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ABSTRACT 

       

 DEVELOPMENT OF CO-EVOLUTION TRACKER TOOL FOR 

SOFTWARE WITH ACCEPTANCE CRITERIA 

 

Testing is a vital part of achieving good-quality software. Deploying untested 

code can cause system crashes and unexpected behavior. In order to reduce these 

problems, testing must be prioritized. However, once test suites are created, they should 

not remain static throughout the software updates. Since whenever software gets updated, 

new functionalities are added or existing functionalities are changed, so whenever the 

application is updated, test suites must be updated along with the software. If the old test 

suites are used with the new updates, unexpected testing results can occur. In order to 

repair test cases in the process of software evolution, analyzing real-world projects’ 

software and test case evolution is an important prerequisite. Software repositories 

contain valuable information about the software systems. Having access to older versions 

and by differentiating adjacent versions’ test and production code changes can provide 

information about the evolution process of the software. This thesis concentrates on the 

development of a tool that is used for the analysis of 21 real-world projects in the terms 

of co-evolution of both software and its test suites. Related projects are retrieved from 

repositories and filtered according to this study’s needs, then for each project's every 

update is analyzed, and graphs and analysis related to the co-evolution process are 

created.  



  iv 

ÖZET 

 

KABUL KRİTERLİ YAZILIMLAR İÇİN BİRLİKTE-EVRİM İZLEME 

ARACININ GELİŞTİRİLMESİ 

 

Yüksek kalitede yazılım elde etmede, test yazılımı ve test koşumu önemli bir 

noktadır. Test edilmemiş kodların canlı sistemlere yayılması sistem hatalarına ve 

beklenmedik davranışlara yol açar. Bu hataların azaltılması için test yazımı 

önceliklendirilmelidir. Testler ilk defa yazıldıktan sonra, yeni yazılım güncellemeleri 

gelmesine rağmen statik kalmamalıdır. Yazılım güncellemelerin sonucunda yeni 

fonksiyonlar eklenir veya mevcutta bulunan fonksiyonlar güncellenir. Bu 

güncellemelerin sonucunda ilgili testlerin de güncellenmesi gerekmektedir. Eğer eski 

testler, yeni güncellemeler ile kullanılmaya devam edilirse beklenmedik test sonuçları 

oluşabilir. Testleri yazılım güncellemesiyle birlikte onarmak-güncellemek için, 

projelerdeki test ve yazılım evriminin incelenmesi önemlidir. GitHub gibi yazılım 

depoları, yazılımların geçmişi ve gelişimi hakkında değerli bilgilere sahiptir. Yazılımların 

geçmişteki versiyonlarına erişim ve arka arkaya gelen iki versiyon arasındaki test ve 

yazılım kodundaki değişimi incelemek, yazılımın evrimi hakkında bilgi almayı sağlar.Bu 

tez, 21 gerçek dünya projesinin birlikte-evrimini izleme aracının geliştirilmesi ve bu 

aracın çıkardığı sonuçların analizlerini kapsar. İlgili projeler, GitHub yazılım 

depolarından alındı ve tez kapsamına göre filtrelendikten sonra her projenin her 

güncellemesinin analizi yapıldı ve yazılımdaki birlikte-evrimi kapsayan ve anlatan 

grafikler, tablolar ve analizler üretildi.
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1. Motivation 

 

Software systems evolve continuously and the development process consists of 

not only adding or improving features but also testing the said features and the system. 

For every feature and functionality, related test code that tests the added feature is 

required. If there are no tests for the functionalities, then the whole operation is being put 

under the risk of failure. Untested updates can cause system crashes and unexpected 

behavior which are unacceptable for companies. However, when there are tests written 

for the updates, they must be updated throughout the functionalities lifetime (Yang et al. 

2012; Santelices et al. 2008). To create exemplary systems, whenever the functionality 

evolves, or gets updated, the related test code must be updated along with it. If the 

functionalities are updated but their test code does not test, or does not cover all of the 

updated functionalities’ code, then that update releases untested production code to the 

live system which can result in system failures. 

There are a few reasons why understanding how and why the test cases evolve in 

real-world projects. First of all, there are two different update types to software systems, 

first one is adding new functionalities and the second one is refactoring-fixing the existing 

functionalities and writing tests for the existing and newly added (or will be added) 

functionalities. In our experience, unless there are major problems with the software 

system, not enough weight is given to the latter. Reasons for that can be described as, on 

the surface, fixing or refactoring the existing functionalities and writing test code does 

not provide any output (in most cases any revenue) to the outer world, there are deadlines 

to be met for the newer features and refactorings and writing tests can take considerable 

time and effort which results in putting these deadlines to risk. As a result of this behavior, 

system crashes, live errors or unexpected behaviors can occur frequently. To reduce the 

failure ratio, test cases must be developed along with the production code, they must be 

executed before update occurs and if there any unexpected behavior from the test cases 
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they must be fixed before the functionality is released to the live platform and these test 

cases must be updated along with the updates that changes the tested functionalities. 

Since manually updating test cases is a labor-intensive task (Tillmann and Schulte 

2006; Anand et al. 2013), automated test repair can reduce the time it takes to repair test 

cases and in order to create tools that can automate this process, analyzing the co-

evolution of test and production code for the real-world projects can provide useful 

information (Imtiaz et al. 2019). 

Software repositories can produce unmatched information about the history of the 

softwares. Since these repositories not only display the current version of the projects but 

the all versions’ codebase, studying the co-evolution process through repository mining 

can be a major contributor to the analysis.  

 

1.1. Major Contributions of the Thesis 

 

This thesis aims to analyze the co-evolution process of test and production code 

of 21 real-world projects through repository mining and develop a tool that analyzes the 

co-evolution process for any project that is on GitHub. While analyzing the process, thesis 

addresses the following research questions: 

RQ. 1: Do executable and test code evolve in sync? 

RQ. 2: How do the update types affect the co-evolution of test and executable code? 

RQ. 3: How often is test maintenance performed as part of (production) code 

maintenance? 

RQ. 4: What is the optimal behavior of test and production code evolution? 

RQ. 5: Can the test line of code and executable line of code values provide useful 

information about the co-evolution process? 

To answer the first question, we created test and executable code update count 

graphs for different update types in accordance with Semantic Versioning (Preston-

Werner, T. 2013) that display how many test or code updates occurred throughout the 

lifetime of the project. These graphs display the co-evolution ratio of test and executable 

code. 

To answer the second question, we created graphs for version types (in accordance 

with Semantic Versioning) that display the ratios of in how many versions test and 

executable code was updated, only test code was updated and only production code was 
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updated. We were able to provide the answer to the question by finding these ratios for 

different update types. 

To answer the third question, we analyzed the effects different update types have 

on the test and executable code evolution process.  

To answer the fourth question, we created cluster and their respectful elbow 

graphs to clusterize the 21 projects in our study to find optimal behavior for the co-

evolution process for the projects. 

To answer the fifth question, we found the total executable line of code and total 

test line of code values for each version of each project provided analysis on these values. 

 

1.2. Outline of Thesis 

 

This thesis is organized according to the following. Chapter 2 provides an 

overview of the related literature work. Chapter 3 provides the information on the tool 

that provided the deliverables, and the approach we used. Chapter 4 includes the case 

study of  this thesis. Chapter 5 provides the final comments and future work ideas. 

