

DRUM ACCOMPANIMENT GENERATION

USING MIDI MUSIC DATABASE AND

SEQUENCE TO SEQUENCE NEURAL NETWORK

A Thesis Submitted to

The Graduate School of Engineering and Sciences of
İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Electronics and Communication Engineering

by
Yavuz Batuhan AKYÜZ

 July 2022
İZMİR

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Assoc. Prof. Dr. Şevket

Gümüştekin, for giving me a chance to bring my idea to life. While his passion for music

inspired, guided, and encouraged me, his knowledge and experience made significant

contributions throughout the thesis. Moreover, he helped me on the way to becoming a

professional.

I also thank my supervisory committee members, Assist. Prof. Dr. M. Zübeyir

Ünlü, Prof. Dr. Barış Bozkurt, Prof. Dr. Mustafa A. Altınkaya, and Assist. Prof. Dr. Başak

Esin Köktürk Güzel, who showed an interest and took their time to help me to improve

my dissertation with their valuable comments.

Last, but not least, I would like to thank the entire IZTECH family, especially the

professors of the Department of Electrical and Electronics Engineering, who have helped

me since my undergraduate education and provided me with a good foundation with their

meticulous attitudes, devotion, and passion.

Finally, at the end of my M.S. thesis, I would like to express my gratitude to all

my family members, particularly to my father Cemil Akyüz, and my mother Tülay Akyüz,

who have raised me to become who I am today, for always believing in me and supporting

me.

iii

ABSTRACT

DRUM ACCOMPANIMENT GENERATION

USING MIDI MUSIC DATABASE AND

SEQUENCE TO SEQUENCE NEURAL NETWORK

This thesis aims to create an artificial intelligence model to reinterpret the drum

parts of musical pieces and/or to accompany music with new uniquely generated drum

patterns. Besides providing rhythmic indicators, drum parts are essential to emphasize

emotions. Every instrument in a musical composition is in harmony with each other to be

meaningful as a whole. Based on this observation, in this thesis, a MIDI dataset and an

LSTM based Seq2Seq model were used to create a link between different instruments and

drums. Before the training, we created a dataset involving midi pieces with drum parts

and grouped them as input and output, which are non-drum instruments, and drum parts

respectively. The model was trained with six different genres and the teacher forcing

method was utilized to improve the training. After the training, at the generation stage,

we made it possible to adjust the complexity of the generated drum parts by changing the

temperature value, which we called the complexity value, using the temperature sampling

method. We also created a user interface with an instrument selection pane to give users

control over the drum instruments generated. Moreover, we proposed a novel approach

to generalize the idea for not only MIDI data but also WAV data. To accomplish this task,

Mel-spectrogram, MFCC, and tempogram features were used. Both proposed methods

are shown to produce high-quality unique drum accompaniments for different genres with

adjustable complexity and freedom of choosing the desired drum instruments.

iv

ÖZET

MIDI MÜZİK VERİTABANI VE DİZİDEN DİZİYE

YAPAY SİNİR AĞI KULLANIMI İLE

DAVUL EŞLİĞİ ÜRETİMİ

Bu tezde yapay zeka modelleri kullanılarak müzik parçaları içerisindeki davul

kısımlarının eşsiz bir şekilde yeniden yorumlanması ve/veya yeni davul örüntüleri

oluşturularak müziğe eşliği hedeflenmiştir. Davullar, müziklerde ritmi belirlemekte baş

rolde bulunsalar da, bunun yanı sıra, duyguları vurgulamakta da çok başarılıdırlar. Müzik

kompozisyonları bütünlük açısından bir anlam ifade etmelerini, içerisinde çalınan her

enstrümanın birbiriyle bir harmoni içerisinde olmasına borçlulardır. Bu gözleme

dayanarak, tezimizde, MIDI veri kümesi ve LSTM yapısına sahip olan diziden diziye

modeli kullanılarak davul harici enstrümanlar ve davul enstrümanı arasında bir bağlantı

kurulması hedeflenmiştir. Eğitimden önce, veri kümesi örneklenmiş ve davul harici

enstrümanlara ait veriler giriş olarak, davul enstrümanına ait veriler çıkış olarak

belirlenmiştir. Model, altı farklı veri kümesi kullanılarak eğitilmiş ve öğretmen zorlama

tekniği kullanılarak eğitim aşaması iyileştirilmiştir. Eğitimden sonra, üretim aşamasında,

üretilen davul örüntülerinin karmaşıklığını ayarlayabilmek için sıcaklık örneklemesi

kullanılmış; ve sıcaklık değeri karmaşıklık parametresi olarak tanımlanmıştır. Ek olarak

bir kullanıcı arayüzü geliştirilmiş, ve bu sayede, kullanıcının üretilecek olan davul

enstrümanları üzerinde tam kontrol sahibi olması amaçlanmıştır. Burada sunduğumuz

fikri, MIDI verileri dışında WAV verisi için de genelleştirmek amacıyla, özgün bir

yaklaşım ileri sürülmüştür. Bu yaklaşımı gerçekleştirmek için Mel-spectrogram, MFCC,

ve tempogram özellikleri kullanılmıştır. Sunulan ve geliştirilen iki yöntem de yüksek

kalitede, farklı janra seçenekleri, değiştirilebilen karmaşıklık değeri ve enstrüman seçme

özgürlüğüyle eşsiz davul eşlikleri üretimi ile sonuçlanmıştır.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1. INTRODUCTION ... 1

1.1. The Literature Overview .. 2

1.1.1. CNN-RNN based Music Generation... 5

1.1.2. LSTM based Music Generation .. 6

1.1.3. VAE based Music Generation... 8

1.1.4. GAN based Music Generation .. 9

1.2. Objective of the Thesis ... 11

1.3. Organization of the Thesis ... 12

CHAPTER 2. BACKGROUND ... 14

2.1. The MIDI Format ... 14

2.1.1. Program Change Message – c2 12 .. 16

2.1.2. Note On Message – 92 51 5f ... 16

2.1.3. Note Off Message – 82 51 5f .. 16

2.2. The WAV Format ... 16

2.3. Data Preprocessing ... 17

2.3.1. Mel Spectrogram ... 17

2.3.2. Mel-Frequency Cepstral Coefficients (MFCC) 19

2.3.3. Tempogram ... 23

2.3.4. Zero-Padding ... 25

2.3.5. Masking ... 25

vi

2.3.6. Categorical Variable Encoding ... 25

2.3.6.1. Label Encoding .. 26

2.3.6.2. Binary Encoding .. 27

2.3.6.3. One-Hot Encoding ... 27

2.4. Artificial Neural Networks ... 29

2.4.1. Activation Functions ... 33

2.4.1.1. Sigmoid.. 33

2.4.1.2. Hyperbolic Tangent (tanh) .. 34

2.4.1.3. SoftMax ... 35

2.4.2. Categorical Cross Entropy Loss .. 35

2.4.3. Adam Optimizer .. 36

2.4.4. Long Short-Term Memory Architecture 39

2.4.5. Sequence-to-Sequence Model ... 42

2.4.6. Temperature Sampling .. 45

CHAPTER 3. MIDI DRUM ACCOMPANIMENT NETWORK 46

3.1. Introduction .. 46

3.2. Proposed Work ... 47

3.2.1. Preprocessing .. 48

3.2.2. Training Model ... 56

3.2.3. Generator Model ... 58

3.3. Results .. 61

3.4. Discussion .. 66

CHAPTER 4. WAV DRUM ACCOMPANIMENT NETWORK 67

4.1. Introduction .. 67

4.2. Proposed Work ... 67

4.2.1. Preprocessing .. 68

4.2.2. Training Model ... 76

4.2.3. Generator Model ... 80

vii

4.3. Results .. 82

4.4. Discussion .. 87

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS 88

5.1. Future Directions .. 89

5.1.1. Multi-Instrumental Music Generation .. 89

5.1.2. Methods of Measuring Quantitative Results in the Arts 90

5.1.3. Roles of the Drums in Music .. 90

5.1.4. Inclusion of the Timing Information ... 91

REFERENCES ... 94

APPENDICES

APPENDIX A. MIDI SOUND SET ... 105

APPENDIX B. MATHEMATICAL EXPRESSIONS AND TRANSFORMS 108

B.1. Short Time Fourier Transform (STFT) ... 108

B.2. Discrete Fourier Transform (DFT) .. 108

B.3. Discrete Cosine Transform (DCT) .. 109

B.4. Expected Value ... 109

B.5. Hadamard Product ... 110

APPENDIX C. THE VANISHING GRADIENT PROBLEM 111

viii

LIST OF FIGURES

Figure Page

Figure 1.1. CBR Architecture ... 3

Figure 1.2. Time-Window (left) and Sequential (right) Architectures 4

Figure 1.3. Stacked Dilated Causal CNN ... 5

Figure 1.4. Model Represented in Music From PI ... 6

Figure 1.5. Biaxial LSTM Architecture .. 8

Figure 1.6. MusicVAE Architecture ... 9

Figure 1.7. MIDINET Model .. 10

Figure 1.8. MuseGAN Model ... 10

Figure 2.1. Raw MIDI Data .. 15

Figure 2.2. Raw WAV Signal ... 17

Figure 2.3. Mel Scale .. 18

Figure 2.4. An Example of a Mel Spectrogram .. 19

Figure 2.5. A Windowed Speech Signal ... 20

Figure 2.6. DFT of the Input Signal .. 20

Figure 2.7. Log-Power Spectrum .. 21

Figure 2.8. Cepstrum of the given Input Signal .. 21

Figure 2.9. An Example of MFCC ... 23

Figure 2.10. An Example of Tempogram ... 24

Figure 2.11. Variables: Quantitative (Numerical) vs Qualitative (Categorical) 26

Figure 2.12. Set of Artificial Intelligence, Machine Learning, 29

Figure 2.13. Neuron Structure .. 30

Figure 2.14. Perceptron Architecture .. 30

Figure 2.15. Neural Network and Deep Learning Architectures 32

Figure 2.16. Sigmoid Function ... 33

Figure 2.17. Hyperbolic Tangent Function ... 34

Figure 2.18. SoftMax Activation Function ... 35

Figure 2.19. An Illustration of LSTM Cell ... 40

Figure 2.20. Inside of an LSTM Cell .. 40

Figure 2.21. Seq2Seq Encoder-Decoder Model ... 43

Figure 2.22. Seq2Seq Model with Teacher Forcing ... 44

ix

Figure Page

Figure 3.1. MIDI Drum Accompaniment Network Flowchart 47

Figure 3.2. Parsed MIDI Data of a MIDI File .. 48

Figure 3.3. Encoder Training Model for Notes and Velocities 56

Figure 3.4. Encoder Prediction Model for Notes and Velocities 58

Figure 3.5. Decoder Prediction Model for Notes and Velocities 59

Figure 3.6. UI Main Tab ... 60

Figure 3.7. UI Instrument Selection Tab .. 60

Figure 3.8. QR Code for Example MIDI Outputs .. 62

Figure 3.9. MIDINETWORK - Losses of Note and Velocity over Epochs 63

Figure 3.10. MIDINETWORK - Accuracies of Note and Velocity over Epochs 64

Figure 3.11. MIDINETWORK - Change of Learning Rate over Epochs 65

Figure 4.1. Preprocessing Steps of the WAV Accompaniment Network 69

Figure 4.2. Wav Signal Forms of the Samples ... 72

Figure 4.3. Mel Spectrogram of the Samples ... 73

Figure 4.4. MFCCs of the Samples ... 74

Figure 4.5. Tempogram of the Samples .. 75

Figure 4.6. Different Types of the Image Captioning Models .. 77

Figure 4.7. Google's Image Captioning Model ... 78

Figure 4.8. Updated Seq2Seq Model .. 79

Figure 4.9. Attack, Transient, Decay, Onset of a Single Note .. 81

Figure 4.10. Onset Detection of an Irish Traditional Music ... 82

Figure 4.11. QR Code for Example WAV Outputs .. 83

Figure 4.12. WAVNETWORK - Losses of Note and Velocity over Epochs 84

Figure 4.13. WAVNETWORK - Accuracies of Note and Velocity over Epochs 85

Figure 4.14. WAVNETWORK - Change of Learning Rate over Epochs 86

Figure 5.1. Discretized Time Axis .. 91

Figure C.1. A Fully Connected Deep Learning Model ... 111

Figure C.2. Graph of Sigmoid and its Derivative ... 113

x

LIST OF TABLES

Table Page

Table 2.1. Label Encoder Example ... 26

Table 2.2. Binary Encoding Example ... 27

Table 3.1. MIDI Data Sorted by Start Timings .. 49

Table 3.2. Number of Samples in Datasets ... 57

Table 4.1. Number of Samples in Datasets ... 79

Table 5.1. Note Length Formulas ... 92

Table A.1. General MIDI Level 1 Instrument Patch Map .. 105

Table A.2. General MIDI Level 1 Instrument Families ... 106

Table A.3. General MIDI Note Chart ... 107

Table A.4. General MIDI Level 1 Percussion Key Map .. 107

xi

LIST OF ABBREVIATIONS

AI: Artificial Intelligence

ANN: Artificial Neural Network

CNN: Convolutional Neural Network

DCT: Discrete Cosine Transform

DFT: Discrete Fourier Transform

DL: Deep Learning

EOS: End of the Sequence Token

FFT: Fast Fourier Transform

GAN: Generative Adversarial Network

GPU: Graphical Processing Unit

IDCT: Inverse Discrete Cosine Transform

IDFT: Inverse Discrete Fourier Transform

LSTM: Long Short-Term Memory

MAE: Mean Absolute Error

MFCC: Mel-Frequency Cepstral Coefficients

MIDI: Musical Instrument Digital Interface

ML: Machine Learning

MP3: MPEG-1 Audio Layer 3

MSE: Mean Squared Error

NLP: Natural Language Processing

ResNet: Residual Network

RGB: Red Green Blue Image

RMSE: Root Mean Squared Error

RNN: Recurrent Neural Network

Seq2Seq: Sequence-to-Sequence

SOS: Start of the Sequence Token

STFT: Short Time Fourier Transform

VAE: Variational Autoencoder

WAV: Waveform Audio File Format

1

CHAPTER 1

INTRODUCTION

Life would be flat without music.

It is the background to all I do.

It speaks to the heart in its own special way

like nothing else.

-Ludwig van Beethoven-

Music is a powerful tool to express emotions. It has been existed since the

beginning of mankind. At first, humans used sounds to communicate with each other, as

the time passed these sounds were diversified. With this diversity, music emerged.

Throughout the ages, music has been changed and improved with different methods due

to the conditions of that time and newly discovered musical instruments. Besides the fact

that music is a way to express emotions, many civilizations discovered its healing effect

depending on their cultural and social level (Koç et al. 2016). Moreover, today, it has

been proven that the music has a positive effect on people's emotional hormones (e.g.,

dopamine, serotonin, etc.) and physiological functions (e.g., heart rhythm, respiratory

rhythm, etc.), and as a result, the quality-of-life increases. (Boşnak, Kurt and Yaman

2017). Among all the discoveries, the biggest one was the overall discovery of musical

fundamentals such as measure, rhythm, harmony, notation, and scales. After this stage,

for the first time, people were able to build the foundations of their musical compositions.

As a consequence of the interest in music, nowadays, there are more than 300 music

genres available.

Music, alone, has so many different features, such as rhythm, notes, melody,

duration, amplitude, etc., and it can get more complex when these features are tried to

combine to work together in a harmony. Moreover, apart from these features, the use of

multiple instruments also increase complexity. In a real orchestra, every instrument has

its own duty so that they work together to produce a plausible music.

Not only composers but also listeners pay attention to these features (Herremans

and Chew 2017). When it comes to producing realistic music by following the music

theory, the challenge is not only that there is so much information to process, but that

2

each piece of information is somewhat related to the others. This uniqueness of features

makes it harder to generalize the NLP models to generate realistic music (Dong et al.

2018). Furthermore, processing this much information requires a lot of memory. In order

to relieve the models from this level of complexity, different methods are used to simplify.

Some of the simplifications that are made to input data are to limit the input features to a

few notes and chord progressions, a single instrument, constant tempo, etc. Moreover,

different data formats and representations (e.g., MIDI, music score, symbolic

representation, raw audio signal, etc.) are used to access the information more easily.

So far, we mentioned the importance of the music and the challenges of realistic

music generation. In the next sections, we first review the previous studies in the field of

music generation. Next, we will summarize the main objective. Lastly, we will present

the organization of our thesis.

1.1. The Literature Overview

Music is not a new topic in the field of Artificial Intelligence. Over the years a

significant number of scientific papers have been published about generating music by

using different neural network architectures and data representations. In the late 1950s,

with the invention of the first computer, the first music score was composed by computers

by using stochastic models and Markov Chains (Hiller and Isaacson 1959). In the

following years, specifically the late 1980s, music generation with ANNs appeared,

which pioneered today's systems, and evolved significantly (Briot 2020).

One of the first attempts to generate music by using ANNs made by the Lewis’

novel approach (Lewis 1988). In the creation by refinement method (CBR), which is the

name of his approach, he proposed changing the standard way of using gradient descent

for standard applications by reverting it.

During the training phase, Lewis used 30 examples developed by himself.

Because the note intervals in these 30 examples are between unison, 3rd and 5th, and some

notes that follows a stepwise motion; he described them as “well-formed” melodies. Apart

from this, he also produced “poorly-formed” melodies that do not comply with this rule.

In the end, these two datasets were used to train the conventional neural network. In the

CBR part, the samples with random values were given to the input layer, and to maximize

3

the positive classification result, a gradient descent optimization was applied iteratively.

As a result of this process, the newly created melody became well-formed. According to

Lewis, the network was able to learn the concepts of stepwise and triadic motion.

Figure 1.1. CBR Architecture

(Source: Briot 2020)

Another early idea to explore generating music with an ANN was by Todd (Todd

1989). He named this design as Time-Window architecture. His main motivation was to

generate a monophonic melody by using a fixed-size sliding window. Despite the

architecture being capable of learning the pairwise correlations between two successive

segments, the model is poor when it comes to learning long-term correlations due to the

absence of explicit memory. In order to overcome this shortcoming, in his following

design which he named Sequential, he divided the input layer into two parts, the context,

and the plan. The context is the memory that holds the information about the melody

generated so far. The plan corresponds to the melody to be learned.

4

Figure 1.2. Time-Window (left) and Sequential (right) Architectures

(Source: Briot 2020)

The working principle of the idea can be summarized as follows: the training starts

by choosing a plan (melody to be learned) and, then to start with a clean empty context,

the activation units of each context are initialized with 0. Next, the weights are upgraded

based on the comparison between the first-time step note, which is the output of the

feedforwarded network, and the first-time steps note of the plan. The output values are

then passed to the current context. An iteration is concluded when the last time step is

reached. The process repeats for different plans. In the generation, the activation units are

initialized to 0 and the network is fed with a new plan, which was not part of the training.

The new melodies are generated iteratively.

So far, we discussed the initial ANN applications for music generation. Although,

nowadays, due to the technological improvements we have more computational power,

we can see that both Todd's and Lewis' approaches pioneered the next studies. In the

following subsections, we will focus on reviewing the studies based on the widely used

modern network architectures.

5

1.1.1. CNN-RNN based Music Generation

CNNs and RNNs are known to be good for learning stationary data but not so

great for time-varying data (e.g., music generation, time-series forecasting, etc.) alone.

The reason behind that is their incapability to process long-term dependencies and

problems that occurred on the way. Although this is the case, there have been promising

studies such as SampleRNN (Mehri et al. 2017) and MelodyRNN (Waite 2016) published

to generate music by using CNN and RNN.

WaveNet (van den Oord et al. 2016), which is a study that generates raw audio

waveforms published by Google DeepMind, shows that it is possible to use CNN to

generate realistic music. The study uses dilated causal convolutions to predict the next

sound sample conditioned to all of the previous ones. The real waveforms, which are

recorded by human speakers, were used as the model input during the training. After the

training phase, synthetic utterances are obtained by sampling the network. New

predictions were made by taking a value from the probability distribution and fed back to

the input at each step during sampling. The authors stated that although the process is

computationally expensive, it was essential to generate complex and realistic audio.

WaveNet has been used for different applications. The first one of these applications was

in the field of text-to-speech, and listeners noted that the generated sound samples

sounded more natural. Another application is in the field of music production, which

produces realistic music pieces. This is an important result because CNNs are usually

faster than other architecture and easier to parallelize (van den Oord et al., 2016).

