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Abstract. Let Σg,n denote the compact orientable surface with genus
g ≥ 2 and boundary disjoint union of n circles. By using a particu-
lar pants decomposition of Σg,n, we obtain a formula that computes the
Reidemeister-Franz torsion of Σg,n in terms of the Reidemeister-Franz
torsions of pairs of pants.
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1 Introduction

The Reidemeister-Franz torsion (or R-torsion) was introduced by Reidemeister to
classify 3 dimensional lens spaces [5]. This invariant was later generalized by Franz to
other dimensions [10] and shown to be a topological invariant by Kirby-Siebenmann
[2]. The R-torsion is also an invariant of the basis of the homology of a manifold [3].
Moreover, for compact orientable Riemannian manifolds the R-torsion is equal to the
analytic torsion [1].

Using the combinatorial definition of the Reidemeister torsion, Witten computed
the volume of the moduli space M of gauge equivalence classes of flat connections on
a compact Riemann surface [9]. The combinatorial torsion is equivalent to the Ray-
Singer analytic torsion [1]. In the quantum field theory, one important ingredient
was the ability to compute by decomposing a surface into elementary pieces. The
pair of pants is a (1+ 1)-dimensional bordism, which corresponds to a product or co-
product (depending on its orientation) in a 2-dimensional TQFT. Witten established
a formula to compute the Ray-Singer analytic torsion of a pair of pants by using its
cell decomposition. He also gave a cutting formula for orientable closed surface Σg,0

by decomposing an orientable surface Σg,0 of genus g into 2g − 2 pairs of pants.
The present paper provides a formula to compute the Reidemeister-Franz torsion

of a pair of pants in terms of the determinant of the period matrix of the Poincaré
dual basis of H1(Σ2,0). Then it expresses the Reidemeister-Franz torsion of orientable
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compact surface Σg,n as the product of the Reidemeister-Franz torsions of pairs of
pants.

For a manifold M and an integer η, we denote by hM
η the basis of the homology

Hη(M) = Hη(M ;R). Note that Σ2,0 is the double of a pair of pants Σ0,3 as in Figure 1.

Let ∆0,2(Σ2,0) be the matrix of the intersection pairing of Σ2,0 in the bases h
Σ2,0

0 ,

h
Σ2,0

2 , and h1
Σ2,0

= {ωj}41 denote the Poincaré dual basis of H1(Σ2,0) corresponding

to h
Σ2,0

1 . We first prove the following theorem for the R-torsion of the pair of pants
Σ0,3.

Theorem 1.1. For a given basis h
Σ0,3

i , i ∈ {0, 1}, there is a basis h
Σ2,0
η , η ∈ {0, 1, 2}

such that the following formula holds

|T(Σ0,3, {h
Σ0,3

i }10)| =

√√√√∣∣∣∣∣ det∆0,2(Σ2,0)

det℘(h1
Σ2,0

,Γ)

∣∣∣∣∣,
where Γ = {Γ1,Γ2,Γ3,Γ4} is the canonical basis for H1(Σ2,0), i.e. i ∈ {1, 2}, Γi

intersects Γi+2 once positively and does not intersect others, and ℘(h1
Σ2,0

,Γ) = [
∫
Γi

ωj ]

is the period matrix of h1
Σ2,0

with respect to the basis Γ.

By using the pants decomposition of Σg,n as in Figure 2, we prove the following
theorem.

Theorem 1.2. Let h
Σg,n
η be a given basis for η ∈ {0, 1}. Then there exists a basis

h
Σν

0,3
η for each ν ∈ {1, . . . , 2g − 2 + n} such that

|T(Σg,n, {hΣg,n
η }10)| =

2g−2+n∏
ν=1

|T(Σν
0,3, {h

Σν
0,3

η }10)|,

where Σν
0,3 is the pair of pants in the decomposition labelled by ν.

2 R-torsion of a general chain complex

Let C∗ = (0 → Cn
∂n→ Cn−1 → · · · → C1

∂1→ C0 → 0) be a chain complex of
finite dimensional vector spaces over R. Let Bp(C∗) = Im∂p+1, Zp(C∗) = Ker∂p, and
Hp(C∗) = Zp(C∗)/Bp(C∗) denote the p-th homology of the chain complex C∗ for
p ∈ {0, . . . , n}. Then we have the following short exact sequences

(2.1) 0 → Zp(C∗)
i→ Cp(C∗)

∂p→ Bp−1(C∗) → 0,

(2.2) 0 → Bp(C∗)
i→ Zp(C∗)

φp→ Hp(C∗) → 0.

