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A B S T R A C T   

Pyrolysis is a suitable conversion technology to address the severe ecological and environmental hurdles caused 
by waste plastics’ ineffective pre- and/or post-user management and massive landfilling. By using machine 
learning (ML) algorithms, the present study developed models for predicting the products of continuous and non- 
catalytically processes for the pyrolysis of waste plastics. Along with different input datasets, four algorithms, 
including decision tree (DT), artificial neuron network (ANN), support vector machine (SVM), and Gaussian 
process (GP), were compared to select input variables for the most accurate models. Among these algorithms, the 
DT model exhibited generalisable and satisfactory accuracy (R2 > 0.99) with training data. The dataset with the 
elemental composition of waste plastics achieved better accuracy than that with the plastic-type for predicting 
liquid yields. These observations allow the predictions by the data from ultimate analysis when inaccessible to 
the plastic-type data in unknown plastic wastes. Besides, the combination of ultimate analysis input and the DT 
model also achieved excellent accuracy in liquid and gas composition predictions.   

1. Introduction 

Plastic plays a vital role in modern society and is a non-negligible 
part of the construction, healthcare, electronics, automotive, and 
packaging industries [1]. Since their first appearance, the production of 
plastics has skyrocketed with the growing global population and social 
demands [2]. Most plastics are petroleum-based polymers, such as 
polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl 
chloride (PVC), and polyethylene terephthalate (PET) [3]. Therefore, 
plastic production highly depends on fossil resources, making them 
unsustainable without proper recycling pathways. 

However, existing waste management systems worldwide lack suf-
ficient capacity at the global level to dispose of or recycle all waste 
plastics safely. It resulted in an inevitable increase in waste plastic 
disposal in the environment [4]. Previous studies estimated that 8 
million metric tons of macro-plastic and 1.5 million metric tons of pri-
mary micro-plastic enter the ocean annually [5]. Waste plastics may 
take up to billions of years to degrade in the ecosystem [6]. The alter-
native to landfilling is mechanical recycling, chemical recycling, and 
energy recovery. Mechanical recycling of plastic waste is the reproc-
essing of plastic waste into new and serviceable materials. However, the 

drawback is the costly and inefficient pre-separation by labour. The 
pre-separation is inevitable, as waste plastics have different resins, 
transparency, and colour. Mixed plastics are undesirable for manufac-
turers because mixtures have fewer transform abilities and lower flexi-
bilities [7]. In addition, pre-separation consumes large amounts of water 
for cleaning, and the resulting water contamination reduces the sus-
tainability of the recovery. 

Chemical recycling of waste plastics is more practicable, as most 
industries manufacture plastics from fossil fuels. It is an environmentally 
friendly way to meet the increased energy demand through waste 
recycling [8]. Pyrolysis is a method of chemical recycling to degrade 
long-chain polymer molecules into smaller, less complex molecules in an 
inert atmosphere. In the past two decades, extensive research and 
development work promoted the technological development of the py-
rolysis of waste plastic [9,10]. The process requires intense heat with a 
shorter duration in an oxygen-free atmosphere and generates initial 
volatiles and solid residue [11]. Subsequently, initial volatiles 
condensed and further formatted the liquid and non-condensable gas. 
The liquid products have multiple applications in furnaces, boilers, 
turbines, and diesel engines, without upgrading or further treatment. 
The by-product non-condensable gas has a substantial calorific value 
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and compensates for balancing the overall energy of the process [12]. 
The pyrolysis process optimisation could achieve different product 