Research Question 1 will be answered in Section 4.3.2, Research Question 2 will be 

answered in Section 4.3.3, Research Question 3 will be answered in 4.3.3, Research 

Question 4 will be answered in Section 4.3.3, and finally Research Question 5 will be 

answered in 4.3.5 
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CHAPTER 2  

 

 

RELATED WORK 

 

 

Software development process contains more than just adding new features or 

performing refactoring. Testing is another essential part of this process. Testing starts 

with developing test cases, which are collected into test suites. Test suites are executed 

for testing the software and software evolves with every new update. Test suites are 

expected to evolve along with its application. If the test suites do not get updated for each 

corresponding change in software, then the test suite becomes obsolete and there would 

be no meaning to use that test suite since that test suite is not written for the current 

version of the software but for the former version of the software. In that case, the 

software would be wrongly tested. As a result, we cannot trust the results of this test suite.  

Even a small change in code can result in a critical change for code coverage 

statistics (Elbaum et al. 2001). Changing a Boolean variable can change the software’s 

behavior. With such code changes, some tests can become obsolete, thus resulting in 

untested production code. Elbaum et al. studied the impact of software evolution and their 

results showed that a 1% change in program branches can drop the code coverage of tests 

by 16%. Test obsolescence is caused by bug fixes, modifications on functionalities, newly 

added functionalities and refactoring of the old code (Daniel et al. 2009; Zaidman et al. 

2011; Daniel et al. 2010; Pinto et al. 2012; Alsolami et al. 2019). As a result, test suites 

must be repaired or generated altogether with the new updates on the application (Elbaum 

et al. 2001; Cadar et al. 2008; Daniel et al. 2009; Zaidman et al. 2011; Daniel et al. 2010; 

Pinto et al. 2012; Pinto et al. 2013; Alsolami et al. 2019). Repairing test cases manually 

for each software version can take too much time (Mirzaaghaei et al. 2012).  To create 

automatic test repair, test generation or test refactoring tools, information related to 

dynamic profiling can be useful(Elbaum et al. 2001). Understanding how and why test 

repair occurs are very important and by understanding them can help with automatically 

repairing test cases, test case prioritization techniques and test evolution process (Rapos 

et al. 2018). 
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Zaidman et al. (Zaidman et al. 2011) created a tool that mines software 

repositories from versioning systems to study how test and production code co-evolves 

over the course of the software’s lifecycle. Their focus was on unit tests. They used 

statistics such as how the production and test code changed over time, what kind of 

changes were made to the files with each version and information about software’s test 

coverage. They retrieved this information for two open source and one industrial project 

and as a result, they were able to identify if the co-evolution of test and production code 

was synchronously, does test writing increase just before a major release and 

visualizations to understand how the software’s test and production code evolve over its 

time. Their results showed that, in two of the three projects development updates took the 

lead for the beginning of the project evolution, for the other project, a more synchronous 

co-evolution was observed for test and production code. Test evolution count never 

surpassed production code evolution. For these projects they did not see a major test 

writing activity just before a big update which they grounded this fact to chosen case 

studies characteristics. Similar to other research on this topic, one of the important threats 

to this study is that they studied three projects which cannot result in generalized co-

evolution statistics but statistics that are specifically compatible for these three projects. 

Mirzaaghaei et al. (Mirzaaghaei et al. 2010) proposed a method for automatically 

repairing unit tests that became obsolete because of method declaration or method 

signature changes. Their focus was on obsolete unit test cases that caused compilation 

errors. While solving this problem they analyzed 262 versions for 22 open-source 

projects’ test and production code evolution. For the 22 projects under consideration, 53% 

of the versions did not update method signature resulting in test methods not giving any 

compilation errors. Their focus was on test repair but while creating and executing the 

repair tool, they analyzed the software by repository mining and the co-evolution of test 

and production code.  

Mirzaaghaei et al. (Mirzaaghaei et al. 2012)  proposed another approach for 

automatically repairing and generating JUnit test cases for test case evolution. They first 

investigated 80 versions of software systems to analyze what kind of changes were 

occurring when obsolete test cases were being updated by the developers or how 

developers were reusing the existing test cases to generate new and correct test cases. 

They mined the repositories to get the software changes between versions to get this 

information. Their analysis mainly consisted of method signature differences between 
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versions. With this information they were able to tell if the test case for the said method 

was updated and if it was, how it was updated. 

Pinto et al. (Pinto et al. 2012) proposed that in order to repair test cases 

automatically, understanding how test cases evolve in real-world projects is very 

important. By not using real-world problems, the extracted information can only work for 

a small subset of test cases or software projects. Their study consisted of six real-world 

projects and their unit tests. They analyzed the test suite evolution of these projects and 

they categorized reasons for test suite evolution as test repairs, test additions, test 

deletions and test refactoring. They also gave statistics for these test changes on their six 

real-world projects. Repaired and refactored tests were called Test Modifications. For test 

repair, the test case became obsolete and by modifying the test case if it can pass, it is 

said to be repaired. 6.4% of the test changes were test repairs. Test refactoring is where 

the test is not obsolete but it is still updated (a new library is used, variable name changed). 

22.9% of the test changes were test refactoring. Hard-to-fix tests, obsolete tests, redundant 

tests fell into Test Deletions category. Hard-to-fix tests are when the test should be 

repaired since its tested functionality still exists in the projects, but the test was discarded. 

Their hypothesis was that these test cases were excessively complex to fix so they rather 

re-write the test case from scratch. 0.6% of the test changes were hard-to-fix tests. 

Obsolete tests are caused by compilation errors due to the API changes on used libraries. 

Another reason for tests to be in this category was that some features were removed thus 

rendering test cases that test these features useless. They manually analyzed some of the 

deleted test cases and they found that this was the case. 8.5% of the test case changes 

were obsolete tests. Final category for test deletion was redundant tests. They found that 

some of the tests were removed even though their tested feature was still in the project. 

After analyzing they found that there is another test case that tests the same feature. 5.4% 

of the test changes were for redundant tests. Bug-fix tests, new-feature tests, coverage-

augmentation tests were grouped as Test Additions. Bug-fix tests were added to fix 

runtime or assertion exceptions. 7.8% of the test changes were for bug-fix tests. New 

feature tests were added for testing the newly added features. These tests can be identified 

by them causing compilation errors in the older versions of the software. 38.8% of the 

test changes were for new-feature tests. Coverage-augmentation tests are when the test 

cases can be used in the updated or the older version of the system but after the added 

test, project’s code coverage increases. 9.5% of the test changes for coverage-

augmentation. 
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Pinto et al. (Pinto et al. 2012) analyzed six real-world programs with 88 versions 

and their results were, test repair was not the bulk of the test changes and for test additions 

and deletions, in most cases the tests were either moved or repaired, not added, or deleted 

and deleted tests were mainly deleted because they became obsolete. After one year of 

this study, Pinto et al. (Pinto et al. 2013) developed a program called TestEvol to analyze 

test suite evolution for Java programs and their respectful JUnit test cases. Their tool takes 

two versions of a program and their test suites, and it identifies the deleted, added and 

repaired unit tests and it gives statistics for these modifications’ effect on code coverage. 

Greiler et al. (Greiler et al. 2013) said that while automating the test creating 

process, overtime test code smell can appear and maintaining the test suite can become 

difficult. To reduce this test code smell and maintenance overhead they proposed ways to 

avoid text fixture smells during software evolution. While proposing their solution, they 

studied the evolution of test fixtures and test fixture smells. They selected five Java 

projects with their JUnit test suites and analyzed their test cases on, if test classes have 

implicit setups and whether this setup was changed over time, how many fields were 

created in the test class, occurrences of six different fixture smells and their evolution 

with the software’s evolution and by tracking the test classes with fixture smells, they 

tracked the statistics on how test smells were changed over time. They also found statistics 

for each version of the projects on how many tests were created for each test class, how 

many dead fields and used fields were in the test classes for each software. Their results 

showed that the number of test classes per class is proportional to the density of test fixture 

smells, once test smells are introduced, they rarely get resolved and for most cases if test 

fixture smells do get resolved, that is due to the test class being deleted. 

