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Abstract: A new molecularly imprinted electrochemical sensor was proposed to determine 4,4′-
methylene diphenyl diamine (MDA) using molecularly imprinted polymer–multiwalled carbon
nanotubes modified glassy carbon electrode (MIP/MWCNTs/GCE). GCE was coated by MWCNTs
(MWCNTs/GCE) because of their antifouling qualities and in order to improve the sensor sensitivity.
To make the whole sensor, a polymeric film made up of chitosan nanoparticles was electrodeposited
by the cyclic voltammetry method on the surface of MWCNTs/GCE in the presence of MDA as a tem-
plate. Different parameters such as scan cycles, elution time, incubation time, molar ratio of template
molecules to functional monomers, and pH were optimized to increase the performance of the MIP
sensor. With a detection limit of 15 nM, a linear response to MDA was seen in the concentration range
of 0.5–100 µM. The imprinting factor (IF) of the proposed sensor was also calculated at around 3.66,
demonstrating the extremely high recognition performance of a MIP/MWCNT-modified electrode.
Moreover, the sensor exhibited good reproducibility and selectivity. Finally, the proposed sensor was
efficiently used to determine MDA in real samples with satisfactory recoveries ranging from 94.10%
to 106.76%.

Keywords: 4,4′-methylene diphenyl diamine; primary aromatic amine; electrochemical sensor;
chitosan; molecularly imprinted polymer

1. Introduction

In recent years, because of the growing need to combine different functional require-
ments in food packaging materials, the usage of multilayer materials has attracted much
attention [1]. Polyurethane (PU) adhesives are one of the most popular groups of adhesives
used in film–film food packaging materials [2]. These adhesives are the products of the
reaction of polyols (usually polyester polyol or polyethylene glycol) with diisocyanates:
Ar(NCO)2+R(OH)2→ 6-(OCOHNArNHCOOR)- [3]. Primary aromatic amines (PAAs),
which are “possibly carcinogenic to humans,” are substances that can migrate from food
packaging materials consisting of PU adhesives into foodstuffs [4]. The presence of PAAs
in the food packages can be explained by two main reasons: (a) some residual isocyanic
monomers that may remain in PU adhesives after the curing process can react with the
moisture that is present in food packages and yield PAAs; (b) after some thermal processes
(e.g., pasteurization and sterilization), urethane linkage may break, yielding neoformed
isocyanic monomers that can come into contact with the moisture inside the food package,
thus forming PAAs [2]. According to European Regulation 10/2011, plastic material and
articles shall not release PAAs in detectable quantity in food or food simulants. The limit
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is set to 0.01 mg of substances per kg of food or food simulant, and it relates to the sum
of primary aromatic amines (ANL, 2-4TDA, 2-6TDA, 4-4MDA, 1-5DAN, m-PDA, 3-3DCB,
and 4-4DPE) released [5]. In the past few years, the accurate quantification of PAAs has
become a critical topic in the food packaging area. Packaging companies are willing to
use methods that are cheap and, at the same time, sensitive and selective enough. Lately,
electrochemical sensors have been known as selective, sensitive, and reliable devices with
some extra advantages over other analytical techniques, advantages such as ease of use,
lower cost, and faster response time [6–10].

Sensors are known as small devices resulting from incorporating a recognition element
with a signal transducer that can be used for the direct measurement of the analyte in the
sample matrix. One of the most important subclasses of sensors is electrochemical sensors,
in which an electrode is used as the transduction element [11]. Bare electrodes are not
appropriate options for fabricating electrochemical sensors, because of their low surface
area and electrode-fouling phenomenon, which may happen during the electroanalytical
analysis, and that can negatively affect the analytical characteristics of a sensor (e.g.,
reproducibility, overall reliability, and sensitivity). In recent years, modified electrodes have
been suggested to overcome the deficiencies of bare electrodes. Carbon-based materials
with large surface areas (e.g., graphene and carbon nanotubes) are well suited to modify
bare electrodes because of electrocatalytic properties and fouling resistance [12]. Another
group of materials that has received considerable attention for increasing the selectivity and
sensitivity of the sensor is represented by the molecularly imprinted polymers (MIPs) [13].