yields and distributions by manipulating the operating parameters. 
Previous studies have recognised that liquid product yields and quality 
depend on the pyrolysis parameters, which involve the feedstock prop-
erties, pyrolysis temperature, reactor type, residence times of plastics 
and primary pyrolysis vapours, pressure, and carrier gas with its flow 
rate [13,14]. Different plastics contain various amounts of volatile 
matter and ash content. In most cases, a higher volatile matter favours 
liquid conversion [15]. For instance, the pyrolysis of PP, HDPE (high--
density polyethylene), and LDPE (low-density polyethylene) yielded 
80.1 wt%, 84.7 wt%, and 93.1 wt% liquid products at their optimised 
reaction temperatures, respectively [16,17]. The pyrolysis of PS has an 
even higher liquid oil yield of 97.6 wt% at the optimum temperature of 
425 ◦C [18]. Unlike polyolefins (PP and PE) and PS, other common 
plastics, such as PET and PVC, lead to a lower liquid product yield. The 
PET pyrolysis produced only 23.1 wt% oil and 76.9 wt% gas when 
conducting the reactor at about 500 ◦C [19]. In the pyrolysis of PVC in a 
batch reactor at 520 ◦C with a heating rate of 10 ◦C /min, the liquid 
product yield was about 12.8 wt%, of which hydrogen chloride content 
was up to 58 wt% [20]. These studies showed that each type of plastic 
has specialised pyrolysis characteristics and behaviours. However, 
waste plastics are often a mixture of various plastics, and it is difficult, if 
not impossible, to get accurate data on compositions. The pyrolysis of 
mixed plastics often produced a lower liquid yield of less than 50 wt% in 
experimental results [8]. Therefore, optimising the pyrolysis parameters 
based on complicated feedstock still requires attention to develop the 
process further, maximise liquid production and improve the quality. 

Process modelling is a promising tool for addressing complicated 
systems and is necessary for the scale-up and optimization of industrial 
processes. Because of the heterogeneity of the physicochemical structure 
of the plastic mixture, the development of mathematical models to 
simulate plastic mixture pyrolysis requires a topology algorithm in most 
cases [21]. Machine learning (ML) successfully predicted the pyrolysis 
of biomass, coal, and organic solid waste [22–24]. The ML can improve 
automatically through data uptake and experience, attempting to map 
inputs to the corresponding responses to comprehend the mathematical 
linkages from various complex processes with algorithms [22]. Several 
algorithms have modelled pyrolysis or gasification processes in recent 
reports, including artificial neural networks (ANN), tree-based algo-
rithms, like decision tree (DT) and random forest, and support vector 
machine (SVM) [25,26]. ANN method is the ML technique receiving the 
most attention. For instance, when modelling biomass gasification by 
featuring tar, char, and permanent gas interactions, ANN outperformed 
a real-gas equilibrium model for predicting the gasification products 
[27]. Beyond ANN, other relevant ML options, such as the tree-based 
approach and SVM, have some successful implementations. Cheng 
et al. proposed integrating an RF-based predictive model with life cycle 
assessment and economic analysis [28]. They aimed to achieve a 
comprehensive evaluation holistically with different pyrolysis feed-
stocks. SVM also has a wide application in pyrolysis prediction tasks. For 
example, in predicting pyrolysis biochar yield, SVM showed better 
performance than ANN at R2 and RMSE [29]. 

To our best knowledge, the research on waste plastic pyrolysis is still 
short for easy, cheap, and reliable methods for complex feedstock 
characterisation. Corresponding data absence limited the possibilities of 
yield maximisation by optimising the operating parameters, and product 
prediction is challenging when facing the complexity of feedstock that 
varies in each batch. This study aims to model the relationships between 
the input variables, such as the feedstock and operating parameters, of a 
non-catalytically operating pyrolysis process and the responses, which 
include the three-phase product yields and chemicals in them. By 
comparing the algorithms of the DT, ANN, SVM, and Gaussian process 
(GP), this work clarified practical and operable operating parameters for 
identifying the most accurate models. The models developed in this 
work showed the potential to predict and optimise the non-catalytic 

pyrolysis process of waste plastic without expensive experiments. 

2. Material and methods 

2.1. Data collection 

This study reviewed 93 relevant works (Table S1 and S2) to get 
experimental data and develop the prediction models. The research ar-
ticles were collected using Web of Science, Scopus, and Wiley databases. 
The collection comprised articles written in English and published be-
tween January 1, 1984, and December 31, 2021. 