Figure 1.3. Stacked Dilated Causal CNN

(Source: van den Oord et al., 2016)

6

Another study done in this field is the Song from PI. Song from PI is, which is

originally a YouTube video1, a melody that is written by using digits of the number Pi

(π). Motivated by the idea used in Song from PI, the authors (Chu, Urtasun and Fidler

2016) developed a model, which is conditioned on scale type, that is able to learn notes

on a particular scale. In the study, they used a Pop MIDI collection and some video game

music as the dataset and RNN as their model. The higher layers of the RNN focused on

learning accompaniments like drums and chords. The lower layers of the RNN learned

the melody. Moreover, they conducted two interesting and exciting applications. In one

of them, they created a stickman that sings the generated song and performs a dance show

according to it. In the other one, they extended the model capabilities so that it generates

a story according to given image and converts it to a piece of pop music.

Figure 1.4. Model Represented in Music From PI

(Source: Chu, Urtasun and Fidler 2016)

1.1.2. LSTM based Music Generation

When it comes to music generation with the deep learning models, the most

popular architecture that has been used is LSTM. The main reason behind it is the ability

to store information of long sequences so that it can learn long-time correlations. Eck and

Schmidhuber (Eck and Schmidhuber 2002) proposed two different models to learn chord

1 "Song from π!". 2011. YouTube. https://youtu.be/OMq9he-5HUU.

7

structures and note structures and the learning melody that is presented throughout the

music. The generated patterns were able to follow the chord progressions, but they lacked

uniqueness since the model was trained with certain chord structures. Moreover, in

another paper, they used LSTM to learn blues structures which resulted in blues patterns

with proper timing and structure (Eck and Schmidhuber 2002). LSTM also proved its

capabilities of learning different genres such as classical (Yadav et al. 2021), jazz

(FRANKLIN 2006), metal (Zukowski and Carr 2018), etc.

In another study, LSTM was used by Nayebi and Vitelli (Nayebi and Vitelli 2015)

to generate music with the raw audio signals as the input. The DFT is applied to inputs to

extract the features. After training was completed with the generic LSTM model, the

results were compared with GRU (Cho et al. 2014) which is developed to model long

time dependencies of generic sequences in an effective manner. The model was

previously used on the MIDI dataset and resulted that its performance being close to

LSTM (Chung et al. 2014). It was concluded that LSTM was able to generate patterns

that are plausible to the human ear.

Unlike using vanilla LSTM, another music generation study called DeepJ (Mao,

Shin and Cottrell 2018) used Biaxial LSTM. A Biaxial LSTM (Johnson 2017) consists of

two modules because of their ability to model polyphonic music by modeling each note

in each time step with a conditional probability that depends on all previous time steps,

and each generated note in the current time step. The time-axis module, which is used for

temporal information, outputs higher note features for each note depending on the input

note octaves and recurrent states from the previous step. The note-axis module, which is

used for note information, takes note features from the time-axis module and based on

the conditions of lower note features and higher note features, the next note is predicted.

In the DeepJ, improvements on Biaxial LSTM are mainly based on the addition of volume

and style parameters which lead to an overall quality increase, and additionally, the

consistency problem of the model was solved.

8

Figure 1.5. Biaxial LSTM Architecture

(Source: Mao, Shin and Cottrell 2018)

1.1.3. VAE based Music Generation

VAE (Kingma and Welling 2013) consists of two modules as encoder and

decoder. By learning the probability distributions of the data, VAE generates the data

similar to data in the original dataset. Since there is no target data, it is classified as an

unsupervised learning algorithm.

MusicVAE (Roberts et al. 2018) is an application that used VAE to generate

music. The MIDI format had been used as the dataset. In the study, they used two-layer

bidirectional LSTM as the encoder and simple stacked RNN as the decoder. However,

because of the vanishing gradient problem of the RNN, the model produced poorly

generated sequences. To overcome this situation, they changed the decoder architecture

to unidirectional LSTM.

9

Figure 1.6. MusicVAE Architecture

(Source: Roberts et al. 2018)

1.1.4. GAN based Music Generation

Another way to generate music is to utilize GAN (Goodfellow et al. 2014). GAN

consists of two models which are generator and discriminator. GAN network is basically

a two-player game between generator and discriminator. Generator generates sample

sized noise and passes to discriminator. Discriminator tries to discriminate real data and

noise. Based on the discriminator output, generator updates its weights and generates

another noise that is similar to original data. As the process continues, eventually, the

generator reaches at a certain level that can generate samples similar to real data from the

noise. At this point, discriminator is no longer able to discriminate between noise

generated patterns from generator and original data.

Besides the vanilla GAN, there are also different GAN architectures (Creswell et

al. 2018) such as Fully Connected GANs, Convolutional GANs, Conditional GANs, etc.

One of the popular music generation algorithms using Convolutional GAN was the

MIDINET (Yang, Chou and Yang 2017). In this study, the motivation was to generate

music in symbolic domain. In the light of this goal, the data was sampled measure by

measure and 2D matrices were constructed. As a result of this, they were able to represent

data similar to music scores. Moreover, additional noise was added to the data with the

10

aim of producing diverse results and improving creativity. Exploiting the powerful

features of Convolutional GANs, was shown that the Convolutional GANs can be a

powerful alternative to RNNs.

Figure 1.7. MIDINET Model

(Source: Yang, Chou and Yang 2017)

MuseGAN (Dong et al. 2018) proposed 3 different models that uses GAN as the

framework, namely Jamming, Composer and Hybrid, offering both generation and

accompaniment for symbolic music. The goal was to generate polyphonic music with

harmony and rhythm structures, multi-track interdependency and temporal structures,

while avoiding simplifications to overcome the challenges discussed at the beginning of

the chapter. As a result of the study, it was observed that the model they developed could

learn music, but the music produced was not close to human level production.

Figure 1.8. MuseGAN Model

(Source: Dong et al. 2018)

11

1.2. Objective of the Thesis

So far, we analyzed the previous studies and mentioned different approaches to

generate music. Based on these studies, we have seen that music has many unique features

that can be represented differently using various architectures. We also know that these

music features (e.g., rhythm, notes, melody, duration, amplitude, etc.) vary for the

different compositions. Therefore, in music generation applications, it is important to

determine an analysis plan to in order to use its features properly and lower the

complexity. Thus, we carried out the study by following the five-dimension analysis, used

by Jean-Pierre Brioti, Gaëtan Hadjeres, and François-David Pachet (Briot, Hadjeres and

Pachet 2019). The concepts of the five-dimension analysis method are defined as follows:

• Objective: Before designing a music generation AI tool, its objective and

destination should be planned. The objective of the music can be an accompaniment,

generation melody for polyphonic or monophonic music, etc. If the generated patterns are

going to be performed by humans, then they should be in the form of a musical score; if

they are going to be performed by machines, then the format should be in the case of an

audio file.

• Representation: This dimension basically corresponds to feature selection and

preprocessing. There are many different formats such as MIDI, raw signal, piano roll,

text, etc. that can be used as the baseline. According to the format types, features can

differ. For example, in the case of MIDI data, note pitch values, beat; in the case of raw

audio data, spectrograms; and, in the case of piano rolls, notes and chords can be used.

Moreover, in this dimension, the encoding technique is also decided.

• Architecture: The type of neural network architecture should be chosen so that

it can learn based on the representation used. The RNN, autoencoders, LSTM, and GAN

are common choices.

• Challenges: Knowing the limitations (e.g., quality, variability, creativity) is

important for pushing the limits to the maximum level.

• Strategy: After setting the representation and choosing the architecture, a

strategy is needed to be made to process the training and control the generation process

in a way that matches the desired requirements.

Based on this framework, the objective of the study is determined as the drum

accompaniment for a given audio file. In this study, two different approaches have been

12

made for MIDI and WAV formats used as baseline. The input data of the model,

represented as a sequence of notes and their velocities for the MIDI format and Mel-

spectrogram, MFCC, and tempogram features were extracted for the WAV (audio signal)

format. The output data of the model, for both approaches, represented as a sequence of

drum notes and velocities. The one-hot encoding technique was used. The LSTM was

chosen as the main architecture. In addition, in order to analyze the raw audio signal

features, CNN was used as a secondary architecture. In the generation, with the aim of

expanding the limitations, the temperature sampling method, which allows flexibility to

adjust the complexity of the generated patterns, was used to improve the quality and the

originality. Moreover, a UI was developed to provide users the freedom to choose

different drum instruments based on the exact same reason given previously. The strategy

was to use the Seq2Seq model as our data representation is similar to the data

representation in NLP translation applications (e.g., in NLP translation applications, the

input is a sequence of words and the output is a sequence of target language words; in our

application, the input is a sequence of instrument variables, and the output is a sequence

of originally generated drum instrument variables).

1.3. Organization of the Thesis

The following chapters are organized as follows. With the following Chapter 2,

we started our discussion on a basic level introduction of the processes used throughout

the thesis. In this chapter, we first started with the definition and characteristics of MIDI

and WAV data. Then, we described the features that were extracted from the dataset.

Lastly, we provided the mathematical expressions for model and preprocessing steps, as

well as examples of these techniques, and covered their advantages.

In Chapter 3, we described our first approach to make a drum accompany network.

First, we outlined the preprocessing steps that were done before the training. Then, we

made a detailed analysis on the training model’s architecture and gave the reasonings

behind it. Next, we explained the sampling technique used in the generator model to

improve the quality of the samples. Thereafter, we provided both training results and

example outputs. Lastly, we discussed the significant points of our approach and future

improvements.

13

In Chapter 4, we extended the idea and proposed a novel approach to generalize

the drum accompany network for high-quality audio signal data (i.e., WAV). As in the

previous chapter, we first start by giving a detailed explanation of preprocessing steps

where we extracted the features. Then, in order to analyze the characteristic of the

features, we described the improvements done to the training model. Thereafter, in the

generator model, we explained an algorithm that was required to determine the time

localization of generated patterns. Next, we evaluated the training results and provided

example outputs. Lastly, we shared our arguments about the approach and future

improvements.

In Chapter 5, we mainly discussed about the challenges faced throughout the

thesis. Moreover, based on these challenges and the techniques developed against them,

we presented ideas that can be potential scientific research directions.

14

CHAPTER 2

BACKGROUND

If you can’t explain something in simple terms,

you don’t understand it.

-Richard P. Feynman-

This chapter provides background information for the topics used throughout the

thesis. The main goal is to create a machine learning algorithm for music accompaniment.

In order to train the network, six different dataset genres which are jazz, hip-hop-rap, pop,

blues, rock, and shuffle containing all previous genres are used. In the following

subsections, we first give a brief explanation of the dataset format, preprocessing steps

and the network architecture. In addition, supplementary methods are explained which

are used to improve the architecture’s loss and convergence rate for training as well as a

sampling method for prediction.

2.1. The MIDI Format

The choice of input data format is important for the efficacy neural network

training and efficient memory usage. Necessary variables, inside the data, should be easily

accessible and not complicated. When it comes to audio data, there are several different

data formats such as WAV, MIDI, MP3, etc. The widely used data format for audio signal

processing is the WAV format. Although this format is better than artificially generated

MIDI format sound-wise, it takes up too much memory and many preprocessing steps are

required to acquire the desired information such as instruments, notes pitches, and notes

velocities. For some recordings involving multiple instruments, noise, etc. it may not be

possible to extract any meaningful information. On the other hand, the MIDI format not

only provides all the required information such as pitches, durations, bpm, etc.

The MIDI format is a compact representation of music that is used for creating

realistic simulations by a computer. In addition, MIDI data is usable in serial transmission

between different instruments and computers. The format stores information in bytes

15

under the name called MIDI messages. MIDI messages can be divided into two main

categories, which are channel messages and system messages, at the highest level. There

is total of 16 channels, and channel 9 is reserved for percussion instruments. Channel

messages are valid for specific channels which are determined by the leading status bytes.

On the contrary, system messages are not channel-specific and channel number is not

indicated by the status bytes. Furthermore, channel voice messages and channel mode

messages are two subcategories of channel messages. Channel voice message is the most

important part of this format. Musical information which are note on, note off, note

velocity, program change (instrument change), control change, channel pressure, and

pitch bend change is contained in this message type (Back 1999). In order to ease the

understanding of midi format data, the following example is demonstrated. Let’s assume

that we have a song in a midi format, a part of the representation of raw midi data of the

song is given in figure below.

Figure 2.1. Raw MIDI Data

The file is the combination of data bytes as shown above. The MIDI file should

be parsed to be meaningful. In this example, the channel voice message is focused and

parsed since it contains the most important information. The messages, we are most

interested in are the program change messages, note on and note off messages.

16

2.1.1. Program Change Message – c2 12

The status byte of the program change message is represented by 0xC2. The high

nibble of the byte refers that it is a program change, and the low nibble represents the

channel number. The second byte, 0x12, refers to the instrument number. This byte

corresponds to 18 in decimal and maps to percussive instrument (See Appendix A for

MIDI Instrument Map).

2.1.2. Note On Message – 92 51 5f

Note on event is represented at the high nibble of the status byte which is 9. The

low nibble corresponds to channel number, which is the same as program change, where

note is going to be played. The second byte represented by 0x51 refers to note pitch

number. This byte corresponds to 81 in decimal and maps to note value A (See Appendix

A for MIDI Note Number Map). The velocity/volume of this note is represented in the

last byte, 0x5F. There are a total of 128 pitch and velocity values, the lowest being 0 and

the highest being 127.

2.1.3. Note Off Message – 82 51 5f

There are two different types of data streams to understand that note is off. The

first type, seen in this example, the high nibble of status byte is 8. This means that note is

off. The note off message can also be 92 51 00. This is the second type, and note is

understood to be off by the last byte which refers to 0 velocity. The second byte

corresponds to note number as in note on message.

2.2. The WAV Format

The WAV format is an audio waveform format that is developed by IBM and

Microsoft. Unlike MIDI file type, note’s pitch, notes velocity and instrumental

17

information in WAV files are not easy to extract. They should be extracted by using signal

preprocessing techniques. An example of a decoded WAV file can be seen below, which

is basically a raw signal.

Figure 2.2. Raw WAV Signal

2.3. Data Preprocessing

Data preprocessing is an important step to extract the features and make data ready

for the neural networks. This section provides background information on the

preprocessing steps used throughout our application.

2.3.1. Mel Spectrogram

Mel spectrogram is a type of a spectrogram which has been used in ML

application such as music genre classification, audio classification, music instrument

classification, etc. The difference between classic spectrogram and Mel spectrogram is

the representation of frequency. The frequency representation in classical spectrograms

is linear where the melodic features in a signal become hard to differentiate from each

other. Humans hear frequencies logarithmically. This is another problem that we

encounter in classical spectrograms, because of their linearity. Therefore, using Mel

spectrograms to extract features is better than using classical spectrograms.

18

In order to understand the problem with classical spectrograms better, we will

consider the following example. Let's assume that we are playing two different sequences

of notes on a piano. The first sequence is from C2 to C4, whose frequencies are from 65

Hz to 262 Hz. The second sequence is from G6 to A6, whose frequencies are from 1568

Hz to 1760 Hz. Although the pitch tones of these two sequences sound different from one

another, both samples have a difference of nearly 200 Hz between the initial and last notes

played. This problem occurs because the nature of pitches is nonlinear.

Mel spectrograms use Mel scale which is a perceptual scale of pitches that

separated in equal distances from one another. The word “Mel” in Mel scale, which maps

frequencies to Mel frequencies, is an abbreviation for melody.

Figure 2.3. Mel Scale

 (Source: Ramaseshan 2013)

The forward and inverse formulas for the conversion of frequencies to Mel

frequencies are given below respectively (O'Shaughnessy 2000).

𝑚 = 2595 log10 (1 +
𝑓

700
)

𝑓 = 700(10
𝑚

2595 − 1)

(2.1)

(2.2)

19

The instructions for extracting the Mel spectrogram features are as follows,

• Obtain classical spectrogram by using STFT (See Appendix B.1 for

STFT).

• Convert amplitudes to decibels

• Convert frequencies to Mel frequencies by using formula (2.1)

The Mel spectrogram of a given raw signal in Figure 2.2 can be seen below.

Figure 2.4. An Example of a Mel Spectrogram

2.3.2. Mel-Frequency Cepstral Coefficients (MFCC)

In order to understand these features clearly, we want to start with the concept of

the cepstrum which is used the compute cepstral coefficients. The reason the process is

called a cepstrum is that it computes the spectrum of a spectrum. The cepstrum was

developed in 1963 by B.P. Bogert, M.J. Healy, and J.W. Tukey for seismic signal studies

for the first time (Bogert, Healy and Tukey 1963). Thereafter, in the 1967, it was used in

speech analysis to determine the voice pitch of a voiced speech signal (Noll 1967). Later

on, cepstrum became commonly used tool for music processing applications.

Cepstrum can be computed as follows,

𝐶(𝑥(𝑡)) = 𝐹−1[log (𝐹[𝑥(𝑡)])] (2.3)

20

where 𝐶(.) represents the cepstrum of a signal, 𝑥(𝑡) is a time-domain signal, 𝐹[.]

and 𝐹−1[.] are DFT and IDFT respectively (See Appendix B.2 for DFT and IDFT). Let

us visualize the process step by step to the ease the understanding. The following signal,

𝑥(𝑡), will be used as an input for the next steps.

Figure 2.5. A Windowed Speech Signal

(Source: Bäckström 2019)

Step 1. After by taking the DFT of the input signal, 𝐹[𝑥(𝑡)], we obtain the

following signal

Figure 2.6. DFT of the Input Signal

(Source: Bäckström 2019)

21

Step 2. The log-power spectrum is obtained by taking the logarithm of the power

spectrum, 𝑙𝑜𝑔(𝐹[𝑥(𝑡)])

Figure 2.7. Log-Power Spectrum

(Source: Bäckström 2019)

Notice that the log-power spectrum has a continuous and periodic structure. This

is the result of the harmonics in the input signal, 𝑥(𝑡). Thus, the log-power

spectrum satisfies the conditions of the DFT.

Step 3. By taking the IDFT of the log-power spectrum, 𝐹−1[log (𝐹[𝑥(𝑡)])], we

obtain the Cepstrum

Figure 2.8. Cepstrum of the given Input Signal

(Source: Bäckström 2019)

22

The x-axis of the cepstrum is called Quefrency. In cepstrum, we compute the two

time-frequency transforms of a time-domain signal. As a result of that, the cepstrum is

somewhat similar to the time-domain signals so that the unit of the quefrency axis is given

in milliseconds.

The peaks in cepstrum represents the presence of quefrencies in the log-power

spectrum. In Figure 2.8, we have the highest peak around quefrency 7ms. These kinds of

peaks are called rhamonic which is basically the cepstrum definition of harmonic.

Rhamonics and quefrencies are related to fundamental frequency of the original signal so

that it is used for peak detection. For example, the fundamental frequency, 𝑓0, of the

Figure 2.8 can be calculated as follows

𝑓0 =
1

7𝑚𝑠

= 142.85 𝐻𝑧

Since the concept of the cepstrum is clear now, we can calculate the MFCC by

following the given instructions below.

• Take the DFT of the time-domain input signal

• Obtain the log-power spectrum by taking the logarithm

• Map the frequencies to Mel-Frequencies by using the Mel scale

• Obtain the MFCC by taking the DCT (See Appendix B.3 for DCT)

The reason of using DCT to obtain MFCC instead of IDFT is that to decorrelate

the signal. This benefits the machine learning algorithms since we want inputs to be least

correlated with each other. The MFCC of a given raw signal in Figure 2.2 can be seen

below.

(2.4)

23

Figure 2.9. An Example of MFCC

2.3.3. Tempogram

Tempo is the speed that determines the how fast a part of the music plays. The

unit of tempo is given by BPM. The tempo may change throughout the musical pieces,

even in some we can observe more than one tempo, which is called tempi. The tempo

information along with time signature forms the rhythm of a musical piece. In addition,

it allows us to determine a note’s duration.

Tempogram, which is developed for the characterization of tempi and local pulse

of an audio file, represents the tempo information in an audio file (Tian et al. 2015). In

the context of estimating tempo, many different methods have been proposed. The general

approach to accomplish this task is usually based on using the novelty curve. Therefore,

the local tempo and beat information can be estimated from novelty curve by using

different methods such as autocorrelation (Ellis 2007), Fourier (Peeters 2005; Grosche

and Muller 2009), or comb filter methods (Scheirer 1998) .