Molecular imprinting is a well-established and simple method to fabricate materials
with recognition sites with complementarities in size, shape, and functional groups with
the template molecule. MIP materials can mimic natural receptor systems (antibodies,
enzymes, and hormones) to bind with a specific target analyte [14,15]. The main steps for
MIPs synthesis are as follows: (1) a combination of template molecules with the functional
monomers to make a composite via noncovalent bonds or covalent in solution; (2) polymer-
izing the complex with initiators and cross-linkers under photo-/thermal conditions; (3) a
template removing the use of solvent elution because the analyte has higher solubility in the
solvent [16]. MIPs can bind specifically to the original and related template molecules while
also possessing tolerance to mechanical stress, temperature, pH, etc. [17]. MIP materials
have attracted much attention in recent years because of their great potential for electro-
chemical applications. In particular, MIPs can advantageously be used as functionalized
polymers for making more-sensitive and more-selective electrochemical sensors [16,18,19].

By combining electrochemical sensors and molecular imprinting, molecularly im-
printed electrochemical (MIEC) sensors can be prepared. This type of sensor has some
crucial properties, such as high sensitivity, selectivity, chemical stability, and ease of prepa-
ration [20]. Among numerous methods, electropolymerization is one of the best techniques
for fabricating rigid, uniform, and compact MIP films on the electrode surface in a relatively
simple fashion [21]. Moreover, MIP films prepared by electropolymerization have high
stability, electrocatalytic activity, and conductivity, which can improve the sensitivity and
selectivity of the sensor [13]. The easiest way to increase the number of effective imprinted
sites on the sensor surface is to assemble the nanoparticles at the surface of the electrode to
increase its surface area [22].

Chitosan (CS) is a linear polysaccharide made up of β(1→4)-linked D-glucosamine
residues with a different number of randomly located N-acetyl-glucosamine groups [23].
CS can be prepared by the deacetylation of chitin, isolated from the cell walls of many
fungi and shells of crustaceans [24]. This biopolymer has some unique properties, such
as biodegradability, biocompatibility, film-forming ability, nontoxicity, high mechanical
strength, and high adsorption and adhesion properties [25,26]. There are diverse ap-
proaches to producing CS films, such as drop casting, nanoimprinting, spin coating, and
electrodeposition. The latter, in particular, offers better overall deposition control over
the other approaches, which can also benefit from the pH-dependent solubility of this
biopolymer [27].
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The main goal of this investigation is to prepare a new, selective, and sensitive ana-
lytical device for determining 4,4′-methylene diphenyl diamine (MDA), one of the most
important PAAs that can migrate from PU-based multilayer packaging materials to the
packaged food. Conductive MWCNTs were used to increase the electrode’s surface area
and improve its resistance to fouling. We also used the electropolymerization technique
to fabricate a chitosan molecularly imprinted polymer (MIP) layer on the electrode’s sur-
face to increase the sensor’s selectivity. The analytical performance of the sensor was
thoroughly investigated by differential pulse voltammetry (DPV). The experimental pa-
rameters possibly affecting the performance of the MIP sensor were studied and optimized,
while the potential application of the developed sensor in real samples was evaluated by
preliminary trials.

2. Materials and Methods
2.1. Chemicals and Apparatus

First, 4,4′-methylene diphenyl diamine (analytical grade 98%, molar mass 198.26 g mol-
1), multiwalled carbon nanotube (≥98% carbon basis), chitosan (≥75%, deacetylated), acetic
acid (99%), boric acid (99.99% trace metals basis), phosphoric acid (85%–90%), phosphate
buffer solution (pH 7.0), and N,N-dimethylformamide (99.8%) (DMF) were purchased from
Sigma Aldrich (Milan, Italy). Irganox 1010 (Pentaerythritol Tetrakis(3-(3,5-di-tert-butyl-4-
hydroxyphenyl)propionate)) and Irgafos 168 (Tris (2,4-ditert-butylphenyl)phosphite) were
bought from BASF (Pontecchio Marconi, Italy). Alumina powder, 0.05 µm, was purchased
from EMS (Hatfield, PA, USA). The Britton–Robinson (B-R) universal buffer (0.04 M acetic
acid, 0.04 M boric acid, and 0.04 M phosphoric acid) was made using deionized water.