The keywords used for the database search were “pyrolysis”, “waste 
plastic”, “polyethylene”, “polypropylene”, “polystyrene”, “polyvinyl-
chloride”, and “polyethylene terephthalate”. Articles matching these 
keywords are collected and classified into two sets: review articles and 
research articles. As a supportive step, the individual lists of references of 
the review articles were investigated further to expand the collected set 
of research articles. In line with the focus of this work, only the articles 
reporting the results of “continuously” and “non-catalytically” operating 
pyrolysis systems were added to the collection. Research articles 
reporting the results both for “non-catalytic” and “catalytic” tests were 
also considered. However, only the results involving the “non-catalytic” 
operations were considered. 

The input variables in the study included the feedstock properties, 
such as compositions of different plastic types (wt%), ultimate analysis 
(wt%, ash free) and particle size (mm). The plastic-type included in the 
study were polyethylene (PE), polypropylene (PP), polystyrene (PS), 
polyvinyl chloride (PVC), and polyethylene terephthalate (PET). The 
ash-free elemental compositions of carbon (C), hydrogen (H), oxygen 
(O), nitrogen (N), and chlorine (Cl) were included as the inputs, while 
sulphur was not selected as it was often negligible compared to the el-
ements mentioned above. The feed intake capacity (kg/h), pyrolysis 
temperature (◦C) and vapour residence time (s) were considered as the 
reactor operating parameters. Heating rate and carrier gas flow rate 
were not selected as input variables because only a small number of the 
selected references reported them. The mean value was used in the study 
for the input variables if a range was reported in the references. 

Three datasets were compiled based on different selections of the 
input variables on feedstock properties. They were used to investigate 
the effects of the selections of the input variables on the predictability 
and accuracy of the developed models. Dataset 1 contained the com-
positions of different plastic types as the feedstock properties, and 
Dataset 2 used the results from ultimate analysis. In Dataset 3, both the 
compositions of plastic types and the ultimate analysis data were 
selected as input variables. The inputs for the reactor operating condi-
tions were the same in all three datasets. Table 1 summarises the range 
of the input variables and the total numbers of the data points in each 
dataset. 

The histograms in Fig. 1 showed the distributions of feedstock 
properties and reactor operating parameters used in the study. First, the 
plastic types had narrow distributions because the feedstocks used in 
laboratory-scale research were often single type plastics. In some studies 
that used real-world wastes as the feedstock, the compositions of 
different types of plastics were often unknown and therefore had not 
been included in the histogram. Secondly, the histograms of the ultimate 
analysis showed the common elements of C and H multi-distribution and 
O, N, and Cl single distribution. The reactor parameters of feed intake, 
pyrolysis temperature, and vapour residence time (VRT) ranged in 
multi-distribution. Most of the feed intake was less than 1 kg/h, the 
pyrolysis temperature was in the range of 400–800 ◦C, and the VRT of 
most reported research was around 1 s 

2.2. Responses for the model development 

Pyrolysis of plastics produces three main products. The liquid 
product are condensed volatiles (including wax), the gas product is the 
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non-condensable part, and the solid product are carbonaceous residue 
after the pyrolysis process. The liquid and gas products can be grouped 
into sub-products by their carbon number: C1–C4 gases, gasoline 
ranging from C5 to C12, diesel ranging from C13 to C20, and wax over 
C21. In addition, diesel contained styrene and BTX based on the petro-
leum classification method. Therefore, the responses selected in the 

study included overall yields (wt%) of liquid, gas, and solid products and 
the yields of the compounds in the liquid product, such as wax (> C20), 
aromatics, benzene-toluene-xylene (BTX), styrene, gasoline (C5–C12) 
and diesel (C13–20), and the yields (wt%) of C1-C4 and traced gases in 
the gas product. In the data collection, notably, BTX refers to the reac-
tion of which targets were producing the BTX. Aromatics refers to all 
aromatic products which contain BTX in most cases and without specific 
focus. 

For all responses, the following equations were used to normalise the 
data. 

Yliquid + Ygas + Ysolid = 1 (1)  

Ywax + Ydiesel + Ygasoline = Yliquid (2)  

YC1 +YC2 + YC3 +YC4 + Ytracegases = Ygas (3)  

where Yx are the yields of compound x. 
The histograms in Fig. 2 showed the distribution of the responses. 

