolution operator and relation

Kgen(q, t; q′, t0) = Ûgen(t, t0)δ(q − q′), Ûgen(t0, t0) = Î,

where δ(q) denotes the Dirac-delta distribution, one can determine the propagator ex-

plicitly. For this, first we find the propagator for the two-dimensional decoupled oscil-

lator by using the evolution operator for the decoupled oscillator as Kdec(q, t; q′, t0) =
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Ûdec(t, t0)δ(q − q′), and obtain

Kdec(q, t; q′, t0) =
−iω0

2π�

1

|ε(t)| sin η(t)
exp

(−i
2�

∫ t

t0
ζdec(s)ds

)
exp

(−i
2�

(
μ(t)

(
B(t) − d

dt
ln |ε(t)|

)
− ω0

cot η(t)
|ε(t)|2

) ∣∣∣q − x(p)(t)
∣∣∣2)

exp
( i
2�

(
2p(p)(t) · q + ω0 cot η(t)|q′|2

))
exp

( −i
� sin η(t)|ε(t)|

(
q − x(p)(t)

) · q′) ,
where ζdec(t) is defined by (6.24) and

ε(t) =
x(h)

1
(t)

x0

+ i(ω0x0)x(h)

2
(t) = |ε(t)|eiη(t), (6.29)

with modulus and phase

|ε(t)| =
√

(x(h)

1
(t))2

x2
0

+ (ω0x0)2(x(h)

2
(t))2, η(t) =

∫ t

t0

ω0

μ(s)|ε(s)|2 ds. (6.30)

Then,

Kgen(q, t; q′, t0) = Kdec
(
Rθ(t)q, t; q′, t0

)
,

where Rθ(t) is the rotation matrix given by (6.4), and explicitly in terms of the solutions

to the coupled systems (6.1) and (6.2), we get

Kgen(q, t; q′, t0) =
−iω0

2π�

1

|ε(t)| sin η(t)
exp

(−i
2�

∫ t

t0
ζc(s)ds

)
exp

(−i
2�

(
μ(t)

(
B(t) − d

dt
ln |ε(t)|

)
− ω0

cot η(t)
|ε(t)|2

) ∣∣∣q − X(p)(t)
∣∣∣2)

exp
( i
2�

(
2P(p)(t) · q + ω0 cot η(t)|q′|2

))
exp

( −i
� sin η(t)|ε(t)|

(
Rθ(t)

(
q − X(p)(t)

)) · q′) ,
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where ζc(t) is given by (6.16), and ε(t) given by (6.29) can be written also in terms of the

homogeneous solution to the coupled classical system (6.1) as

ε(t) =
1

x0

(
cos θ(t)X(h)

1
(t) + sin θ(t)X(h)

2
(t)

)
+ i(ω0x0)

(
− sin θ(t)X(h)

1
(t) + cos θ(t)X(h)

2
(t)

)
.

(6.31)

In general, the evolution of a state from an arbitrary time t′ to t, is defined as

Ψ(q, t) = Ûgen(t, t′)Ψ(q, t′) =
∫
R2

Kgen(q, t; q′, t′)Ψ(q′, t′)dq′, t0 ≤ t′ < t,

and it implies that

Kgen(q, t; q′, t′) = Ûgen(t, t′)δ(q − q′)

= Û†θ (t, t′)Kdec
(
q, t; q′, t′

)
= Ûθ(t′, t0)Kdec

(
Rθ(t)q, t; q′, t′

)
.

After some calculations, we obtain the following result

Kgen(q, t; q′, t′) =
−iω0

2π�|ε(t)||ε(t′)| sin
(
η(t) − η(t′)

) exp

{−i
2�

∫ t

t0
ζc(s)ds

}
exp

{−i
2�

(
μ(t)

(
B(t) − d

dt
ln |ε(t)|

)
− ω0 cot

(
η(t) − η(t′)

)
|ε(t)|2

) ∣∣∣RT
θ (t′)q − X(p)(t)

∣∣∣2}
exp

{
i

2�

(
μ(t′)

(
B(t′) − d

dt
ln |ε(t′)|

)
− ω0 cot

(
η(t) − η(t′)

)
|ε(t′)|2

) ∣∣∣RT
θ (t′)q′ − X(p)(t′)

∣∣∣2}
exp

{ i
�

[
p(P)(t) · (RT

θ (t′)q) − P(p)(t′) · (RT
θ (t′)q′)

]}
exp

{−i
�

(
Rθ(t)

(
RT
θ (t′)q − X(p)(t)

)) · (q′ − RT
θ (t′)x(p)(t′)

)
|ε(t)||ε(t′)| sin

(
η(t) − η(t′)

) }
.

Usually, the propagator is interpreted as the probability amplitude of finding the particle at

point q and time t, given that at the past it was at point q′ and time t′. By construction, the

propagator Kgen(q, t; q′, t′) can be seen as a solution of the time-dependent Schrödinger

equation in the variables q, t, with q′, t′ treated as parameters. It is the solution corre-

sponding to Dirac-delta initial condition δ(q − q′), which is highly singular, and due to
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this, the propagator as a "wave function" is not normalizable. In any case, the propagator

like the evolution operator, contains all necessary knowledge for describing the dynamics

of the quantum system.

6.3. Time-Evolution of Quantum States

In this section, for the generalized two-dimensional quantum parametric oscillator,

we find time-evolution of eigenstates and coherent states explicitly.

6.3.1. Time-Evolution of Harmonic Oscillator Eigenstates

First, we solve IVP (6.13) by taking the initial function to be an eigenstate ϕn(q)

of the two-dimensional simple harmonic oscillator, whose Hamiltonian is Ĥ0 =
∑2

j=1(p̂2
j +

ω2
0q̂2

j)/2.As known, these eigenstates correspond to eigenvalues En = En1
+En2

= �ω0(n1+

n2 + 1), and for n = (n1, n2) we have

ϕn(q) = ϕn1
(q1)ϕn2

(q2), n1, n2 = 0, 1, 2, ...,

with

ϕn j(qj) = Nn je
−ω0

2� q2
j Hn j

(√
ω0

�
qj

)
, j = 1, 2,

where Hn j(
√
ω0/�qj) are Hermite polynomials and Nn j = (ω0/π�)

1/4(2n jn j!)
−1/2 are the

normalization constants. According to this, time-evolved eigenstates of the two dimen-

sional oscillator (6.18) with Hamiltonian Ĥdec(t) are of the form

Ψ0
n(q, t) = Ûdec(t, t0)ϕn(q) =

2∏
j=1

Û j(t, t0)ϕn j(qj),
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and using the equations (6.27) and (6.28), we obtain explicitly the wave functions

Ψ0
n(q, t) = Nn

1

|ε(t)| exp
(
− iEn

�ω0

η(t)
)
× exp

(−i
�

∫ t

t0
ζdec(s)ds

)
× exp

{ i
�

[−μ(t)
2

(
B(t) − d

dt
ln |ε(t)|

)∣∣∣q − x(p)(t)
∣∣∣2 + p(p)(t) · q

] }
× exp

[
− ω0

2�

∣∣∣q − x(p)(t)
∣∣∣2

|ε(t)|2
]
Hn

(√
ω0

�

q − x(p)(t)
|ε(t)| , t

)
,

and the corresponding probability densities

ρ0
n(q, t) = N2

n
1

|ε(t)|2 exp
[
− ω0

�

∣∣∣q − x(p)(t)
∣∣∣2

|ε(t)|2
]
×H2

n

(√
ω0

�

q − x(p)(t)
|ε(t)| , t

)
,

where |ε(t)| is as defined in (6.30), and we used the compact notations Nn = Nn1
Nn2

and

Hn

(√
ω0

�

q
|ε(t)| , t

)
≡

2∏
j=1

Hn j

(√
ω0

�

(
qj

|ε(t)|
) )
.