All the electrochemical experiments were carried out by an Autolab PGSTAT 302N
potentiostat (Metrohm, Herisau, Switzerland). The applied three-electrode electrochemical
cell was equipped with a MIP/MWCNTs-CS/GC electrode as a working electrode, a plat-
inum electrode as an auxiliary electrode, and an Ag/AgCl electrode as a reference electrode.
The pH was measured with a pH meter BASIC 20 + (Crison Instruments, S.A. Barcelona,
Spain). All the measurements were performed at room temperature (25 ± 2.5 ◦C). The
drying of the modifications was performed by using an infrared lamp (type B, 1440 W,
Helios Italquartz srl, Cambiago, Italy).

2.2. Fabrication of MWCNTs Modified GCE

MWCNTs (0.5 mg) was added into 1 g DMF solution, and the mixture was ultrasoni-
cated for 3 min to form a homogeneous MWCNTs suspension.

A GCE was polished with an Al2O3 slurry and then rinsed with doubly distilled water.
To fabricate the MWCNTs modified GCE (MWCNT/GCE), 15.0 µL of MWCNTs-DMF
solution were placed directly onto the GCE surface and dried with an infrared lamp for
10 min to form a MWCNTs layer.

2.3. Preparation of MIP and Nonimprinted Modified Electrodes

Chitosan powder (0.1 g) was added to hydrochloric acid 1 M (0.52 g) and water (9.38 g).
The mixture was then left under stirring for 15 min at room temperature. A 10 mM solution
of MDA was separately prepared in ethanol. Subsequently, the chitosan solution, MDA,
the supporting electrolyte, and water were mixed to prepare the modifying solution. MIPs
were obtained by electrodepositing chitosan and the analyte (MDA) on the surface of the
MWCNTs/GCE. The MIP-modified electrode, denoted as MIP/MWCNTs/GCE, was pre-
pared by cyclic voltammetry (CV) in the range of -0.5 V to 1.5 V and at a scan rate of 50 mV
S–1 in the modifying solution [26]. After the electrodeposition, the MIP/MWCNTs/GCE
was immersed in an eluent solution (0.5 mM NaOH solution containing 200 µL of ethanol)
to remove the MDA-templating molecules. A schematic sketch of the preparation of
MIP/MWCNTs/GCE is illustrated in Scheme 1. A nonimprinted polymer (NIP) sensor,
denoted as NIP/MWCNTs/GCE, was prepared similarly to the MIP/MWCNTs/GCE,
except that the template molecules were absent in the electrodeposition step.
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Scheme 1. Schematic illustration of the preparation of the MIP/MWCNTs/GCE.

2.4. Morphological Characterization of the Electrode Surface

A field emission–scanning electron microscope (FE-SEM), Hitachi S-4800 (Schaum-
burg, IL), was used for electrode-surface imaging. MWCNTs-coated GCE specimens were
mounted with carbon tape on stubs, and their surfaces were observed after sputtering with
Pt/Pd (60/40) under argon for 20 s at a current of 80 mA. The samples were observed using
an acceleration voltage of 1-5 kV and an electrode current of 10 µA.

2.5. Real Sample Analysis

Thermo-sealed bags of 1 dm2 of surface area per side were prepared by using a
multilayer packaging material (Castagna Univel Spa, Guardamiglio, Italy) consisting of
polyethylene terephthalate (PET, 12 µm thick), olyvinylidene chloride coating (PVDC, 6 µm
thick), and low-density polyethylene (LDPE, 50 µm thick), whereby a PU adhesive was
used to join PET to the remaining part of the film. To investigate the migration of PAAs
from PU-based multilayer packaging materials in the worst-case condition, each bag was
filled with 100 mL of food simulant B (i.e., acetic acid water solution, 3 w/v%) [28]. The test
was conducted at 121 ◦C for 20 min in an autoclave (Asal 760, Steroglass srl, Perugia, Italy).
After this time, 10 mL of simulant B was diluted with 10 mL B-R buffer solution, followed
by the addition of specific amounts of MDA monitored by DPV. From the quantitative
determination of MDA, the final recovery (%) was determined.