The yields of liquid and gas products have an even distribution from 0 % 
to 100 %, while most of the references did not report the yield of the 
solid product as no solid residue was produced when a pure polymer was 
used in a pyrolysis process. In addition, the middle bar of Fig. 2(a) 
presented upper line data exceeding 100 % a little. It means some data 
involved non-vacuum pyrolysis. However, as the dominant distribution 
ranged under 70 %, it enabled normalising the data with Eq. (1) to 
conduct the dataset. 

2.3. Algorithm methods comparison 

Four algorithms were employed to develop the prediction models, 

Table 1 
Descriptive statistics of input variable and data point amounts.  

Inputs Dataset 1 Dataset 2 Dataset 3 

Feedstock Plastic type PE (wt 
%) 

0–100 – 0–100 

PP (wt 
%) 

0–100 – 0–100 

PS (wt%) 0–100 – 0–100 
PVC (wt 
%) 

0–100 – 0–100 

Ultimate 
analysis 

C (wt a.f 
%) 

– 38.4–92.3 38.4–92.3 

H (wt a.f 
%) 

– 4.21–14.5 4.21–14.5 

N (wt a.f 
%) 

– 0–6.3 0–6.44 

O (wt a.f 
%) 

– 0–32.95 0–32.95 

Cl (wt a.f 
%) 

– 0–56.8 0–56.8 

Particle size (mm) 0.05–5 0.05–5 0.05–5 
Reactor Feed intake (kg/h) 0.003–50 0.003–10.8 0.003–10.8 

Pyrolysis temperature (◦C) 400–860 400–860 400–860 
Vapour residence time (s) 0–15 0–15 0–15 

Total data points 275 288 274 

a.f: ash-free. 

Fig. 1. Statistics of the input variables of plastic types (a), ultimate analysis (b), and operating parameters (c).  
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including the decision tree, artificial neural networks, support vector 
machine, and Gaussian process. The data sets were divided into a 
training set (containing 70 % of total data points) and a validation-test 
set (containing 30 % of total data points). The division was randomly 
selected from the datasets to test the robustness and predictability of the 
models. 

2.3.1. Decision tree (DT) 
A decision tree (DT) algorithm is a supervised ML method, which 

generates a set of decision rules by repeatedly splitting the input dataset 
into binary sections. The search method for all input features examines 
the division until a homogeneous response distribution, and the hyper-
parameter optimisation can be applied to develop the DT model further. 
In addition, the DT algorithm can use pruning modular to prevent over- 
fitting, which is the common drawback of the regression algorithms 
[30]. In this work, we used the function of fitrensemble in MATLAB to 
develop DT models. 

2.3.2. Artificial neural networks (ANN) 
An artificial neural network is a system based on the operation of 

biological neural networks, which analyses datasets and trains itself to 
recognise patterns between the input variables and responses. The basic 
unit of the network is the artificial neuron, which involves input, output, 
and several hidden layers (one for a single layer perception). Each 
neuron transmits received signals by interconnecting. The hidden layer 
connects to the input and target parameters by adjustable weighted 
linkages, and the transfer function in the hidden layer introduces 
nonlinearity to the network. Each layer has a weight matrix, a bias 
vector, and an output vector. The network learns by feeding back its 
predictions, comparing them to the corresponding inputs, and adjusting 
weights accordingly [31]. In this work, we used the function of fitrnet in 

MATLAB to develop ANN models. 

2.3.3. Support vector machine (SVM) 
The SVM is also a supervised learning model which constructs a 

hyperplane or set of hyperplanes in a high- or infinite-dimensional 
space. The SVM uses the kernel function in classification and regres-
sion problems to develop the linear relationship between input and 
response. This algorithm uses the principle of the statistical structure 
risk minimisation to reduce the confidence range and get a small real 
risk. In the presence of noise, if the hyper-plane can still classify the 
samples well, then the classification can be the best when the distance 
between the sample points and the hyper-plane is the largest. SVM 
modelling is an algorithm that transforms the linear programming 
problem of solving the dual problem [29,32]. In this work, we used the 
function of fitrsvm in MATLAB to develop SWM models. 