Now, formally time-evolved solutions of the IVP (6.13) will be as expected

Ψθn(q, t) = Û†θ (t, t0)Ψ0
n(q, t) = Ψ0

n
(
Rθ(t)q, t

)
.

Then, in terms of solutions to the coupled systems of classical equations (6.1) and (6.2)

we have

Ψθn(q, t) = Nn
1

|ε(t)| exp
(
− iEn

�ω0

η(t)
)
× exp

{−i
�

∫ t

t0
ζc(s)ds

}
× exp

{ i
�

[−μ(t)
2

(
B(t) − d

dt
ln |ε(t)|

)∣∣∣q − X(p)(t)
∣∣∣2 + P(p)(t) · q

]}
× exp

{
− ω0

2�

∣∣∣q − X(p)(t)
∣∣∣2

|ε(t)|2
}
×Hn

(√
ω0

�

Rθ(t)
(
q − X(p)(t)

)
|ε(t)| , t

)
, (6.32)
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and probability densities become

ρθn(q, t) = N2
n

1

|ε(t)|2 exp
{
− ω0

�

∣∣∣q − X(p)(t)
∣∣∣2

|ε(t)|2
}
H2

n

(√
ω0

�

Rθ(t)
(
q − X(p)(t)

)
|ε(t)| , t

)
. (6.33)

Here, the expectation values of position and momentum at states Ψθn(q, t) are

〈q̂〉θn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝〈q̂1〉θn(t)

〈q̂2〉θn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = X(p)(t), 〈p̂〉θn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝〈p̂1〉θn(t)

〈p̂2〉θn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = P(p)(t), (6.34)

showing that they don’t depend on the wave number n = (n1, n2) and are completely

determined by the external forces. Then, the uncertainties in position and momentum are

found as

(Δq̂)θn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δq̂1)θn(t)

(Δq̂2)θn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√
�

ω0

|ε(t)|Λ(n1, n2, θ(t)), (6.35)

(Δp̂)θn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δp̂1)θn(t)

(Δp̂2)θn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = √
�ω0

Σ(t)
|ε(t)| Λ(n1, n2, θ(t)), (6.36)

where

Λ(n1, n2, θ(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
cos2 θ(t)n1 + sin2 θ(t)n2 + 1/2

)1/2(
sin2 θ(t)n1 + cos2 θ(t)n2 + 1/2

)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Σ(t) =

√
1 +
|ε(t)|4
ω2

0

[
d ln |ε(t)|

dt
− B(t)

]2

,
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and the uncertainty product becomes

(Δq̂)(Δp̂)θn(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δq̂1)(Δp̂1)θn(t)

(Δq̂2)(Δp̂2)θn(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = �Σ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝cos2 θ(t)n1 + sin2 θ(t)n2 + 1/2

sin2 θ(t)n1 + cos2 θ(t)n2 + 1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Clearly, uncertainties for some subcases can be easily recovered from above results. For

example, in case θ(t) = 0 one gets the uncertainties for the two-dimensional decoupled

parametric oscillator. In case θ(t) � 0, and μ(t) = 1, ω2(t) = ω2
0, B(t) = 0, one gets the

uncertainties for the simple harmonic oscillator in electromagnetic field as

(Δq̂)θn(t) =

√
�

ω0

Λ(n1, n2, θ(t)), (Δp̂)θn(t) =
√
�ω0Λ(n1, n2, θ(t)),

and we note that when n1 = n2, then Λ(n1, n2, θ(t)) becomes independent of θ(t).

Finally, it is not difficult to show that expectation value of angular momentum

operator L̂ at wave function Ψθn(q, t) is

〈L̂〉n(t) = 〈Ψθn(q, t)|L̂|Ψθn(q, t)〉 = X(p)

1
(t)P(p)

2
(t) − X(p)

2
(t)P(p)

1
(t),

and the matrix elements are

〈Ψθn(q, t)|L̂|Ψθm(q, t)〉 =
(
X(p)

1
(t)P(p)

2
(t) − X(p)

2
(t)P(p)

1
(t)

)
δnm,

where δnm is the Kronecker delta. In particular, when there are no external fields (Dj(t) =

E j(t) = 0, j = 1, 2), for the angular momentum operator one has expectation 〈L̂〉n(t) = 0

and uncertainty

(ΔL̂)n(t) =

√
�2

(
(n1 + 1)2(n2 + 1)2 + n2

1
n2

2

)(
X(h)

1
(t)P(h)

2
(t) − X(h)

2
(t)P(h)

1
(t)

)2

,

which is determined by the homogenous solutions of the classical equations and depends
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on the wave number n = (n1, n2).

6.3.2. Time-Evolution of Glauber Coherent States

By taking the initial function to be a coherent state of the simple two-dimensional

harmonic oscillator with Hamiltonian Ĥ0, we solve the IVP (6.13), that is

φα(q) = φα1
(q1)φα2

(q2),

where α = (α1, α2) and α j = α
(1)
j + iα(2)

j , with α(1)
j , α

(2)
j being real constants, and

φα j(qj) =
(
ω0

π�

) 1
4

exp
[ − iα(1)

j α
(2)
j
]
exp

[
iα(2)

j

√
2ω0

�
qj

]
exp

[
− ω0

2�

(
qj −

√
2�

ω0

α(1)
j

)2]

for j = 1, 2. Then, time-evolved coherent states Φ0
α(q, t) = Ûdec(t, t0)φα(q) of the decou-

pled oscillator are found as

Φ0
α(q, t) =

√
ω0

π�

1

ε(t)
exp

{
− 1

2

(
(ε∗(t))2

|ε(t)|2 α
2 + |α|2

)}
× exp

{
− i
�

∫ t

t0
ζdec(s)ds

}
× exp

{
1

2�

[
−

(
iμ(t)

(
B(t) − d

dt
ln |ε(t)|

)
+

ω0

|ε(t)|2
)∣∣∣q − x(p)(t)

∣∣∣2 + 2ip(p)(t) · q
]}

× exp
{√

2ω0

�

1

ε(t)
(
q − x(p)(t)

) · α},
where α2 = α.α, |α|2 = α.α∗, and we have

ρ0
α(q, t) = |Φ0

α(q, t)|2 =
(
ω0

π�

)
1

|ε(t)|2 exp
{
− ω0

�

∣∣∣q − 〈q̂〉0α(t)
∣∣∣2

|ε(t)|2
}
.
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Here, expectation values at Φ0
α(q, t) are obtained as

〈q̂〉0α(t) ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝〈q̂1〉0α1

(t)

〈q̂2〉0α2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√

2�

ω0

C0
αx(h)(t) + x(p)(t), (6.37)

〈p̂〉0α(t) ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝〈p̂1〉0α1

(t)

〈p̂2〉0α2
(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√

2�

ω0

C0
αp(h)(t) + p(p)(t), (6.38)

where the coefficient matrix C0
α is defined as

C0
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
α(1)

1

x0
ω0x0α

(2)

1

α(1)
2

x0
ω0x0α

(2)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.39)

The uncertainties at coherent states Φ0
α(q, t) are

(Δq̂)0
α(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δq̂1)0
α(t)

(Δq̂2)0
α(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (Δp̂)θα(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δp̂1)0
α(t)

(Δp̂2)0
α(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where

(Δq̂ j)
0
α(t) =

√
�

2ω0

|ε(t)|, (Δp̂ j)
0
α(t) =

√
ω0�

2

1

|ε(t)|Σ(t), j = 1, 2,

and the uncertainty product becomes

(Δq̂)(Δp̂)0
α(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝(Δq̂1)(Δp̂1)0
α(t)

(Δq̂2)(Δp̂2)0
α(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (Δq̂ jΔp̂ j)
0
α(t) =

�

2
Σ(t), j = 1, 2.
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Now, time-evolved coherent states of the generalized two-dimensional oscillator are