Here, i and φp are the inclusion and the natural projection, respectively. If we apply
the Splitting Lemma to the above short exact sequences, then Cp(C∗) can be expressed
as the following direct sum

Bp(C∗)⊕ ℓp(Hp(C∗))⊕ sp(Bp−1(C∗)).

Let cp, bp, and hp be respectively bases of Cp(C∗), Bp(C∗), and Hp(C∗). Then we
obtain a new basis bp ⊔ ℓp(hp) ⊔ sp(bp−1) for Cp(C∗).
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Definition 2.1. The R-torsion of C∗ with respect to bases {cp}n0 , {hp}n0 is defined
by

T (C∗, {cp}n0 , {hp}n0 ) =
n∏

p=0

[bp ⊔ ℓp(hp) ⊔ sp(bp−1), cp]
(−1)(p+1)

.

Here, [bp ⊔ ℓp(hp) ⊔ sp(bp−1), cp] is the determinant of the change-base-matrix from
basis cp to bp ⊔ ℓp(hp) ⊔ sp(bp−1) of Cp(C∗).

The R-torsion of a general chain complex C∗ is an element of the dual of the vector
space

n⊗
p=0

(detHp(C∗))
(−1)p ,

see [9, pp.185] and [6, Thm. 2.0.6].
For a smooth m-manifold M with a cell decomposition K, there is a chain complex

C∗(K) = (0 → Cm(K)
∂m→ Cm−1(K) → · · · → C1(K)

∂1→ C0(K) → 0),

where ∂i is the usual boundary operator. The R-torsion of M is defined as the R-
torsion of its cellular chain complex C∗(K) in the bases {ci}m0 and {hi}m0 . Here,
ci is the geometric basis for the i-cells Ci(K), i ∈ {0, . . . ,m}. By [6, Lem. 2.0.5],
the R-torsion of M does not depend on the cell decomposition K. Thus, we write
T(M, {hi}m0 ) instead of T(C∗(K), {ci}m0 , {hi}m0 ). For details we refer to [6, 7, 8].

Corollary 2.1. Let Y = S1 × [−ϵ,+ϵ] be a cylinder with boundary circles S1 × {−ϵ}
and S1 × {+ϵ}, where ϵ > 0. Let hi be a basis of Hi(Y ) for i ∈ {0, 1}. By Künneth
formula, we have the isomorphisms:

Ci(Y )
φi∼= Ci(S1)

Hi(Y )
[φi]∼= Hi(S1).

Then [7, Thm. 3.5] gives the following result

|T (Y, {h0,h1})| =
∣∣T (

S1, {[φ0](h0), [φ1](h1)}
)∣∣ = 1.

3 Proofs of main results

For any manifold M , let C∗(M) denote the associated cellular chain complex. More-
over, 0 denotes the trivial vector space.

Proof of Theorem 1.1. Note that Σ2,0 is the double of Σ0,3 (see, Figure 1). Let B be
the intersection of the pairs of pants in Σ2,0, so B is homeomorphic to the disjoint
union of three circles, S1 ⨿ S2 ⨿ S3. Then there is the natural short exact sequence of
the chain complexes

(3.1) 0 → C∗(B) → C∗(Σ0,3)⊕ C∗(Σ0,3) → C∗(Σ2,0) → 0.
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S3

S2

S1

Figure 1: Double of the pair of pants Σ0,3.

Associated with (3.1), we have the following Mayer-Vietoris sequence

H∗ : 0
α→ H2(Σ2,0)

f→ H1(B)
g→ H1(Σ0,3)⊕H1(Σ0,3)

h→ H1(Σ2,0)(3.2)

i→ H0(B)
j→ H0(Σ0,3)⊕H0(Σ0,3)

k→ H0(Σ2,0)
ℓ→ 0.

Let us denote by Cp(H∗) the vector spaces in (3.2) for p ∈ {0, . . . , 6} and consider
the short exact sequences (2.1) and (2.2) for H∗. Let us take the isomorphism sp :
Bp−1(H∗) → sp(Bp−1(H∗)) obtained by the First Isomorphism Theorem as a section
of Cp(H∗) → Bp−1(H∗) for each p. By the exactness of H∗, we get Zp(H∗) = Bp(H∗).
Applying the Splitting Lemma to (2.2), we have

(3.3) Cp(H∗) = Bp(H∗)⊕ s
p
(Bp−1(H∗)).