2.3.4. Gaussian process (GP) 
The Gaussian process is a stochastic process by collecting random 

variables, of which every finite collection of those random variables has 
a multivariate normal distribution. The GP is one of the alternative 
approaches to neural networks since a large class of Bayesian regression 
models converged based on a neural network and is limited by an 
infinite Network. The reduction of the dimension of the variables is often 
desirable in developing a GP model for large amounts of covariate 
regression to ease the computational burden and improve the prediction 
accuracy. Variable selection performs better interpretability than the 
projection techniques, as the covariates are the most informative for 
prediction [33]. In this work, we used the function of fitrgp in MATLAB 
to develop GP models. 

The coefficient of determination (R2) and root-mean-square error 
(RMSE) were used to evaluate the prediction performance. The formulas 

Fig. 2. Statistics of the responses of total mass balance (a), liquid compositions (b), and gas compositions (c).  
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of R2 and RMSE are shown as Eqs. (4) and (5): 

R2 = 1 −
∑N

n=1(yn − ŷn)
2

∑N
n=1(yn − yn)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(yn − ŷn)
2

N

√

(5)  

where N is the number of data points; yn is the nth data point, and ŷn is 
the corresponding predicted value; yn is the average value of the N data 
points. 

3. Results and discussion 

3.1. Correlation analysis of input variables and responses 

Fig. 3 illustrates the correlation matrixes of each input variable and 
response. As shown in Fig. 3(a), the pyrolysis temperature strongly 
correlated with the responses. The liquid and gas yields have correla-
tions of − 0.64 and 0.75 with the pyrolysis temperature, respectively. It 
indicated that plastic pyrolysis generated more gas and less liquid at 
higher temperatures. Likewise, the wax and styrene in the liquid product 
gave respective negative correlations of − 0.56 and − 0.61, and the 
gaseous components from C1 to C4 all gave positive correlations of over 
0.5 with the pyrolysis temperature. In addition, the correlations between 
the plastic-type and the yields of solid, liquid, and gas products were not 
conclusive. Only in the liquid components, PE and PS have respective 
negative and positive correlations with the aromatic and styrene yields. 
Besides, carbon and hydrogen inputs also exhibited correlations with the 
yields of aromatic and styrene compounds. It may be because of high 
carbon-hydrogen ratio implied more unsaturated bonds, such as aro-
matic rings, in the polymers. Particle size has a weak positive correlation 
with the yield of solids and diesel. A bigger particle size could lead to 
slower mass and heat transfer, hence more solid residue at the end of the 
reaction. 

Pearson correlation matrix of the inputs in Fig. 3(b) provided more 
information about the relationship between the input variables. In terms 
of the feedstock ultimate analysis results, hydrogen correlated 0.69 and 
− 0.50 with PE and PS, respectively. It might be because the hydrogen 
content reflected the unsaturated number of the polymer in some con-
texts. The chlorine content performed the highest correlation of 0.99 
with PVC, which showed that PVC was the only source of chlorine in the 
selected samples. Oxygen showed obvious negative correlations with 
carbon and hydrogen. It might be because the oxygen content accounts 
for a high proportion of some oxygenated polymers, such as PET. Be-
sides, vapour residue time (VRT) and intake showed a 0.71 correlation, 
which confirmed that feeding mode played a vital role in plastic 

pyrolysis. Larger operations typically have longer vapour residue time. 
Overall, the correlation matrix of inputs implied some connections 
existed between the input variables, which might overcome the short-
ages of input information. 

3.2. Screening of the algorithms and datasets 

Four algorithms, ANN, GP, SVM, and DT, were evaluated in this 
study for their applicability. The response used in the evaluation was the 
yield of liquid product, and the criteria were the coefficient of deter-
mination (R2), and the root-mean-squared error (RMSE). Table 2 (en-
tries 1–4) shows the R2 and RMSE values for the ANN, GP, SVM, and DT 
algorithms and Dataset 1. Fig. 4(a–d) were parity plots displaying 
response measures with R2 values for four ML models. 