3. Result and Discussion
3.1. Morphological Characterization of Modified GCEs

Scanning electron microscopy (SEM) was used to investigate the surface morphology
of the electrode modified with MWCNTs (MWCNTs/GCE). Figure 1 shows the MWCNTs
on the surface of the electrode at two magnifications. As can be seen, the nanotubes
were evenly distributed throughout the surface of the electrode, thereby contributing to a
noticeable increase in the surface area of the electrode exposed to the surrounding medium.
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Figure 1. SEM image of multiwalled carbon nanotube–modified glassy carbon electrode (MWC-
NTs/GCE). A zoomed-in area is shown in the inset.

3.2. Electrochemical Responses

Figure 2 shows the DPV responses of the MIP/MWCNTs/GCE with and without the
template. An obvious current peak was detected in the presence of the template encased
in the main biopolymer network (trace a). However, no peak was observed when the
MIP/MWCNTs/GCE was eluted with a solution of ethanol and NaOH (trace b). This
demonstrated that the ethanol-NaOH solution is an efficient solvent for extracting MDA,
thus generating the final MIP structure.
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(trace b) in 20 mL B-R buffer (pH 10.0).

The electrochemical behavior of MDA at the surface of MIP/MWCNTs/GCE (a),
NIP/MWCNTs/GCE (b), MIP/GCE (c), and bare electrode (d) was investigated by DPV,
as shown in Figure 3. The peak current at the modified/unmodified GCE varied ac-
cording to the following order: MIP/GCE < bare electrode < NIP/MWCNTs/GCE <
MIP/MWCNTs/GCE. The bare electrode showed a peak with a higher current than
MIP/GCE (trace c–d, Figure 3), which can be explained by the fouling that occurred
during the electropolymerization on the surface of the bare electrode as well as by the
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low sensitivity of the bare electrode, possibly due to the low surface area of the electrode.
NIP/MWCNTs/GCE (trace b, Figure 3) showed a higher peak current than the electrodes
discussed before. This could be attributed to the antifouling effect of MWCNTs and also
to the high conductivity and surface area of the nanotubes, which can result in increased
sensitivity to the sensor. Furthermore, the peak current at the MIP/MWCNTs/GCE (trace a,
Figure 3) is higher than the others, which suggests that MDA molecules have been extracted
from the MIP structure and that the cavities were correctly made in the MIP structure. The
MIP’s nanoporous structure made it easier for MDA molecules to move to the electrode’s
surface, accelerating the oxidation of the analyte and boosting its detection. These results
demonstrate that MWCNTs can amplify the response signal while using the imprinting
process to identify MDA. The electrocatalytic oxidation characteristics of MDA at various
electrode surfaces at pH 10.0 are summarized in Table 1.
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mL B-R buffer (pH 10.0) containing 500 µM MDA.

Table 1. Comparison of the electrocatalytic oxidation peak current (Ip) of MDA (500 µM) on various
electrode surfaces at pH 10.0.

Electrode Oxidation Peak Current (µA) Drying Method

Bare GCE 1.13 ± 0.11 -
MIP/GCE 0.01 ± 0.003 IR lamp

NIP/MWCNTs/GCE 8.05 ± 0.26 IR lamp
MIP/MWCNTs/GCE 29.47 ± 0.46 IR lamp

3.3. Optimization of Analytical Conditions
3.3.1. Effect of Scan Cycles

One of the most important factors that should be considered while dealing with MIPs is
the film thickness [20]. More specifically, in the case of very thin imprinted membranes, the
main drawback is associated with the low number of imprinted sites that can be formed on
the surface of the electrode, which may result in low sensitivity in the sensor. On the other
hand, when the imprinted layer is excessively thick, the sensor may have limited sensitivity,
which could be because of two main reasons: (i) it is almost impossible to remove the
template molecules that are located in the bulk of the membrane; (ii) the high mass-transfer
resistance, accessing the imprinted sites located in the bulk of the membrane is hard for the
target analyte. The simplest way to control the polymer membrane’s thickness is to monitor
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the number of scan cycles throughout the electropolymerization process [29]. In this work,
various scanning cycles (10, 20, 30, and 40) were used for the electrodeposition process
to control the thickness of the imprinted film. As shown in Figure 4, the peak current
response of the MIP sensor toward MDA increased with the cycle numbers, reaching its
maximum: 30 cycles. The steeping part of the plot is plausibly due to the progressive
increase in the MDA-binding sites, whereas the descending part of the plot might be due
to the thick sensing layer with fewer available imprinted sites. Because the peak current
response reached its maximum at 30 scanning cycles, this setup was selected to obtain the
best performance of the MIP layer [30,31].
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Figure 4. Effect of a different number of scan cycles in the electropolymerization process on the
anodic peak currents of MDA (500 µM). Error bars are calculated from three independent replicates.