Then the R-torsion of H∗ with respect to basis {hp}n0 is given as follows

T (H∗, {hp}n0 , {0}n0 ) =
n∏

p=0

[h′
p,hp]

(−1)(p+1)

,

where h′
p = bp ⊔ sp(bp−1) for each p. In [3], Milnor proved that the R-torsion does

not depend on bases bp and sections sp, ℓp. Therefore, we will choose a suitable bases
bp and sections sp so that T(H∗, {hp}n0 , {0}n0 ) = 1.

Let us consider the space C0(H∗) = H0(Σ2,0) in (3.3). Then Im(ℓ) = 0 yields

(3.4) C0(H∗) = Im(k)⊕ s
0
(Im(ℓ)) = Im(k).

Since {(hΣ0,3

0 , 0), (0,h
Σ0,3

0 )} is the given basis of H0(Σ0,3)⊕H0(Σ0,3),

{a11k(h
Σ0,3

0 , 0) + a12k(0,h
Σ0,3

0 )}

can be taken as the basis hIm(k) of Im(k), where (a
11
, a

12
) is a non-zero vector. By

(3.4), hIm(k) becomes the obtained basis h′
0 of C0(H∗). If we take the initial basis h0

(namely, h
Σ2,0

0 ) of C0(H∗) as h
′
0, then

(3.5) [h′
0,h0] = 1.

If we use (3.3) for C1(H∗) = H0(Σ0,3)⊕H0(Σ0,3), then we get

(3.6) C1(H∗) = Im(j)⊕ s
1
(Im(k)).
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Note that {(hΣ0,3

0 , 0), (0,h
Σ0,3

0 )} is the given basis h1 of C1(H∗). Since Im(j) is a
1-dimensional subspace of 2-dimensional space C1(H∗), there is a non-zero vector

(a
21
, a

22
) such that {a

21
(h

Σ0,3

0 , 0) + a
22
(0,h

Σ0,3

0 )} is a basis of Im(j). In the previous
step, the basis of Im(k) was chosen as hIm(k) so

s
1
(hIm(k)) = a

11
(h

Σ0,3

0 , 0) + a
12
(0,h

Σ0,3

0 ).

Then we obtain a non-singular 2×2 matrix A = [aij ] with entries in R. Let us choose
the basis of Im(j) as

hIm(j) = {−(detA)−1[a21(h
Σ0,3

0 , 0) + a22(0,h
Σ0,3

0 )]}.

By (3.6), {hIm(j), s
1
(hIm(k))} becomes the obtained basis h′

1 of C1(H∗). Hence, we
get

(3.7) [h′
1,h1] = 1.

Considering (3.3) for C2(H∗) = H0(B), we obtain

(3.8) C2(H∗) = Im(i)⊕ s
2
(Im(j)).

Recall that {hS1
0 ,hS2

0 ,hS3
0 } is the given basis h2 of C2(H∗). Since Im(i) and s

2
(Im(j))

are respectively 2 and 1-dimensional subspaces of 3-dimensional space C2(H∗), there

are non-zero vectors (bi1 , bi2 , bi3), i ∈ {1, 2, 3} such that {
∑3

i=1 bjih
Si
0 }2j=1 is a basis

of Im(i) and

s2(h
Im(j)) =

3∑
i=1

b3ih
Si
0

is a basis of s2(Im(j)). Then 3 × 3 real matrix B = [bij ] is invertible. Let us choose
the basis of Im(i) as follows

hIm(i) =

{
(detB)−1

3∑
i=1

b1ih
Si
0 ,

3∑
i=1

b2ih
Si
0

}
.

By (3.8), {hIm(i), s2(h
Im(j))} becomes the obtained basis h′

2 of C2(H∗) and we have

(3.9) [h′
2,h2] = 1.

Using (3.3), C3(H∗) = H1(Σ2,0) can be expressed as the following direct sum

(3.10) C3(H∗) = Im(h)⊕ s3(Im(i)).

Note that the basis of H1(Σ0,3)⊕H1(Σ0,3) is given as follows

{(hΣ0,3

1,1 , 0), (0,h
Σ0,3

1,1 ), (h
Σ0,3

1,2 , 0), (0,h
Σ0,3

1,2 )}.

