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We give infinitely many explicit new representations of the class number of imag-
inary quadratic fields in terms of certain trigonometric series. Our result relies
on a hybrid between power series and trigonometric series. Furthermore, in some
cases we prove that the special values of Dirichlet L-functions can be evaluated
as certain finite sums.
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1. INTRODUCTION

Let K be a number field and OK its ring of integers. It is well-known
that OK is a Dedekind domain. In other words, the fundamental theorem of
arithmetic works when we consider the ideals of OK . However, in general OK is
not a unique factorization domain (equivalently, a principal ideal domain). Let
IK be the group of all fractional ideals of K and PK its subgroup of principal
ideals. The order of the group IK/PK , denoted by hK , is finite and called the
class number of K. Note that hK = 1 if and only if OK is a principal ideal
domain. Computation of hK has been studied extensively as it measures how
far OK is from being a principal ideal domain, hence a unique factorization
domain. The number hK is related to the pole of the Dedekind zeta function
ζK(s) of K at 1, and it is called the analytic class number formula, see [7,
Chapter 8, Section 2, Theorem 5] or [6, Theorem 10.9].

Now we investigate a particular case, namely when K is an imaginary
quadratic field. To illustrate, it is known that the class numbers h(d) of the
fields K = Q(

√
−d) are all 1, where d = 1, 3, 7. Gauss conjectured that

(1.1) lim
d→∞

h(d) = ∞.

In particular, he anticipated that there are only finitely many d such that
h(d) = 1, and this is called the class number 1 problem. By Siegel’s theorem
[5, Chapter 21], which is a lower estimation of the value of Dirichlet L-function
at 1, one sees that (1.1) holds. Therefore, Siegel’s theorem implies the class
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number 1 problem. In fact, it known that there are exactly nine values of d
such that h(d) = 1, see [5, Chapter 21].

Trigonometric series are directly connected with the class number of
an imaginary quadratic field and in particular with the special values of L-
functions, namely at 1. For this purpose, let

L(s, χ) =
∞∑
n=1

χ(n)

ns
, ℜ(s) > 1

be the L-function associated to the Dirichlet character χ. Note that actually
the sum above converges in ℜ(s) > 0 if χ is not the trivial character. Let q > 3
be a prime with q ≡ 3 (mod 4) and let h(q) = hK denote the class number
of the imaginary quadratic field K = Q(

√
−q). By [5, Section 6] we know the

following striking relation between L(1, χ) and h(q):

(1.2)
πh(q)
√
q

= L(1, χ),

where χ(n) =
(
n
q

)
is the Legendre symbol modulo q which is a non-trivial real

(quadratic) character. Let

G =

q−1∑
m=1

(
m

q

)
e

2πim
q

be the Gauss sum associated to the Legendre symbol. In this case, one has
G = i

√
q [5, Section 2] and by [2, Chapter 8] (which is reminiscent of the

inverse Fourier transform) we get that(
n

q

)
=

1
√
q

q−1∑
m=1

(
m

q

)
sin

(
2πmn

q

)
.

Hence, by (1.2) the trigonometric series representation

h(q) =
1

π

q−1∑
m=1

(
m

q

) ∞∑
n=1

1

n
sin

(
2πmn

q

)
holds. By the previous formula, the trigonometric series

∞∑
n=1

sin(2πnt)

n
,

which is the imaginary part of

− log(1− e2πit) = − log(2 sinπt)− iπ

(
t− 1

2

)
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yields a finite expression for the class number. To illustrate, the argument
above yields

L(1, χ) = − π

q
3
2

q−1∑
m=1

m

(
m

q

)
.

By (1.2), we see that L(1, χ) > 0 and the previous formula gives that

(1.3)

q−1∑
m=1

m

(
m

q

)
< 0.

It is very interesting that there is no known elementary proof of the inequality
(1.3). Dirichlet also obtained another finite representation of L(1, χ) as

L(1, χ) =
π

(2− (2q ))q
1
2

∑
m< q

2

(
m

q

)
.

This yields that the number of quadratic residues is bigger than the number
of non-residues in the first half period. There is no known elementary proof
again. Further interactions between class numbers and trigonometric sums can
be found in [4].

By exploiting the transition from power series to trigonometric series
having the Legendre symbol as coefficients, we obtain infinitely many explicit
new representations of the class number of imaginary quadratic fields in terms
of trigonometric series. It is somewhat surprising that the series

∞∑
n=1

(
n

q

)
cosnt

n

is a non-zero constant for all but finitely many t in [0, 2π].