In order to compute the tempogram, first novelty curve should be calculated. The

novelty curve, ∆: 𝑍 → 𝑅≥0, of a given magnitude spectrum of an audio signal, |𝑋|, can be

calculated by using the following (Grosche, Muller and Kurth 2010),

∆(𝑡) = ∑|𝑌(𝑡 + 1, 𝑘) − 𝑌(𝑡, 𝑘)|≥0

𝐾

𝑘=1

 (2.5)

24

for 𝑡 ∈ 𝑍, where 𝐾 is the number of Fourier coefficients and 𝑌 = 𝑙𝑜𝑔(1 + 𝐶 ∙ |𝑋|)

represents the log magnitude of the spectrum for a constant 𝐶 > 1. The study (Grosche,

Muller and Kurth 2010) discusses two different types of tempograms which are based on

autocorrelation and Fourier Transform. The autocorrelation tempogram will further be

explained since it was used in the thesis.

The calculation of autocorrelation tempogram starts by creating a box window,

𝑊:𝑍 → 𝑅, that is centered at 𝑡 = 0 with window length 𝑁. Thus, the unbiased local

autocorrelation, 𝒜(𝑡, ℓ), can be calculated as follows (Grosche, Muller and Kurth 2010)

𝒜(𝑡, ℓ) =
∑ ∆(𝑛)∆(𝑛 + ℓ) ∙ 𝑊(𝑛 − 𝑡)𝑛∈𝑍

2𝑁 + 1 − ℓ

for time 𝑡 ∈ 𝑍 and time lag ℓ. Therefore, the autocorrelation tempogram, 𝒯𝐴(𝑡, 𝜏),

is defined as (Grosche, Muller and Kurth 2010)

𝒯𝐴(𝑡, 𝜏) = 𝒜(𝑡, ℓ)

where 𝜏 = 60/(𝑟 ∙ ℓ) represents the tempo, and the 𝑟 (in the study 𝑟 =

0.023 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) corresponds to the step size of each time parameter, 𝑡.

The tempogram of a given raw signal in Figure 2.2 can be seen below.

Figure 2.10. An Example of Tempogram

(2.6)

(2.7)

25

2.3.4. Zero-Padding

Zero-padding is a process of adding zeros to missing input time instants. The

method is used for different purposes depending on the application. It is used to preserve

the features at the edges of pictures in convolutional neural networks. Another application

area of this method is in NLP (Natural Language Process) neural networks where it is

used to equalize the size of sentences. Zero padding can be applied either in front of the

sentences or at the end of them. Location of zeros don’t affect the network training since

input gets masked. Specifically for our thesis application and NLP applications, the

padding value doesn't have to be zero. Any number that is not in the vocabulary can be

used.

2.3.5. Masking

Zero padding is applied because neural networks require the same sized input

vectors. As a consequence of zero padding, the original information may be lost or get

less attention by the network. Thus, the network may work poorly. In order to overcome

this situation masking is used. Masking is a process to tell the network to skip missing

timesteps/zero padded values.

2.3.6. Categorical Variable Encoding

The performance of the neural network depends on the model and the

hyperparameters used, as well as the type of the data given to the input ("What Is

Categorical Data | Categorical Data Encoding Methods" 2020). Due to its nature, artificial

neural networks cannot receive and process raw data (e.g., sentences, symbolic music

note notations, etc.) as it is. The input is expected to be in form of numerical values.

Therefore, categorical variable encoding becomes a necessary step.

Categorical variable encoding is used to encode the categories in a dataset into

numerical categorical variables. Datasets are divided into two main groups according to

their variable properties. These are numerical (quantitative) and categorical (qualitive).

26

Datasets usually belong to one of the further division of variables as described in the

figure below.

Figure 2.11. Variables: Quantitative (Numerical) vs Qualitative (Categorical)

(Source: Dahouda and Joe 2021)

In an encoding scheme, number of unique categories are stored in a vector called

vocabulary. There are several different types of variable encoding techniques. In this

context, we describe the three most used ones, but emphasizing on the one-hot encoding

since it is the preferred encoding scheme in the thesis

2.3.6.1. Label Encoding

The scheme for assigning integer values to each categorical variables are called

label encoding. Label encoding is used in ordered categorical features. The following

table can be given as an example for the label encoding.

Table 2.1. Label Encoder Example

Category Label Encoded Value

Excellent 0

Good 1

Bad 2

27

This encoder example will inefficient because the algorithm won’t be able to

understand the reasoning behind the given values. For this reason, one-hot encoding is

usually preferred.

2.3.6.2. Binary Encoding

Binary encoding is an ordered encoding scheme. Categories are label encoded

first, then label encodes are transformed to their corresponding binary value. Each bit in

the binary number corresponds to a feature.

Table 2.2. Binary Encoding Example

If we look at the given example, there are several categories sharing the same

features. For example, second feature is shared between blue and pink, third feature is

shared between green and pink. These shared features lead to undesired predictions in the

model especially as the dataset gets larger. This misrepresentation can be avoided by

using one-hot encoding.

2.3.6.3. One-Hot Encoding

One-hot encoding technique encodes each categorical variable into a Boolean

variable. One-hot encoding technique encodes each categorical variable into a Boolean

variable. The value of 1 represents the presence of that category whereas 0 represents the

absence of that category. The categories inside the vocabulary can be mapped to any

Category Label Encoded Value Binary Encoded

Value Value

Red 0 000 [0, 0, 0]

Green 1 001 [0, 0, 1]

Blue 2 010 [0, 1, 0]

Pink 3 011 [0, 1, 1]

28

numbers. In general, each categorical variable usually maps to their corresponding

positional number. The following example can be given for one-hot encoding.

Assume that we have the given array of a dataset

𝑓𝑟𝑢𝑖𝑡𝑠 = [𝑏𝑎𝑛𝑎𝑛𝑎,𝑤𝑎𝑡𝑒𝑟𝑚𝑒𝑙𝑜𝑛, 𝑏𝑎𝑛𝑎𝑛𝑎, 𝑎𝑝𝑝𝑙𝑒, 𝑘𝑖𝑤𝑖]

In this dataset, our vocabulary is

𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦𝑓𝑟𝑢𝑖𝑡𝑠 = [𝑏𝑎𝑛𝑎𝑛𝑎,𝑤𝑎𝑡𝑒𝑟𝑚𝑒𝑙𝑜𝑛, 𝑎𝑝𝑝𝑙𝑒, 𝑘𝑖𝑤𝑖]

We have 4 different categories which means that the length of one hot

representation of each category will be 4. Then, each categorical variable represented in

one-hot encoded form is as follows

1. 𝑏𝑎𝑛𝑎𝑛𝑎 → [1, 0, 0, 0]
2. 𝑤𝑎𝑡𝑒𝑟𝑚𝑒𝑙𝑜𝑛 → [0, 1, 0, 0]

3. 𝑎𝑝𝑝𝑙𝑒 → [0, 0, 1, 0]
4. 𝑘𝑖𝑤𝑖 → [0, 0, 0, 1]

Thus, the one-hot encoded dataset becomes as follows

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑓𝑟𝑢𝑖𝑡𝑠 =

[

[1, 0, 0, 0]
[0, 1, 0, 0]
[1, 0, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

]

In the end, we can see that the representation of each category is mutually

exclusive from each other which results model to be more accurate. The disadvantage of

this method is that it is a memory inefficient as the length of each category representation

is equal to the vocabulary (Dahouda and Joe 2021). In order to overcome the inefficiency

in large datasets, data pipeline can be used.

29

2.4. Artificial Neural Networks

In this section, we also want to explain the differences between artificial

intelligence (AI), machine learning (ML), artificial neural network (ANN), and deep

learning (DL). Although they are very close and often confused with each other, they are

quite different. They can be considered subsets of one another (Kavlakoglu 2020).

Figure 2.12. Set of Artificial Intelligence, Machine Learning,

 Artificial Neural Network and Deep Learning

Starting from top to the bottom, AI is known as mimicking the human behavior.

AI requires defining every possible situation in programming by using if-else statements

and loops. However, this doesn’t work very well. Imagine defining every situation and

every combination of those situations for self-driving cars. There would be infinite

numbers of situations and combinations, therefore defining every possible situation and

combination is theoretically not possible. This problem is overcome by ML.

Machine learning uses human-provided features instead of explicit programming.

ML is divided into two problems which are classification and regression. Classification

problems, as the name suggests, are used to classify different categories such as dogs-

cats, colors, etc. On the other hand, regression problems are used for continuous values.

Predicting the cost of a car based on given features like its brand, construction year,

transmission, etc., is a regression problem. A regression problem can be transformed into

a classification problem. For example, instead of predicting the cost of a car in the given

30

example, we can just map cost to categories like high, medium, or low. The problem with

this technique requires a human to choose and provide the features. This is what makes it

inefficient. This method is improved by using ANNs which take inputs and determine

features without the help of humans.

Artificial neural networks are the subset of ML. The inspiration of ANNs is human

neurons inside the brain (Education 2020). In our brain, there are billions of neurons that

carry information by electrical signals. Inside a neuron, the dendrites receive the external

signal which can be something we touch, see, taste, etc. This external signal is processed

in the nucleus and turns to an output signal which is carried with axons. These axons lead

to the next neuron dendrites. The connection between the previous and next neuron is

provided with synapses between axon tips and dendrites (Mahanta 2017).

Figure 2.13. Neuron Structure

The simplest mathematical model inspired by a neuron structure is called

perceptron. Perceptron is a single layered ANN structure.

Figure 2.14. Perceptron Architecture

31

As can be seen in the figure above, there are similarities between neuron structure

and perceptron architecture. Dendrites, biological input signal receivers, are similar to

inputs in the architecture. The connections between inputs and perceptron are quantified

by weights which simulate activation levels of synapses. The neuron structure’s nucleus

corresponds to the perceptron which combines weighted input signals to compute output.

Lastly, axons, which carry information to the next neurons, are represented by output.

In this architecture, a set of input signals {x1, x2, …, xn} are presented to the neuron.

The input signals are used to calculate the weighted sum with a set of synaptic weights

{w1, w2, …, wn} and bias term θ is added. At the end of this calculation, activation potential

u is obtained. Finally, the output is computed by employing the activation function, g(.),

to the activation potential. Two mathematical expressions to calculate the output of the

perceptron, proposed by McCulloch and Pitts, is given as follows (da Silva et al. 2017)

𝑢 = ∑𝑤𝑖𝑥𝑖 − 𝜃

𝑛

𝑖=1

𝑦 = 𝑔(𝑢)

For every training sample, ANN updates its weights to become more accurate.

During training, a loss is calculated. In the simplest way, the loss can be computed by

taking the absolute value of the difference between the true value and the output produced

by the network. Then this loss along with the learning rate of activation function, η, is

used to compute the updated weights. The vector expression for weight updates (da Silva

et al. 2017) can be given by

𝑙𝑜𝑠𝑠 = |𝑑(𝑘) − 𝑦|

𝒘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝒘𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝜂 ∙ (𝑑(𝑘) − 𝑦) ∙ 𝒙(𝑘)

where x(k)=[−1 𝑥2
(𝑘)

 … 𝑥𝑛
(𝑘)

]T represents the kth training sample, vector

w=[𝜃 𝑤1 … 𝑤𝑛]T contains bias term and weights, d(k) denotes the desired value for kth

training sample.

(2.8)

(2.9)

(2.10)

(2.11)

32

The training is completed when the desired loss value reached. There are different

types of losses and activation functions depending on the problem type. Regression

problems generally use mean absolute error (MAE), mean squared error (MSE), root

mean squared error (RMSE), and such. On the other hand, binary cross entropy,

categorical cross entropy, hinge losses are the some of the loss functions that are used for

classification problems. Furthermore, Sigmoid, SoftMax, tanh, ReLU, Leaky ReLU can

be given as examples for different activation functions.

Deep learning, subset of ANN, is basically an improved version of ANNs. The

main difference between ANN and DL is the number of hidden layers inside the model.

Figure 2.15. Neural Network and Deep Learning Architectures

(Source: Mostafa et al. 2020)

As the number of hidden layers goes up, the accuracy of the output is improved.

Despite the positive effect of the additional in hidden layers, a proper number of hidden

layers should be chosen. Any more or less than a sufficient number of hidden layers could

cause overfitting or underfitting. If the number of hidden layers is larger than the

complexity of the problem, then overfitting occurs. Underfitting, occurs when the number

of hidden layers is smaller than the complexity of the problem (Uzair and Jamil 2020).

Besides the number of hidden layers, another factor that determines the performance of

deep learning is the optimization technique that is employed. In general, an artificial

neural network and a deep learning update its weights to minimize the loss by finding the

global or local minima. This is expected to be done in the shortest time and with high

accuracy (Okewu, Adewole and Sennaike 2019). In order to do this efficiently, there are

various optimization techniques that are specific to each model and each problem.

33

Gradient Descent, Stochastic Gradient Descent, RMSprop, Adagrad, AdaDelta, Adam are

some of the widely used optimization algorithms.

2.4.1. Activation Functions

Activation functions are nonlinear functions with the purpose of helping the

ANNs to classify the categories correctly by creating to the decision hyperplane or

decision surface that separates the categories from each other during the training phase.

In other words, it helps to separate different classes even if they are not linearly separable.

2.4.1.1. Sigmoid

Sigmoid is a “S” shaped non-linear function. The expression of sigmoid (Nilsson

1998) is given by

𝑓(𝑠) =
1

1 + 𝑒−𝑠

where, s corresponds the input and f(s) is the output. The sigmoid function is

shown in the figure below.

Figure 2.16. Sigmoid Function

(2.12)

34

In neural network models, as data gets more complicated, we can add more hidden

layers. If Sigmoid is used for every hidden layer, model will eventually stop learning.

This is caused because Sigmoid squeezes information. This causes the gradient to get

smaller and smaller during backpropagation. This is known as vanishing gradient

problem. The negative effect of the Sigmoid function can be alleviated by using different

activation functions.

2.4.1.2. Hyperbolic Tangent (tanh)

Hyperbolic tangent (tanh) is one of the activation functions that helps ANN to

prevent vanishing gradient problem. However, it has a negative effect on training. Due to

its saturation rate, it is slower in terms of training time (Krizhevsky, Sutskever and Hinton

2017). This function can be expressed as:

𝑓(𝑥) = tanh (𝑥)

=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

where, x corresponds the input and, f(x) is the output. The tanh function is shown

in the figure below.

Figure 2.17. Hyperbolic Tangent Function

(2.13)

35

2.4.1.3. SoftMax

SoftMax is an activation function that takes inputs and scales them to relative

probabilities. It is used for multiclass classification problems where it represents

probabilities of each class (Nwankpa et al. 2018). SoftMax function (Goodfellow, Bengio

and Courville 2016) is defined as

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

where xi corresponds to elements of the vector x, and n is the number of classes.

SoftMax function can be visualized from the given figure below.

Figure 2.18. SoftMax Activation Function

(Source: Shen et al. 2018)

2.4.2. Categorical Cross Entropy Loss

Categorical cross entropy is a loss function used to classify multiple classes. This

loss is very good at distinguishing between two discrete probability distributions. The

formula to calculate categorical cross entropy is given by

𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖

𝑜𝑢𝑡𝑝𝑢𝑡
𝑠𝑖𝑧𝑒

𝑖=1

log �̂�𝑖

(2.14)

(2.15)

36

where ŷi is the ith model output value, yi denotes the ith target value. The purpose

of the minus sign in front of the equation is to reduce the loss due to the convergence of

the probability distributions. Categorical cross entropy is usually preferred for one-hot

encoded data.

2.4.3. Adam Optimizer

Adam gets its name from the adaptive moment estimation. It is a first order

stochastic gradient-based optimization technique with little memory requirement. The

strength of the method comes from the use of the adaptive learning rate method to find

the individual learning rates for each parameter (Kingma and Ba 2014).

Adam adapts the learning rate by utilizing the first and second moments of

gradient estimations. Moments can be calculated by taking the expected value of a

random variable. Therefore, Nth moment of a random variable is given by

𝑚𝑛 = 𝐸[𝑋𝑛]

where m denotes moment, E[.] is the expectation operator (See Appendix B.4 for

Expected Values), X is the random variable.

The gradient of the cost function of a neural network is usually evaluated on some

random batches, because of that it can be considered as a random variable. Exponential

moving average is used by this method to estimate the moments. Then, moving averages

on a mini batch is given as follows

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

 𝑣𝑡 = 𝛽2 𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2

where t denotes the timestep, m denotes the moving averages of the gradient v is the

moving averages of the squared gradient, g corresponds to gradient on a mini batch, β1

and β2 are the exponential decay rates which are hyperparameters with suggested default

values 0.9 and 0.999 respectively (Kingma and Ba 2014).

(2.16)

(2.17)

(2.18)

37

In order to write the equation for weight updates with Adam optimizer, some

preprocessing is needed. First of all, we know that moving average vectors are initialized

to 0’s at the first iteration. We also know that g is considered to be a random variable

because it is evaluated on random mini data batches. In addition, first and second

moments are given by estimates of m and v. Then by using Eq. (2.16), we expect the

following properties

𝐸[𝑚𝑡] = 𝐸[𝑔𝑡]

𝐸[𝑣𝑡] = 𝐸[𝑔𝑡
2]

If the given properties hold, this leads us to have an unbiased estimator. However,

moving averages don’t hold these properties. This can be easily shown by remembering

that moving average vectors are initialized with 0’s. Then Eq. (2.17) can be unpacked as

follows

𝑚0 = 0

𝑚1 = 𝛽1𝑚0 + (1 − 𝛽1)𝑔1

= (1 − 𝛽1)𝑔1

𝑚2 = 𝛽1𝑚1 + (1 − 𝛽1)𝑔2

= 𝛽1(1 − 𝛽1)𝑔1 + (1 − 𝛽1)𝑔2

𝑚3 = 𝛽1𝑚2 + (1 − 𝛽1)𝑔3

= 𝛽1
2(1 − 𝛽1)𝑔1 + 𝛽1(1 − 𝛽1)𝑔2 + (1 − 𝛽1)𝑔3

⋮

Recall that m is initialized with 0’s. Then using all the previous timesteps of

moving average, mt, can be written as

(2.19)

(2.20)

(2.22)

(2.24)

(2.21)

(2.23)

38

𝑚𝑡 = (1 − 𝛽1)∑𝛽1
𝑡−𝑖

𝑡

𝑖=1

𝑔𝑖

By following the same steps, similar equation for moving averages of squared

gradient can be written as

𝑣𝑡 = (1 − 𝛽2)∑𝛽2
𝑡−𝑖

𝑡

𝑖=1

𝑔𝑖
2

Adam uses bias correction terms. The bias correction term for moving average

gradient, mt, can be calculated by first taking the expected value of Eq. (2.25). Then, gi is

approximated with gt and a new term 𝜁 is introduced to represent the error resulting from

this approximation.

𝐸[𝑚𝑡] = 𝐸 [(1 − 𝛽1)∑𝛽1
𝑡−𝑖

𝑡

𝑖=1

𝑔𝑖]

= 𝐸[𝑔𝑡](1 − 𝛽1)∑𝛽1
𝑡−𝑖

𝑡

𝑖=1

+ 𝜁

= 𝐸[𝑔𝑡](1 − 𝛽1
𝑡) + 𝜁

Applying similar steps for vt yields as,

𝐸[𝑣𝑡] = 𝐸 [(1 − 𝛽2)∑𝛽2
𝑡−𝑖

𝑡

𝑖=1

𝑔𝑖
2]

= 𝐸[𝑔𝑡
2](1 − 𝛽2)∑𝛽2

𝑡−𝑖

𝑡

𝑖=1

+ 𝜁

= 𝐸[𝑔𝑡
2](1 − 𝛽2

𝑡) + 𝜁

If 𝜁 = 0, this means that 𝐸[𝑔𝑡] and 𝐸[𝑔𝑡
2] are stationary. If not, 𝜁 should be kept

small by choosing proper values for exponential decay rates β1 and β2 to assign small

(2.25)

(2.26)

(2.27)

(2.28)

39

weights to gradients. Then, final bias corrected estimators, m̂t and ĝt, for mt and vt can

be given as follows

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

Finally, weight updates using Adam optimizer can be written as (Bushaev 2018)

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
�̂�𝑡

√𝑣𝑡 + ∈

where wt denotes weight of the current timestep, wt-1 denotes weight of the

previous timestep, η represents the learning rate, m̂t is bias corrected estimator of moving

average of gradient, ĝt is bias corrected estimator of moving averages of squared gradient,

and ∈ denotes the step size.