Φθα(q, t) = Ûgen(t, t0)φα(q) = Û†θ (t, t0)Φ0
α(q, t) = Φ0

α

(
Rθ(t)q, t

)
,

and in terms of solutions to the classical systems (6.1) and (6.2), we get

Φθα(q, t) =
√
ω0

π�

1

ε(t)
exp

{
− 1

2

(
(ε∗(t))2

|ε(t)|2 α
2 + |α|2

)}
× exp

{
− i
�

∫ t

t0
ζc(s)ds

}
× exp

{
1

�

[
−

(
iμ(t)

(
B(t) − d

dt
ln |ε(t)|

)
+

ω0

|ε(t)|2
)∣∣∣q − X(p)(t)

∣∣∣2 + 2iP(p)(t) · q
]}

× exp
{√

2ω0

�

1

ε(t)
Rθ(t)

(
q − X(p)(t)

) · α}. (6.40)

Then, the probability densities become

ρθα(q, t) =
(
ω0

π�

)
1

|ε(t)|2 exp
{
− ω0

�

∣∣∣q − 〈q̂〉θα(t)
∣∣∣2

|ε(t)|2
}
, (6.41)

with squeezing coefficient |ε(t)| given by (6.31). We note that, since (6.31) is equal to

(6.29), then ε(t) does not depend on θ(t), thus uncertainties at Φ0
α(q, t) and at Φθα(q, t) are

same. On the other hand, expectation values atΦθα(q, t) depend on θ(t), and are determined

as

〈q̂〉θα(t) = RT
θ (t)〈q̂〉0α(t), 〈p̂〉θα(t) = RT

θ (t)〈p̂〉0α(t),

where 〈q̂〉0α(t), 〈p̂〉0α(t) are given by (6.37) and (6.38), respectively. In terms of the classical

solutions to systems (6.1) and (6.2), the expectation values are obtained as

〈q̂〉θα(t) =

√
2�

ω0

Cθ
α(t)X(h)(t) + X(p)(t)
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and

〈p̂〉θα(t) =

√
2�

ω0

Cθ
α(t)P(h)(t) + P(p)(t),

where Cθ
α(t) is the similarity matrix

Cθ
α(t) = RT

θ (t)C0
αRθ(t), (6.42)

with C0
α = Cθ

α(t0) being the matrix given by (6.39).

Thus, time-evolved coherent states of the generalized quantum oscillator in the

given external fields, are two-dimensional squeezed Gaussian wave packets that follow

the trajectory of the classical particles. In general, they do not preserve the minimum un-

certainty and their squeezing properties are controlled by the squeezing coefficient |ε(t)|,
which depends on the choice of the parameters μ(t), ω2(t) and B(t). On the other hand,

the displacement properties of coherent states depend also on parameters Dj(t), E j(t), j =

1, 2, and the rotation angle θ(t).

Lastly, we write the expectation values of angular momentum at coherent states

(6.40), when there are no external fields, as

〈L̂〉α(t) = 2�
(
α(1)

1
α(2)

2
− α(2)

1
α(1)

2

)(
X(h)

1
(t)P(h)

2
(t) − X(h)

2
(t)P(h)

1
(t)

)
=

2�

ω0

(
det C0

α

)(
X(h)

1
(t)P(h)

2
(t) − X(h)

2
(t)P(h)

1
(t)

)
,

where C0
α is given by (6.39). In that case uncertainties become

(ΔL̂)α(t) =

√
�2

(|α1|2 + |α2|2)(X(h)

1
(t)P(h)

2
(t) − X(h)

2
(t)P(h)

1
(t)

)2

.

Similarly, in the presence of external fields one can compute expectations and uncertain-

ties of angular momentum by straightforward calculations.
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6.4. Quantum Dynamical Invariants

In this section, time-dependent linear and quadratic invariants for the quantum sys-

tem are constructed using the evolution operator formalism. As known, if time-development

of a given quantum system is described by the unitary evolution operator Û(t, t0), then any

operator of the form Â(t) = Û(t, t0)Â(t0)Û†(t, t0) is an integral of motion or a dynamical

invariant. Using these dynamical invariants we establish relation between the present

results and those obtained by the MMT- and the LR- approaches.

6.4.1. Linear Invariants

For the generalized two-dimensional oscillator with Hamiltonian Ĥgen(t) given by

(6.14), using the evolution operator (6.25), one can find dynamical invariants

Âθ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Âθ,1(t)

Âθ,2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Â†θ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Â†θ,1(t)

Â†θ,2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.43)

defined as

Âθ(t) = Ûgen(t, t0)â Û†gen(t, t0),

Â†θ(t) = Ûgen(t, t0)â† Û†gen(t, t0),

where

â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝â1

â2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√
ω0

2�
q̂ +

√
�

2ω0

∇, (6.44)

â† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝â
†
1

â†
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√
ω0

2�
q̂ −

√
�

2ω0

∇ (6.45)
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are respectively the non-Hermitian lowering and raising Dirac operators for the standard

two-dimensional harmonic oscillator Ĥ0 = −(�2/2)∇2 + (ω2
0/2)q̂2. Explicit calculations

give us dynamical invariants, that are linear in position and momentum,

Âθ(t) =
−i√
2ω0�

[
μ(t)

(
ε̇(t) − B(t)ε(t)

)
Q̂ − ε(t)P̂

]
, (6.46)

and

Â†θ(t) =
i√

2ω0�

[
μ(t)

(
ε̇∗(t) − B(t)ε∗(t)

)
Q̂ − ε∗(t)P̂

]
, (6.47)

where

Q̂ = Rθ(t)
(
q̂ − X(p)(t)

)
, P̂ = Rθ(t)

(
p̂ − P(p)(t)

)
,

and ε(t) is defined by (6.31). Here, ε(t) is a complex solution of equation (6.9), that is

ε̈(t) +
μ̇

μ
ε̇(t) +

(
ω2(t) −

(
Ḃ(t) + B2(t) +

μ̇

μ
B(t)

))
ε(t) = 0 (6.48)

and it satisfies the IC’s

ε(t0) = 1, ε̇(t0) = B(t0) +
iω0

μ(t0)
. (6.49)

Therefore, using the Wronskian W(t) = W(ε(t), ε∗(t)) = ε(t)ε̇∗(t)− ε∗(t)ε̇(t) = −2iω0/μ(t),

one can show that these linear invariants (6.46) satisfy commutation relations

[Âθ,i(t), Â
†
θ, j(t)] = δi j, i, j = 1, 2,

and can be seen also as generalized lowering and rising operators.

Moreover, coherent states Φθα(q1, q2, t), α = (α1, α2) found in (6.40) by construc-
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tion are eigenstates of Âθ, j(t) corresponding to complex eigenvalues α j, j = 1, 2. Indeed,

if φα j(qj) are eigenstates of â j so that â jφα j(qj) = α jφα j(qj), then

Ûgen(t, t0)â jÛ†gen(t, t0)Ûgen(t, t0)φα1
(q1)φα2

(q2) = α jÛgen(t, t0)φα1
(q1)φα2

(q2), j = 1, 2,

from which it follows

Âθ, j(t)Φθα(q1, q2, t) = α jΦ
θ
α(q1, q2, t), j = 1, 2.

Now we consider (Malkin, Man’ko & Trifonov, 1970), where Malkin, Man’ko and Tri-

fonov study the problem of the N-dimensional nonstationary harmonic oscillator and the

problem of a charged particle in an axially symmetric and a uniform time-dependent elec-

tromagnetic field. MMT-approach for solving problems described by a Schrödinger oper-

ator Ŝ (t) = i�∂t−Ĥ(t) is based on finding all independent linear in position and momentum

invariants. In that context, an invariant is defined as an operator Â(t) that commutes with

Ŝ (t), that is [Â(t), Ŝ (t)] = 0.