Theorem 1. Let q > 3 be a prime with q ≡ 3 (mod 4) and
(

·
q

)
denote

the Legendre symbol modulo q. Let h(q) represent the class number of the
imaginary quadratic field Q(

√
−q). Then for all t with 0 ≤ t < 2π and t ̸= 2πm

q
for any 1 ≤ m ≤ q − 1, the class number h(q) can be computed as

h(q) =

√
q

π

∞∑
n=1

(
n

q

)
cosnt

n
.

Our second theorem is about evaluations of Dirichlet L-functions at the
positive integers. For related results on the topic, we refer the reader to [1, 3].

Theorem 2. Let q be an odd prime number,
(

·
q

)
denote the Legendre

symbol modulo q and k ≥ 2 be a positive integer. Suppose that either k is even
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and q ≡ 1 (mod 4), or k is odd and q ≡ 3 (mod 4). Then in either case,

L

(
k,
(

·
q

))
can be computed as a finite sum of the form

πk
k∑

j=1

ak,j

qj+
1
2

Mj

where

Mj =

q−1∑
m=1

mj

(
m

q

)
and ak,j ∈ Q.

As a corollary to the previous theorem, if q ≡ 1 (mod 4) then

(1.4) L

(
2,

(
·
q

))
=

π2

q5/2

q−1∑
m=1

m2

(
m

q

)
.

In particular, if q ≡ 1 (mod 4) then the sum

q−1∑
m=1

m2

(
m

q

)
is always positive. To see equation (1.4), note that

S =

q−1∑
m=1

m

(
m

q

)
=

q−1∑
m=1

(q −m)

(
q −m

q

)
= q

q−1∑
m=1

(
m

q

)
−
(
−1

q

)
S.

If q ≡ 1 (mod 4), then we know that

(
−1
q

)
= 1. By orthogonality,

q−1∑
m=1

(
m

q

)
= 0.

This yields that S = −S and hence

q−1∑
m=1

m

(
m

q

)
= 0

as well. Moreover, from equation (3.2) in the proof of Theorem 2, we have
a2,2 = 1. Therefore, we deduce (1.4) as desired.

Remark 1. Under the conditions of Theorem 2, one sees that

L

(
k,
(

·
q

))
πk

∈ Q(
√
q),
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so it is an algebraic number. Moreover, we see that

k∑
j=1

ak,j

qj+
1
2

Mj ∼ π−k

as k tends to infinity.

2. PROOF OF THEOREM 1

Let q be a prime satisfying q ≡ 3 (mod 4). Then, the exact value of the
Gauss sum G corresponding to the Legendre symbol modulo q is i

√
q [5, Page

13]. As the Legendre symbol is a primitive character modulo q, we also know
that [2, Theorem 8.19] (

n

q

)
=

1

i
√
q

q−1∑
m=1

(
m

q

)
e

2πimn
q

for all n. It follows that

∞∑
n=1

(
n

q

)
zn

n
=

1

i
√
q

q−1∑
m=1

(
m

q

) ∞∑
n=1

(ze
2πim

q )n

n

= − 1

i
√
q

q−1∑
m=1

(
m

q

)
log(1− ze

2πim
q )

(2.1)

for |z| = 1 and z ̸= e
2πim

q , 1 ≤ m ≤ q − 1. Inserting z = eit in (2.1) with
0 ≤ t < 2π and t ̸= 2πm

q for any 1 ≤ m ≤ q − 1, we see that

∞∑
n=1

(
n

q

)
eint

n
=

1

i
√
q

q−1∑
m=1

(
m

q

)(
− log

(
2

∣∣∣∣ sin( t

2
+

πm

q

)∣∣∣∣)
− i

2

(
t+ π

(
2m

q
− 1

)))
,

(2.2)

as

log(1− eite
2πim

q ) = − log

(
2

∣∣∣∣ sin( t

2
+

πm

q

)∣∣∣∣)− i

2

(
t+ π

(
2m

q
− 1

))
holds. Now by comparing real parts of both sides of (2.2), one infers that

(2.3)
∞∑
n=1

(
n

q

)
cosnt

n
= − 1

2
√
q

q−1∑
m=1

(
m

q

)(
t+ π

(
2m

q
− 1

))
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is satisfied for all t with 0 ≤ t < 2π, t ̸= 2πm
q and 1 ≤ m ≤ q − 1. As we have

q−1∑
m=1

(
m

q

)
= 0,

equation (2.3) yields that

(2.4)
∞∑
n=1

(
n

q

)
cosnt

n
= − π

q
3
2

q−1∑
m=1

m

(
m

q

)
.