2.4.4. Long Short-Term Memory Architecture

Long Short-Term Memory (LSTM) is first presented by Sepp Hochreiter and

Jürgen Schmidhuber in 1997. LSTM is an efficient recurrent network architecture that

uses gradient-based learning. It is proposed to overcome exploding and vanishing

gradient problem that occurs in recurrent neural networks (RNN) (Hochreiter and

Schmidhuber 1997) (See Appendix C for Vanishing Gradient Problem). LSTMs are good

for training time series because of the cell state and the hidden state they have. The cell

state is the memory of the model that stores useful information for use in subsequent

layers. The hidden state is a working memory that decides which information is relevant

to write or to forget.

(2.29)

(2.31)

(2.30)

40

Figure 2.19. An Illustration of LSTM Cell

An LSTM cell consists of three gate structures which are forget gate, input gate

and output gate. Additionally, it has a memory cell that progresses by making small

changes without any hindrance.

Figure 2.20. Inside of an LSTM Cell

In the given structure, �⃗�𝑡 denotes the input vector, ℎ⃗⃗𝑡−1 denotes previous hidden

state, 𝑐𝑡−1 is the previous cell state, 𝑐𝑡 is the current cell state, and ℎ⃗⃗𝑡 corresponds to

current hidden state. Activation function sigmoid is represented by 𝜎 symbol.

41

The forget gate’s job is to forget unnecessary information from the previous cell

state. This gate uses sigmoid activation to perform this action. It is known that the output

of sigmoid activation is between 1 or 0. Using this information and applying element-

wise multiplication between the output of the forget gate and the previous cell state, the

gate determines which value will be forgotten. The equations for the forget gate are given

by (Olah 2015)

𝑓𝑡 = 𝜎[�⃗⃗⃗⃗�𝑓ℎ
ℎ⃗⃗𝑡−1 + �⃗⃗⃗⃗�𝑓𝑥�⃗�𝑡 + �⃗⃗�𝑓]

𝐶𝑡𝑓 = 𝐶𝑡−1 ⊙ 𝑓𝑡

where 𝑓𝑡 is the output of the first sigmoid activation function, �⃗⃗⃗⃗�𝑓ℎ
 is the weight

vector of forget gate’s hidden state, �⃗⃗⃗⃗�𝑓𝑥 denotes the weight vector forget gate’s input, �⃗⃗�𝑓

is the bias vector of the forget gate and 𝐶𝑡𝑓 denotes the updated cell state. The ⊙ denotes

the Hadamard Product (See Appendix B.5 for Hadamard Product).

The goal of the input gate is to determine which values of the input is worth to

remember. The input gate uses two activation functions which are sigmoid and tanh. The

duty of sigmoid function is the same as forget gates. It determines which input

information is important. The tanh’s job is to choose candidates for the input gate. At the

end, the network is able to forget unnecessary candidates and keeps relevant information

from the input. Finally, outputs of these activation functions are element-wise multiplied

and added to updated cell state, 𝐶𝑡𝑓, to use as the next LSTM cell’s previous cell state.

The updated equations for the input gate are given by (Olah 2015)

𝑖𝑡 = 𝜎[�⃗⃗⃗⃗�𝑖ℎ ℎ⃗⃗𝑡−1 + �⃗⃗⃗⃗�𝑖𝑥�⃗�𝑡 + �⃗⃗�𝑖]

�⃗�𝑡 = 𝑡𝑎𝑛ℎ[�⃗⃗⃗⃗�𝑔ℎ
ℎ⃗⃗𝑡−1 + �⃗⃗⃗⃗�𝑔𝑥

�⃗�𝑡 + �⃗⃗�𝑔]

�̃⃗�𝑡 = 𝑖𝑡 ⊙ �⃗�𝑡

𝐶𝑡 = 𝐶𝑡𝑓 ⊙ �̃⃗�𝑡

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

42

where 𝑖𝑡 denotes the output of the second sigmoid activation function, �⃗⃗⃗⃗�𝑖ℎ is the

weight vector of input gate’s hidden state, �⃗⃗⃗⃗�𝑖𝑥 denotes the weight vector input gate’s

input, �⃗⃗�𝑖 is the bias term of the input gate, �⃗�𝑡 denotes the candidate variables which is the

output of the first tanh activation, �⃗⃗⃗⃗�𝑔ℎ
 is the weight vector of candidate variables’ hidden

state, �⃗⃗⃗⃗�𝑔𝑥
 denotes the candidate variables’ input, �⃗⃗�𝑔 corresponds to the bias vector of the

candidate variables.

The last variable, the hidden state for the next LSTM cell’s previous hidden state,

is calculated by the output gate. The output gate takes previous hidden state ℎ⃗⃗𝑡−1 , the

input �⃗�𝑡 and put them through the third sigmoid activation function. Next, the cell state

𝐶𝑡, is passed through tanh function. Lastly, the outputs of the activation functions are

element-wise multiplied to decide which information should be carried over to next cell.

The equations for the output gate are given by (Olah 2015)

�⃗�𝑡 = 𝜎[�⃗⃗⃗⃗�𝑜ℎ
ℎ⃗⃗𝑡−1 + �⃗⃗⃗⃗�𝑜𝑥

�⃗�𝑡 + �⃗⃗�𝑜]

ℎ⃗⃗𝑡 = tanh(𝐶𝑡) ⊙ �⃗�𝑡

where �⃗�𝑡 corresponds to output of the third sigmoid activation, �⃗⃗⃗⃗�𝑜ℎ
 is the weight

vector of output gate’s hidden state, �⃗⃗⃗⃗�𝑜𝑥
 denotes the weight vector of output gate’s input

and lastly �⃗⃗�𝑜 is the bias vector of the output gate.

2.4.5. Sequence-to-Sequence Model

Sequence-to-sequence (Seq2Seq) is a two multilayered LSTM (Sutskever,

Vinyals and Le 2014) that has been popularly used in real life problems such as Google’s

Machine Learning Translation (Wu et al. 2016) and Apple’s Siri speech to text (Siri Team

2017). The first multilayered LSTM, known as encoder, takes input in form of a sequence

and turns into a context vector. The context vector is a fixed-length vector that is used to

capture the similarity of use among the input (Gallant 2000). The second multilayered

LSTM, known as decoder, decodes the target sequence from the context vector to output.

(2.38)

(2.39)

43

In order to train a Seq2Seq model, encoder’s and decoder’s input sequence

requires a special token to represent the end of the sequence (EOS), but decoder’s input

sequence requires an additional special token to represent the start of the sequence (SOS).

The aim of encoder is to understand the meaning of input sequence and generate the

context vector for the decoder. The encoder stops when EOS is received, the context

vector and the SOS is passed to the decoder. The decoder starts generating outputs

sequentially when the SOS is received. The training is completed when the EOS is

generated by the decoder.

Figure 2.21. Seq2Seq Encoder-Decoder Model

To facilitate the understanding let’s assume that we have an input sequence �⃗� and

an output sequence �⃗⃗� represented as the following equations ("Write A Sequence To

Sequence (Seq2seq) Model — Chainer 7.8.0 Documentation", n.d.)

�⃗� = {𝑥1, 𝑥2, … , 𝑥𝑛}

= (𝑥𝑖)𝑖=1
𝑛

�⃗⃗� = {𝑦1, 𝑦2, … , 𝑦𝑛}

= (𝑦𝑗)𝑗=1

𝑛

The model generates output by using the conditional probability. In high level, we

can say that we are generating an output sequence �⃗⃗� given by an input sequence �⃗� whose

conditional probability can be written as ("Write A Sequence To Sequence (Seq2seq)

Model — Chainer 7.8.0 Documentation", n.d.)

(2.40)

(2.41)

44

𝑃(�⃗⃗�|�⃗�) =
𝑃(�⃗⃗�∩�⃗⃗�)

𝑃(�⃗⃗�)

where, P(.) is the probability operator. However, the model does not use the given

Eq. (2.42). Recall that Seq2Seq gets a sequence of inputs and starts generating outputs

sequentially. Then, the actual probability that model uses is given by

𝑃(𝑦𝑗|�⃗⃗�<𝑗, �⃗�) =
𝑃(𝑦𝑗 ∩ (�⃗⃗�<𝑗, �⃗�))

𝑃(�⃗⃗�<𝑗, �⃗�)

where 𝑦𝑗 is the jth element of output sequence, �⃗⃗�<𝑗 denotes the output sequence

from 1 to j-1. By using this notation, Eq. (2.42) can be rewritten as

𝑃𝜃(�⃗⃗�|�⃗�) = ∏𝑃𝜃(𝑦𝑗|�⃗⃗�𝑗, �⃗�)

𝑛+1

𝑗=1

So far, this was the basic structure of a Seq2Seq model was given. This model’s

training can be improved by using Teacher Forcing Method. The teacher represents the

ground truth (Keneshloo et al. 2019). The ground truth is given to decoder during training

for improvement. As a result of that the model converges faster and the predictions are

improved.

Figure 2.22. Seq2Seq Model with Teacher Forcing

(2.42)

(2.43)

(2.44)

45

2.4.6. Temperature Sampling

Temperature sampling, a standard technique for language models, is used to

improve the quality of samples (Stewart 2016). The sampling method is inspired by

statistical thermodynamics. In statistical thermodynamics, the probability of encountering

low energy states is more likely when the temperature is high. The same idea can be

applied to probability models. In probability models, logits, which are the predictions,

correspond to energy states. The logits are divided by the temperature values before the

SoftMax (Mann 2019). The temperature sampling expression is given by

𝑞𝑖 =
𝑒(

𝑧𝑖
𝑇

)

∑ 𝑒(
𝑧𝑗

𝑇
)

𝑗

where, 𝑞𝑖 is the element of �⃗� = {𝑞1, 𝑞2, … , 𝑞𝑛} which is the new probabilities, and

both 𝑧𝑖 and 𝑧𝑗 are the elements of 𝑧 = {𝑧1, 𝑧2, … , 𝑧𝑛} which is the previous probabilities.

As 𝑇 → 1, the sampling method generates more repetitive and low-quality

samples. On the contrary, samples produced as 𝑇 → 0 will be more diverse and unique.

When 𝑇 = 0, model is corresponding to max likelihood and as 𝑇 → ∞ model turns into

a uniform sampling.

(2.45)

46

CHAPTER 3

MIDI DRUM ACCOMPANIMENT NETWORK

Whatever the mind can conceive and believe,

it can achieve.

-Napeloen Hill-

3.1. Introduction

In this chapter, we describe the steps of the development of a midi drum

accompaniment network. The main idea of the midi drum accompaniment network is to

create a relationship between drum patterns and other instruments. In order to accomplish

the idea, the dataset contents are sampled by time as the first step. Secondly, these samples

are separated into two different vectors which are going to form the input and output of

the network for training. The input vector contains every information of all the

instruments’ note pitches and velocities except for the drums. The output vector only

contains the drums’ note pitches and velocities. However, for the output vector, we have

considered the most used 22 drum notes instead of every MIDI note. The reason is that to

simplify the model and eliminate the unnecessary information. In generation part, the

same idea is applied. However, in this part only the input vector is taken into the

consideration and previously trained weights are used. A user interfaces are developed

for the network and players.

The following sections are organized as follows. In Section 3.2, we describe the

proposed work to train and develop the midi drum accompaniment network. In Section

3.2.1, we provide a detailed explanation of preprocessing steps of the midi dataset. In

Section 3.2.2, we explain the neural network training. In Section 3.2.3, we provide

information on generating new unique drum patterns. In Section 3.3, we summarize and

present the training and prediction results.

47

3.2. Proposed Work

We propose using Seq2Seq model on MIDI data not to create new songs but make

an accompaniment network. Seq2Seq model along with LSTM architecture works well

on time series data. Since each instrument’s note in a MIDI data has their own time to

play, it is considered to be a time series data. The main idea of Seq2Seq is to make a

relationship between two sequences. In the thesis, we trained the network by using both

note pitches and velocities. By using the combination of two information, generated

patterns become more humanized. In the generation part, we used a sampling method that

has been used widely in NLP applications. This sampling method is called temperature

sampling. Temperature sampling increases the quality of generated patterns so that they

become more unique and more exciting. In addition, we add a user parameter called

complexity which is basically the temperature value in the sampling. The complexity

value allows user to choose if generated patterns have a more complex combination of

notes or not.

The network is trained by using six different datasets are used. These datasets are

from the different genres which are rock, pop, hiphop-rap, jazz, blues, and the

combination of these genres which is named as the shuffle. The flowchart of the training

and generating part of the network can be seen in the following figure

Figure 3.1. MIDI Drum Accompaniment Network Flowchart

48

3.2.1. Preprocessing

In order to parse midi files, an open-source library called “pretty_midi” was used

(Raffel and Ellis, 2014). The library takes a midi file as an input and outputs the

information such as instrument, pitch value, notes starting and ending times, and velocity,

etc. By default, the library reads the midi file in instrument order, and outputs the note

information for each instrument. An example of a parsed midi file can be seen in the

following figure.

Figure 3.2. Parsed MIDI Data of a MIDI File

49

The library uses a special condition called “is_drum” because percussive

instruments have a special channel, which is 9. The parsed midi files are still needed to

be reordered in time since the order of the notes in a song is important. The problem was

solved by reordering every midi file data according to time and storing into a data frame

by using the library called “pandas” (McKinney 2010).

Table 3.1. MIDI Data Sorted by Start Timings

(cont. on next page)

Index Start End Pitch Instrument Velocity

0 2.03636 2.13636 37 0-Drum 109

1 2.03636 2.13636 44 0-Drum 109

2 2.03636 2.13636 51 0-Drum 109

3 2.03636 2.56591 64 4-Electric Piano 1 109

4 2.62727 2.72727 44 0-Drum 109

5 2.62727 2.79091 66 4-Electric Piano 1 109

6 3.06136 3.16136 37 0-Drum 109

7 3.06136 3.16136 44 0-Drum 109

8 3.06136 3.16136 51 0-Drum 109

9 3.06136 3.33636 67 4-Electric Piano 1 109

10 3.40909 3.50909 51 0-Drum 118

11 3.40909 5.39545 72 4-Electric Piano 1 118

12 3.5 4.37273 33 32-Acoustic Bass 80

13 3.8 3.9 35 0-Drum 30

14 3.8 3.9 51 0-Drum 30

15 3.90909 4.00909 51 0-Drum 60

16 3.90909 4.025 55 24-Acoustic Guitar (nylon) 60

17 3.91364 4.05 60 4-Electric Piano 1 47

18 3.91364 4.05 64 4-Electric Piano 1 47

19 3.91364 4.05 67 4-Electric Piano 1 47

20 3.91364 4.05 69 4-Electric Piano 1 47

21 3.92045 4.03636 60 24-Acoustic Guitar (nylon) 31

22 4.23636 4.33636 42 0-Drum 90

23 4.23636 4.33636 51 0-Drum 90

24 4.34773 4.44773 35 0-Drum 80

25 4.34773 4.44773 51 0-Drum 80

26 4.38409 5.21818 28 32-Acoustic Bass 72

27 4.65227 4.75227 42 0-Drum 45

28 4.65227 4.75227 53 0-Drum 45

29 4.65227 4.81136 60 4-Electric Piano 1 45

30 4.65227 4.81136 64 4-Electric Piano 1 45

31 4.65227 4.81136 67 4-Electric Piano 1 45

32 4.65227 4.81136 69 4-Electric Piano 1 45

33 4.78182 4.88182 35 0-Drum 100

34 4.78182 4.88182 51 0-Drum 100

35 4.78182 4.89773 55 24-Acoustic Guitar (nylon) 66

36 4.78182 4.91364 60 24-Acoustic Guitar (nylon) 52

50

Table 3.1. (cont.)

As pointed out in the prologue of the chapter, additional preprocessing steps are

needed to form the input and output for the training. First, dataset contents were sampled

at each starting time point. Then, the samples were given as

𝑡 → 𝑡1: 𝑠𝑎𝑚𝑝𝑙𝑒1 = [[

𝑛11
𝑣11

𝑏11

] , [

𝑛12
𝑣12

𝑏12

] , … , [

𝑛1𝑘
𝑣1𝑘

𝑏1𝑘

]]

𝑡 → 𝑡2: 𝑠𝑎𝑚𝑝𝑙𝑒2 = [[

𝑛21
𝑣21

𝑏21

] , [

𝑛22
𝑣22

𝑏22

] , … , [

𝑛2𝑘
𝑣2𝑘

𝑏2𝑘

]]

⋮

𝑡 → 𝑡𝑚: 𝑠𝑎𝑚𝑝𝑙𝑒𝑚 = [[

𝑛𝑚1
𝑣𝑚1

𝑏𝑚1

] , [

𝑛𝑚2
𝑣𝑚2

𝑏𝑚2

] , … , [

𝑛𝑚𝑘
𝑣𝑚𝑘

𝑏𝑚𝑘

]]

where 𝑡1, 𝑡2, … , 𝑡𝑚 denotes the starting time of each sample, m denotes the number

of samples, k denotes the data point inside a sample, and, n, v, b are the note’s pitch,

velocity, and instrument values respectively. The instrument type is a binary value where

𝑏 = 1 corresponds to drums, and 𝑏 = 0 means that the note and velocity value of that

sample corresponds to any other instrument. In the end, each sample which didn’t have

the combination of drums and other instruments was removed from the sample set.

In the next step, the sample contents were separated to form the input and output.

The input vector contained every instrument’s note pitch and velocity information except

drums. On the other hand, the output vector contained only the drums’ note pitch and

velocity information. Notice that each sample can have different number of drum and

other instrument combinations. As a result, the number of input and output nodes may

37 5.10455 5.20455 51 0-Drum 70

38 5.21818 5.31818 35 0-Drum 80

39 5.21818 5.31818 42 0-Drum 80

40 5.23864 6.11136 38 32-Acoustic Bass 80

(3.1)

(3.2)

(3.3)

51

need to be flexible. In order to achieve this, we used a hyperparameter called maximum

pattern length. The hyperparameter is usually set to the number of most used instrument

in a sample. However, the pattern length also effects the network’s learning process.

When the pattern length is too short or too long, network starts to learn very slowly or not

at all. In such a case, we may want to increase or decrease the pattern length. To keep the

preprocessing simple, we initialized both input and output vectors with zeros. With this

initialization, any pattern less than the maximum pattern length became zero padded. On

the contrary, for patterns longer than the maximum pattern length, only elements up to

the first maximum pattern length were used. In the thesis, the pattern length was chosen

to be 20 by trial and error. Therefore, the input vector and output vector were given as

𝑖𝑛𝑝𝑢𝑡𝑀𝑥𝑁𝑥2, 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑥𝑁𝑥2 = 0𝑀𝑥𝑁𝑥2

𝑖𝑛𝑝𝑢𝑡𝑀𝑥𝑁𝑥2, 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑥𝑁𝑥2 = {
[
𝑛𝑚𝑘
𝑣𝑚𝑘

] ∈ 𝑖𝑛𝑝𝑢𝑡𝑚,𝑘 𝑖𝑓 𝑏𝑚𝑘
= 0

 [
𝑛𝑚𝑘
𝑣𝑚𝑘

] ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑚,𝑘 𝑖𝑓 𝑏𝑚𝑘
= 1

where 𝑖𝑛𝑝𝑢𝑡𝑀𝑥𝑁𝑥2, 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑥𝑁𝑥2, and 0𝑀𝑥𝑁𝑥2 are the input vector, output vector

and the zero matrix respectively with the shape of 𝑀𝑥𝑁𝑥2 where M denotes the number

of samples, and K denotes the maximum pattern length, and the first column represents

the note pitch values whereas second column represents the velocity values.

As the last step input and output vectors were one-hot encoded for the training.

Recall that in Section 2.1.2, we mentioned that there are total of 128 note pitch and

velocity values in a MIDI file. On the other hand, we have only 22 drum notes and an

extra zero value that comes from the zero padding. As a result of that, the model’s input

was one-hot encoded with 128 elements, but the model’s note output and the model’s

velocity were one-hot encoded with 23 and 128 elements respectively.