Marinescu et al. (Marinescu et al. 2014) also created a tool for analyzing each 

version of the software, its unit tests and coverage evolution. They used this tool on six 

real world projects and created statistics from these projects. Their tool gives information 

about co-evolution of unit test and executable code, software patch size and patch type 

(only test code updated, test and executable code updated etc.), code coverage statistics.   

Marsavina et al. (Marsavina et al. 2014) analyzed five open source projects for 

co-evolution patterns between its unit test and production code. Their analysis’ novelty 

comes from using associative rule mining algorithms to find the fine-grained co-evolution 

patterns. They first chose the projects with following properties, large number of versions, 

considerably large sized projects, extensive JUnit tests and actively maintained. They 

mined these projects from Git and extracted project data for each version of the software, 
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they also included the time of the changes, class name of the change, version of the change 

and the test and production code changes. They then linked the test code to the production 

code they cover. Then using associative rule mining algorithms, they extracted rules such 

as, new test classes are created-deleted when new production classes were created-

deleted. Test methods are added/removed when production methods are added/removed 

respectfully. When conditional statements were changed, test cases were added/removed. 

Their statistics results showed that for these five projects total test changes over all change 

ratios were: 6.37%, 45.33%, 41.10%, 47.36%, 21.32%. These statistics meant that for all 

projects test changes were never ahead of the production changes. They found 12 patterns 

for the five projects and some of the patterns were found in more than one project. They 

also did a qualitative analysis where they found the statistics for, if the test class was 

added along with the production class in the same commit, following commit, test class 

was never added or if the existing test class was modified because of adding the new 

production class. 

Rapos et al. (Rapos et al. 2016) studied the co-evolution between Matlab Simulink 

Models and their test cases. By analyzing the differences between 9 versions of the 64 

models and its test cases they were able to identify the effects of model changes on test 

cases. They found which changes in models require test case updates, number of versions 

where only test cases were or models were changed and percentages for categories of 

patterns such as no change in model resulted in no change in test cases, co-evolution 

existed between model and test meaning that either both model and test was added, 

removed or modified at the same version and finally there was a change in either test and 

no change in model or a change in model but not in test. They also found that co-evolution 

happens synchronously and prior to the major releases there is a noticeable increase in 

development and testing activity. 

Levin et al. (Levin et al. 2017) studied the co-evolution relationship of production 

and test code. To reduce costs of test repairing and finding code that is under tested, 

understanding how and why test cases get updated is important. Their study consisted of 

61 open-source projects and over 240.000 commits from open-source project platforms 

such as GitHub and BitBucket. From these sources they were able to get all versions of a 

software to analyze. To analyze, they created three classification categories for each 

commit. Corrective was for bug fixes. Perfective was for improving the system, 

refactoring. Adaptive was for adding new features to the system. For each version update, 

they found the frequency of these categories. They also retrieved a few added-removed-
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updated test methods and added-removed-updated test classes. With these statistics they 

were able to give information about the effect of production code maintenance have on 

unit test counts and types. They then analyzed patches as a whole and gave statistics on 

how often the test maintenance occurred with the production code maintenance. They 

found for some projects test maintenance occurred for more than half of the commits, in 

some others it was less than 15%. For no project, test maintenance was more than 68.5% 

of the commits. And in some of the projects there was no maintenance for tests which 

meant that testing depends on the project. 

Alsolami et al. (Alsolami et al. 2019) studied eight Java systems’ different 

versions and their unit test suites’ evolution to understand the test evolution methods and 

techniques for reasons such as automatic test repairing, reducing the cost of test repairing 

and creating more effective test repair techniques. They analyzed code and test suite size, 

code and test suite complexity and test suite effectiveness and gave statistics such as in 

how many versions tests, production code or both were updated, size of the code and test 

suites for each version of the projects, complexity of test and production code suite, code 

coverage of the systems for all versions and mutation coverage for these eight programs. 

As a result of their study, they indicated that test suite size was often increased over time, 

test complexity was stabilized while software was evolving, overtime test suite 

effectiveness was mostly increased and code coverage was increased for 45.7% of the 

versions, for 28.6% it was stable and for 25.7% it decreased. 
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CHAPTER 3  

 

 

TOOL INFRASTRUCTURE 

 

 

Main idea behind the tool developed for this thesis is to collect the statistics and 

data of projects from GitHub and process these values for creating the graphs and 

analyses. The tool utilizes Web Scraping and libraries such as JSoup and Selenium to 

collect the data and Apache POI, Matplotlib and sklearn libraries are used for creating the 

graphs and excel files. The tool’s project retrieval and excel creating part is coded in Java, 

cluster and elbow graph creation part is implemented in Python programming language.  

First step of the tool is, by using GitHub’s custom search engine, get the result 

page’s URL for projects containing any Gherkin files that have a .feature extension and 

projects having at least one star. An example URL can be: 

“https://github.com/search?q=language:gherkin+stars:>=1”. After creating this URL, the 

tool connects to the resulting webpage behind this URL by using Jsoup and collects the 

data of the projects seen on the webpage. Collected data contains, project repository URL, 

repository name and repository star count. One thing to note is that each project search 

page can only display at most 10 projects per URL and a pagination system for displaying 

the rest of the projects in the search query’s result. So, after collecting the data for one 

search page, another URL is created for the next page. An example URL can be displayed 

as: “https://github.com/search?q=language:gherkin+stars:%3E=1&p=2”. The only 

addition is the “&p=2” at the end. This number is increased until the resulting webpage 

has no “Next” button at its pagination button toolbar. 

After retrieving all of the projects that fit the criteria of having at least one Gherkin 

file and one star, the tool moves on to collecting detailed data for each project. Since the 

tool found the list of project URLs to be processed, using JSoup, it first connects the said 

URL which can be displayed as: “https://github.com/sdkman/sdkman-cli”. After reaching 

this page, the tool collects the issue count, tag(version) count, and percentages of 

programming languages that are contained in the project. Then, by searching the Gherkin 

files in the project, which can be performed by a URL like: 

“https://github.com/sdkman/sdkman-cli/search?l=gherkin”, the tool is met with a page 
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that displays the Gherkin files and also the count of files that are used in the project for 

each extension. Tool gathers this info and finally creates an excel file that displays the 

project list for which each project have the following properties: 

1. Name 

2. URL 

3. Star Count 

4. Tag Count 

5. Issues 

6. Programming Language File Counts 

7. Programming Language Percentages 

According to Semantic Versioning rules (Preston-Werner, 2013), major updates 

create backward incompatible versions, introducing new features. Minor updates create 

backward compatible updates, introducing new features. And patch updates fixes errors 

in the project without creating any new features or changing the existing functionalities. 

As a result of these definitions, in Patch updates, a test case update is not expected since 

the Patch update only fixes the existing functionality’s errors. It does not add a new 

functionality or change the existing functionality. There is no need to update, add or 

remove the test code. The rules of Semantic Versioning require projects to have a format 

of “x.y.z” where x, y and z are numerical values. An update is a Major update if the x 

value is increased. An update is a Minor update if the y value is increased. And an update 

is a Patch update if the z value is increased. Throughout the case study, projects that use 

a version naming system that is not in appliance with Semantic Versioning are discarded. 

However, if a project contains versions in the format of x y z but there are embellishments 

made to the versioning such as “V1.2.3”, “1.2.3v”, “1_3_4”, “1-3-4” etc. These versions 

are converted to the Semantic Versioning format using regular expressions and were not 

discarded from the study. 