We note that the Hamiltonian in (Malkin, Man’ko & Trifonov, 1970) don’t contain

damping and external forces so that it is a particular case of Hamiltonian Ĥgen(t) given by

(6.14). Then, if in (Malkin, Man’ko & Trifonov, 1970) one takes ε(t) to satisfy (6.48) for

μ(t) = 1 and B(t) = 0 with the specific IC’s (6.49), it will coincide with ε(t) defined in the

present work. Also, one can write

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Â(t)

B̂(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1

2
√

e

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−i 1

1 −i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Âθ,1(t)

Âθ,2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝αβ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
√

2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−i 1

1 −i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝α1

α2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.50)

which shows that the invariants Â(t), B̂(t) found in (Malkin, Man’ko & Trifonov, 1970)

can be written as linear combinations of our invariants Âθ,1(t), Âθ,2(t), j = 1.2. Lastly, if

one takes α and β as defined in (6.50), then coherent states |α, β; t〉 found in (Malkin,

Man’ko & Trifonov, 1970) will coincide with coherent states (6.40) found in this work.
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6.4.2. Quadratic Invariants

For the quantum system described by Hamiltonian Ĥgen(t) given by (6.14), using

the evolution operator and Ĥ0 = â†
1
â1 + â†

2
â2 + 1, we can define a quadratic Hermitian

invariant

Îθ(t) = Ûgen(t, t0)Ĥ0Û†gen(t, t0). (6.51)

This invariant can be expressed in terms of the linear invariants (6.46) and (6.47) as fol-

lows

Îθ(t) = Â†θ,1(t)Âθ,1(t) + Â†θ,2(t)Âθ,2(t) + 1.

We note that, the invariants (6.46) and (6.47) can be written also in the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Âθ,1(t)

Âθ,2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = eiη(t)

√
2ω0�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣( ω0

|ε(t)| + i|ε(t)|μ(t)
(
B(t) − d

dt
ln |ε(t)|

)) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Q̂1

Q̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + i|ε(t)|
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝P̂1

P̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Â†θ,1(t)

Â†θ,2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = e−iη(t)

√
2ω0�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣( ω0

|ε(t)| − i|ε(t)|μ(t)
(
B(t) − d

dt
ln |ε(t)|

)) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝Q̂1

Q̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − i|ε(t)|
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝P̂1

P̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where σ(t) = |ε(t)| satisfies the Ermakov-Pinney nonlinear differential equation

σ̈(t) +
μ̇

μ
σ̇(t) +

(
ω2(t) −

(
Ḃ + B2 +

μ̇

μ
B
))
σ(t) =

1

μ2σ3(t)
, (6.52)

with initial conditions

σ(t0) = 1, σ̇(t0) = B(t0). (6.53)
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Then, the quadratic invariant becomes

Îθ(t) =
1

2ω0�

2∑
j=1

{ ω2
0

|ε(t)|2 Q̂2
j +

[
|ε(t)|μ(t)

(
B(t) − d

dt
ln |ε(t)|

)
Q̂ j + |ε(t)|P̂ j

]2}
, (6.54)

and it is special in the sense that |ε(t)| is a particular solution of the Ermakov-Pinney equa-

tion (6.52) satisfying the initial conditions (6.53). Now, since the following commutation

relations hold

[Âθ,i(t), Â
†
θ, j(t)] = δi j, [Îθ(t), Âθ, j(t)] = −Âθ, j(t), [Îθ(t), Â

†
θ, j(t)] = Â†θ, j(t) j = 1, 2,

then the eigenvalues and eigenstates of the invariant Îθ(t) can be found by the same alge-

braic procedure as for the simple harmonic oscillator. Here, Ĥ0ϕn(q) = Enϕn(q), so that by

construction of (6.51) we have Îθ(t)Ψθn(q, t) = EnΨ
θ
n(q, t), showing that time-evolved wave

function solutions of the Scrödinger equation found asΨθn(q, t) = Ûgen(t, t0)ϕn(q) in (6.32)

are eigenstates of the invariant Îθ(t) corresponding to eigenvalues En = �ω0(n1 + n2 + 1).

In the work of Lewis and Riesenfeld (Lewis & Riesenfeld, 1969), for a quan-

tum system described by an explicitly time-dependent Hamiltonian Ĥ(t), a dynamical

invariant is defined to be an operator Î(t) satisfying i�∂t Î(t) − [Ĥ(t), Î(t)] = 0. As known

LR-approach for solving nonstationary quantum oscillators is based on finding Hermitian

quadratic invariant of the form (6.54). Then, eigenstates of the quadratic invariant con-

structed by the LR-technique and solutions of the Scrödinger equation usually differ by a

time-dependent phase factor. We note that, in (Lewis & Riesenfeld, 1969) the Hamilto-

nian describing a charged particle in a time-dependent electromagnetic field is a particular

case of Hamiltonian Ĥgen(t) given by (6.14). For more recent and related results based on

linear and quadratic invariants one can see also (Abdalla & Choi, 2007).
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6.5. Cauchy-Euler Type Quantum Oscillator in Time-Variable

Magnetic and Electric Fields

Now, we introduce and discuss an exactly solvable quantum model described by

the Hamiltonian

Ĥgen(t) =
2∑

j=1

[
1

2tγ
p̂2

j +
B(t)

2
(q̂ j p̂ j + p̂ jq̂ j) +

ω2
0tγ−2

2
q̂2

j

]
+ E0 tγ sin

(
ΩE ln t

)
q̂1 + E0 tγ cos

(
ΩE ln t

)
q̂2 +

λ0

t
(
q̂1 p̂2 − q̂2 p̂1

)
. (6.55)

In this model, for t ≥ t0, t0 = 1, we have time-dependent increasing mass μ(t) = tγ for

damping parameter γ ≥ 1, and decreasing frequency ω2(t) = ω2
0/t

2, ω0 > 0. Then, to

preserve the Cauchy-Euler structure of the oscillator we take B(t) = −ΩB tan(ΩB ln t)/t,

where ΩB =

√
ω2

B − (γ − 1)2/4 and ω2
B > (γ − 1)2/4. In addition, we consider external

electric fields E1(t) = E0 tγ sin(ΩE ln t), E2(t) = E0 tγ cos(ΩE ln t) with E0, ΩE- real con-

stants, that are oscillating in time with increasing amplitude and decreasing frequency.

The last term in (6.55) is the angular momentum with Larmor type frequency λ(t) = λ0/t,

λ0−real constant, that depends on time and tends to zero when time increases.

In what follows, first we write the solutions to the corresponding coupled system

of classical equations of motion. Then, we describe in detail time-evolved eigenfunctions

and coherent states.

A. The classical problem

For the quantum evolution problem with Hamiltonian (6.55), the corresponding coupled

system of classical equations of motion is of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ẍ1

Ẍ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ γ/t 2λ0/t

−2λ0/t γ/t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ẋ1

Ẋ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
0
+ω2

B−λ2
0

t2
λ0(γ−1)

t2

−λ0(γ−1)

t2
ω2

0
+ω2

B−λ2
0

t2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ X1

X2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ −E0 sin(ΩE ln t)

−E0 cos(ΩE ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.56)

For E0 = 0, system (6.56) with initial conditions (6.11) has homogeneous solution X(h)(t) ≡
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RT
θ (t)x(h)(t), explicitly found as

X(h)(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√
ω2

0
+ω2

B
Ωg

t−(γ−1)/2 cos
(
Ωg ln t − δg

)
1
Ωg

t−(γ−1)/2 sin
(
Ωg ln t

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , t ≥ 1, (6.57)

where Ωg =

√
ω2

0
+ ω2

B − (γ − 1)2/4 is the oscillator frequency and δg = arctan((γ −
1)/2Ωg).