To facilitate the understanding, we want to give an example of preprocessing a

dataset. Let’s assume that we are given the Table 3.1 as our dataset. Then, samples are as

follows

𝑡 → 2.03636𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒1 = [[
37
109
1

] , [
44
109
1

] , [
51
109
1

] , [
64
109
0

]]

(3.4)

(3.5)

(3.6)

52

𝑡 → 2.62727𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒2 = [[
44
109
1

] , [
66
109
0

]]

 𝑡 → 3.06136𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒3 = [[
37
109
1

] , [
44
109
1

] , [
51
109
1

] , [
67
109
0

]]

 𝑡 → 3.40909𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒4 = [[
51
118
1

] , [
72
118
0

]]

 𝑡 → 3.90909𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒5 = [[
51
60
1

] , [
55
60
0

]]

 𝑡 → 4.65227𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒6 = [[
42
45
1

] , [
53
45
1

] , [
60
45
0

] , [
64
45
0

] , [
67
45
0

] , [
69
45
0

]]

 𝑡 → 4.78182𝑠 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒7 = [[
35
100
1

] , [
51
100
1

] , [
55
66
0

] , [
60
52
0

]]

Notice that we have only 7 samples out of 40 data points. As mentioned earlier,

we exclude the samples that don’t include drums and other instruments. Each sample must

have at least one drum and one another instrument information. Also remember that input

and output vectors must be initialized according to maximum pattern length. In this

example, longest sample is the 6th sample. 6th sample has 2 drum information and 4 other

instrument information. Therefore, the maximum pattern length is selected to be 4. Then,

by using Eq. (3.4) input and output vectors are initialized as follows

𝑖𝑛𝑝𝑢𝑡 = 07𝑥4𝑥2

=

[

 [

0
0
] ⋯ [

0
0
]

⋮ ⋱ ⋮

[
0
0
] ⋯ [

0
0
]]

7𝑥4𝑥2

 (3.13)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

53

𝑜𝑢𝑡𝑝𝑢𝑡 = 07𝑥4𝑥2

=

[

 [

0
0
] ⋯ [

0
0
]

⋮ ⋱ ⋮

[
0
0
] ⋯ [

0
0
]]

7𝑥4𝑥2

and by using Eq. (3.5) input and output vectors can be written as

𝑖𝑛𝑝𝑢𝑡 =

[

 [

64
109

] [
0
0
] [

0
0
] [

0
0
]

[
66
109

] [
0
0
] [

0
0
] [

0
0
]

[
67
109

] [
0
0
] [

0
0
] [

0
0
]

[
72
118

] [
0
0
] [

0
0
] [

0
0
]

[
55
60

] [
0
0
] [

0
0
] [

0
0
]

[
60
45

] [
64
45

] [
67
45

] [
69
45

]

[
55
66

] [
60
52

] [
0
0
] [

0
0
]]

7𝑥4𝑥2

𝑜𝑢𝑡𝑝𝑢𝑡 =

[

 [

37
109

] [
44
109

] [
51
109

] [
0
0
]

[
44
109

] [
0
0
] [

0
0
] [

0
0
]

[
37
109

] [
44
109

] [
51
109

] [
0
0
]

[
51
118

] [
0
0
] [

0
0
] [

0
0
]

[
51
60

] [
0
0
] [

0
0
] [

0
0
]

[
42
45

] [
53
45

] [
0
0
] [

0
0
]

[
35
100

] [
51
100

] [
0
0
] [

0
0
]]

7𝑥4𝑥2

Before moving on the last step, let’s define an expression to represent the one-hot

encoded vector for simplification. The expression is given as

𝑂𝐻𝐸[𝑖, 𝑗] = [0 … 𝑖 … 0]1𝑥𝑗

(3.14)

(3.15)

(3.16)

(3.17)

54

where 𝑖, 𝑗 ∈ 𝑍+, 𝑗 ≥ 𝑖 and 𝑖 denotes the location of 1, and 𝑗 denotes total number

of elements inside the vector. For example,

𝑂𝐻𝐸[5,8] = [0 0 0 0 1 0 0 0]1𝑥8

𝑂𝐻𝐸[2,3] = [0 1 0]1𝑥3

𝑂𝐻𝐸[1,5] = [1 0 0 0 0]1𝑥5

Recall that we decided to use the most frequently used 22 drum notes.

Furthermore, we zero padded the output and ended up with total of 23 different note

values instead of 128 different MIDI notes. In addition, each element’s position doesn’t

correspond the actual integer value as it did for the input notes and velocity values.

Therefore, the values should be sorted from smallest to largest first, and then each value

should be represented by their position. The sorted drum note values are given as follows

𝑑𝑟𝑢𝑚𝑛𝑜𝑡𝑒𝑣𝑎𝑙𝑢𝑒𝑠

= [0,35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 59]

Thus, the same OHE expression can be used with a slight change in meaning. This

change of meaning can be seen in the example below, where the corresponding value in

the OHE expression is the position of the drum note value instead of the actual value.

With an extra step the actual drum value can be obtained easily.

𝑂𝐻𝐸[5,23] = [0 0 0 0 1 0 … 0]1𝑥128

= 𝑑𝑟𝑢𝑚𝑣𝑎𝑙𝑢𝑒𝑠[5]

= 38

After applying the one-hot encoding, the model’s input, 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑖𝑛𝑝𝑢𝑡, and

model’s outputs, 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑛𝑜𝑡𝑒𝑠𝑜𝑢𝑡𝑝𝑢𝑡
 and 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑜𝑢𝑡𝑝𝑢𝑡

, can be written as

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

55

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑖𝑛𝑝𝑢𝑡

=

[

 [

𝑂𝐻𝐸[65,128]
𝑂𝐻𝐸[110,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]

[
𝑂𝐻𝐸[67,128]
𝑂𝐻𝐸[110,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]

[
𝑂𝐻𝐸[68,128]
𝑂𝐻𝐸[110,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]

[
𝑂𝐻𝐸[73,128]
𝑂𝐻𝐸[119,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]

[
𝑂𝐻𝐸[56,128]
𝑂𝐻𝐸[61,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]

[
𝑂𝐻𝐸[61,128]
𝑂𝐻𝐸[46,128]

] [
𝑂𝐻𝐸[65,128]
𝑂𝐻𝐸[46,128]

] [
𝑂𝐻𝐸[68,128]
𝑂𝐻𝐸[46,128]

] [
𝑂𝐻𝐸[70,128]
𝑂𝐻𝐸[61,128]

]

[
𝑂𝐻𝐸[56,128]
𝑂𝐻𝐸[67,128]

] [
𝑂𝐻𝐸[61,128]
𝑂𝐻𝐸[53,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

] [
𝑂𝐻𝐸[1,128]
𝑂𝐻𝐸[1,128]

]
]

7𝑥4𝑥2𝑥128

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑛𝑜𝑡𝑒𝑠𝑜𝑢𝑡𝑝𝑢𝑡

=

[

[𝑂𝐻𝐸[4,23]] [𝑂𝐻𝐸[10,23]] [𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[1,23]]
[𝑂𝐻𝐸[10,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]]
[𝑂𝐻𝐸[38,23]] [𝑂𝐻𝐸[10,23]] [𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[1,23]]
[𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]]

[𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]]
[𝑂𝐻𝐸[8,23]] [𝑂𝐻𝐸[19,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]]
[𝑂𝐻𝐸[3,23]] [𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[1,23]] [𝑂𝐻𝐸[1,23]]]

7𝑥4𝑥1𝑥23

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑜𝑢𝑡𝑝𝑢𝑡

=

[

[𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[1,128]]
[𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]]
[𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[110,128]] [𝑂𝐻𝐸[1,128]]
[𝑂𝐻𝐸[119,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]]

[𝑂𝐻𝐸[61,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]]
[𝑂𝐻𝐸[46,128]] [𝑂𝐻𝐸[46,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]]
[𝑂𝐻𝐸[101,128]] [𝑂𝐻𝐸[101,128]] [𝑂𝐻𝐸[1,128]] [𝑂𝐻𝐸[1,128]]]

7𝑥4𝑥1𝑥128

In this section, we described the preprocessing steps that had applied during the

thesis. The main reason we used these specific preprocessing steps was to improve the

network. In the following section, we are going to describe the type of neural network

that is preferred, and training processes used in the thesis.

(3.25)

(3.24)

(3.23)

56

3.2.2. Training Model

The network training was completed by using open-source libraries called

“Tensorflow” (Abadi et al. 2015) and “Keras” (Gulli and Pal 2017). A total of three

models were created, one for training and the other two for prediction. Each sample was

separated into notes and velocities before feeding the training input. Then, inputs were

masked with the one-hot encoded version of “0” because we used “0” for padding in

preprocessing. By masking the input values, we were essentially telling that the masked

value had no effect on the dataset.

 In order to construct the Seq2Seq model, we started off by using LSTM

architectures with 512 layers. Then, instead of taking the output of the LSTM layers, we

used their hidden states and passed them to another LSTM. By concatenating two LSTMs

and passing the context vector, we were able to develop an Encoder-Decoder Seq2Seq

model where encoder is the first LSTM, and the decoder is the second LSTM. In addition,

SoftMax activation was used in the last layer of the models. The graphical representation

of training model can be seen in the figure given below.

Figure 3.3. Encoder Training Model for Notes and Velocities

57

As it can be seen in Figure 3.3, there are two different inputs which are for encoder

and decoder. The reason for that is the Teacher Forcing Method. In this method, we

provide ground truth values to the decoder to increase the efficiency of the network. To

explain the shapes that are seen in the figure, we start off with encoder inputs. Encoder

inputs have the shape of (None, 20, 128). The first shape variable represents the total

number of samples in a dataset, but since it is not given during the model creation it is

labeled as none. Recall that in the previous section we decided to preprocess data with a

maximum pattern length of 20, which is also represented by the second shape variable.

The last variable shape, 128, represents the total number of features. The reason for the

last variable shape to be 128 is because there are total of 128 different notes and velocities

in a MIDI file. Next, encoder inputs were masked in order to skip the timesteps that were

used for padding and fed into LSTM architecture with 512 layers. The encoder has three

different outputs with each of them having the shape of (None, 512). The reason for that

is the LSTM has three different outputs which are network output, hidden state, and cell

state. Hidden state and Cell state forms the context vector. Then, decoder input is fed into

decoder LSTM. Notice that note’s decoder input has the shape of (None, None, 23). The

reason for the difference between note’s decoder input and velocity’s decoder input is

that there are possibilities for 23 drum notes.

The model was trained on a Tesla K80 GPU, which is provided by Google

Colaboratory (Google Research 2017), in order to accelerate the learning process. In

addition, the model trained by using six different datasets. Each dataset was trained with

200 epochs and 64 batch size. Categorical Cross Entropy and Adam was used as the loss

function and as the optimizer respectively. To improve the learning capability of the

network, the learning rate was decreased gradually each time when the difference of three

consecutive losses was no more than 0.01. At the end, model weights were saved for

prediction. The number of samples each dataset contained is given in the following table.

Table 3.2. Number of Samples in Datasets

Dataset Name Number of MIDI Files Number of Samples

Blues 54 32039

HipHop-Rap 42 24595

Jazz 43 24941

(cont. on next page)

58

Table 3.2. (cont.)

3.2.3. Generator Model

The goal of designing this model was to generate drum patterns that feels human-

made and unique. However, the training network cannot be directly used for the

prediction. The reason for that is due to using the teacher forcing method for training. The

teacher forcing method expects ground truth/correct output, but during prediction we

won’t be able to know the ground truth for a given input. Thus, we were required a new

Seq2Seq model for prediction. The new model didn’t use the teacher forcing method.

However, we used the context vector of the training model through the saved training

weights. The graphical representation of new Seq2Seq model’s encoder and decoder for

the prediction can be seen in the following figures.

Figure 3.4. Encoder Prediction Model for Notes and Velocities

Pop 53 35245

Rock 42 39999

Shuffle 58 41414

59

Figure 3.5. Decoder Prediction Model for Notes and Velocities

Encoder prediction model is using the same input layer, masking layer and LSTM

architecture as the encoder training model. Weights were loaded from the context vector

of training model. The decoder prediction model’s input layer was provided with an initial

input which starts with the SOS special token since it requires a dynamical information.

Then, decoder continued to predict new output by using previous time instant output as

its input. In addition, during prediction we used a complexity value to improve the quality

of the generated patterns. The complexity value is the temperature value mentioned in the

temperature sampling method described in the previous chapter. In general, these types

of models use highest probabilistic values as the next output. By using the complexity

value, we improved the quality of the patterns.

A user interface (UI) was developed to ease the user access by using an open-

source python library called “tkinter” (Lundh 1999). The UI was designed to increase

user’s flexibility and experience. The UI consists of two tabs which are called “Main Tab”

and “Instrument Selection”. In main tab, user is able to choose the input and output file

directories, music genre, and the complexity value. Choosing complexity value closer to

0 produces less complex drum patterns whereas choosing complexity value closer to 1

result in the most complex patterns. The second tab, “Instrument Selection”, is provided

for users who want more control over the generated drum parts. In this tab, the user can

adjust the presence of the drum instruments and decide which instruments should be

played.

60

Figure 3.6. UI Main Tab

Figure 3.7. UI Instrument Selection Tab

61

3.3. Results

In the scope of this study, the goal was to create an AI software that is able to

assist with drums for the music groups, music producers, and any individual who is

interested in music. The idea was to understand the harmony between the drum notes and

other notes in each interval taken from the song. In this study, MIDI was chosen as the

dataset file format because it has easy access to a lot of music information. Every MIDI

file was separated into samples and the input, and the output were constructed for the

neural network model as they are given in Eq. (3.15) and (3.16). Afterward, the input and

output were one-hot encoded and made ready for training. Seq2Seq neural network model

trained with a total of six different music genres which are blues, jazz, hiphop-rap, pop,

rock, and shuffle. The training continued for 200 epochs for each dataset and learning rate

was gradually decreased the improve the loss and accuracy. In the Figure 3.9, 3.10 and

3.11, we present the improvement of loss and accuracy and change of learning rate over

epoch graphs for each dataset during the training respectively.

During the training, the dataset was not split as the training and validation so that

we looked for qualitative results rather than quantitative results. The main reason is that

the application is being about art. In order to provide additional insight to these results,

the trained model was used to generate drum parts for a MIDI file that the network never

seen before. The newly created MIDI files can be listened by scanning the QR code

provided at the end of the chapter. By training the model with a diversity of genres, we

aimed to give the user freedom in the production of drum notes so that more original and

interesting drum parts could be generated. Due to easy access to musical information in

MIDI files, MIDI Drum Accompaniment Network also covers already existing drum parts

of a song by replacing them.

62

Figure 3.8. QR Code for Example MIDI Outputs2

2 "MIDI Drum Accompaniment Network". 2022. YouTube.

https://www.youtube.com/playlist?list=PLFhr-SY0apszYp-tto-QvjUIgwpfNnB17.

(Short URL: https://tinyurl.com/bdh44mxp)

https://www.youtube.com/playlist?list=PLFhr-SY0apszYp-tto-QvjUIgwpfNnB17
https://tinyurl.com/bdh44mxp

63

6
3

Figure 3.9. MIDINETWORK - Losses of Note and Velocity over Epochs

64

6
4

Figure 3.10. MIDINETWORK - Accuracies of Note and Velocity over Epochs

65

6
5

Figure 3.11. MIDINETWORK - Change of Learning Rate over Epochs

66

3.4. Discussion

In this chapter, we gave a detailed explanation of the MIDI accompany network’s

working principles. The goal was to make a model that was able to accompany and/or

rewrite the drum parts of a song. In order to accomplish this goal, the necessary features

were extracted from the MIDI format. Moreover, Seq2Seq model was used to understand

the relationship between input data and drum output data. In addition, a UI was created

to ease the access for the user. The network was made for people who enjoys the music,

for music groups to give an inspiration, and for music producers.

In the study, even though each piece of data in MIDI format belongs to an

instrument, we treated the input information as it belongs to a single instrument.

Moreover, we only used two features which were notes and their corresponding

velocities. These decisions reduced the model’s complexity and accelerated the training,

and the model became simpler.

The algorithm described in this chapter can be improved in different ways. First

and foremost, the simplest way to improve the model's capabilities is to train the model

not only for drums but for other instruments individually. Thus, the model will be able to

accompany the track with any instrument that the user prefers. The second idea of the

improvement is to use the starting time difference between two successive notes as well

as the duration of the notes as the additional features. Hence, we can also produce these

features in output during generation, allowing our model to have a distinct influence on

rhythm. Furthermore, the model can be implemented to work in real-time. Lastly, the

model’s quantitative results can be calculated by using basic rules of making drum

patterns as the reference.

67

CHAPTER 4

WAV DRUM ACCOMPANIMENT NETWORK

Creativity is seeing what others see and

thinking what no one else has ever thought.

-Albert Einstein-

4.1. Introduction

In this chapter, we propose a novel approach to generate drum parts for the

complex raw waveform signals in WAV files. Since waveform signals have a mixture of

multiple frequencies and noise in them, it is hard to extract every note's information. We

utilize the MIDI dataset combined with waveform signals generated from this dataset for

the training. By using this idea, we are able to reach necessary information to create the

model's input and output. The main idea is to extract signal’s characteristic features such

as Mel spectrogram, MFCC, and tempogram from its MIDI form. Then, we use a neural

network model in a way that it can extract the relationship between these features and

originally accompanied drum notes. Thus, in the generation part we are able to drop out

MIDI data and use any WAV file as input.

The remainder of this chapter is organized as follows: In Section 4.2, we describe

the proposed work to train and develop the WAV drum accompaniment network. In

Section 4.2.1, we provide a detailed explanation of preprocessing steps followed by model

training in Section 4.2.2. In Section 4.2.3 we explain the generating part of the model. In

Section 4.3, we present the training and prediction results.

4.2. Proposed Work

We propose using the idea of image captioning models to make a relationship

between the features and drum notes. Image captioning models usually use a pretrained

CNN networks before their LSTM models. However, since the characteristics of signals

68

are different than pretrained images of a pretrained CNN, we decided to retrain it. In

addition, we decided to use Seq2Seq model due to its success in MIDI accompaniment

network.

We start by sampling the MIDI dataset. Then, the model’s input was converted to

WAV files and Mel spectrogram, MFCC, and tempogram features were extracted. The

model’s output was kept as the sequence of drum notes and velocities. Although there are

128 different notes in a MIDI file, we decided to choose 22 notes that are mostly used in

drum instruments. The idea was to make neural network model to understand the

relationship between actual signal’s features and drum information so that we will be able

to accompany any given WAV file when the training is complete. Similarly, the

temperature sampling method was used in the generator model to obtain unique and

exciting drum patterns. The network was trained by using a dataset containing six

different genres. Additionally, a UI was created to ease the user access.

4.2.1. Preprocessing

After converting MIDI input sequence to waveform with a sample rate of 44100

Mel spectrogram, MFCC, and tempogram were computed using 1024 point FFT where

hop length is 512, and number of MFCC is 128. Then, these features were stacked on top

of each other, and a 3-channel RGB image-like feature array was created. Thus, we were

able to generate an input that can also be extracted from the raw WAV files, which can

then be used in the generator model.

We aimed to obtain time-frequency information of the input notes by using Mel

spectrogram. The main reason for using Mel spectrogram was due to its logarithmic scale

which is a good approximation for human hearing. In addition, we used MFCC as another

feature to cover any missing information from the Mel spectrogram. Lastly, the

tempogram was used to get the tempo characteristic of the song. Although the input’s

pattern length didn’t need to be limited, the maximum pattern length was used as same as

the before, which was 20, for the model’s output.

Before going further and explain each step deeper, we want to give the

preprocessing flowchart below to facilitate the understanding of the idea.

69

Figure 4.1. Preprocessing Steps of the WAV Accompaniment Network

Given that each input data is sampled with a rectangular window, the modified

equations, Eq. (3.1), (3.2), and (3.3), for the sampling can be written as

𝑡0 ≤ 𝑡 < 𝑡1 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒1 = [[

𝑛11
𝑣11

𝑏11

] , [

𝑛12
𝑣12

𝑏12

] , … , [

𝑛1𝑘
𝑣1𝑘

𝑏1𝑘

]]

𝑡1 ≤ 𝑡 < 𝑡2 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒2 = [[

𝑛21
𝑣21

𝑏21

] , [

𝑛22
𝑣22

𝑏22

] , … , [

𝑛2𝑘
𝑣2𝑘

𝑏2𝑘

]]

⋮

(4.1)

(4.2)

70

𝑡𝑚−1 ≤ 𝑡 < 𝑡𝑚 ∶ 𝑠𝑎𝑚𝑝𝑙𝑒𝑚 = [[

𝑛𝑚1
𝑣𝑚1

𝑏𝑚1

] , [

𝑛𝑚2
𝑣𝑚2

𝑏𝑚2

] , … , [

𝑛𝑚𝑘
𝑣𝑚𝑘

𝑏𝑚𝑘

]]

where 𝑡0 corresponds to initial starting time of the MIDI file and the sample’s next

time instant is calculated as 𝑡𝑖+1 = ∑ 𝑡𝑖 + 𝑡𝑤
𝑚
𝑖=0 . 𝑡𝑤 denotes the window length in

seconds, 𝑛, 𝑣 are note’s pitch, and velocity respectively, the number of samples denoted

by 𝑚 = {𝜂 ∶ 𝜂 ≥ 1, 𝜂 ∈ 𝑍+}, and 𝑏 is the instrument number where 𝑏 = 1 corresponds to

drums, and 𝑏 = 0 means that the note and velocity value of that sample corresponds to

any other instrument but drums.