For each project, the tool collects another set of data. By adding “/tags/” postfix to the 

repository URL, the tool reaches the versions page of each project for which an example 

URL can be “https://github.com/sdkman/sdkman-cli/tags”. In this page, at most 10 

versions are displayed, similar to the project search page. Tool collects each version in 

the page and moves onto the next version list page by loading the URL in the “Next” 
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button. Until the “Next” button either does not exist or disabled, the tool loads the next 

page and retrieves every version in that page. 

After the version list is collected and there are no more versions to be retrieved, the 

tool loads the first version’s page by adding “/releases/tag/” + ‘version’ to the main 

repository URL. An example can be: “https://github.com/sdkman/sdkman-

cli/releases/tag/0.8.5”. In this page, there are .zip and tar.gz download links for this 

version of the project. By using these links, the tool downloads, extracts and finds the 

total TLOC(test line of code) and ELOC(executable line of code) and initializes 

TOTAL_TLOC and TOTAL_ELOC variables to be used for the project.  

Then, for each two adjacent versions, a tuple is created. By using these tuples, the tool 

can create a URL that can lead to the “compare” page of the two versions. An example 

compare page URL can be displayed as: “https://github.com/sdkman/sdkman-

cli/compare/0.8.5...0.9.0”. In this URL, there exists information about commits and 

changed files in the same version change. For each changed file, the tool retrieves 

information about each line change in terms of: 

● If the line change is a removal or addition 

● If the changed line is a Gherkin file and has “when”, “then”, “scenario” or “given” 

keywords 

● Changed line’s line number 

For each changed file, the tool retrieves information about: 

● The change summary in files for example: “8 changes: 4 additions & 4 deletions” 

● Added line count 

● Removed line count 

● File name 

● Is file deleted 

● How many lines were change 

● Is file created 

Finally, for each version, the tool creates/updates values such as 

● Total ELOC and TLOC count of the project  

● ELOC and TLOC change count (if there is a test or executable code update, 

increment the ELOC-TLOC value by one, respectively) 
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● How many Gherkin keyword (“given”, “when”, “then” and “scenario”) updates 

occurred 

● Is production code updated, is gherkin code updated 

● If the update is a major, minor or patch update 

After these values are collected for each project’s, each update’s, each file's changed 

lines,   the tool uses these values to create excel files for each project that contains detailed 

visual statistics and graphs. One excel file is created for each project and for each excel 

file, 7 different sheets are created. The graphs in these sheets are explained in Section 4.3. 

In order to create these graphs, Apache POI library is used. 

Another excel sheet containing values such as, version count, test update count / all 

update count for all version types, test update count / all update count for major-minor 

version types, test and production update count for all version types and major minor 

version types, a curve fitting graph using values from major minor version test update 

count / all update count of each project and radar charts of each project. Again, in order 

to create these graphs and statistics, existing values from projects are processed and used 

with Apache POI library. 

For inter project analysis, cluster graphs are created. In order to find the optimal 

number of clusters in a cluster graph, Elbow Method-Graphs are required. To create the 

Elbow Graphs, the tool used the individual project data to create a .csv file containing all 

the projects and their attributes. Then by using the pandas library, .csv file is read. Then, 

by using the sklearn library, the elbow graph’s data is created. And finally, by using 

matplotlib library, the graph is sketched and saved. Cluster Graphs are created by using 

the same .csv file mentioned in the Elbow Graph creation process. and the resulting 

cluster counts that are retrieved from Elbow Graphs. Cluster graphs’ data are created by 

using sklearn library’s KMeans algorithm with the data of cluster counts and the .csv file. 

Matplotlib library is used for sketching and saving the graphs. 
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CHAPTER 4  

 

 

CASE STUDY 

 

 

In order to understand the co-evolution of user acceptance tests and their 

respectful software projects, we analyzed the evolution process of projects that we mined 

from GitHub.  

 

4.1. Project Selection 

 

Table 1.1 in APPENDIX A displays the projects that we used in our study. All the 

projects are real-world open-source programs that we selected from GitHub. Our first 

criteria for project selection was finding projects that had Gherkin files with .feature 

extension. By using GitHub’s custom search engine, we retrieved all of the projects with 

at least one star and at least one Gherkin file. The query for this search was “stars:>1 

language:gherkin. We found 601 projects matching this criterion. Then we created a web 

scraper that scraped the name, URL, number of stars, number of versions, number, and 

percentage of files for each programming language type in the project. In the resulting 

data set, we filtered projects that had at least two versions. Reason for this is that to 

analyze the evolution process of the project we need at least two versions to see how the 

project evolved over versions. This filtering reduced the project data set from 601 to 146 

projects. Then for each project we checked for each update to see if there is a Gherkin file 

update. If a project does not update any of its Gherkin files, then we can say that there is 

no co-evolution for test and production code in that project. We removed projects that did 

not fit these criteria. After this, we also removed projects that did not have step definitions 

of the Gherkin files. These filtering reduced the project count to 61. From the remaining 

61 projects, we removed projects that had less than 5 major-minor versions. This filtering 

removed 38 more projects, making the project count 23. And finally, from the remaining 

23 projects, an outlier filtering was performed, which is explained in Section 4.1.2, which 

removed 2 more projects making the final project count 21. Project and attribute 

abbreviations are given in APPENDIX A. 
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Following eleven attributes for each project that was used in the analysis 

throughout the study: 

1. Version count 

2. Test line of code (TLOC) 

3. Major minor version type count 

4. Major minor version type, test update / all updates 

5. Major minor version type, production update / all updates 

6. File change count 

7. Executable line of code (ELOC) 

8. All version types, test update / all updates 

9. All version types, production and test updates / all updates 

10. All version types, only test updates / all updates 

11. All version types, only production / all updates 

After retrieving the projects, further filterings were required. First filtering was 

performed via removing projects that had less than 5 versions. These projects created 

outliers in analysis, because with a project that has 2 versions can manipulate the ratios 

in a decisive manner. For example, a project with 2 versions has test updates in both of 

their versions, so the update ratio for test cases is 100%. However, to have 100% test 

update in a project with 100 versions, project owners must update their test code in each 

of the 100 versions which was not observed throughout the projects. After the filtering, 

the remaining project count was 23. 

To remove outliers in these projects, bar charts for each of the project attributes 

were created. 
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Figure 4.1. Bar Charts of Project Attributes 
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As can be seen from the bar charts, except for two figures, all the bar charts do 

not display an outlier project. In the 4th chart, there are two outlier projects. The existing 

23 projects have an ELOC count of between 0 and 17657. But the two projects in orange 

color display an ELOC count of 92105 and 44143 which can be observed as outliers.  

In the 5th chart, a similar event occurs. All the projects in the figure have a file 

change count of between 0 and 1735. But two projects in orange have this value as 7938 

and 3811 which make these projects outliers. The outliers in 5th and 6th bar charts in 

Figure 4.1. are the same projects which are removed from the case study. 

Remaining 21 projects, which are the scope of this thesis, are as follows: 

1. APPFP: A PHPUnit plugin for Psalm is a project that is written with one of the 

most popular unit testing frameworks for PHP, PHPUnit. This plugin is created 

for another project called Psalm which is a static analysis tool for finding errors 

in PHP applications. APPFP is used in conjunction with Psalm. 

2. AOVICP: An OpenVPN iOS Configuration Profile is a project that generates iOS 

configuration profiles in the format of .mobileconfig which configures OpenVPN 

to use with VPN-on-demand that is not accessible through Apple Configurator 

itself. 