For E0 � 0, particular solution is X(p)(t) ≡ RT
θ (t)x(p)(t) and explicitly we have

X(p)(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝A(h)

1
t−(γ−1)/2 cos(Ωg ln t − δ(h)

1
) − E0√

a2+b2
cos

(
(ΩE + λ0) ln t − δp

)
A(h)

2
t−(γ−1)/2 sin(Ωg ln t − δ(h)

2
) + E0√

a2+b2
sin

(
(ΩE + λ0) ln t − δp

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , t ≥ 1,

(6.58)

where a = (ω2
0+ω

2
B)− (ΩE +λ0)2, b = (1−γ)(ΩE +λ0), δp = arccot(b/a) and A(h)

j , δ
(h)
j , j =

1, 2 are constants of the transient part such that X(p)(t) satisfies the initial conditions (6.12).

Here, rotation angle is θ(t) = λ0 ln t and the rotation matrix becomes

Rθ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ cos(λ0 ln t) sin(λ0 ln t)

− sin(λ0 ln t) cos(λ0 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , t ≥ 1,

where the sign of λ0 determines the direction of rotation.

B. Time-evolution of the wave functions Ψθn(q, t)

For the wave functions Ψθn(q, t) the probability densities are given by Eq.(6.33), that is

ρθn(q, t) = N2
n

1

|ε(t)|2 exp
{
− ω0

�

∣∣∣q − X(p)(t)
∣∣∣2

|ε(t)|2
}
H2

n

(√
ω0

�

Rθ(t)
(
q − X(p)(t)

)
|ε(t)| , t

)
, n = (n1, n2),

where X(p)(t) is found in (6.58), and squeezing coefficient is

|ε(t)| = t−(γ−1)/2

Ωg

√
(ω2

0
+ ω2

B) cos2
(
Ωg ln t − δg

)
+ ω2

0
sin2 (

Ωg ln t
)
, (6.59)

which is smooth and oscillatory for t ≥ 1. Then, for a given ω0 > 0 and γ ≥ 1, the
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frequency Ωg =

√
ω2

0
+ ω2

B − (γ − 1)2/4 of oscillations in |ε(t)| can be increased by in-

creasing the value of ωB in parameter B(t). When γ = 1, amplitude is fixed and one

has |ε(t)| → 1 as ωB → 0. However, when γ > 1, the amplitude of oscillations in |ε(t)|
decreases and approaches zero as time increases.

In Fig.6.1, we plot the probability density ρθn(q, t) with n = (1, 2) at three dif-

ferent times. For this, we take γ = 2, B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2,

Larmor type frequency λ(t) = 7/t, and E0 = 0, so that there are no external electric

fields. These plots show how the width and amplitude of the wave packets change with

time and how they are rotated with angle θ(t) = 7 ln t under the influence of the magnetic

field. Uncertainties of position and momentum at time-evolved wave functions Ψθn(q, t)

(a) (b) (c)

Figure 6.1. Probability density ρθn(q, t) for n = (1, 2), γ = 2, � = 1, ω0 = 1, θ(t) = 7 ln t,
E0 = 0, at times (a) t0 = 1, (b) t = 1.07 , (c) t = 1.85.

are found by (6.35) and (6.36), respectively,

(Δq̂)θn(t) =

√
�

ω0

|ε(t)|Λ(n1, n2, θ(t)), (Δp̂)θn(t) =
√
�ω0

Σ(t)
|ε(t)| Λ(n1, n2, θ(t)),

where for this model we obtain the vector valued function

Λ(n1, n2, θ(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
cos2(λ0 ln t)n1 + sin2(λ0 ln t)n2 + 1/2

) 1
2(

sin2(λ0 ln t)n1 + cos2(λ0 ln t)n2 + 1/2
) 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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and coefficient

Σ(t) =
{
1 +

1

4ω2
0
t2

[(
2ΩB tan

(
ΩB ln t

) − γ + 1
)

×
(
(ω2

0 + ω
2
B) cos2 (

Ωg ln t − δg
)
+ ω2

0 sin2 (
Ωg ln t

))
+Ωg

(
− (ω2

0 + ω
2
B) sin

(
2(Ωg ln t − δg)

)
+ ω2

0 sin
(
2Ωg ln t

))]2}1/2

. (6.60)

Clearly, Λ(n1, n2, θ(t)) carries the dependence of the uncertainties on the wave num-

bers n1, n2 and the rotation angle θ(t), while |ε(t)| and Σ(t) depend only on parameters

μ(t), ω2(t) and B(t). We note that for γ = 1 and ωB → 0, one has Σ(t) → 1. Otherwise

the coefficient Σ(t) has singularities due to the singularities in B(t), and this affects the

uncertainties in momentum. Using the same parameters as in Fig. 6.1, then in Fig. 6.2 we

plot uncertainties in position and momentum at wave function Ψθn(q, t) for n = (1, 2). As

can be seen in Fig. 6.2-(a), uncertainty in position is smooth, oscillatory and approaches

to zero as time increases. However, singularities appear in uncertainties of momentum

since they depend on the coefficient Σ(t) found by (6.60).

(a) (b)

Figure 6.2. Uncertainties in position and momentum for n = (1, 2) and γ = 2, � = 1,
ω0 = 1: (a) (Δq̂ j)

θ
n j

(t), j = 1, 2 for t ∈ [1, 5], (b) (Δp̂ j)
θ
n j

(t), j = 1, 2 for

t ∈ [1, 5].

Now, we discuss possible trajectories of the wave packets in the two-dimensional

coordinate space, that are determined by the expectation values of position at stateΨθn(q, t).

According to the general results found in (6.34), if there are no external fields wave pack-

ets are localized at (q1, q2) = (0, 0) in R2, as in Fig.6.1. However, in the presence of
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external fields wave packets will move along the trajectory 〈q̂〉θn(t) = X(p)(t) in R2, which

for this model is given by (6.58). Then, depending on parameter γ ≥ 1 in (6.58), we

consider two cases:

i) For γ = 1, we have the trajectory

〈q̂〉θn(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E0

|a|Ωg

(
(ΩE + λ0) sin

(
Ωg ln t

) −Ωg sin
(
(ΩE + λ0) ln t

))
E0

|a|

(
cos

(
Ωg ln t

) − cos
(
(ΩE + λ0) ln t

))
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , t ≥ 1,

where Ωg =

√
ω2

0
+ ω2

B is the oscillator frequency and ΩE, λ0 are frequencies due to the

external fields. When (ΩE + λ0) = Ωg, then one has balance between frequencies and

particle is localized at the origin for any time. When (ΩE + λ0)/Ωg is a rational number,

the trajectory 〈q̂〉θn(t) is a closed plane curve. In this case, a particle moving along the

trajectory returns to its starting point after some time, whatever the starting point is, and

then retraces the same curve. On the other hand, when (ΩE + λ0)/Ωg is not rational, the

curve will never close and the particle will pass through every point of a bounded region

containing the origin in R2, eventually filling it. Clearly, we have non-uniform motion

with smoothly decreasing speed.

ii) For γ > 1, since transient part of X(p)(t) quickly tends to zero, after some time

we have

〈q̂〉θn(t) ≈ RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
E0√

a2+b2
cos

(
(ΩE + λ0) ln t − δp

)
E0√

a2+b2
sin

(
(ΩE + λ0) ln t − δp

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
E0√

a2+b2
cos

(
ΩE ln t − δp

)
E0√

a2+b2
sin

(
ΩE ln t − δp

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then, the particle exhibits again a non-uniform motion with decreasing speed and with λ0

contributing to the phase and radius of the orbit. In that case the trajectory is not closed

since usually it does not repeat, but in the long time limit it converges to a circular orbit

given by (6.61). �

As an example, for γ = 1 in Fig.6.3 we plot the trajectory

〈q̂〉θn(t) =
E0

|a|R
T
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
15+λ0

10
sin(10 ln t) − sin((15 + λ0) ln t)

cos(10 ln t) − cos((15 + λ0) ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , θ(t) = λ0 ln t,
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starting at the origin and with parameters Ωg = 10, ΩE = 15, E0 = 800, a = 100 −
(15 + λ0)2. In Fig.6.3-(a) we see the plot for θ(t) = 0, which is a closed curve since

ΩE/Ωg = 3/2 is rational. And in Fig.6.3-(b) we show this curve under rotation with

rotation angle θ(t) = 15 ln t.