In the thesis, the rectangular window’s length, 𝑡𝑤, was chosen as 1 second. If the

window size is chosen too short, the model’s training time goes up due to the increased

number of input-output pairs, which also improves the performance of the model. On the

other hand, if the sampling rate is chosen too high, the model’s training time goes down

and the performance of the model is compromised.

We changed the input type to be an 𝑚-tuple instead of a matrix, where 𝑚 is the

number of samples. The reason was that the input samples didn’t need to be zero padded

since they were going to be converted into WAV signals. However, before the

calculations of the features any WAV file whose length is less than 1 second were zero

padded. Furthermore, Eq (3.5) was used to calculate the input and Eq. (3.4) and (3.5) were

used for the output. Then, every row of input tuple converted to WAV file by using

FluidSynth library (Newmarch 2017). The Mel spectrogram, MFCC, and tempogram

features were extracted from the sample by using librosa library (McFee et al. 2015).

Thereafter, these features were stacked on top of each other, and the model’s input vector

was made ready. No additional steps were required for the model’s output vector, and

they were calculated by using Eq. (3.4), (3.5), (3.14), (3.17), (3.21), (3.24) and (3.25).

To ease the understanding of the steps better, we would like to explain the concept

with an example. Let’s assume that we are given the Table 3.1 as our dataset and the

rectangular window’s length, 𝑡𝑤, is chosen as 1 second as described above. Lastly, we

choose the maximum pattern length to be 20. Furthermore, we choose number of FFT to

be 1024, hop length to be 512, and number of MFCC to be 20 for this example. Then,

samples can be written as follows

(4.3)

71

2.03636𝑠 ≤ 𝑡 < 3.03636𝑠 ∶

𝑠𝑎𝑚𝑝𝑙𝑒1 = [[
37
109
1

] , [
44
109
1

] , [
51
109
1

] , [
64
109
0

] , [
44
109
1

] , [
66
109
0

]]

3.03636𝑠 ≤ 𝑡 < 4.03636𝑠 ∶

𝑠𝑎𝑚𝑝𝑙𝑒2 = [[
37
109
1

] , [
44
109
1

] , [
51
109
1

] , [
67
109
0

] , [
51
118
1

] , [
72
118
0

] , [
33
80
0

] , … , [
60
31
0

]]

4.03636𝑠 ≤ 𝑡 < 5.03636𝑠 ∶

𝑠𝑎𝑚𝑝𝑙𝑒3 = [[
42
90
1

] , [
51
90
1

] , [
35
80
1

] , [
51
80
1

] , [
28
72
0

] , [
42
45
1

] , [
53
45
1

] , [
60
45
0

] , … , [
60
52
0

]]

5.03636𝑠 ≤ 𝑡 < 6.03636𝑠 ∶

𝑠𝑎𝑚𝑝𝑙𝑒4 = [[
51
70
1

] , [
35
80
1

] , [
42
80
1

] , [
38
80
0

]]

Since we want to obtain WAV files of the input sequences, we create an 𝑚-tuple

instead of a matrix as described earlier. Then, by using Eq. (3.5) for the input and Eq.

(3.4) and (3.5) for the output, we obtain the following

𝑖𝑛𝑝𝑢𝑡 =

(

[
64
109

] [
66
109

]

[
67
109

] [
72
118

] [
33
80

] … [
60
31

]

[
28
72

] [
60
45

] … [
60
52

]

[
38
80

])

4

(4.4)

(4.5)

(4.6)

(4.8)

(4.7)

72

𝑜𝑢𝑡𝑝𝑢𝑡 =

[

 [

37
109

] [
44
109

] [
51
109

] [
44
109

] [
0
0
] [

0
0
] … [

0
0
]

[
37
109

] [
44
109

] [
51
109

] [
51
118

] [
0
0
] [

0
0
] … [

0
0
]

[
42
90

] [
51
90

] [
35
80

] [
51
80

] [
42
45

] [
53
45

] … [
0
0
]

[
51
70

] [
35
80

] [
42
80

] [
0
0
] [

0
0
] [

0
0
] … [

0
0
]]

4𝑥20𝑥2

As the next step, new MIDI files are created for each row of the input and their

true note starting and note ending times as well as their instrument type are used from the

Table 3.1. By converting these MIDI files to WAV and zero padding in order to complete

to a second, we get the following signal waveforms,

Figure 4.2. Wav Signal Forms of the Samples

(4.9)

73

Now that we have the signal waveforms of the MIDI data, we can calculate the

input features. First, by following the instructions described in Section 2.3.1 we obtain

the following Mel spectrograms for each sample

Figure 4.3. Mel Spectrogram of the Samples

74

As the next step, the MFCC features of the samples are calculated by following

the instructions described in Section 2.3.2. Thus, we obtain the following MFCCs

Figure 4.4. MFCCs of the Samples

75

Lastly, by using the Eq. (2.5), (2.6), and (2.7) given in Section 2.3.3 the

tempograms are obtained as follows

Figure 4.5. Tempogram of the Samples

76

At the end, these features are concatenated along the 𝑧-axis to create 3 featured

input vectors for the model’s input. Moreover, by using Eq. (3.17) and Eq. (3.21) the

encoded outputs, 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑛𝑜𝑡𝑒𝑠𝑜𝑢𝑡𝑝𝑢𝑡
 and 𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑜𝑢𝑡𝑝𝑢𝑡

, for the model’s output

are obtained as follows

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑛𝑜𝑡𝑒𝑠𝑜𝑢𝑡𝑝𝑢𝑡

=

[

[𝑂𝐻𝐸[4,23]] [𝑂𝐻𝐸[10,23]] [𝑂𝐻𝐸[17,23]] … [𝑂𝐻𝐸[1,23]]

[𝑂𝐻𝐸[4,23]] [𝑂𝐻𝐸[10,23]] [𝑂𝐻𝐸[17,23]] … [𝑂𝐻𝐸[1,23]]

[𝑂𝐻𝐸[8, 23]] [𝑂𝐻𝐸[17,23]] [𝑂𝐻𝐸[2,23]] … [𝑂𝐻𝐸[1,23]]

[𝑂𝐻𝐸[17, 23]] [𝑂𝐻𝐸[2,23]] [𝑂𝐻𝐸[8,23]] … [𝑂𝐻𝐸[1,23]]]

4𝑥20𝑥1𝑥23

𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑜𝑢𝑡𝑝𝑢𝑡

=

[

[𝑂𝐻𝐸[38,128]] [𝑂𝐻𝐸[45,128]] [𝑂𝐻𝐸[52,128]] … [𝑂𝐻𝐸[1,128]]

[𝑂𝐻𝐸[38,128]] [𝑂𝐻𝐸[45,128]] [𝑂𝐻𝐸[52,128]] … [𝑂𝐻𝐸[1,128]]

[𝑂𝐻𝐸[43,128]] [𝑂𝐻𝐸[52,128]] [𝑂𝐻𝐸[36,128]] … [𝑂𝐻𝐸[1,128]]

[𝑂𝐻𝐸[52,128]] [𝑂𝐻𝐸[36,128]] [𝑂𝐻𝐸[43,128]] … [𝑂𝐻𝐸[1,128]]]

4𝑥20𝑥1𝑥128

In this section, the preprocessing steps are described. These steps prepare the

WAV files for further processing. In the next section training procedure is discussed using

the inputs and outputs described above.

4.2.2. Training Model

The traditional neural network models used in time series forecasting aren’t

suitable for raw signal forms alone. In addition, we don’t have a time series input pattern

like we had in Chapter 3. Instead, the input data was preprocessed, and three features were

extracted. Therefore, we require additional steps to analyze the characteristics of the input

features before feeding into a Seq2Seq model. Recall that these features were stacked on

top of each other and represented as a 3-channel RGB image. As a consequence of this,

one of the best models, CNNs, were preferred to analyze this type of data. Thus, we were

able to transform a Seq2Seq application into an image captioning application.

Image captioning is a neural network application which describes contents of an

image with sentences. The model consists of encoder-decoder architecture where the

(4.10)

(4.11)

77

encoder is a CNN, and the decoder is an RNN or an LSTM. The model requires two inputs

one is an image to be described for the encoder, and the other one is a text sequence for

the decoder. The main question that should be answered with this architecture is where to

place the image in a model. To answer this question, the following figure should be

studied with the description of each type.

Figure 4.6. Different Types of the Image Captioning Models

(Source: TANTI, GATT and CAMILLERI 2018)

Moreover, there are three additional architectures that are proposed by Andrej

Karpathy (Karpathy and Fei-Fei 2017), Google (Vinyals et al. 2015), and Microsoft (Tran

et al. 2016). Since Google's architecture was used in the thesis, we are going to explain it

further.

In contrast to other architectures, Google’s architecture uses LSTM instead of

RNN. The architecture is given in the following figure.

78

Figure 4.7. Google's Image Captioning Model

(Source: Vinyals et al. 2015)

The image is fed to the input of the encoder and its features are extracted via a CNN.

Subsequently, the extracted features are given to LSTM as an input, and the context vector

is calculated. The context vector becomes the decoder’s initial hidden state and the

decoder’s input is fed with the corresponding text sequence. Hence, the model trains so

that it is able to make a relationship between the image’s context vector and the target

text sequence. The equations of the architecture (Vinyals et al. 2015) are given as follows

𝑥−1 = 𝐶𝑁𝑁(𝐼)

𝑥𝑡 = 𝑊𝑒𝑆𝑡

𝑝𝑡+1 = 𝐿𝑆𝑇𝑀(𝑥𝑡)

where 𝐼 denotes the input image, 𝑆𝑡 is the one-hot encoded representation of the text

description of the image, 𝑡 ∈ {0, … ,𝑁 − 1} and 𝑁 is the sentence length, 𝑊𝑒 represents

the embedding’s weights, 𝑝𝑡+1 is the probability distribution which is the SoftMax

applied output of the LSTM given in Eq. (2.39).

Now that the working principle of image captioning model is described, we can

update the Seq2Seq model used in MIDI accompany network to work with WAV files.

(4.12)

(4.14)

(4.13)

79

Recall that the inputs preprocessed and 3-channel RGB image like features were created.

Therefore, using the idea of the image captioning model is suitable for the application.

The model given in Figure 2.22 was updated by adding a CNN architecture. Thus, the

new encoder is a combination of CNN and LSTM, but the decoder is still the same as in

our MIDI based model. The new updated Seq2Seq model with teacher forcing can be

seen in the following figure.

Figure 4.8. Updated Seq2Seq Model

In this thesis, ResNet’s model (He et al. 2016) was used as the CNN. ResNet is a

widely used pretrained CNN model for image recognition. Even though the pretrained

network weights are provided, we retrained the network due to the specific nature of our

input images.

The model was trained on a Tesla K80 GPU, which is provided by Google

Colaboratory (Google Research 2017), in order to accelerate the learning process. The

model completed its training in 200 epochs for the six different dataset and same training

parameters were used in Section 3.2.2. The number of samples each dataset contained is

given in the following table.

Table 4.1. Number of Samples in Datasets

(cont. on next page)

Dataset Name Number of MIDI Files Number of Samples

Blues 50 9194

HipHop-Rap 42 8314

Jazz 43 7622

80

Table 4.1. (cont.)

4.2.3. Generator Model

The goal of this application is to give input in a signal form and provide a drum

pattern that is in harmony with the original track. In order to accomplish the task, the

model was trained, using MIDI files, with the physical features that are extracted from

the signal waveforms. Therefore, without the need of the MIDI format, the raw WAV

files can be used as the input for the generator model. In this model, we were not able to

feed the model with the ground truths. Therefore, we used the saved training weights and

dropped out the teacher forcing method. In addition, the temperature sampling method

was used to improve the quality of the generated patterns. Moreover, by their nature, we

know that human drum performers can’t play more than four notes simultaneously.

Therefore, we limited the generator model to generate four consecutive drum samples for

each time instant. In order to generate more natural patterns.

The steps that the generator model follows can be explained further as follows:

the model first takes a given WAV file and by using preprocessing methods mentioned

in Section 4.2.1, the input is prepared for the generation. The features are fed into an

LSTM, which is the last part of the encoder, to extract the context vector. The context

vector is given to the decoder as the initial hidden state, and the SOS token is given as the

input of the decoder in order to start the generation process. Lastly, the model produces

new drum patterns, that includes no more than four drum instruments, for each sample.

Recall that we sampled each WAV file with a rectangular window with the

window length of a second. While there's nothing wrong with that, the newly created

WAV file does feel very artificial when the generated drum patterns are combined with

the original track. This is because the drum patterns formed by sampling WAV files at

one second intervals. The previous work, which is the MIDI accompany network, didn’t

encounter such a problem because each sample of the MIDI file was in sync with the

rhythm so that the generated drum patterns were able to blend in. Thereby, we needed

Pop 50 9607

Rock 41 9496

Shuffle 50 10600

81

either a new sampling technique that is not in a certain time interval or we had to obtain

each note’s starting time as in MIDI format. To alleviate these problems, we preferred to

use the start times of the notes in each sample so that the generated drum patterns will be

able to keep up with the rhythm. One of many ways to solve this problem was to use the

following onset detection algorithm.

The beginning of a music notes or a sound is called an onset. Onset detection

algorithms can work in the time domain, frequency domain, phase domain, and complex

domain. Although the concept of onset, transient, and attack are related to each other,

there are clear differences between them. The onset of a note corresponds to the beginning

of the transient. The attack represents the envelope increase of the amplitude (Bello et al.

2005).

Figure 4.9. Attack, Transient, Decay, Onset of a Single Note

(Source: Bello et al. 2005)

The onset detection algorithm is an active area in music signal processing that has

been used for many applications. One of the applications was used in the research about

generating thumbnails of Irish traditional music (Kelly et al. 2010). The following figure,

which is taken from the research, can be given an example to show capability of the onset

detection to detect note timings. Despite some inaccuracies, we can see that the onset

detection was able to identify the note’s starting positions.

82

Figure 4.10. Onset Detection of an Irish Traditional Music

(Source: Kelly et al. 2010)

By using the onset detection algorithm on the sampled WAV files, we were able

to obtain each note’s starting time. With only a few extra steps, model has started to

produce more humanized and unique results. In addition, the UI, given in Section 3.2.3,

was updated to work with WAV files.

4.3. Results

We used the MIDI format to help analyze the WAV files. As it in the previous

application, MIDI format first separated to input and output parts. The input is converted

to WAV and its Mel spectrogram, MFCC, and tempogram are used as the input features.

The output remained same and the information that belongs to drums were used.

Moreover, the model was trained with six different datasets with 200 epochs each.

In neural network applications, datasets are usually split as training and validation

samples to prevent overfitting and evaluate the model’s performance during training.

However, in this application, the dataset was not split into two and remained as one

training set since the size of the dataset is limited and the main idea of our study is in the

field of art. Therefore, the qualitative results were preferred instead of quantitative. In the

figure 4.12, 4.13, and 4.14, we present the graphs on the improvement of loss and

83

accuracy and change of learning rate over epoch for each dataset. From the graphs, the

one can see that the model is able to converge in 200 epochs.

In the following figure, we provide a QR code to show the example outputs that

has produced by the algorithm. The user is able to generate unique and interesting drum

patterns due to the diversity of genres used in training. As can be seen from these

examples, we can see that using MIDI format to analyze WAV files is a good approach

to overcome the complexity of the raw signals.

Figure 4.11. QR Code for Example WAV Outputs3

3 "WAV Drum Accompaniment Network". 2022. YouTube.

https://www.youtube.com/playlist?list=PLFhr-SY0apsyTBya35OZM_XbYCZJhPIek.

(Short URL: https://tinyurl.com/3twf9ht4)

https://www.youtube.com/playlist?list=PLFhr-SY0apsyTBya35OZM_XbYCZJhPIek
https://tinyurl.com/3twf9ht4

8
4

Figure 4.12. WAVNETWORK - Losses of Note and Velocity over Epochs

8
5

Figure 4.13. WAVNETWORK - Accuracies of Note and Velocity over Epochs

8
6

Figure 4.14. WAVNETWORK - Change of Learning Rate over Epochs

87

4.4. Discussion

The main motivation to propose this novel approach was to improve the MIDI

accompaniment network so that it can be used for raw recordings of music. The MIDI

format contains useful information such as instrument types, exact note timings, note

values, velocities, etc. On the other hand, the WAV files don’t have this simplicity, but

Mel spectrogram, MFCC, tempogram and such characteristic features can be obtained

from them. Hence, in order to update the MIDI accompaniment network, the idea we

came up with was to use the best features of the two worlds. Therefore, we first take MIDI

dataset and split into input and output as defined in Chapter 3. Then, we convert the input

data to WAV file and extracted three features which are Mel spectrogram, MFCC, and

tempogram. The model’s input became the three channel data, and the output just one-

hot encoded MIDI drum sequence. The model was able to understand the relationship

between input and output, but we want to mention a few possible improvements.

As it was discussed in Section 4.2.3, our model’s generated drum patterns are

located at the time instants that are calculated by the onset detection algorithm. Although

this works fine, the timing of the rhythm can be improved by including the true note

timings as another feature. Furthermore, different types of signal features or more features

can be used. On the contrary, the model might have become overwhelmed due to too

many features so using fewer features may increase the quality of generated patterns. In

addition, the model can be implemented to work in real-time. Since the features are not

really images but signal characteristics, a different type of architecture can be used instead

of CNN. Moreover, by using the basic rules of music theory, the quantitative results can

be generated.

88

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

If I have the belief that I can do it,

I shall surely acquire the capacity to do it

even if I may not have it at the beginning.

-Mahatma Gandhi-

The drums not only accompany other instruments in a band but, also, play a

deciding factor for the rhythm, dynamics, and melody (Jack, n.d.). In addition, they are

referred to be a backbone of a song. Good drum patterns maintain a steady groove while

changing the dynamics by increasing/decreasing the volume and intensity (Stams 2013).

Moreover, drum patterns keep other instruments as a whole during the move from one

part of the song to another (e.g., verse to pre-chorus, chorus to bridge, etc.). When these

unique features are used in the correct way, drums become a powerful tool to bring songs

to life.

In the light of these special characteristics of drums, our perspective was to

enhance the feelings of songs by adding drum patterns. In this sense, this thesis proposes

two algorithms for two different types of music data formats. The first algorithm,

presented in Chapter 3, uses MIDI format due to the easy access to useful features. In this

application, firstly, features were grouped according to their instrument type where

features that belong to drums were specified as the output and the others were specified

as the input. Thereafter, both input and output were one-hot encoded and became ready

for the model. The Seq2Seq neural network model was chosen to train the algorithm. In

order to improve the results, the temperature sampling method was used. In the second

algorithm, presented in Chapter 4, our purpose was to design a drum accompaniment

network using audio signal waveforms as input. In this algorithm, MIDI format files were

used to support the training. The rationale behind this idea was that the same features used

in the MIDI accompaniment network were difficult to extract from WAV files. Hence,

after the feature extraction from MIDI, we converted input data to WAV and extracted

signal features using Mel spectrogram, MFCC, and tempogram. This led our model to

learn the relationship between actual signal features and the suitable drum patterns.

89

The performance results were provided for both models in Section 3.3 and in

Section 4.3. It was shown that both models were able to converge for given datasets with

the help of the teacher forcing method. The results generated by these models can be

improved with minor user interaction to achieve qualitatively pleasing results. However,

quantitative evaluation is not attempted. Therefore, it is not certain that the model has the

capability to generate perfect suitable drum patterns for every song. This is a critical point

to be noted in order to generalize and improve the algorithm by developing new

techniques to measure quantitative results in any area of creative art.