3. ABFM: Around block for minitest is a plugin project written for minitest 

framework which is a project that provides a suite of testing facilities that supports 

Test Driven Development, Behavior Driven Development, mocking and 

benchmarking. ABFM provides additional features such as multiple before/after 

blocks which plain minitest does not support. 

4. BAGC: BBC Accessibility Guidelines Checker is a project that runs a set of tests 

for a set of URLs to verify if the URLs meet the BBC accessibility guidelines 

which are mainly applied for mobile applications. These guidelines are considered 

a set of technology agnostic best practices to follow in mobile app-content 

development.  

5. BEWMCHS: Behat extension with most custom helper steps is a plugin project 

for a project called Behat, which is an open source Behavior Driven Development 

framework for PHP. BEWMCHS adds additional test case support for Behat such 

as browser timeout,  taking screenshots, breakpoints-debugging. 

6. BPFC: Best practice for Cucumber is a project that analyzes Cucumber(.gherkin) 

files and outputs if these files contain the best practices for Cucumber. It is a linter 

that lints .gherkin files. 
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7. FBR: Factory Bot Rails is a framework for defining and using factories instead of 

fixtures. 

8. HTTYPI: Helps to test your proxy infrastructure is a project that enables the 

testing process of the proxy infrastructure systems. 

9. JEFTBS: Jekyll extensions for the blogging scholar is an extension project for 

Jekyll, a static site creator. JEFTBS enables formatting of bibliographies and 

reading lists and easies the process of citation insertion. 

10. LYSYSISF: Lets you split your ssh_config into separate files is a project that 

enables moving and copying the “/.ssh/config” file in order for user to organize 

the files in the newly created file set. 

11. MACFGIW: Manage Advanced Custom Fields groups in WP-CLI is a project that 

enables managing the field-groups with WP-CLI(Wordpress Command Line 

Interface). It enables the importation, exportation and sharing over SVN, GIT or 

comparable systems. 

12. MMPITALS: Moodle Mobile plugin including the app language strings is a 

plugin project that is used for translating the app strings in AMOS(Automated 

Manipulation of Strings) and then running the tests that are specific to the mobile 

app. 

13. PSTCTCA: PHP SDK to consume the continuousphp API is a PHP SDK project 

that enables the users to build, test and deploy PHP applications in Continous 

Deployment platform as a service. This SDK is required for using continousphp. 

14. SWCWFT: Scaffolds WP-CLI commands with functional tests is a project that 

generates files that are needed for WP-CLI commands such as Behat tests, readme 

files, GitHub configurations. 

15. STFG: Smoke tests for GOVUK is a project that is mainly a test suite for the 

GOV.UK frontend and backend systems.  

16. SSFM: Sprockets support for Middleman is an extension project for the static 

website generator called Middleman. SSFM allows the support of Sprockets in 

the assets. Sprockets is a Ruby library that enables compiling and serving web 

assets. 

17. STLPUDB: Stubs to let Psalm understand Doctrine better is a project created for 

Psalm project. It uses stubs in testing in order for Psalm to use. 

18. TDSFM: The DigitalState Forms Microservice is the microservice component of 

DigitalState project which enables users to build digital public services. It allows 
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users to use microservices to create APIs, Forms, Authentication processes and 

many more different components. TDSFM is the microservice for Forms 

component. It allows users to create forms with different input fields such as texts, 

tabs, buttons, radio buttons, checkboxes etc. 

19. TSCLI: The SDKMAN! Command Line Interface is a tool for managing parallel 

versions of multiple SDKs(Software Development Kits). It provides a Command 

Line Interface and an API for installing, switching, removing and listing SDKs. 

20. UAITFCAA: UI and integration tests for CommCare Android app is an extension 

for CommCare, open source mobile platform that allows its users to track and 

support their clients with forms, sms reminders and media. UAITFCAA is mainly 

a test suite project that enables the testing process of CommCare. 

21. WPPFC: Wire protocol plugin for Cucumber is an extension for Cucumber which 

is a tool for running automated tests. WPPFC allows step definitions to be 

implemented and invoked on any platform. 

 

 

4.2. Retrieving and Processing the Project Data 

 

For each of the 21 projects we scraped code data for each version of the project. 

For each version, we scraped the data for which file was updated, for the updated files, 

how many line additions and deletions were made, how many lines of production and test 

code were added and removed, how many specific gherkin keywords were added-

removed (Given, Then, When, Scenario). To scrape this data, we used JSoup along with 

Selenium. By using these libraries, we were able to get the source data of the site and get 

the necessary information about the projects.  

After possessing the scraped data, we created seven graphs:  

1. All Files History,  

2. Cumulative Specific Additions - Removals,  

3. Singular Specific Additions - Removals,  

4. Singular Test - Production Update History,  

5. Test/All Updates Percentage History For All Update Types,  

6. Test/All Updates Percentage History For Major-Minor Version Types,  

7. Total TLOC and Total ELOC Count History 
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All these graphs are explained below: 

 

4.2.1. All Files History 

 

In this table (Table 4.1), the evolution process of all files in the example project 

(for a subset of all versions) can be seen. X-axis shows the versions of the project starting 

from the first version and finishing with the last version. Y-axis shows all the files in the 

project. At the intersection points the summary of the file in that given version can be 

seen. Change summary cells displays information about how many lines were changed, 

how many lines were added-removed, a link to GitHub that displays the corresponding 

version comparison page. Color of the cells signify the kind of change that occurred. 

Green is for files created at that version, light green is for changes that contain only 

additions and no removals, yellow is for files containing both additions and removals, 

light red is for files that contain only removals, but the files are still in the project and 

finally red is for deleted files. 

 

Table 4.1. A subset of All Files History Table for the project AOVICP 

 

 

4.2.2. Singular Test - Production Update History 

 

In this graph set(Figure 4.2.), two-line charts can be seen for each graph. In its 

x-axis version counts are located and in the y-axis, we have the update count variable. 

Two variables were used for these charts, one for executable line of code (ELOC) 

updates and the other one for test line of code (TLOC) updates. If in a version, ELOC 

gets updated, ELOC count is incremented by one and if TLOC gets updated, TLOC 
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count is incremented by one. With this graph, frequency of test and executable code 

changes in the project throughout its versions can be displayed. 
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Figure 4.2. Line charts of each project’s total ELOC and TLOC update counts. 
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In the graphs in Figure 4.2., we observed 7 different clusters that are outlined 

below. 

A PHPUnit plugin for Psalm, An OpenVPN iOS Configuration Profile, BBC 

Accessibility Guidelines Checker, Best practice for Cucumber, Jekyll extensions for the 

blogging scholar, Sprockets support for Middleman and Stubs to let Psalm understand 

Doctrine better projects have their ELOC value greater than TLOC throughout their 

lifetime but both TLOC and ELOC increase steadily over time yet there is a 40% 

difference between ELOC and TLOC count, ELOC being the higher value. 

Around block for minitest, Moodle Mobile plugin including the app language 

strings and The DigitalState Forms Microservice projects’ ELOC value passes TLOC 

value throughout the projects’ lifetime. TLOC does not get updated nearly as much as 

ELOC. Difference between two values is at least 70% which is not an optimal value. 

Behat extension with most custom helper steps and Helps to test your proxy 

infrastructure projects’ TLOC never passes ELOC count but the difference between the 

two values is under 20%. 

Factory Bot Rails, The SDKMAN! Command Line Interface and Wire protocol 

plugin for Cucumber projects the ELOC value is greater than TLOC value. The difference 

between two values is near 50%. 

Lets you split your ssh_config into separate files, PHP SDK to consume the 

continousphp API and Manage Advanced Custom Fields groups in WP-CLI projects 

ELOC and TLOC values start in sync but in the later versions ELOC passes TLOC in a 

significant manner. 