Fig. 4 and Table 2 showed that the DT algorithm predicted the 
response with the best accuracy among the four algorithms. The training 
sets and the DT compensated for the tendency of overfitting [34]. The 
training data showed an R2 value of 0.984, and the testing data was 
0.882. The second-best algorithm was ANN, which predicted the 
response with an R2 value of 0.926 for the training data and 0.719 for 
the testing data. The RMSE values for the training and testing sets based 
on Datasets 1 were also available in Table 2. The DT showed a smaller 
difference in RMSEs between the training and testing sets, and the ANN 
gave higher RMSE than the DT for both training and test sets. The GP 
algorithm got an R2 value of 0.592 for the training set and 0.534 for the 
testing set, and the SVM algorithm achieved an R2 of 0.583 and 0.653 for 
the training and testing sets, respectively. At the same time, the RMSEs 
of the GP and SVM models were higher than those of the DT and ANN 
models on both training and testing sets. Hence, the GP and SVM algo-
rithms were unsuitable for predicting the yield of the liquid product in 
this study. 

In early reports, tree-based algorithms, such as ensemble methods, 
have been less frequently used than ANN in pyrolysis predictions [22]. 
However, in a recent comparison between the ANN and tree-based al-
gorithms for pyrolysis composition prediction, both have achieved 
similar prediction accuracy [35]. Although the ensemble methods of DT 
suffer from a similar black-box nature as ANN, the interpretability of 
tree-based methods exceeds ANN, as the feature importance was easier 
to extract [30,32]. Besides, the choice of a machine learning model 
depends on the level of accuracy required and the amount of training 
data available [36]. Hence, the DT was the best choice if adequate 
training data was available. 

Table 2 and Fig. 4 also illustrate the comparative evaluation of the 
choice of different datasets using the same algorithm. As mentioned in 
Section 2.2, Dataset 1 comprised plastic-type and particle size as the 
feedstock properties, and in Dataset 2, the elemental composition data 
replaced plastic-type. Dataset 3 contained both plastic-type and ultimate 

Fig. 3. Pearson correlation coefficients between the input variables and responses and between the inputs and inputs.  
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analysis data. The numbers of the data points for the three datasets were 
275, 301, and 275, of which Datasets 1 and 3 did not share the same sets. 
In the training phase, Dataset 2 had the highest R2 value of 0.996, fol-
lowed by Dataset 3 of 0.987 and Dataset 1 of 0.984. Likewise, Dataset 2 
had the lowest RMSE of 2.2, lower than Dataset 3 (3.8) and Dataset 1 
(4.3). These results showed that in the cases of ash-free plastics pyrol-
ysis, the elemental compositions might be better as input variables than 
the plastic type. This result overturned the previous perception that 
tracing plastic-type was the foremost in product prediction. Further-
more, it is challenging to accurately identify plastic types in mixtures 
with inefficient sorting systems in recycling waste plastic [37]. As shown 
in the correlation matrix in Fig. 3, the ultimate analysis results had a 
certain degree of correlation with plastic-type in plastic mixtures. Most 
polymers have their specific monomer structures. Apart from the end 
area, those structures of monomer linking have close dissociation en-
ergies, implying that heating up to the dissociation level might be the 
key to mixed plastic non-catalytical pyrolysis modelling [38]. This 
finding is significant as it is easier to characterize plastic mixtures with 
elemental compositions and then use these results to predict the pyro-
lytic products of plastics. 