To summarize, two algorithms were that address the unique characteristics of the

drums. The main goal of both algorithms was to enhance the feelings of musical pieces,

and we were able to achieve acceptable results. Lastly, we showed that using waveforms

with MIDI formats to analyze music is a reasonable approach which creates possibilities

for the on-the-fly creation of original drum parts in real-time performances by human

performers.

5.1. Future Directions

In the light of our motivation, we were able to accomplish production of drum

patterns to accompany a given musical piece. During the thesis work, we saw that some

commonly used methods were insufficient for solving some of the difficulties we

encountered. On the other hand, some of the techniques we used worked well. Based on

these experiences, we want to provide the following sections to discuss potential scientific

research directions.

5.1.1. Multi-Instrumental Music Generation

In our application, we focused on only generating drum patterns for a given song.

However, looking at the information MIDI format provides, we can easily observe that

multi-instrumental music generation at a MIDI level is possible. One possible approach

can be making a deep model to analyze each instrument's order, and then their

corresponding notes, timings, and velocities. Moreover, by using the MIDI format as the

90

supporting factor as done in the thesis, the capabilities can be expanded for audio

waveform formats as well.

Furthermore, the correlation between non-drum and drum instruments can be

measured, and highly correlated instruments can contribute more to the decision of

generated drum pitches and velocities. This can be done by optimizing and training a

word2vec embedding but for instruments instead of words. The word2vec is a vocabulary

encoding which learns word embeddings and their similarity. Similarly, co-occurrence

matrix can be used to see relationship of the instruments with each other.

5.1.2. Methods of Measuring Quantitative Results in the Arts

In the field of natural language processing, similar applications are measured with

an automatic evaluation metric called BLEU score. BLEU score is a number between 0

and 1 that measures the similarities between machine-translated text to a reference text

(Papineni et al. 2001). Although this method works well for machine translation models,

we believe that a different approach should be developed for applications on artistic

performance.

Even though in real life, every person has a different taste in art, we believe that

it is possible to measure quantitative results at a significant level by using basic rules of

the art of interest. One example that can be given from our application is as follows: we

could use the music theory at the basic level and the common drum patterns as the

reference. In this way, we can try to calculate the distance between the generated and the

common patterns. Additionally, we can check if the generated patterns obey the rules of

the music theory.

5.1.3. Roles of the Drums in Music

Drums can play many roles in a band. They can be used to ornament the notes,

create steady grooves, fill in gaps or create solos where they become the headliner of the

song. Out of all possibilities, in this work, we treated drum patterns as an ornamentation

rather than grooves. In upcoming improvements, we believe that exploiting different

91

characteristics of the drums will lead to more musically pleasing. For example, the model

can be trained first to create its own groove, and then to ornament the groove with

different drum instruments (e.g., cymbals, bass drums, etc.) in order to pass the feeling of

the song better.

5.1.4. Inclusion of the Timing Information

The correct timing of the notes is crucial for making music since it defines the

certain musical features such as rhythm, etc. In the thesis work, in order to lower the

complexity of the network, we decided to use already existed note timings in the MIDI

generated patterns, and onset detection algorithm in WAV generated patterns. Although

the idea was worked well enough, we believe that the capability of the network and

uniqueness of generated patterns can be improved by using timing as another feature.

There are different ways to represent the timing information. In the following bullet

points, we are going to describe the two possible ideas.

● Discretization of the time axis: The time axis of the musical piece can be

discretized by defining the sampling period (𝑇𝑠) to a specific note length. The time axis

can be grouped and divided by sixteenth notes. Therefore, the generated notes can be

placed into one of these sample points. To facilitate the understanding, the following

example is provided. Let’s assume that we have a musical piece with 120 bpm where its

sixteenth note length is 125 milliseconds.

Figure 5.1. Discretized Time Axis

92

In order to create realistic human-like performance, random offset values can be used to

place drumbeats in slightly varying positions.

● Note length representation: A more elegant way to include timing

information is to consider every possible note length value. In music theory, there are two

concepts that are related to each other and defines the timing. These are bpm, which

describes how fast the song is going to be played in terms of quarter notes, and note

lengths, which are timing representation of notes such as quarter note, whole note, half

note, etc. Moreover, the note lengths can be converted to actual seconds according to bpm

of the song. Some of bpm to the most used note length formulas can be seen in the

following table.

Table 5.1. Note Length Formulas

Note Type Normal

(in seconds)

Dotted

(in seconds)

Triplet

(in seconds)

Half 120/𝐵𝑃𝑀 180/𝐵𝑃𝑀 80/𝐵𝑃𝑀

Quarter 60/𝐵𝑃𝑀 90/𝐵𝑃𝑀 40/𝐵𝑃𝑀

Eighth 30/𝐵𝑃𝑀 45/𝐵𝑃𝑀 20/𝐵𝑃𝑀

Sixteenth 15/𝐵𝑃𝑀 22.5/𝐵𝑃𝑀 10/𝐵𝑃𝑀

Furthermore, note lengths, pitches, and velocity information can be represented in a 3D

matrix where x-axis is the timestep of the note pitch in each sample, y-axis corresponds

to note length values, z-axis is the note pitch values which are between 0 - 128. Therefore,

the following example is given to ease the understanding of the idea.

Let us have the following input of note pitches and velocities along with their note

lengths with sample rate of 5.

𝑛𝑜𝑡𝑒𝑠 = [35 32 44 32 35]

𝑛𝑜𝑡𝑒𝐿𝑒𝑛𝑔𝑡ℎ𝑠 = [ℎ𝑎𝑙𝑓 𝑑𝑜𝑡𝑡𝑒𝑑 − ℎ𝑎𝑙𝑓 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 𝑠𝑖𝑥𝑡𝑒𝑒𝑛𝑡ℎ 𝑒𝑖𝑔ℎ𝑡ℎ]

Therefore, the data representation for the given sample that contains timing information

can become as follows,

(5.1)

(5.2)

93

𝑠𝑎𝑚𝑝𝑙𝑒 =

ℎ𝑎𝑙𝑓 35 0 0 0 0

𝑞𝑢𝑎𝑟𝑡𝑒𝑟 0 0 44 0 0

𝑒𝑖𝑔ℎ𝑡ℎ 0 0 0 0 35

𝑠𝑖𝑥𝑡𝑒𝑒𝑛𝑡ℎ 0 0 0 32 0
𝑑𝑜𝑡𝑡𝑒𝑑 − ℎ𝑎𝑙𝑓 0 32 0 0 0

𝑑𝑜𝑡𝑡𝑒𝑑 − 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 0 0 0 0 0

𝑑𝑜𝑡𝑡𝑒𝑑 − 𝑒𝑖𝑔ℎ𝑡ℎ 0 0 0 0 0

𝑑𝑜𝑡𝑡𝑒𝑑 − 𝑠𝑖𝑥𝑡𝑒𝑒𝑛𝑡ℎ 0 0 0 0 0
𝑡𝑟𝑖𝑝𝑙𝑒𝑡 − ℎ𝑎𝑙𝑓 0 0 0 0 0

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 − 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 0 0 0 0 0

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 − 𝑒𝑖𝑔ℎ𝑡ℎ 0 0 0 0 0

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 − 𝑠𝑖𝑥𝑡𝑒𝑒𝑛𝑡ℎ 0 0 0 0 0

1 2 3 4 5

Even though this can be one of the best approaches to include actual true note

timings, there is a shortcoming. Generally, there are 130 different note length values

although some of them are not used most of the time. The dimension of this representation

depends on number of note length values and sampling rate. Therefore, this idea may end

up being very memory inefficient if its complexity is not simplified according to the

specific application.

94

REFERENCES

"Deep Learning For Siri’S Voice: On-Device Deep Mixture Density Networks For

Hybrid Unit Selection Synthesis". 2017. Apple Machine Learning Research.

https://machinelearning.apple.com/research/siri-voices.

"What Is Categorical Data | Categorical Data Encoding Methods". 2020. Analytics

Vidhya. https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-

data-encoding/.

"Write A Sequence To Sequence (Seq2seq) Model — Chainer 7.8.0 Documentation".

n.d. Docs.Chainer.Org.

https://docs.chainer.org/en/v7.8.0/examples/seq2seq.html.

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, and Greg S. Corrado et al. 2015. "Tensorflow: Large-Scale Machine

Learning On Heterogeneous Distributed Systems". https://www.tensorflow.org/.

Back, David. 1999. "Standard MIDI File Format, Updated". Music.Mcgill.Ca.

http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.htm

l#BMA1_5.

Bäckström, Tom. 2019. "Cepstrum And MFCC - Introduction To Speech Processing –

Aalto University Wiki". Wiki.Aalto.Fi.

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC.

Bello, J.P., L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M.B. Sandler. 2005. "A

Tutorial On Onset Detection In Music Signals". IEEE Transactions On Speech

And Audio Processing 13 (5): 1035-1047. doi:10.1109/tsa.2005.851998.

Bogert, B. P., M. J. R. Healy, and J. W. Tukey. 1963. Proceedings Of The Symposium On

Time Series Analysis. New York: Wiley.

https://machinelearning.apple.com/research/siri-voices
https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
https://www.analyticsvidhya.com/blog/2020/08/types-of-categorical-data-encoding/
https://docs.chainer.org/en/v7.8.0/examples/seq2seq.html
https://www.tensorflow.org/
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html#BMA1_5
http://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html#BMA1_5
https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC

95

Boşnak, Mehmet, Akif Hakan Kurt, and Selma Yaman. 2017. "Beynimizin Müzik

Fizyolojisi". Kahramanmaraş Sütçü İmam Üniversitesi Tıp Fakültesi Dergisi 12

(1): 35-44. doi:10.17517/ksutfd.296621.

Briot, Jean-Pierre, Gaëtan Hadjeres, and François Pachet. 2019.” Deep Learning

Techniques For Music Generation. Computational Synthesis And Creative

Systems”. Springer International Publishing.

Briot, Jean-Pierre, Gaëtan Hadjeres, and François-David Pachet. 2019. "Deep Learning

Techniques For Music Generation -- A Survey". Deep Learning Techniques For

Music Generation, Computational Synthesis And Creative Systems.

doi:10.48550/arXiv.1709.01620.

Briot, Jean-Pierre. 2020. "From Artificial Neural Networks To Deep Learning For Music

Generation: History, Concepts And Trends". Neural Computing And Applications

33 (1): 39-65. doi:10.1007/s00521-020-05399-0.

Bushaev, Vitaly. 2018. "Adam — Latest Trends In Deep Learning

Optimization.". Medium. https://towardsdatascience.com/adam-latest-trends-in-

deep-learning-optimization-6be9a291375c.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014.

"On The Properties Of Neural Machine Translation: Encoder–Decoder

Approaches". Proceedings Of SSST-8, Eighth Workshop On Syntax, Semantics

And Structure In Statistical Translation. doi:10.3115/v1/w14-4012.

Chu, Hang, Raquel Urtasun, and Sanja Fidler. 2016. "Song From PI: A Musically

Plausible Network For Pop Music Generation". doi: 10.48550/arXiv.1611.03477

Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

"Empirical Evaluation Of Gated Recurrent Neural Networks On Sequence

Modeling". NIPS 2014 Deep Learning And Representation Learning Workshop.

doi:10.48550/arXiv.1412.3555.

https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

96

Creswell, Antonia, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,

and Anil A. Bharath. 2018. "Generative Adversarial Networks: An Overview".

IEEE Signal Processing Magazine 35 (1): 53-65.

doi:10.1109/msp.2017.2765202.

da Silva, Ivan Nunes, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa Helena

Bartocci Liboni, and Silas Franco dos Reis Alves. 2017. ARTIFICIAL NEURAL

NETWORKS. SPRINGER.

Dahouda, Mwamba Kasongo, and Inwhee Joe. 2021. "A Deep-Learned Embedding

Technique For Categorical Features Encoding". IEEE Access 9: 114381-114391.

doi:10.1109/access.2021.3104357.

Dong, Hao-Wen, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. 2018. "Musegan:

Multi-Track Sequential Generative Adversarial Networks For Symbolic Music

Generation And Accompaniment". Proceedings Of The 32nd AAAI Conference On

Artificial Intelligence (AAAI).

Eck, Douglas, and Jurgen Schmidhuber. 2002. "A First Look At Music Composition

Using LSTM Recurrent Neural Networks". Technical Report No. IDSIA-07-02.

Eck, Douglas, and Jürgen Schmidhuber. 2002. "Learning The Long-Term Structure Of

The Blues". Artificial Neural Networks — ICANN 2002, 284-289. doi:10.1007/3-

540-46084-5_47.

Education, IBM. 2020. "What Are Neural Networks?". Ibm.Com.

https://www.ibm.com/cloud/learn/neural-networks.

Ellis, Daniel P. W. 2007. "Beat Tracking By Dynamic Programming". Journal Of New

Music Research 36 (1): 51-60. doi:10.1080/09298210701653344.

Franklin, Judy A. 2006. "Jazz Melody Generation Using Recurrent Networks and

Reinforcement Learning". International Journal On Artificial Intelligence Tools

15 (04): 623-650. doi:10.1142/s0218213006002849.

https://www.ibm.com/cloud/learn/neural-networks

97

Gallant, Stephen I. 2000. "Context Vectors: A Step Toward A “Grand Unified

Representation”". Lecture Notes In Computer Science, 204-210.

doi:10.1007/10719871_14.

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. "Generative

Adversarial Networks". doi: 10.48550/arXiv.1406.2661

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

Google Research. 2017. "Google Colaboratory". Colab.Research.Google.Com.

https://colab.research.google.com/.

Grosche, Peter, and Meinard Muller. 2009. "Computing Predominant Local Periodicity

Information In Music Recordings". 2009 IEEE Workshop On Applications Of

Signal Processing To Audio And Acoustics. doi:10.1109/aspaa.2009.5346544.

Grosche, Peter, Meinard Muller, and Frank Kurth. 2010. "Cyclic Tempogram—A Mid-

Level Tempo Representation For Musicsignals". 2010 IEEE International

Conference On Acoustics, Speech And Signal Processing.

doi:10.1109/icassp.2010.5495219.

Gulli, Antonio, and Sujit Pal. 2017. Deep Learning With Keras. Packt Publishing Ltd.

Hadjeres, Gaëtan, François Pachet, and Frank Nielsen. 2017. "Deepbach: A Steerable

Model For Bach Chorales Generation". 34th International Conference on Machine

Learning. doi: 10.48550/arXiv.1612.01010 .

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. "Deep Residual

Learning For Image Recognition". 2016 IEEE Conference On Computer Vision

And Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.90.

https://colab.research.google.com/

98

Herremans, Dorien, and Elaine Chew. 2017. "Morpheus: Generating Structured Music

With Constrained Patterns And Tension". IEEE Transactions On Affective

Computing 10 (4): 510-523. doi:10.1109/taffc.2017.2737984.

Hiller, Lejaren Arthur, and Leonard Maxwell Isaacson. 1959. “Experimental Music:

Composititon Witth An Electronic Computer”. McGraw-Hill.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. "Long Short-Term Memory". Neural

Computation 9 (8): 1735-1780. doi:10.1162/neco.1997.9.8.1735.

Jack, Dylan. n.d. "Why Are Drums Important In A Band? (This Is Why) – Drum

Sector". Drumsector.Com. https://drumsector.com/why-are-drums-important-in-

a-band/.

Johnson, Daniel D. 2017. "Generating Polyphonic Music Using Tied Parallel Networks".

Computational Intelligence In Music, Sound, Art And Design, 128-143.

doi:10.1007/978-3-319-55750-2_9.

Karpathy, Andrej, and Li Fei-Fei. 2017. "Deep Visual-Semantic Alignments For

Generating Image Descriptions". IEEE Transactions On Pattern Analysis And

Machine Intelligence 39 (4): 664-676. doi:10.1109/tpami.2016.2598339.

Kavlakoglu, Eda. 2020. "AI Vs. Machine Learning Vs. Deep Learning Vs. Neural

Networks: What’S The Difference?". Ibm.Com.

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-

neural-networks.

Kelly, C., M. Gainza, D. Dorran, and E. Coyle. 2010. "Audio Thumbnail Generation Of

Irish Traditional Music". IET Irish Signals And Systems Conference (ISSC 2010).

doi:10.1049/cp.2010.0504.

Keneshloo, Yaser, Tian Shi, Naren Ramakrishnan, and Chandan K. Reddy. 2019. "Deep

Reinforcement Learning For Sequence-To-Sequence Models". IEEE

https://drumsector.com/why-are-drums-important-in-a-band/
https://drumsector.com/why-are-drums-important-in-a-band/
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

99

Transactions On Neural Networks And Learning Systems, 1-21.

doi:10.1109/tnnls.2019.2929141.

Kingma, Diederik P., and Jimmy Lei Ba. 2015. "Adam: A Method For Stochastic

Optimization". 3rd International Conference For Learning Representations.

doi:10.48550/arXiv.1412.6980.

Kingma, Diederik P., and Max Welling. 2013. "Auto-Encoding Variational Bayes".

doi:10.48550/arXiv.1312.6114.

Koç, Esra Meltem, Duygu Ayhan Başer, Rabia Kahveci, and Adem Özkara. 2016.

"Ruhun Ve Bedenin Gıdası: Geçmişten Günümüze Müzik Ve Tıp". Konuralp Tıp

Dergisi 8 (1). doi:10.18521/ktd.83286.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. "Imagenet

Classification With Deep Convolutional Neural Networks". Communications Of

The ACM 60 (6): 84-90. doi:10.1145/3065386.

Lewis. 1988. "Creation By Refinement: A Creativity Paradigm For Gradient Descent

Learning Networks". IEEE International Conference On Neural Networks 2: 229-

233. doi:10.1109/icnn.1988.23933.

Lundh, Fredrik. 1999. "An Introduction To Tkinter."

Mahanta, Jahnavi. 2017. "Introduction To Neural Networks, Advantages And

Applications". Medium. https://towardsdatascience.com/introduction-to-neural-

networks-advantages-and-applications-96851bd1a207.

Mann, Ben. 2019. "How To Sample From Language Models". Medium.

https://towardsdatascience.com/how-to-sample-from-language-models-

682bceb97277.

https://towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications-96851bd1a207
https://towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications-96851bd1a207
https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277
https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277

100

Mao, Huanru Henry, Taylor Shin, and Garrison Cottrell. 2018. "Deepj: Style-Specific

Music Generation". 2018 IEEE 12th International Conference On Semantic

Computing (ICSC), 377-382. doi:10.1109/icsc.2018.00077.

McFee, Brian, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric

Battenberg, and Oriol Nieto. 2015. "Librosa: Audio And Music Signal Analysis

In Python". Proceedings Of The 14Th Python In Science Conference 8.

McKinney, Wes. 2010. "Data Structures For Statistical Computing In

Python". Proceedings Of The Python In Science Conference 445: 56-61.

doi:10.25080/majora-92bf1922-00a.

Mehri, Soroush, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose

Sotelo, Aaron Courville, and Yoshua Bengio. 2017. "SampleRNN: An

Unconditional End-To-End Neural Audio Generation Model". ICLR. doi:

10.48550/arXiv.1612.07837

Mostafa, Bossy, Noha El-Attar, Samy Abd-Elhafeez, and Wael Awad. 2020. "Machine

And Deep Learning Approaches In Genome: Review Article". Alfarama Journal

Of Basic &Amp; Applied Sciences. doi:10.21608/ajbas.2020.34160.1023.

Nayebi, Aran, and Matt Vitelli. 2015. "GRUV: Algorithmic Music Generation Using

Recurrent Neural Networks."

Newmarch, Jan. 2017. "Fluidsynth". Linux Sound Programming, 351-353.

doi:10.1007/978-1-4842-2496-0_20.

Nilsson, Nils J. 1998. Artificial Intelligence: A New Synthesis. Morgan Kaufmann

Publishers, Inc.

Noll, A. Michael. 1967. "Cepstrum Pitch Determination". The Journal Of The Acoustical

Society Of America 41 (2): 293-309. doi:10.1121/1.1910339.

101

Nwankpa, Chigozie Enyinna, Winifred Ijomah, Anthony Gachagan, and Stephen

Marshall. 2018. "Activation Functions: Comparison Of Trends In Practice And

Research For Deep Learning". doi:10.48550/arXiv.1811.03378.

Okewu, Emmanuel, Philip Adewole, and Oladipupo Sennaike. 2019. "Experimental

Comparison Of Stochastic Optimizers In Deep Learning". Computational Science

And Its Applications – ICCSA 2019, 704-715. doi:10.1007/978-3-030-24308-

1_55.