Since Im(h) is a 2-dimensional space, we can choose the basis of Im(h) as

hIm(h) =
{
c
11
h(h

Σ0,3

1,1 , 0) + c
12
h(0,h

Σ0,3

1,1 ) + c
13
h(h

Σ0,3

1,2 , 0) + c
14
h(0,h

Σ0,3

1,2 ),

c
21
h(h

Σ0,3

1,1 , 0) + c
22
h(0,h

Σ0,3

1,1 ) + c
23
h(h

Σ0,3

1,2 , 0) + c
24
h(0,h

Σ0,3

1,2 )
}
.
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Here, (ci1 , ci2 , ci3 , ci4) is a non-zero vector for i ∈ {1, 2}. Using (3.10), we have that{
hIm(h), s

3
(hIm(i))

}
is the obtained basis h′

3 of C3(H∗). If we take the initial basis h3 (namely, h
Σ2,0

1 ) of
C3(H∗) as h

′
3, then we get

(3.11) [h′
3,h3] = 1.

If we consider (3.3) for C4(H∗) = H1(Σ0,3)⊕H1(Σ0,3), then we obtain

(3.12) C4(H∗) = Im(g)⊕ s
4
(Im(h)).

Recall that {(hΣ0,3

1,1 , 0), (0,h
Σ0,3

1,1 ), (h
Σ0,3

1,2 , 0), (0,h
Σ0,3

1,2 )} is the given basis h4 of C4(H∗).

In the previous step, hIm(h) was chosen as the basis of Im(h) so

s
4
(hIm(h)) =

{
c
11
(h

Σ0,3

1,1 , 0) + c
12
(0,h

Σ0,3

1,1 ) + c
13
(h

Σ0,3

1,2 , 0) + c
14
(0,h

Σ0,3

1,2 ),

c
21
(h

Σ0,3

1,1 , 0) + c
22
(0,h

Σ0,3

1,1 ) + c
23
(h

Σ0,3

1,2 , 0) + c
24
(0,h

Σ0,3

1,2 )
}

is a basis of s4(Im(h)). As Im(g) is a 2-dimensional subspace of 4-dimensional space
C4(H∗), there are non-zero vectors (c

i1
, c

i2
, c

i3
, c

i4
) for i ∈ {3, 4} such that{

c
31
(h

Σ0,3

1,1 , 0) + c
32
(0,h

Σ0,3

1,1 ) + c
33
(h

Σ0,3

1,2 , 0) + c
34
(0,h

Σ0,3

1,2 ),

c
41
(h

Σ0,3

1,1 , 0) + c
42
(0,h

Σ0,3

1,1 ) + c
43
(h

Σ0,3

1,2 , 0) + c
44
(0,h

Σ0,3

1,2 )
}

is a basis of Im(g) and C = [cij ] is the non-singular 4× 4 real matrix. Thus, we can
choose the basis of Im(g) as

hIm(g) =
{
(detC)−1[c

31
(h

Σ0,3

1,1 , 0) + c
32
(0,h

Σ0,3

1,1 ) + c
33
(h

Σ0,3

1,2 , 0) + c
34
(0,h

Σ0,3

1,2 )],

c
41
(h

Σ0,3

1,1 , 0) + c
42
(0,h

Σ0,3

1,1 ) + c
43
(h

Σ0,3

1,2 , 0) + c
44
(0,h

Σ0,3

1,2 )
}
.

By (3.12), {hIm(g), s4(h
Im(h))} becomes the obtained basis h′

4 of C4(H∗) and the
following equation holds

(3.13) [h′
4,h4] = 1.

Consider the space C5(H∗) = H1(B), then (3.3) becomes

(3.14) C5(H∗) = Im(f)⊕ s
5
(Im(g)).

Recall that the given basis h5 of C5(H∗) is {hS1
1 ,hS2

1 ,hS3
1 }. Since Im(f) and s5(Im(g))

are respectively 1 and 2-dimensional subspaces of 3-dimensional space C5(H∗), there

are non-zero vectors (d
i1
, d

i2
, d

i3
), i ∈ {1, 2, 3} such that {

∑3
i=1 d1i

hSi
1 } is a basis of

Im(f) and

s
5
(hIm(g)) =

{
3∑

i=1

d
2i
hSi
1 ,

3∑
i=1

d
3i
hSi
1

}
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is a basis of s5(Im(g)). Then we get a non-singular 3 × 3 real matrix D = [dij ]. Let
us choose the basis of Im(f) as

hIm(f) =

{
(detD)−1

3∑
i=1

d1ih
Si
1

}
.