Scaffolds WP-CLI commands with functional tests and UI and integration tests 

for CommCare Android app projects TLOC and ELOC values start and end as almost the 

same value. Test and production code gets updated in sync. 

Smoke tests for GOV.UK projects TLOC value passes ELOC value which is the 

only project where this phenomenon occurs. The difference between the two values is 

32% which is a significant value compared to the other projects. 

As can be seen from the graphs, except for three projects ELOC values pass TLOC 

values at every stage. ELOC values increase steadily over time whereas TLOC updates 

stagger across the projects’ lifetime. This pattern of ELOC values being updated almost 

at every version indicates that the testing is a phased activity, not every production code 

update gets tested immediately but rather it gets updated later which is a direct answer to 

RQ. 1: Do executable and test code evolve in sync? 



 

                           24 

 

When these results are compared to another study that is focused on co-evolution 

of software and its unit tests (Marinescu et al. 2014), both display similar results. 

  

Figure 4.3. Software and unit test co-evolution of Git, Memcached and ØMQ 

Except for Git, other two projects have a roughly 50% unit test update ratio. This 

ratio is close to 100% for Git. However, this study included every version type for the 

projects. If the study only included major - minor version types, then test over executable 

code ratio might have been much greater. 

 

4.2.3. Test/All Updates Percentage History 

 

In this graph set, a 2-graph-tuple is created for each project. Graphs in the tuple 

share a similar structure. X axis is for version counts, Y axis is for the test update 

counts/all update counts ratio. For each 2-graph-tuple there are four variables that were 

used to calculate the values in the line chart. Remaining 2-graph-tuples are given in the 

APPENDIX B. 

For the first graph of the tuple, the line chart is created by dividing the “is test 

code updated” value to the total version count. For each version of the project if there is 

a test code update, then the first variable gets incremented by one and for each version 

the divisor value, version count is incremented by one.  

For the second graph in the tuples, line chart’s dividend, “is test code updated” 

count and divisor “version count” are counted the same way except in this calculation the 

patch versions are removed from the process. For this line chart, only major and minor 

versions are included in the calculation. 

In projects there are three different version types. Major, minor and patch. Since 

in major and minor versions there are new functionalities-features, test code updates are 

expected. Our hypothesis was that, since patch updates do not add new functionalities or 

features but add code that fixes the existing functionalities, then the test cases for those 

functionalities should not be updated or changed. As a result, the first line chart, where 
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all the version types are included in the calculation, should have a lower test update count 

/ all update count ratio than the second line chart, where only the major and minor version 

types are included in the calculation 
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Figure 4.4. Line charts of each project’s all version types test update count / all update         

      count ration and major minor version types test update count / all update 
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In these graphs, there are 5 different clusters that can be observed. 

A PHPUnit plugin for Psalm and An OpenVPN iOS Configuration Profile 

projects’ ratios start similarly at first but at the end, major minor version types’ ratio 

passes all version types’ ratio at the end. Both ratios stay around 0.65. And both of the 

projects’ major minor version types’ ratio does not have a big improvement over the all 

version types’ ratio, first project’s ratio is improved by 0.057, second projects ratio is 

improved by 0.2. 

Around block for minitest project has almost no tests, there is only one version 

with test updates and that is a patch update. Major minor ratio stays 0 throughout the 

project’s lifetime. This is an outlier project. 

Lets you split your ssh_config into separate files, Helps to test your proxy 

infrastructure, Best practice for Cucumber, BBC Accessibility Guidelines Checker, PHP 

SDK to consume continuousphp API, Sprockets support for Middleman, Te SDKMAN! 

Command Line Interface projects’ major minor types’ ratios starts and stays high 

throughout the project's lifetime whereas all version types’ ratio starts slow and does not 

reach the ratio of major minor version types’ ratio. These projects can be considered 

optimal projects where patch versions rarely update test code and almost all of the major 

minor versions update the test code. Our hypothesis can be proven by this cluster. 

Factory bot rails, Behat extension with most custom helper steps, Jekyll 

extensions for the blogging scholar, Moodle mobile plugin, Scaffold WP-CLI commands 

with functional tests, Stubs to let Psalm understand Doctrine better, UI and integration 

tests for CommCare Android App, Wire protocol plugin for Cucumber project’s major 

minor types’ and all version types’ ratio stay similar at any stage of the projects lifetime. 

Major minor versions or all versions do not have a big impact on the test update count / 

all update count ratio. 

Manage advanced custom fields groups in WP-CLI and The DigitalState Forms 

Microservice projects’ major minor version types’ ratio starts strong but falls apart in the 

later versions and at the end major minor version types’ and all version types’ ratio rest 

at a similar value at the end. 

In the following table, the first column contains the project names, second column 

contains the final ratio for test update count over all update count for all version types and 



 

                           28 

 

in the third column contains the final ratio for test update count over all update count for 

only the major and minor version types. 

 

Table 4.2. Each project’s all version types test update count / all update count ratio and    

               major minor version types test update count / all update count for the final 

                   version. 

 

 

Green projects show that test update over all update count ratio increases when 

the patch versions are removed from the calculation. Yellow projects’ ratio stayed the 

same and orange projects’ ratio decreased.  

These graphs can be an answer for the 2nd Research Question,”How do the update 

types affect the co-evolution of test and executable code?”. As can be seen from the graph, 

out of 21 projects, 16 of the projects’ test update count / all update count ratio increased 

when removing the patch updates from the calculation, 2 of the projects’ ratio decreased 

and 3 of the projects’ ratio stayed the same. As a result, it can be said that Patch versions 

usually do not add, update, or remove test code. 
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For Research Question 3 “How often is test maintenance performed as part of 

(production) code maintenance?”, we can use the line charts to answer this question. If 

the patch versions are included, the test maintenance ratio drops significantly, however 

with only major-minor version types, the test maintenance is performed much more 

frequently. 

For the Research Question 4 “What is the optimal behavior of test and production 

code evolution?” can be answered by, if the update is a major or a minor update, then 

tests should evolve along with the production code. However, if the update type is a patch 

update, then test evolution is not strictly needed. 

 

4.2.4. Total TLOC and Total ELOC Count History 

 

In this graph set, a line chart that displays the total executable line of code and 

total test line of code counts for the project's lifetime can be seen. X-axis shows the 

versions, and the y-axis displays the line of code counts. First version’s TLOC and ELOC 

counts were calculated by downloading the initial file and analyzing the downloaded file. 

For the rest of the versions, data was calculated from comparing the version differences.  

A feature, which requires x lines of code to implement, can be tested by unit tests 

containing near x or maybe even more than x lines of code. But in the scope of user 

acceptance tests, the same feature can be tested by a couple of lines of code. For example, 

a login function can require a frontend code to display the input fields, a backend code to 

get the credentials, hash the password, create a connection to the database, compare the 

values with the database, if the credentials are correct, create and return the token etc. 

which can take hundreds of lines of code to implement. In its unit tests, to test every step, 

a similar line of code number is required but from the perspective of user acceptance tests, 

the tests are much shorter in length. If the user can enter with correct credentials, test 

passes, if the user enters wrong credentials or does not enter any credentials, the function 

fails. 

By this knowledge, our hypothesis is set as the total ELOC value will be higher 

than the total TLOC value. 
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Figure 4.5. Line charts of each project’s total ELOC and total TLOC value history. 
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As seen in the graphs, 16 out of 21 projects total ELOC value was always greater 

than total TLOC value. In three of the projects, total TLOC value passed the total ELOC 

value in their lifetime, but at the end total ELOC value triumphed over total TLOC value. 