3.3. Total mass balance predictions 

Table 3 shows the R2 and RMSE of the responses with Dataset 2 for 
estimated training and testing data using fitrensemble. The total balance 
of final products, i.e. liquid, gas and solid, was 100 %. The R2 values for 

training data of the yields of the three products were all over 0.995, and 
the ones for testing data were slightly lower. Meanwhile, Fig. 5 gives the 
graphical presentation of the results and the predictor importance esti-
mate for every target. The primary feature for liquid and gas yields 
predictions was the pyrolysis temperature, and the hydrogen content 
and particle size were after temperature. It showed that the feature 
importance gained from DT was the same as the prediction by using 
correlation coefficients. Besides, feeding intake was most important, 
followed by carbon content and particle size for solid or char prediction. 
However, compared with similar works of biomass pyrolysis, it received 
opposite results when using the DT algorithm. The biomass composition 
has more effect than the pyrolysis conditions on the liquid yield response 
[39]. Researchers found that pyrolysis temperature was the most 
important factor in biochar production [28,37]. Biomass, especially for 
lignocellulose, has the structure of net-like linkage and high oxygen 
content, which is perhaps easier than the line structure of plastics to 
format the char. Polymer type, therefore, might play an essential role in 
pyrolysis. Reconsideration was necessary for the relationships between 
feedstock compositions and operating conditions, especially in the 
co-pyrolysis process of biomass and plastics [40–43]. 

3.4. Compositions of liquid and gas predictions 

Pyrolysis liquids are the condensed parts of pyrolytic products, 
including wax, diesel, and gasoline. Here we viewed the aromatics as the 
composition of the diesel and outside the liquid mass balance. As 

Table 2 
Summary of each algorithm with the prediction of the liquid yield.  

Run Dataset Data points Method Training Testing 

R2 RMSE R2 RMSE 

1 1 275 ANN (fitrnet) 0.926 9.6 0.719 18.1 
2 1 275 GP (fitrgp) 0.592 22.4 0.534 23.4 
3 1 275 SVM (fitrsvm) 0.583 22.2 0.653 21.0 
4 1 275 DT (fitrensemble) 0.984 4.3 0.882 11.7 
5 2 301 DT (fitrensemble) 0.996 2.2 0.869 12.5 
6 3 275 DT (fitrensemble) 0.987 3.8 0.859 13.4  

Fig. 4. Scatter plots of the pairs of input variables and responses with different algorithms and datasets: (a) Dataset 1 with fitrensemble, (b) Dataset 1 with fitrgp, (c) 
Dataset 1 with fitrsvm, (d) Dataset 1 with fitrnet, (e) Dataset 2 with fitrensemble, and (f) Dataset 3 with fitrensemble. 
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depicted in Table 3, wax and aromatics showed the highest R2 values of 
0.997, followed by gasoline of 0.991 and diesel of 0.906 among the 
training data. Another notable result was that the R2 values of the wax 
and diesel in testing data were unsatisfactory. In addition, Fig. 5 per-
formed the relevant features of liquid compositions predictions and their 
contribution rankings. The top 3 most vital features related to wax 
production were the feed intake, reaction temperature, and vapour 
residue time, all about reactor conditions. The prediction features 
ranking for the diesel were particle size, vapour residue time, and feed 
intake. When predicting the middle carbon number products, the 
physical properties contributed more than the reactor conditions. For 
the low carbon number product, like gasoline, carbon, and hydrogen 
ratios were the most vital features for the product predictions. Likewise, 
the elemental ratios gave the same effects as gasoline on aromatics. This 
result implied that the reaction conditions decided the high carbon 
number products generation, such as wax. However, the predictions of 
specific chemicals, like aromatics, were heavily determined by the 
chemical properties of the feedstock. (Fig. 6 and 7). 

Table 3 also depicted the R2 and RMSE values of the machine 
learning results for gas compositions. The training R2 of the model from 
the fitrensemble algorithm for C1, C2, C3, C4, and trace gas predictions 

were 0.981, 0.991, 0.983, 0.991, and 0.992, respectively. The prediction 
performance of testing data was much lower when compared to the 
training data. In common sense, the carbon numbers of fixed gas from 
pyrolysis were less than 4, such as CO, CO2, and the low carbon number 
of alkanes and olefins. Except for the trace gas, fixed gas outputs mainly 
depended on setup temperatures in experimental research. The predic-
tion models confirmed that the primary features for C1 to C4 generations 
were the pyrolysis temperatures. In terms of the predictions of C1 and C2 
products, hydrogen content in feedstocks also played an important role. 
It might be because of the effects of the unsaturated linkages. However, 
for the predictions of C3 and C4 products, the top 3 features were all 
related to the reactor conditions, which is like the wax production. It 
showed that the reactor operating parameters were the primary factors 
of general pyrolysis predictions, like wax and gas. While for some other 
chemicals, such as aromatics and light oil, the feedstock properties were 
still the first determinant. 