3.3.2. Effect of Elution Time

The elution of the template is a crucial step during the MIP formation, as it can directly
affect the sensor’s selectivity and sensitivity by successfully removing the template from
the surface of the electrode and making the cavities instead. The template removal was
performed in 0.5 mM NaOH solution containing 200 µL of ethanol for 2 min, 5 min, 10 min,
15 min, and 20 min. As shown in Figure 5, after 20 min, the peak current approached zero,
which means that almost all the MDA molecules were removed from the surface of the
electrode, and the electrode has the highest porosity to be used in the solution containing
the target analyte. Therefore, an elution time of 20 min was selected for this work.

3.3.3. Effect of Incubation Time

The effect of the incubation time on the sensor’s response toward MDA was investi-
gated to optimize the adsorption of the analyte in the MIP layer. The modified electrode
(after the template extraction) was incubated in 500 µM MDA for 5 min, 10 min, 15 min,
20 min, and 30 min. As shown in Figure 6, the peak current progressively increased with
prolonged incubation time. It achieved its highest value after 20 min, indicating that in this
period, the highest amount of MDA adsorption had been reached. After 20 min, the cur-
rent response slightly decreased, suggesting that the MIP layer approached its saturation.
Consequently, the incubation time of the MIP sensor was set at 20 min.
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the sensor to MDA in the MIP layer. Error bars are calculated from three independent replicates.
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3.3.4. Effect of the Template–Biopolymer Molar Ratio

The performance of the MIP sensor is also affected by the molar ratio between the
template and the biopolymer in the polymerization process [29]. The molar ratio of MDA to
CS was investigated by varying the MDA–CS molar ratio as follows: 1:1, 2:1, 2.5:1, 3:1, and
4:1. As shown in Figure 7, the peak current increased as the ratio increased, and a maximum
value was reached at 2.5:1, after which the peak current decreased gradually. According to
this result, it can be said that the sensor is less sensitive at lower template concentrations,
in agreement with a smaller number of recognition sites made in the biopolymer matrix.
Concurrently, low sensitivity was observed for high concentrations of the template, which
can be explained by the tendency of MDA molecules to make a complex, thus reducing the
probability for the template molecule to be entrapped in the tri-dimensional biopolymer
matrix [32].
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3.3.5. Effect of the pH

One of the most important parameters on the performance of the MIP sensors is the
pH, not only because it influences the oxidation rate but also because it may affect both the
shape of the target molecules and the function and structure of the imprinted polymer [22].
The impact of the pH on the peak potential (Epa) and peak current (Ipa) was investigated by
DPV using 500 µM of MDA in the pH range of 6-11 (Figure 8). As the pH increased from 6
to 10, the peak current of the imprinted sensor increased progressively. Conversely, when
the pH changed from 10 to 11, the peak current declined, probably because of the impact of
the high pH on the oxidation of MDA on the surface of the modified electrode [33]. Hence,
the B-R buffer solution with pH 10.0 was selected as the best electrolyte to achieve the best
sensitivity in all the measurements. The linear relationship between Epa and pH can be
expressed by the following equation: Epa (V) =−22.07 pH + 746.42. The potential negatively
shifts by 22.07 mV per pH unit, demonstrating that one proton every two electrons was
involved in the electrochemical reaction [34].
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3.4. Performance of the Imprinted MIP/MWCNTs/GCE Sensor
3.4.1. Sensitivity