In two projects, the total ELOC value started as greater than the total TLOC value but 

near the project’s end, the total TLOC surpassed the total ELOC value. 

Our 5th research question is “Can the test line of code and executable line of code 

values provide useful information about the co-evolution process?”. As can be seen from 

the graphs, most of the systems grow over time where there are a few updates that 

significantly added many ELOC, nearly doubling the existing ELOC value. However, 

corresponding test updates were not as dynamic as the production updates. This can be 

interpreted as developers are adding less test code than production code. Our hypothesis, 

which is in the scope of user acceptance tests, is that a functionality containing hundreds 

of lines of code can be tested with a couple lines of user acceptance test code. These 

graphs support this hypothesis. 

Comparing these results to another study that is focused on co-evolution of 

software and its unit tests (Marinescu et al. 2014) displays similar results. 

  

Figure 4.6. Software and unit test code count of Git, Memcached and ØMQ 

It can be seen that, TLOC to ELOC ratio is much greater for unit tests. Whenever 

there is a sizable ELOC update, a similar size of TLOC update occurs. 

 

4.2.5. Major Minor update types curve fitting 

 

By using each major-minor version type’s test update count over all update count 

ratio, the scatter graph is created. Some of the points in the graph have multiple points on 
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them. By using these points, a curve fitting is created. 

 

Figure 4.7. Curve fitting graph created by using each project’s major minor version type 

test update count / all update count ratios. 

As can be seen from this graph, a line with y =0,002x + 0.6791 as its equation and 

with an R² value of 0,0101 is the fitting curve for this study’s projects. This curve can be 

used to predict the test / all ratio of the future projects - versions. 

 

4.3. Cluster and Elbow Graphs 

 

Cluster graphs are used for displaying a set of data in a way to show the similarities 

between data points in clusters or subsets. In order to turn all of the project data into 

cluster graphs, a clustering algorithm is needed. For this problem, KMeans algorithm 

from a Python library named sklearn.cluster was used. In order to find the optimal number 

of clusters in each graph, Elbow graphs were created using the same Python library. From 

the created Elbow graphs, the sharp point can determine the optimal number of clusters 

there should be in the cluster graph. Then by using these optimal number of clusters value, 

cluster graphs were created. Following are the cluster and corresponding elbow graph for 

all of the attributes for all of the projects: 
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Figure 4.8. Cluster and Elbow graphs of AVPATOA - MMTOA 

 

Figure 4.9. Cluster and Elbow graphs of  MMTOA - AVOPOA 

 

Figure 4.10. Cluster and Elbow graphs of AVTOA - MMTOA 

 

Figure 4.11. Cluster and Elbow graphs of MMTOA - MMPOA 
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4.3.1. Cluster and Elbow graphs of AVPATOA - MMTOA 

 

By looking at the Elbow graph in Figure 4.8., the optimal cluster number is two. The 

two clusters, red and purple can be discussed as: 

1. Red cluster is for projects that have a ratio of MMTOA that is smaller than 0.7 

and a ratio of AVPATOA that is smaller than 0.5. Projects in this cluster have at 

most 50% ratio of their major-minor versions which update any test code. This 

behavior is not optimal. For AVOPOTA ratio in this cluster, since when 

containing all version types, test code and production being updated at the same 

version is not a must, patch versions should not update any test code, having this 

ratio below 0.5 is acceptable. 

2. Purple cluster is for projects that have a ratio of MMTOA that is greater than 0.5 

and a ratio of AVPATOA that is greater than 0.5. Projects in this cluster have at 

least 50% ratio of their major-minor versions which update any test code. As can 

be seen from the cluster graph, 9 out of 15 projects have this ratio between 0.8 

and 1. This behavior is optimal. For AVOPOTA ratio in this cluster having this 

ratio above 0.5 is not necessarily needed but a welcome addition. 

Optimal cluster is purple. In order to reach the optimal cluster, projects mainly need 

to introduce test updates to their major-minor updates. 

 

4.3.2. Cluster and Elbow graphs of MMTOA – AVOPOA 

 

By looking at the Elbow graph in Figure 4.9., the optimal cluster number is three. The 

three clusters, green, purple and red, can be discussed as: 

1. Green cluster is for projects that have a ratio of MMTOA that is smaller than 0.4 

and a ratio of AVOPOA that is greater than 0.7. Projects in this cluster have at 

most 40% ratio of their major-minor versions which update any test code. This 

behavior is not optimal. For AVOPOA ratio in this cluster, since when containing 

all version types, test code and production being updated at the same version is 

not a must, patch versions should not update any test code, having the only 

production code update ratio being higher than 0.7 is not the most optimal ratio(all 

version types also contain the major minor version types) it is still acceptable. 
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2. Purple cluster is for projects that have a ratio of MMTOA that is smaller than 0.7 

and a ratio of AVOPOA that is greater than 0.35. Projects in this cluster have 

between 40% and 70% ratio of their major-minor versions which update any test 

code. This behavior is acceptable but not optimal. For AVOPOA ratio in this 

cluster, since when containing all version types, test code and production being 

updated at the same version is not a must, patch versions should not update any 

test code. Only the production code update ratio is between 0.4 and 0.65. Since 

this ratio also contains the major minor version types, it is acceptable. 

3. Red cluster is for projects that have a ratio of MMTOA that is greater than 0.7 and 

a ratio of AVOPOA that is smaller than 0.4. Projects in this cluster have at least a 

70% ratio of their major-minor versions which update any test code. This is an 

optimal behavior. For AVOPOA ratio in this cluster, since when containing all 

version types, test code and production being updated at the same version is not a 

must, patch versions should not update any test code. Only the production code 

update ratio being less than 0.4 is an optimal statistic. 

Optimal cluster is the red cluster. In order to reach the optimal cluster, projects mainly 

need to introduce test updates to their major-minor updates and need to keep the 

AVOPOA ratio around 0.5 since having too many patch versions translates to having 

many errors in the existing project which is not desired. 

 

4.3.3. Cluster and Elbow graphs of AVTOA – MMTOA 

 

By looking at the Elbow graph in Figure 4.10., the optimal cluster number is three. 

The three clusters, green, purple and red, can be discussed as: 

1. Green cluster is for projects that have a ratio of MMTOA that is greater than 0.7 

and a ratio of AVTOA that is greater than 0.6. Projects in this cluster have at least 

a 70% ratio of their major-minor versions which update any test code. This 

behavior is optimal. For AVTOA ratio in this cluster, since when containing all 

version types, test code and production being updated at the same version is not a 

must, patch versions should not update any test code, having the test code update 

ratio being higher than 0.7 is not necessarily needed but is an optimal ratio. 

2. Purple cluster is for projects that have a ratio of MMTOA between 0.4 and 0.8 

and a ratio of AVTOA that is greater than 0.35. Projects in this cluster have at 

least 40% ratio of their major-minor versions which update any test code. This 



 

                           36 

 

behavior is not optimal. For AVTOA ratio in this cluster, since all version types 

also contain the major minor version types, having this ratio between 0.35 and 

0.65 is optimal. 

3. Red cluster is for projects that have a ratio of MMTOA that is smaller than 0.4 

and a ratio of AVTOA that is less than 0.35. Projects in this cluster have at most 

40% ratio of their major-minor versions which update any test code. This behavior 

is not optimal. For AVTOA ratio in this cluster, even though all versions include 

patch updates which do not update any test code, still having this ratio being less 

than 0.35 is not optimal. 

Optimal cluster is the green cluster. In order to reach the optimal cluster, projects need 

to mainly introduce test updates to their major-minor updates and need to keep the 

AVTOA ratio around 0.5. 