(a) (b)

Figure 6.3. Trajectory of the wave packets |Ψθn(q, t)|2 for any n and γ = 1, ω0 = 1, � =
1, B(t) = −3

√
11 tan(3

√
11 ln t)/t, ωB = 3

√
11,

E1(t) = 800t sin(15 ln t), E2(t) = 800t cos(15 ln t), t ∈ [1, 4] :

(a) when λ(t) = 0, (b) when λ(t) = 15/t.

Another example for γ = 1 is given in Fig.6.4, where we plot the trajectory

〈q̂〉θn(t) =
E0

|a|R
T
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
20π+λ0

10
sin(10 ln t) − sin((20π + λ0) ln t)

cos(10 ln t) − cos((20π + λ0) ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , θ(t) = λ0 ln t,

with parameters Ωg = 10, ΩE = 20π, E0 = 5.103 and a = 100− (20π+λ0)2. In Fig.6.4-(a)

we have θ(t) = 0, and note that ΩE/Ωg = 2π is irrational so that the curve is not closed.

Particle will start from the origin, and then it will pass through every point of a bounded

region in R2 as t → ∞. In Fig.6.4-(b) we take θ(t) = 20 ln t and see particle motion along

another open trajectory confined to a bounded region.

C. Time-evolution of coherent states Φθα(q, t)

At coherent statesΦθα(q, t) probability densities are two-dimensional Gaussian wave pack-
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(a) (b)

Figure 6.4. Trajectory of the wave packets |Ψθn(q, t)|2 for any n, with γ = 1, ω0 = 1, � =
1, B(t) = −3

√
11 tan(3

√
11 ln t)/t, ωB = 3

√
11,

E1(t) = 5.103t sin(20π ln t), E2(t) = 5.103t cos(20π ln t), t ∈ [1, 20] :

(a) when λ(t) = 0, (b) when λ(t) = 20/t.

ets given by (6.41), i.e.

ρθα(q, t) =
(
ω0

π�

)
1

|ε(t)|2 exp
{
− ω0

�

∣∣∣q − 〈q̂〉θα(t)
∣∣∣2

|ε(t)|2
}
, α = (α1, α2) ∈ C2,

where for this model squeezing coefficient is explicitly given by (6.59). As an example,

in Fig. 6.5 we plot probability density for α = (20
√

2/
√

401, 10i), γ = 2, � = 1, ω0 =

1, λ(t) = 10/t, and squeezing parameter B(t) = −3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2,

at different times t = 1, 1.2, 2. These plots show the changes in width and amplitude of

the wave packet that follows a trajectory

〈q̂〉θα(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2t−1/2 cos(10 ln t − arctan(1/20))
√

2t−1/2 sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.61)

with rotation angle θ(t) = 10 ln t, and in case E0 = 0. Explicitly, the corresponding uncer-

tainties are found according to (6.62), that is

(Δq̂ j)
0
α(t) =

√
�

2ω0

|ε(t)|, (Δp̂ j)
0
α(t) =

√
ω0�

2

1

|ε(t)|Σ(t), j = 1, 2,
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(a) (b) (c)

Figure 6.5. Probability density ρθα(q, t) for α = (20
√

2/
√

401, 10i), λ(t) = 10/t, γ = 2,

� = 1, ω0 = 1, E0 = 0 at times: (a) t = t0 = 1, (b) t = 1.2, (c) t = 2.

where the coefficients |ε(t)| and Σ(t) are given by (6.59) and (6.60), respectively. Clearly,

uncertainties do not depend on α and θ(t), and they are equal in both directions. Fig.6.6

shows (Δq̂ j)α j(t) and (Δp̂ j)α j(t) for each j = 1, 2, where B(t) = −3
√

11 tan(3
√

11 ln t)/t,

ωB =
√

397/2 as in Fig.6.5. We note that uncertainties in position are smooth, oscillatory

and approach zero as t → ∞, but uncertainties in momentum have singularities due to the

singularities in B(t), as we see in Fig.6.6-(b).

(a) (b)

Figure 6.6. Uncertainties for γ = 2, � = 1, ω0 = 1: (a) (Δq̂ j)α j(t), j = 1, 2, (b)

(Δp̂ j)α j(t), j = 1, 2, t ∈ [1, 10].

Now, we recall that the center of the wave packet ρθα(q, t) in the two-dimensional
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coordinate space follows the classical trajectory

〈q̂〉θα(t) = RT
θ (t)〈q̂〉0α(t) =

√
2�

ω0

Cθ
α(t)X(h)(t) + X(p)(t), (6.62)

and for this model Cθ
α(t) is defined by (6.42) with θ(t) = λ0 ln t, X(h)(t) is given by (6.57)

and X(p)(t) is given by (6.58). In particular, when θ(t) = 0 and there are no external

electric fields (E0 = 0), then the trajectory will be 〈q̂〉0α(t) =
√

2�/ω0 C0
α x(h)(t), which can

be written explicitly as

〈q̂〉0α(t) =

√
2�

ω0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝α
(1)

1
ω0α

(2)

1

α(1)

2
ω0α

(2)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√
ω2

0
+ω2

B
Ωg

t−(γ−1)/2 cos
(
Ωg ln t − δg

)
1
Ωg

t−(γ−1)/2 sin
(
Ωg ln t

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.63)

In Eq.(6.63) depending on the values of γ ≥ 1 and α = (α1, α2) ∈ C2, we note the

following possibilities:

a) For γ = 1, the trajectory could be a line segment, a circle or an ellipse in R2,

centered at the origin. In case det(C0
α) ≡ ω0(α(1)

1
α(2)

2
− α(1)

2
α(2)

1
) = 0, wave packet

oscillates along a line segment. If α(2)

1
= α(1)

2
= 0 and |α(2)

2
| =

√
1 + (ω2

B/ω
2
0
) |α(1)

1
|

or similarly if α(1)

1
= α(2)

2
= 0 and |α(2)

1
| =

√
1 + (ω2

B/ω
2
0
) |α(1)

2
|, then we have a

circular motion. Otherwise, the motion is along an ellipse, and in any case it is a

non-uniform motion.

b) For γ > 1, wave packet moves towards the origin due to damping affects. In case

det(C0
α) = 0, it oscillates forth and back along a line segment passing through the

origin, with decreasing amplitude and approaching the origin. If det(C0
α) � 0, wave

packet moves inward usually along a spiral like trajectory as time increases.

It follows that when θ(t) � 0, the rotated trajectories (except the circular ones) will be

more complicated, as one can see in the following plots. For example, we consider the

trajectory (6.62) for γ = 1,

〈q̂〉θα(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ cos(10 ln t)
1
2

sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , θ(t) = λ0 ln(t),
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which is an ellipse for θ = 0 and E0 = 0, as we see in Fig.6.7-(a). In Fig.6.7-(b) we see

the rotated ellipse for θ(t) = 25 ln t, λ0 = 25. Then, in Fig.6.7-(c), we plot the trajectory

〈q̂〉θα(t) = RT
θ (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ cos(10 ln t)

1
2

sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝3 sin(10 ln t) − sin(30 ln t)

cos(10 ln t) − cos(30 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

with rotation angle θ(t) = 25 ln t and under the influence of electric fields. In that case,

the trajectory depends also on the particular solution of the classical system, and since the

ratio (ΩE + λ0)/Ωg = 3 is a rational number the trajectory is closed.