As mentioned in the introduction, by [5, Page 8], we know that the value

of the L-function of
(

·
q

)
at 1 is given as

L

(
1,

(
·
q

))
= − π

q
3
2

q−1∑
m=1

m

(
m

q

)
.

Combining (2.4) with the formula above, one has that

(2.5) L

(
1,

(
·
q

))
=

∞∑
n=1

(
n

q

)
cosnt

n

holds for all t with 0 ≤ t < 2π, t ̸= 2πm
q and 1 ≤ m ≤ q − 1. Hence, by (1.2)

we deduce that

h(q) =

√
q

π

∞∑
n=1

(
n

q

)
cosnt

n

is verified for all t with 0 ≤ t < 2π, t ̸= 2πm
q and 1 ≤ m ≤ q − 1.

3. PROOF OF THEOREM 2

Since the Legendre symbol is a primitive character modulo q, for all n ≥ 1
we see that [2, Theorem 8.19](

n

q

)
=

1

G

q−1∑
m=1

(
m

q

)
e

2πimn
q

where G is the Gauss sum as before. Thus, we obtain that

(3.1) L

(
k,

(
·
q

))
=

∞∑
n=1

(
n

q

)
1

nk
=

1

G

q−1∑
m=1

(
m

q

) ∞∑
n=1

e
2πimn

q

nk
.
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Now let Slk(t) be the Clausen function defined by

Slk(t) =

∞∑
n=1

cosnt

nk
, k is even

or

Slk(t) =
∞∑
n=1

sinnt

nk
, k is odd.

It is known that Slk(t) is a polynomial of degree k. For example, some of the
Clausen polynomials are given by

Sl1(t) =
π

2
− t

2
, Sl2(t) =

π2

6
− πt

2
+

t2

4
, Sl3(t) =

π2t

6
− πt2

4
+

t3

12
,

Sl4(t) =
π4

90
− π2t2

12
+

πt3

12
− t4

48
.

Next, suppose that either k is even and q ≡ 1 (mod 4), or k is odd and q ≡ 3
(mod 4). Then the Gauss sum G =

√
q or i

√
q, respectively. In either case,

from (3.1) one deduces that

(3.2) L

(
k,

(
·
q

))
=

1
√
q

q−1∑
m=1

(
m

q

)
Slk

(
2πm

q

)
.

Claim: Slk(t) =

k∑
j=0

bk,jπ
k−jtj where bk,j ∈ Q.

We will prove the claim by induction on k. From the examples above if
k = 1, 2, 3, 4 then the claim holds. Observe that

(3.3) (Sl2k+1(t))
′ = Sl2k(t) and (Sl2k+2(t))

′ = −Sl2k+1(t).

By (3.3) and induction, we see that

Slk+1(t) = p(t) + ck

where ck is a constant and p(t) =

k+1∑
j=1

dk+1,jπ
k+1−jtj with dk+1,j in Q. Taking

t = π when k is even, we see that ck = πk+1h for some h ∈ Q. Similarly, taking
t = π when k is odd, we conclude again that ck = πk+1g for some g ∈ Q, as the
Riemann zeta function is of the form πrv at the even integers r where v ∈ Q.
So, we have the claim.

Now, by (3.2) and the claim above, we obtain that

L

(
k,

(
·
q

))
=

1
√
q

q−1∑
m=1

(
m

q

) k∑
j=0

bk,jπ
k−j(2πm/q)j
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= πk
k∑

j=0

2jbk,j

qj+
1
2

q−1∑
m=1

mj

(
m

q

)

= πk
k∑

j=0

ak,j

qj+
1
2

Mj

where

Mj =

q−1∑
m=1

mj

(
m

q

)
and ak,j = 2jbk,j ∈ Q.

Finally, by orthogonality

M0 =

q−1∑
m=1

(
m

q

)
= 0,

and this completes the proof of the theorem.

Remark 2. From the proofs of Theorem 1 and Theorem 2, one sees that
the proofs work for more general characters, namely for the Kronecker symbol.
This follows from the exact evaluation of the corresponding Gauss sums and
the Kronocker symbol is a real primitive character. Details can be found in [8,
Chapter 9].
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