 

4.3.4. Cluster and Elbow graphs of MMTOA – MMPOA 

 

By looking at the Elbow graph in Figure 4.11., the optimal cluster number is four. 

Three out of four clusters have a MMPOA ratio of one. This is a common characteristic 

for all the projects except for one. Major minor updates containing production code is 

optimal. The four clusters, green, purple, red and cyan can be discussed as: 

1. Green cluster is for the project that has a MMTOA ratio of 0.7 and MMPOA ratio 

of 0.45. This cluster is an outlier where the only project included in this cluster is 

Smoke tests for GOVUK (STFG). This project has major minor updates that only 

update the test code which is not a common characteristic. Having major minor 

updates that do not update production code makes this cluster not optimal. 

2. Purple cluster is for projects that have a ratio of MMTOA that is greater than 0.7. 

Projects in this cluster have at least a 70% ratio of their major-minor versions 

which update any test code. This behavior is optimal. 

3. Red cluster is for projects that have a ratio of MMTOA between 0.4 and 0.7. 

Projects in this cluster have at most a 70% ratio of their major-minor versions 

which update any test code. This behavior is not the most optimal but acceptable. 

4. Cyan cluster is for projects that have a ratio of MMTOA that is smaller than 0.4. 

Projects in this cluster have at most a 40% ratio of their major-minor versions 

which update any test code. This behavior is not optimal. 
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Optimal cluster is purple. In order to reach the optimal cluster, projects need to mainly 

introduce test updates to their major-minor updates. Also it can be noted for the outlier 

cluster, major-minor updates should include production updates as well as test updates. 

4.4. Spider Charts 

Spider charts are used for displaying the data containing many attributes. This 

usage can be applied to the project data in the case study since each of the twenty one 

projects has eleven distinct attributes. The values in spider charts’ ranges are 

Version count : Between 7 and 99 

Test line of code (TLOC) : Between 117 and 6398 

Major minor version type count : Between 5 and 35 

Major minor version type, test update / all updates : Between 0 and 0.923 

Major minor version type, production update / all updates : Between 0.446 and 1 

File change count : Between 67 and 1735 

Executable line of code (ELOC) : Between  384 and 17657 

All version types, test update / all updates : Between 0.111 and 0.9 

All version types, production and test updates / all updates : Between 0.075 and 0.9 

All version types, only test updates / all updates : Between 0 and 0.409 

All version types, only production / all updates : Between 0.1 and 0.888 

Since, there are different ranged values such as between 0 and 1, between 5 and 

99 and between 67 and 17657, in order to display the spider charts correctly, these values 

have been normalized by MinMaxScaler to be between 0 and 1. The only pattern that can 

be observed from the spider charts is for every project, the normalized MMPOA value is 

1.0 except for one project. No other patterns are observed.  
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Figure 4.12. Spider charts of each project. The attributes are given in APPENDIX A. 
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CHAPTER 5  

 

 

CONCLUSION AND FUTURE WORK 

 

 

In this thesis, analysis for co-evolution of software and its acceptance tests is 

proposed. Case study’s projects are retrieved from GitHub and filtered according to the 

study’s needs. Then, characteristic project data to be used in the intra-project analysis is 

created for each project and from these individual project data, cluster graphs are created 

to be used in inter-project analysis.  

The evaluation performed on the twenty-one projects showed that for each update 

that contains production code changes, a respectable update for test code is not always 

added. However, when taking Semantic Versioning into account, compared to all version 

type updates, major and minor update types have a higher ratio of test updates. This can 

be interpreted as patch versions do not update any functionality but fix existing errors 

which do not require any test changes. Nonetheless, even when considering major and 

minor versions, test update count to all update count ratio is not always close to 1.0 which 

means that some of the updates that add new functionalities or change existing 

functionalities do not get tested immediately but rather at a later stage, which can be 

transcribed as executable code and test code not necessarily evolve in sync, but test code 

can be added in the further updates. When taking all version updates into account, almost 

all versions add production code to the software.  

In the analysis, for each update of all projects, we calculated the total test line of 

code (TLOC) and total executable line of code (ELOC). However, after investigating 

these values, it was seen that total TLOC code was always less than total ELOC code, 

which can be interpreted as both production code was updated more frequently compared 

to test code but also the fact that a length (code-wise) functionality can be tested by much 

less lines of user acceptance test code. An example can be a login function. In order to 

write the production code of login functionality, it can take hundreds of lines of code but 

when writing the user acceptance test code, it can take much less than a hundred lines of 

code. 
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There are a few possible future work ideas, one direction for future work can be, 

instead of using web scraping tools for project data retrieval, an API system can be used 

for retrieved project data. Another future work can be, using these data to find and analyze 

the similar patterns between test and production code updates and use these patterns to 

display how the test code can be automatically updated from only inspecting the 

production code updates. Another future work can be improving the tool to be used by 

third party companies and users. This work can help companies in a way that they can see 

their project’s co-evolution condition and take suggestions from the tool that can improve 

the project’s condition. A GUI containing different functionalities can be created for ease 

of use. These functionalities can include importing projects to the tool to be analyzed, 

adding different attributes to the project data, such as how many issues are being reported 

for the project, the size of the team that is working on the software project. As a result of 

these newly added attributes, further analysis and inferences can be made. 
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APPENDIX A 
 
 

 

PROJECT ABBREVIATIONS 
 
 

Table 1.1. Project Attribute Abbreviations 

VC Version count 

AVTOA All Version Types, Test/All 

AVOTOA All Version Types, Only Test/All 

AVOPOA All Version Types, Only Production/All 

AVPATOA All Version Types, Production and Test/All 

MMVC Major Minor Version Count 

FCC File Change Count 

ELOC Executable Line of Code Count 

TLOC Test Line of Code Count 

MMTOA Major Minor Version Types, Test/All 

MMPOA Major Minor Version Types Production/All 

 

 

 

Table 1.2. Project Name Abbreviations 

APPFP A PHPUnit plugin for Psalm 

AOVICP An OpenVPN iOS Configuration Profile 

ABFM Around block for minites 

BAGC BBC Accessibility Guidelines Checke 

BEWMCHS Behat extension with most custom 

helper steps 

(cont. on next page) 
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Table 1.2. (cont.) 

BPFC Best practice for Cucumber 

FBR Factory Bot Rails 

HTTYPI Helps to test your proxy infrastructure 

JEFTBS jekyll extensions for the blogging 

scholar 

LYSYSISF Lets you split your ssh_config into 

separate files 

MACFGIW Manage Advanced Custom Fields 

groups in WP-CLI 

MMPITALS Moodle Mobile plugin including the app 

language strings 

PSTCTCA PHP SDK to consume the 

continuousphp API 

SWCWFT Scaffolds WP-CLI commands with 

functional tests 

STFG Smoke tests for GOVUK 

SSFM Sprockets support for Middleman 

STLPUDB Stubs to let Psalm understand Doctrine 

better 

TDSFM The DigitalState Forms Microservice 

TSCLI The SDKMAN! Command Line 

Interface 

UAITFCAA UI and integration tests for CommCare 

Android app 

WPPFC Wire protocol plugin for Cucumber 
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APPENDIX B  
 
 

 

 PROJECT GRAPHS 
 
 

 

 

 

 

Figure 1.1. Line charts of each project’s all version types test update count / all update 

count ration and major minor version types test update count / all update count ratio 

(cont. on next page) 
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Figure 1.1. (cont.) 

 

 

 

 

 

(cont. on next page) 
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Figure 1.1. (cont) 

 

 

 

 

 

 (cont. on next page) 
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Figure 1.1. (cont.) 

 

 

 

 

 

(cont. on next page) 
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Figure 1.1. (cont.) 
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