Olah, Christopher. 2015. "Understanding LSTM Networks -- Colah's

Blog". Colah.Github.Io. http://colah.github.io/posts/2015-08-Understanding-

LSTMs/.

O'Shaughnessy, Douglas. 2000. Speech Communications. New York: Institute of

Electrical and Electronics Engineers.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001. "BLEU: A

Method For Automatic Evaluation Of Machine Translation". Proceedings Of The

40Th Annual Meeting On Association For Computational Linguistics - ACL '02.

doi:10.3115/1073083.1073135.

Peeters, Geoffroy. 2005. "Time Variable Tempo Detection And Beat Marking". The

International Computer Music Conference.

Raffel, Colin, and Daniel P.W. Ellis. 2014. "Intuitive Analysis, Creation and

Manipulation of MIDI Data with pretty_midi". 15th International Conference On

Music Information Retrieval Late Breaking And Demo Papers.

Ramaseshan, Ajay. 2013. "Application Of Multiway Methods For Dimensionality

Reduction To Music", 29.

https://www.researchgate.net/publication/259479391_Application_of_Multiway

_Methods_for_Dimensionality_Reduction_to_Music.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.researchgate.net/publication/259479391_Application_of_Multiway_Methods_for_Dimensionality_Reduction_to_Music
https://www.researchgate.net/publication/259479391_Application_of_Multiway_Methods_for_Dimensionality_Reduction_to_Music

102

Roberts, Adam, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. 2018. "A

Hierarchical Latent Vector Model For Learning Long-Term Structure In Music".

ICML. doi: 10.48550/arXiv.1803.05428

Scheirer, Eric D. 1998. "Tempo And Beat Analysis Of Acoustic Musical Signals". The

Journal Of The Acoustical Society Of America 103 (1): 588-601.

doi:10.1121/1.421129.

Shen, Leixian, Qingyun Zhang, Guoxu Cao, and He Xu. 2018. "Fall Detection System

Based On Deep Learning And Image Processing In Cloud

Environment". Advances In Intelligent Systems And Computing, 594.

doi:10.1007/978-3-319-93659-8_53.

Stams, Erik. 2013. "Why Drummers Really Are The Backbone Of The Band". Drum

Expo. https://www.musicradar.com/news/drums/why-drummers-really-are-the-

backbone-of-the-band-580362.

Stewart, Russell. 2016. "Maximum Likelihood Decoding With Rnns - The Good, The

Bad, And The Ugly - The Stanford Natural Language Processing

Group". Nlp.Stanford.Edu. https://nlp.stanford.edu/blog/maximum-likelihood-

decoding-with-rnns-the-good-the-bad-and-the-ugly/.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. 2014. "Sequence To Sequence Learning

With Neural Networks". doi:10.48550/arXiv.1409.3215.

Tanti, Marc, Albert Gatt, and Kenneth P. Camilleri. 2018. "Where To Put The Image In

An Image Caption Generator". Natural Language Engineering 24 (3): 467-489.

doi:10.1017/s1351324918000098.

Tian, Mi, Gyorgy Fazekas, Dawn A. A. Black, and Mark Sandler. 2015. "On The Use Of

The Tempogram To Describe Audio Content And Its Application To Music

Structural Segmentation". 2015 IEEE International Conference On Acoustics,

Speech And Signal Processing (ICASSP). doi:10.1109/icassp.2015.7178003.

https://www.musicradar.com/news/drums/why-drummers-really-are-the-backbone-of-the-band-580362
https://www.musicradar.com/news/drums/why-drummers-really-are-the-backbone-of-the-band-580362
https://nlp.stanford.edu/blog/maximum-likelihood-decoding-with-rnns-the-good-the-bad-and-the-ugly/
https://nlp.stanford.edu/blog/maximum-likelihood-decoding-with-rnns-the-good-the-bad-and-the-ugly/

103

Todd, Peter M. 1989. "A Connectionist Approach To Algorithmic Composition".

Computer Music Journal 13 (4): 27-43. doi:10.2307/3679551.

Tran, Kenneth, Xiaodong He, Lei Zhang, and Jian Sun. 2016. "Rich Image Captioning In

The Wild". 2016 IEEE Conference On Computer Vision And Pattern Recognition

Workshops (CVPRW). doi:10.1109/cvprw.2016.61.

Uzair, Muhammad, and Noreen Jamil. 2020. "Effects Of Hidden Layers On The

Efficiency Of Neural Networks". 2020 IEEE 23rd International Multitopic

Conference (INMIC). doi:10.1109/inmic50486.2020.9318195.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A. and

Kavukcuoglu, K., 2016. “Conditional image generation with PixelCNN

decoders”. NIPS'16: Proceedings of the 30th International Conference on Neural

Information Processing Systems, pp.4797–4805.

van den Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. 2016. "Wavenet: A Generative Model For Raw Audio". doi:

10.48550/arXiv.1609.03499

Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. "Show And

Tell: A Neural Image Caption Generator". 2015 IEEE Conference On Computer

Vision And Pattern Recognition (CVPR). doi:10.1109/cvpr.2015.7298935.

Waite, Elliot. 2016. "Generating Long-Term Structure In Songs And Stories". Magenta.

https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, and Maxim Krikun et al. 2016. "Google's Neural Machine

Translation System: Bridging The Gap Between Human And Machine

Translation". doi: 10.48550/arXiv.1609.08144

https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn

104

Yadav, Omprakash, Darryl Fernandes, Vishal Dube, and Myron D’Souza. 2021. "Apollo:

A Classical Piano Composer Using Long Short-Term Memory". IETE Journal Of

Education 62 (2): 60-70. doi:10.1080/09747338.2021.1966843.

Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang. 2017. "Midinet: A Convolutional

Generative Adversarial Network For Symbolic-Domain Music Generation".

ISMIR (International Society Of Music Information Retrieval) Conference.

doi:10.48550/arXiv.1703.10847.

Zukowski, Zack, and CJ Carr. 2018. "Generating Black Metal And Math Rock: Beyond

Bach, Beethoven, And Beatles". doi:10.48550/arXiv.1811.06639

105

APPENDIX A

MIDI SOUND SET

Table A.1. General MIDI Level 1 Instrument Patch Map

PC# Instrument Name PC# Instrument Name PC# Instrument Name

 1. Acoustic Grand Piano 33. Acoustic Bass 65. Soprano Sax

 2. Bright Acoustic Piano 34. Electric Bass

(finger)

66. Alto Sax

 3. Electric Grand Piano 35. Electric Bass (pick) 67. Tenor Sax

 4. Honky-tonk Piano 36. Fretless Bass 68 Baritone Sax

 5. Electric Piano 1 37. Slap Bass 1 69. Oboe

 6. Electric Piano 2 38. Slap Bass 2 70. English Horn

 7. Harpsichord 39. Synth Bass 1 71. Bassoon

 8. Clavi 40. Synth Bass 2 72. Clarinet

 9. Celesta 41. Violin 73. Piccolo

 10. Glockenspiel 42. Viola 74. Flute

 11. Music Box 43. Cello 75. Recorder

 12. Vibraphone 44. Contrabass 76. Pan Flute

 13. Marimba 45. Tremolo Strings 77. Blown Bottle

 14. Xylophone 46. Pizzicato Strings 78. Shakuhachi

 15. Tubular Bells 47. Orchestral Harp 79. Whistle

 16. Dulcimer 48. Timpani 80. Ocarina

 17. Drawbar Organ 49. String Ensemble 1 81. Lead 1 (square)

 18. Percussive Organ 50. String Ensemble 2 82. Lead 2 (sawtooth)

 19. Rock Organ 51. SynthStrings 1 83. Lead 3 (calliope)

 20. Church Organ 52. SynthStrings 2 84. Lead 4 (chiff)

 21. Reed Organ 53. Choir Aahs 85. Lead 5 (charang)

 22. Accordion 54. Voice Oohs 86. Lead 6 (voice)

 23. Harmonica 55. Synth Voice 87. Lead 7 (fifths)

 24. Tango Accordion 56. Orchestra Hit 88. Lead 8 (bass + lead)

 25. Acoustic Guitar

(nylon)

57. Trumpet 89. Pad 1 (new age)

 26. Acoustic Guitar (steel) 58. Trombone 90. Pad 2 (warm)

 27. Electric Guitar (jazz) 59. Tuba 91. Pad 3 (polysynth)

 28. Electric Guitar (clean) 60. Muted Trumpet 92. Pad 4 (choir)

 29. Electric Guitar

(muted)

61. French Horn 93. Pad 5 (bowed)

 30. Overdriven Guitar 62. Brass Section 94. Pad 6 (metallic)

 31. Distortion Guitar 63. SynthBrass 1 95. Pad 7 (halo)

 32. Guitar harmonics 64. SynthBrass 2 96. Pad 8 (sweep)

(cont. on next page)

106

Table A.1. (cont.)

PC# Instrument Name PC# Instrument

Name

PC# Instrument

Name

97 FX 1 (rain) 108. Koto 119. Synth Drum

98 FX 2 (soundtrack) 109. Kalimba 120. Reverse Cymbal

99 FX 3 (crystal) 110. Bag pipe 121. Guitar Fret Noise

100 FX 4 (atmosphere) 111. Fiddle 122. Breath Noise

101 FX 5 (brightness) 112. Shanai 123. Seashore

102 FX 6 (goblins) 113. Tinkle Bell 124. Bird Tweet

103. FX 7 (echoes) 114. Agogo 125. Telephone Ring

104. FX 8 (sci-fi) 115. Steel Drums 126. Helicopter

105. Sitar 116. Woodblock 127. Applause

106. Banjo 117. Taiko Drum 128. Gunshot

107. Shamisen 118. Melodic Tom

Table A.2. General MIDI Level 1 Instrument Families

PC# Family Name

1-8 Piano

9-16 Chromatic Percussion

17-24 Organ

25-32 Guitar

33-40 Bass

41-48 Strings

49-56 Ensemble

57-64 Brass

65-72 Reed

73-80 Pipe

81-88 Synth Lead

89-96 Synth Pad

97-104 Synth Effects

105-112 Ethnic

113-120 Percussive

121-128 Sound Effects

The PC# stands for the MIDI Program Change which corresponds to the

instrument number. MIDI Channel 10 is reserved for percussion instruments. The

corresponding pitches of MIDI note numbers (Key#) are the same for every instrument.

107

Table A.3. General MIDI Note Chart

Note
Octave

-1 0 1 2 3 4 5 6 7 8 9

C 0 12 24 36 48 60 72 84 96 108 120

C# 1 13 25 37 49 61 73 85 97 109 121

D 2 14 26 38 50 62 74 86 98 110 122

D# 3 15 27 39 51 63 75 87 99 111 123

E 4 16 28 40 52 64 76 88 100 112 124

F 5 17 29 41 53 65 77 89 101 113 125

F# 6 18 30 42 54 66 78 90 102 114 126

G 7 19 31 43 55 67 79 91 103 115 127

G# 8 20 32 44 56 68 80 92 104 116

A 9 21 33 45 57 69 81 93 105 117

A# 10 22 34 46 58 70 82 94 106 118

B 11 23 35 47 59 71 83 95 107 119

Table A.4. General MIDI Level 1 Percussion Key Map

Key

Drum Sound Key

Drum Sound Key# Drum Sound

35 Acoustic Bass Drum 52 Chinese Cymbal 69 Cabasa

36 Bass Drum 1 53 Ride Bell 70 Maracas

37 Side Stick 54 Tambourine 71 Short Whistle

38 Acoustic Snare 55 Splash Cymbal 72 Long Whistle

39 Hand Clap 56 Cowbell 73 Short Guiro

40 Electric Snare 57 Crash Cymbal 2 74 Long Guiro

41 Low Floor Tom 58 Vibraslap 75 Claves

42 Closed Hi-Hat 59 Ride Cymbal 2 76 Hi Wood Block

43 High Floor Tom 60 Hi Bongo 77 Low Wood Block

44 Pedal Hi-Hat 61 Low Bongo 78 Mute Cuica

45 Low Tom 62 Mute Hi Conga 79 Open Cuica

46 Open Hi-Hat 63 Open Hi Conga 80 Mute Triangle

47 Low-Mid Tom 64 Low Conga 81 Open Triangle

48 Hi-Mid Tom 65 High Timbale

49 Crash Cymbal 1 66 Low Timbale

50 High Tom 67 High Agogo

51 Ride Cymbal 1 68 Low Agogo

108

APPENDIX B

MATHEMATICAL EXPRESSIONS and TRANSFORMS

B.1. Short Time Fourier Transform (STFT)

STFT is a Fourier Transform method used to calculate the frequency and phases

of a signal based on its change over time. The output of the STFT is called spectrogram.

Spectrogram contains both time and frequency information of a signal, a trade off exists

between them. As the width of the window increases, the time resolution increases but

frequency resolution decreases and vice versa. The continuous-time and discrete-time

STFT equations, respectively, can be given as follows

𝑆𝑇𝐹𝑇{𝑥(𝑡)} = 𝑋(𝜏, 𝜔) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

𝑆𝑇𝐹𝑇{𝑥[𝑛]} = 𝑋(𝑚, 𝜔) = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛

∞

𝑛= −∞

where 𝜏 and 𝑚 corresponds to continuous and discrete time axis respectively, 𝜔

corresponds to frequency axis, 𝑤(.) and 𝑤[.] are the continuous-time and discrete-time

window function respectively.

B.2. Discrete Fourier Transform (DFT)

DFTs are used to calculate the frequency spectrum of discrete-time signals. For

the signal {𝑥[𝑛]} ∶= 𝑥[0], 𝑥[1], … , 𝑥[𝑁 − 1] the forward and reverse DFT equations,

respectively, can be given as

(B.1)

(B.2)

109

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘]𝑒𝑗

2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑘=0

where {𝑋[𝑘]} ≔ 𝑋[0], 𝑋[1], … , 𝑋[𝑁 − 1] is a sequence of complex numbers.

B.3. Discrete Cosine Transform (DCT)

DCT represents a finite sequence of points, which is the cosine sum of different

oscillating frequencies. DCT is widely used in signal processing applications, especially

in image compression, due to the advantage it provides over DFT. The forward and

inverse equations DCT, respectively, are given by

𝑋𝐶[𝑘] = ∑ 𝑥[𝑛] 𝑐𝑜𝑠 𝑐𝑜𝑠 (
2𝜋(2𝑛 + 1)𝑘

4𝑁
)

𝑁−1

𝑛=0

𝑓𝑜𝑟 𝑘 = 0:𝑁 − 1

𝑥[𝑛] =
1

𝑁
𝑋[0] +

2

𝑁
∑ 𝑋[𝑘] 𝑐𝑜𝑠 𝑐𝑜𝑠 (

2𝜋(2𝑛 + 1)𝑘

4𝑁
)

𝑁−1

𝑘=1

B.4. Expected Value

The expected value of a random variable, 𝑋, that is governed by a probability

density function, 𝑓𝑥(𝑥), is defined by

𝐸[𝑋] = ∫ 𝑥𝑓𝑥(𝑥)𝑑𝑥
∞

−∞

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

110

B.5. Hadamard Product

Hadamard product, which is known as element-wise product, multiply two

matrices, with same dimensions, and results another matrix with same dimension. The

Hadamard product is undefined for the multiplication of matrices that has different

dimensions. The Hadamard product for two matrices, 𝐴 and 𝐵, is defined as follows

𝐴𝑀𝑥𝑁 ⊙ 𝐵𝑀𝑥𝑁 = (𝐴)𝑚𝑛(𝐵)𝑚𝑛

[

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] ⊙ [

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

] = [

𝑎11𝑏11 𝑎12𝑏12 𝑎13𝑏13

𝑎21𝑏21 𝑎22𝑏22 𝑎23𝑏23

𝑎31𝑏31 𝑎32𝑏32 𝑎33𝑏33

]

where 𝑀 and 𝑁 are rows and columns of the matrices, m and n, row and column,

denotes the indices respectively.

(B.8)

(B.9)

111

APPENDIX C

THE VANISHING GRADIENT PROBLEM

In general, deep learning models update their weight vectors to learn the

relationship between the input and the target data. This is accomplished by first

calculating the error and then updating its weights with gradient descent. The vanishing

gradient problem appears during the backpropagation when the gradient of the

information starts fading. To understand the problem clearly, let us look into the following

example.

Assume that the following deep learning model is created with 1 input layer, 𝑘

hidden layers and 1 output layer. Moreover, the sigmoid function, 𝜎, is chosen as the

activation function.

Figure C.1. A Fully Connected Deep Learning Model

During forward propagation the output is calculated as follows,

�⃗�𝑛+1 = �⃗⃗⃗⃗�𝑛�⃗⃗⃗�𝑛

�⃗⃗⃗�𝑛 = 𝜎(�⃗�𝑛+1)

(C.1)

(C.2)

112

�⃗�𝑘+1 = �⃗⃗⃗⃗�𝑘 �⃗⃗⃗�𝑘

�⃗⃗� = 𝜎(�⃗�𝑘+1)

where 𝑛 = {0,1,2, … , 𝑘} and �⃗⃗⃗�0 = �⃗�, 𝜎(.) denotes the element wise sigmoid activation,

and �⃗⃗⃗⃗�𝑛 are the weight matrices for the corresponding layers.

After the forward propagation, the model’s weights are updated by calculating the

error, 𝐸, and gradient. To understand the problem clearly, instead of looking overall

weight updates, let us focus on the weight update between the input and first hidden layer.

Therefore, first the error then by using the chain rule the calculation for weight update

�⃗⃗⃗⃗�0 can be written as

�⃗⃗� = (�⃗⃗� − �⃗⃗�)
2

𝜕�⃗⃗�

𝜕�⃗⃗⃗⃗�0

=
𝜕�⃗�1

𝜕�⃗⃗⃗⃗�0

𝜕�⃗⃗⃗�1

𝜕�⃗�1

𝜕�⃗�2

𝜕�⃗⃗⃗�1

𝜕�⃗⃗⃗�2

𝜕�⃗�2

…
𝜕�⃗⃗⃗�𝑘

𝜕�⃗�𝑘

𝜕�⃗�𝑘+1

𝜕�⃗⃗⃗�𝑘

𝜕�⃗⃗�

𝜕�⃗�𝑘+1

𝜕�⃗⃗�

𝜕�⃗⃗�

where
𝜕�⃗⃗⃗�𝑘+1

𝜕�⃗⃗⃗⃗�𝑘
 terms correspond to the change of �⃗�𝑘+1 due to �⃗⃗⃗�𝑘, and

𝜕�⃗⃗⃗⃗�𝑘

𝜕�⃗⃗⃗�𝑘
 terms represent

the change of �⃗⃗⃗�𝑘 due to �⃗�𝑘. In order words, by recalling the Eq. (C.1) and (C.2.), these

terms represent the changes due to the weights and sigmoid function respectively.

The vanishing gradient problem occurs on the terms
𝜕�⃗⃗⃗⃗�𝑘

𝜕�⃗⃗⃗�𝑘
. In order to see this

clearly, first the sigmoid function and its derivative are provided as follows

𝜎(𝑥) =
1

1 + 𝑒−𝑥

𝑑𝜎(𝑥)

𝑑𝑥
=

𝑒−𝑥

(𝑒−𝑥 + 1)2

= 𝜎(𝑥)(1 − 𝜎(𝑥))

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

113

Figure C.2. Graph of Sigmoid and its Derivative

Furthermore, from the figure given above, notice that the derivative of the sigmoid

can have maximum value of 0.25. Therefore, by using this knowledge and the identity

provided in Eq. (C.8), the inequality for
𝜕�⃗⃗⃗⃗�𝑘

𝜕�⃗⃗⃗�𝑘
 terms inside Eq. (C.6) can be written as

𝜕�⃗⃗⃗⃗�𝑘

𝜕�⃗⃗⃗�𝑘

= �⃗⃗⃗⃗�𝑘 (1 − �⃗⃗⃗⃗�𝑘) ≤ 0.25

Realizing that the number of these terms are proportional to number of hidden layers.

Although every term ends up with the maximum value of 0.25, the multiplication of these

terms become closer to 0. This issue is known as the vanishing gradient problem. Hence,

the model won’t be able to update its weights and unable to learn/improve.

There are different types of solutions for this problem. The problem can be

resolved by using different activation functions (e.g., ReLU) than sigmoid, and different

neural network architectures such as LSTM.

(C.9)