As discussed above, the prediction of other factors than the target 
composition and yield was significant to map the pyrolysis and extend 
the capacity of model-based process design. Despite the R2 values of the 
composition prediction being about 0.99 for most training data, it is still 
unknown to clarify the black-box nature by quantifying the 

Table 3 
Summary of target predictions with decision tree (DT) algorithm.  

Category Target Number of non-zero data points Training Testing 

R2 RMSE R2 RMSE 

Total mass balance Liquid yield 276 0.997 1.8 0.940 7.8 
Gas yield 287 0.997 1.7 0.914 9.1 
Solid yield 139 0.995 0.9 0.845 5.3 

Liquid compositions Wax 106 0.997 1.7 0.786 14.5 
Aromatics 166 0.997 1.8 0.898 8.8 
Gasoline 112 0.991 2.6 0.899 7.4 
Diesel 91 0.906 2.9 0.803 4.4 

Gas compositions C1 229 0.981 1.6 0.616 5.7 
C2 221 0.991 1.3 0.842 5.6 
C3 225 0.983 1.0 0.633 4.6 
C4 215 0.991 0.7 0.742 4.2 
Trace gas 124 0.992 0.5 0.892 1.7  

Fig. 5. Plots of the actual and predicted values obtained from the fitrensemble with Dataset 2 for total mass balance: (a) yield of liquid; (b) yield of gas, and (c) yield 
of solid. 
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contributions of input parameters. A problem previously pointed out 
was that the black-box nature limited data and model interpretability 
[34]. Waste recycling systems were complex systems spanning a range of 
areas. Hence, developing comprehensive ML models for waste man-
agement schemes requires experience across different disciplines. A re-
view of ML methods in organic solid waste treatment discussed various 
thermochemical approaches [44]. The authors noticed that combining 
different ML techniques in integrated models or ML techniques with 
other innovative approaches was promising. 

4. Conclusions 

This work evaluated four ML algorithms to develop an applicable 
prediction model of plastic pyrolysis for valuable fuel and chemicals 
production. The fitrensemble mode of DT with ultimate analysis input 
carried out the outstanding capability of the products prediction. When 
using Dataset 1 to predict liquid yields, DT and ANN performed R2 

values of 0.984 and 0.926 for the training data, which were much higher 
than the 0.592 of GP and 0.583 of SVM. In the cases of mass balance and 
compositions prediction, the fitrensemble mode of DT also performed 
excellent results. The R2 values for training data of solid, liquid, and gas 

Fig. 6. Plots of the actual and predicted values obtained from the fitrensemble with Dataset 2 for liquid compositions: (a) yield of wax; (b) yield of aromatics, (c) 
yield of gasoline, and (d) yield of diesel. 

Fig. 7. Plots of the actual and predicted values obtained from the fitrensemble with Dataset 2 for gas compositions yields: (a) of C1; (b) of C2, (c) of C3, (d) of C4, and 
(d) of the trace gas. 
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yields were above 0.99. Liquid compositions of wax, aromatics, and 
gasoline showed R2 values of over 0.99 for the training data. Only diesel 
gave 0.906 of R2 value. The gas compositions also gave no less than 0.98 
R2 values for the training data. Besides, investigation of the input feature 
importance and correlation for the feedstocks and the reactor conditions 
implied some connections existed between the input features, which 
might overcome the data missing by input incompletion. The operating 
condition (reaction temperature and residence time) and even heat 
transfer (particle size, feedstock intake) were the primary factors of 
general pyrolysis predictions, like solid, liquid, wax, and gas. But for the 
predictions of some chemicals, such as aromatics, styrene, and light oil, 
the elemental composition of the feedstock was still the first 
determinant. 
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