(a) (b) (c)

Figure 6.7. Trajectories of ρθα(q, t) with γ = 1, α = (
√

2/2, 5
√

2i/2), B(t) =
−3
√

11 tan(3
√

11 ln t)/t, ωB = 3
√

11, � = ω0 = 1 : (a) λ(t) = 0,
E0 = 0, t ∈ [1, 2], (b) λ(t) = 25/t, E0 = 0, t ∈ [1, 4], (c) λ(t) = 25/t,
E1(t) = 800t sin(5 ln t), E2(t) = 800t cos(5 ln t), t ∈ [1, 4].

As another example, for γ = 2 in Fig.6.8 we plot

〈q̂〉θα(t) = 2
√

2RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝t−1/2 sin(10 ln t)

t−1/2 sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , θ(t) = λ0 ln(t), (6.64)

where in Fig.6.8-(a) we have θ = 0 and det(C0
α) = 0, so that the wave packet oscillates

along a straight line and approaches the origin as time increases. Fig.6.8-(b) shows the

trajectory given by Eq.(6.64) with rotation angle θ(t) = 20 ln t. Then, in Fig.6.8-(c) we
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plot

〈q̂〉θα(t) = 2
√

2RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝t−1/2 sin(10 ln t)

t−1/2 sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ + E0√
a2 + b2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝− cos(5 ln t − arccot(b/a))

sin(5 ln t − arccot(b/a))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where a = 401/4 − (5 + λ0)2, b = −(5 + λ0), for θ(t) = 20 ln t, and in the presence of

electric fields.

(a) (b) (c)

Figure 6.8. Trajectories of ρθα(q, t) with γ = 2, α = (20i, 20i),
B(t) = −3

√
11 tan(3

√
11 ln t)/t, ωB =

√
397/2, � = ω0 = 1, t ∈ [1, 20] :

(a) λ(t) = 0, E0 = 0. (b) λ(t) = 20/t, E0 = 0. (c) λ(t) = 20/t, E1(t) =
2.103t sin(5 ln t), E2(t) = 2.103t cos(5 ln t).

Finally, for γ = 2 in Fig.6.9 we show the trajectory given by Eq.(6.61). In Fig.6.9-

(a) we take θ(t) = 0, E0 = 0 and since det(C0
α) � 0, the wave packet initially located at

(q1, q2) = (2 cos(arctan(1/20)), 0) follows spiral like path approaching the origin as time

increases. In Fig.6.9-(b) we have θ(t) = 10 ln t, E0 = 0 and wave packet again moves

inward along a spiral. Then, in Fig.6.9-(c) we display the trajectory

〈q̂〉θα(t) = RT
θ (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2t−1/2 cos(10 ln t − arctan(1/20))
√

2t−1/2 sin(10 ln t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

E0√
a2 + b2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝− cos(15 ln t − arccot(b/a))

sin(15 ln t − arccot(b/a))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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of ρθα(q, t) for θ(t) = 10 ln t, a = 401/4 − (15 + λ0)2, b = −(15 + λ0) and electric fields

E1(t) = 103t sin(15 ln t), E2(t) = 103t cos(15 ln t).

(a) (b) (c)

Figure 6.9. Trajectories of ρθα(q, t) with γ = 2, α = (20
√

2/
√

401, 10i), B(t) =
−3
√

11 tan(3
√

11 ln t)/t, ωB =
√

397/2, � = ω0 = 1, t ∈ [1, 25] :

(a) λ(t) = 0, E0 = 0. (b) λ(t) = 10/t, E0 = 0. (c) λ(t) = 10/t,
E1(t) = 103t sin(15 ln t), E2(t) = 103t cos(15 ln t).

Briefly saying, we have discussed squeezing properties of the wave packets due

to influence of parameters B(t) and γ ≥ 1. Then, the trajectories of the wave packets

in coordinate space were investigated according to the value of the damping parameter

γ ≥ 1. For coherent states, we’ve seen that their center follows the path of the classical

particle in the two-dimensional configuration space and that the shape of the trajectory

is closely related with the choice of α = (α1, α2). Lastly, according to their presence, the

effects of magnetic and electric fields were illustrated by considering three different cases:

(a) λ0 = 0, E0 = 0, (b) λ0 � 0, E0 = 0 and (c) λ0 � 0, E0 � 0.
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CHAPTER 7

CONCLUSION

We considered the most general one-dimensional quantum parametric oscillator,

whose Hamiltonian Ĥg(t) can be written as a linear combination of generators of the finite

dimensional SU(1,1) and Heisenberg-Weyl Lie algebras. Then, we were able to write the

displacement operator D̂(α), squeeze operator Ŝ (z), and the evolution operator Ûg(t, t0), all

being unitary as finite products of exponential operators, which are generators of the cor-

responding Lie groups. Based on these representations, we found the exact time-evolution

of the nonclassical states, such as squeezed coherent states, even-odd coherent states and

even-odd displaced squeezed states. We obtained their probability densities, expectations

and uncertainties, and this allowed us to determine explicitly how the displacement of the

wave packets depend on the complex parameter α and on all parameters of the Hamilto-

nian, and how squeezing properties depend on the complex parameter z = reiθ, and the

time-dependent parameters μ(t), ω(t) and B(t).As an application of these results, we intro-

duced an exactly solvable model as a generalization of the Caldirola-Kanai type quantum

oscillator, which has an exponentially increasing mass μ(t) = eγt, γ > 0, by adding to it

a special mixed term B(t)(q̂p̂ + p̂q̂)/2 and a linear term E(t)q̂. We chose the mixed term

parameter B(t) for which the structure of the corresponding classical equation in position

space is preserved. For given frequency ω0 > 0, squeezing properties of the wave packets

depend both on r > 0 and B(t). However, the parameters r > 0 and θ ∈ [0, 2π) of the

squeeze operator Ŝ (r, θ) can be used to control only the amplitude and phase of the oscil-

lating widths of the wave packets, while squeezing parameter B(t) can be used to control

not only their amplitude and phase, but also their frequency.

Then, we introduced an IBVP for a generalized quantum oscillator with time-

variable coefficients, which was defined on a domain with a time-dependent boundary

s(t) < q < ∞, 0 < t < T. We showed that this problem can be solved analytically if

the moving boundary is written as a linear combination of two linearly independent ho-

mogenous and a particular solution of the corresponding classical equation of motion in

position space. We found solutions of the IBVP for a generalized quantum oscillator with
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a homogenous Dirichlet boundary condition Ψ(s(t), t) = 0. Furthermore, by comparing

the results with the fixed boundary problems, we concluded that the moving boundary

causes a shift in position coordinate and generates extra time-dependent exponentials

in the solution contributing to the phase factor. We also examined an exactly solvable

Caldirola-Kanai model to be able to analyze the effects of the moving boundary in detail.

In addition to this, we introduced an IBVP for a generalized quantum oscillator with a

Robin boundary condition ∂Ψ(s(t), t)/∂q − (i�)β(t)Ψ(s(t), t) = 0, and showed that the ex-

act solution can be found when s(t) and β(t) are general solutions of the corresponding

classical equations in position and momentum spaces, respectively.

We also considered the evolution problem for an N-dimensional generalized quan-

tum parametric oscillator. By obtaining the exact form of the evolution operator, we found

time development of the eigenstates and coherent states. Since properties of these states

depend on solutions of the corresponding classical equations, we introduced exactly solv-

able models for which the oscillator structure in position space is preserved. Precisely,

we found all nonzero squeezing parameters Bj(t) for which frequency modification in

qj-direction remains constant, so that position uncertainties are always smooth, periodic

and oscillatory. Moreover, we realized that when there are no external forces, the center

of the wave packets in position space follows the classical Lissajous trajectories, and in

general, when there are external forces, motion could be bounded or unbounded in space

depending on the driving frequencies in each direction.