The sensitivity of the MIP/MWCNT-modified electrode to MDA was assessed by DPV
according to the optimized conditions discussed earlier. Figure 9a shows that the oxidation
peak was centered at +0.53 V, and a proportional relationship exists between the MDA
concentration and the peak current intensity. A linear calibration curve was obtained in
the range of 0.5 µM to 100 µM (Figure 9b) with the following linear regression equation:
Ip = 0.1946x + 1.2050 (R2 = 0.9984). The ultimate limit for the detection of the sensor was
calculated to be 15 nM, according to the method reported by Skoog et al. [35],

LOD = (3 × Sbl)/m (1)
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In this equation, Sbl is the standard deviation of the blank response (0.001 µA in this
work), whereas m is the slope of the calibration plot (0.1946 µA µM−1).

Another important parameter that is used to describe the analytical performance of
the electrode is the imprinting factor (IF), which shows the recognition performance of the
imprinted sensor. This factor can be calculated by the fitting parameters of Ipm.

IF = Ipm(MIP)/Ipm(NIP) (2)

Ipm (MIP) is the peak current of the MIP/MWCNTs/GCE toward the analyte, and Ipm (NIP)
is related to the NIP/MWCNTs/GCE. In this experiment, IF is equal to 3.66, which shows a
high selectivity performance of the MIP-modified electrode. This is another piece of indirect
evidence of the presence of cavities on the surface of the electrode [36]. Our examination
of the literature shows that just one paper reported employing a graphene-based MIP
electrochemical sensor to measure MDA concentration. The linear range and slope of the
calibration curve of that sensor were 1–15 µM and 0.0352, respectively [34]. These two
items clearly show the advantages of our sensor over that in the previous work.

3.4.2. Selectivity and Reproducibility

Interference in the measurement of the target analyte due to other electroactive species
is a problem that may arise during the analyte detection in real samples. The selectiv-
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ity of the MIP sensor toward MDA was investigated by assessing the interference of
some potential compounds (Aniline, TDA, IRGAFOS 168, IRGANOX 1010) that may be
present in real food packaging samples as a consequence of the unwanted migration of
additives/compounds present in the packaging material. The results (data not shown)
demonstrated that these compounds did not affect the MDA measurement.

To check the sensor’s reproducibility, three MIP/MWCNTs/GCE sensors were pre-
pared independently and used in the same way to determine 50 µM MDA. The relative
standard deviation (RSD) for three successive runs was about 4.13%. This result indicates
satisfactory reproducibility for the proposed electrode.

3.4.3. Real Sample Analysis

The practical application of the MIP/MWCNTs/GCE was evaluated by using the
modified electrode to determine MDA in real samples. Given that no MDA was de-
tected in the sample, the standard addition method was used to evaluate the potential of
MIP/MWCNTs/GCE in real applications. The results obtained by the proposed method
were certified with the MDA calibration curve. The results (Table 2) show that the recoveries
range from 94.10% to 106.76%.

Table 2. Determination of MDA in the real sample using MIP/MWCNT-modified electrodes. Three
replicates were made for each run.

Samples Spiked (µM) Found (µM) RSD (%) Recovery (%)

Laminate structure
(PET/EVOH/PE)

including a PU adhesive

0 - - -
15 15.37 2.1 102.46
30 32.03 1.5 106.76
50 47.05 2.8 94.10

4. Conclusions

A novel molecularly imprinted electrochemical (MIEC) sensor with high selectivity
and sensitivity was proposed for MDA detection. The results showed that the electrode
modification with MWCNTs significantly enhanced the surface area and the conductivity
of the electrode, resulting in improved sensitivity. The use of nanoparticles was also
beneficial because of their antifouling properties. The electrodeposited MIP layer exhibited
excellent electrochemical response thanks to CS’s exceptional film-forming ability and the
bonding of CS to the target molecule. The sensor’s response to the MDA was linear, in the
concentration range of 0.5 µM–100 µM, and the calculated LOD was 15 nM. This sensor
displayed a low limit of detection, a wide linear concentration range, excellent selectivity,
and satisfactory reproducibility. High recoveries (94.10 to 106.76%) were obtained with this
sensor while detecting MDA in real samples. As a result, MIP/MWCNTs/GCE is a highly
promising device for the monitoring trace amounts of MDA.
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