Finally, we solved an IVP for time-dependent Schrödinger equation for a gen-

eralized two-dimensional quantum parametric oscillator in the presence of time-varying

magnetic and electric fields using the evolution operator method. We found the evolution

operator and the propagator exactly in terms of solutions to the corresponding system of

coupled classical equations of motion. Then, we applied the evolution operator to initial

states such as the eigenstates and coherent states of the simple two-dimensional harmonic

oscillator, and described explicitly the propagation of the time-dependent wave functions.

In addition, by the evolution operator formalism, we constructed linear and quadratic in-

variants for the generalized two-dimensional quantum oscillator. As an exactly solvable

model we introduced a two-dimensional Cauchy-Euler type quantum parametric oscilla-

tor with smoothly decreasing Larmor type frequency in oscillating external electric field.

After solving the problem at classical level, we evaluated the probability densities, uncer-
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tainties and expectations at time-evolved eigenstates and coherent states and studied their

behavior in details. That gave us more insight into how one can control the dynamics of

the system by varying the parameters of damping and squeezing terms and by choosing

proper external forces.
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APPENDIX A

THE UNCERTAINTIES AT TIME-EVOLVED

EVEN-ODD COHERENT STATES

In this part, we find the uncertainties of position and momentum at time-evolved

even-odd coherent states explicitly.

First, we start with expectation values at time-evolved even coherent states. From

the definition of expectation value at a state, for any α = α1 + iα2, α1, α2 ∈ R, we have

〈q̂〉eα(t) = 〈Φe
α(q, t)|q̂|Φe

α(q, t)〉 = 〈Ûg(t, t0)Φe
α(q)|q̂|Ûg(t, t0)Φe

α(q)〉
= 〈Φe

α(q)|Û†g(t, t0)q̂Ûg(t, t0)|Φe
α(q)〉

and

〈p̂〉eα(t) = 〈Φe
α(q, t)|p̂|Φe

α(q, t)〉 = 〈Ûg(t, t0)Φe
α(q)|p̂|Ûg(t, t0)Φe

α(q)〉
= 〈Φe

α(q)|Û†g(t, t0)p̂Ûg(t, t0)|Φe
α(q)〉.

Using the following formulas, which are found in (Atılgan Büyükaşık & Çayiç, 2016 )

Û†g(t, t0)q̂Ûg(t, t0) = x1(t)q̂ + x2(t)p̂ + xp(t),

Û†g(t, t0) p̂Ûg(t, t0) = p1(t)p̂ + p2(t)p̂ + pp(t),

and 〈Φe
α(q)|q̂|Φe

α(q)〉 = 0, 〈Φe
α(q)|p̂|Φe

α(q)〉 = 0, we obtain

〈q̂〉eα(t) = xp(t), 〈p̂〉eα(t) = pp(t).
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Then, we find expectation value of square of position as follows

〈q̂2〉eα(t) = 〈Φe
α(q, t)|q̂2|Φe

α(q, t)〉 = 〈Ûg(t, t0)Φe
α(q)|q̂2|Ûg(t, t0)Φe

α(q)〉
= 〈Φe

α(q)|Û†g(t, t0)q̂2Ûg(t, t0)|Φe
α(q)〉

= 〈Φe
α(q)|

(
Û†g(t, t0)q̂Ûg(t, t0)

)2 |Φe
α(q)〉

Since

(
Û†g(t, t0)q̂Ûg(t, t0)

)2
= x2

1(t)q̂2 + x1(t)x2(t) (q̂p̂ + p̂q̂) + x2
2(t)p̂2

+2 (x1(t)q̂ + x2(t)p̂) xp(t) + x2
p(t),

using the following expectation values at time-evolved even coherent states

〈Φe
α(q)|q̂2|Φe

α(q)〉 = �

2ω0

(
1 + 2|α|2 tanh |α|2 + 2

(
(α∗)2 + α2

))
,

〈Φe
α(q)|p̂2|Φe

α(q)〉 = ω0�

2

(
1 + 2|α|2 tanh |α|2 − 2

(
(α∗)2 + α2

))
,

〈Φe
α(q)|q̂p̂ + p̂q̂|Φe

α(q)〉 = i�
(
(α∗)2 − α2

)
,

we get

〈q̂2〉eα(t) =
�

2ω0

(
1 + 2|α|2 tanh |α|2 + 2

(
(α∗)2 + α2

))
x2

1(t)

+i�
(
(α∗)2 − α2

)
x1(t)x2(t)

+
ω0�

2

(
1 + 2|α|2 tanh |α|2 − 2

(
(α∗)2 + α2

))
x2

2(t) + x2
p(t)

=
�

2ω0

α2
(
x2

1(t) − 2iω0x1(t)x2(t) − ω2
0x2

2(t)
)

+
�

2ω0

(α∗)2
(
x2

1(t) + 2iω0x1(t)x2(t) − ω2
0x2

2(t)
)

+
�

2ω0

(
1 + 2|α|2 tanh |α|2

) (
x2

1(t) + ω2
0x2

2(t)
)
+ x2

p(t).
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We know that ε(t) = x1(t) + iω0x2(t), so

〈q̂2〉eα(t) =
�

2ω0

[
(αε∗(t))2 + (α∗ε(t))2 + |ε(t)|2

(
1 + 2|α|2 tanh |α|2

)]
+ x2

p(t).

By following the same steps, we can find expectation value of square of momentum as

〈p̂2〉eα(t) =
�

2ω0

[
(αμ(t)(ε̇∗(t) − B(t)ε(t)))2

+ (α∗μ(t)(ε̇(t) − B(t)ε(t)))2

+
(
1 + 2|α|2 tanh |α|2

) 1

|ε(t)|2
⎛⎜⎜⎜⎜⎝ω2

0|ε(t)|4
(
d ln |ε(t)|

dt
− B(t)

)2⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ + p2
p(t).

Therefore, uncertainties of position and momentum at time-evolved even coherent states

become

(Δq̂)e
α(t) =

√
〈q̂2〉eα(t) − (〈q̂〉eα(t))2 =

√
�

2ω0

|ε(t)|
√
Πe

q(t),

(Δp̂)e
α(t) =

√
〈p̂2〉eα(t) − (〈p̂〉eα(t))2 =

√
ω0�

2

1

|ε(t)|
√
Πe

p(t),

where

Πe
q(t) = 1 + 2|α|2 tanh |α|2 + 2

|ε(t)|2�(αε∗(t))2,

Πe
p(t) =

⎛⎜⎜⎜⎜⎝1 + μ2(t)|ε(t)|4
ω2

0

(
d ln |ε(t)|

dt
− B(t)

)2⎞⎟⎟⎟⎟⎠ (
1 + 2|α|2 tanh |α|2

)
+

2|ε(t)|2
ω2

0

�
[
α2(μ(t)(ε̇∗(t) − B(t)ε∗(t))

)2
]
.

By the same way, uncertainties at time-evolved odd coherent states can be found.

165



VITA

Date and Place of Birth: 08.10.1990, Izmir-TURKEY

EDUCATION

2016 - 2022 Doctor of Philosophy in Mathematics

Graduate School of Engineering and Sciences, Izmir Institute of Technology, Turkey

Thesis Title: Exactly Solvable Quantum Parametric Oscillators in Higher Dimensions

Supervisor: Prof. Dr. Şirin Atılgan Büyükaşık
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2008-2013 Bachelor of Mathematics

Department of Mathematics, Faculty of Science, Dokuz Eylül University, Turkey

PROFESSIONAL EXPERIENCE

2015 - Present Research and Teaching Assistant

Department of Mathematics, Izmir Institute of Technology, Izmir -Turkey

PUBLICATIONS
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