By (3.14), {hIm(f), s5(h
Im(g))} becomes the obtained basis h′

5 of C5(H∗). Hence, we
get

(3.15) [h′
5,h5] = 1.

Finally, let us consider C6(H∗) = H2(Σ2,0). Since Im(α) is trivial, (3.3) becomes

(3.16) C6(H∗) = Im(α)⊕ s6(Im(f)) = s6(Im(f)).

From (3.16) it follows that s
6
(hIm(f)) is the obtained basis h′

6 of C6(H∗). If we take

the initial basis h6 (namely, h
Σ2,0

2 ) of C6(H∗) as s6(h
Im(f)), then we have

(3.17) [h′
6,h6] = 1.

If we combine (3.5), (3.7), (3.9), (3.11), (3.13), (3.15), and (3.17), then we get

(3.18) T(H∗, {hp}60, {0}60) =
6∏

p=0

[h′
p,hp]

(−1)(p+1)

= 1.

As the natural bases in (3.1) are compatible, [3, Thm. 3.2] yields

(3.19) T(Σ0,3, {h
Σ0,3

i }10)2 =

3∏
j=1

T(Sj , {h
Sj
i }10) T(Σ2,0, {hΣ2,0

η }20) T(H∗, {hp}60, {0}60).

Considering [7, Thm. 3.5], (3.18), and (3.19), we obtain

(3.20) |T(Σ0,3, {h
Σ0,3

i }10)| =
√
|T(Σ2,0, {h

Σ2,0
η }20)|.

By Poincaré Duality, Theorem 4.1 in [7] and (3.20), the main formula holds

|T(Σ0,3, {h
Σ0,3

i }10)| =

√√√√∣∣∣∣∣ det∆0,2(Σ2,0)

det℘(h1
Σ2,0

,Γ)

∣∣∣∣∣.
□

A pants decomposition of Σg,n is a finite collection of disjoint smoothly embedded
circles cutting Σg,n into pairs of pants Σ0,3 and tori with one boundary circle Σ1,1.
The number of complementary components is

|χ(Σg,n)| = 2g − 2 + n.
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. . .S′
1

S1

S2

S′
2

S3

S′3

S4

S′
4

Sg

S′
g

Sg+1

Sg+2

Sg+3

S2g−3

S2g−2

S2g−1

S2g+n−3

S0 S−(n−1)

S−n

Figure 2: Compact orientable surface Σg,n with genus g ≥ 2 and bordered by n ≥ 1
circles.

Proof of Theorem 1.2. Consider the decomposition of Σg,n, as in Figure 2, obtained
by cutting the surface along the circles in the following order

S1, . . . ,Sg,Sg+1, . . . ,S2g−3+n.

This decomposition consists of

� the torus Σν
1,1 with boundary circle Sν , ν ∈ {1, . . . , g},

� the pair of pants Σg+1
0,3 with boundaries S1,S2,Sg+1,

� the pair of pants Σν+g
0,3 with boundaries Sg+ν ,Sν+1,Sg+ν−1, ν ∈ {2, . . . , g − 1},

� the pair of pants Σν+g
0,3 with boundaries Sg+ν ,Sg+ν−1,Sg−ν , ν ∈ {g, . . . , g+n−3},

� the pair of pants Σ2g−2+n
0,3 with boundaries S2g+n−3,S−(n−1), S−(n−2).

Consider also the decomposition Σν
1,1 = Yν ∪

∂Yν
Σν

0,3, ν ∈ {1, . . . , g}, where Yν is
the cylinder S′ν × [−ε,+ε] and Σν

0,3 is the pair of pants with boundaries S′ν × {−ε},
S′ν × {ε}, Sν for sufficiently small ε > 0.

Case 1 : Consider the decomposition Σ0,3∪S1Σ0,n−1 of Σ0,n for n ≥ 4, where Σ0,3

and Σ0,n−1 are glued along the common boundary circle S1. Then there is a short
exact sequence of the chain complexes

0 → C∗(S1) → C∗(Σ0,3)⊕ C∗(Σ0,n−1) → C∗(Σ0,n) → 0

and the corresponding Mayer-Vietoris sequence H∗. By using the arguments stated

in the proof of Theorem 1.1 for the given bases h
Σ0,n
η and hS1

η , η ∈ {0, 1}, there exist

bases h
Σ0,3
η and h

Σ0,n−1
η such that the R-torsion of H∗ in the corresponding bases is

1 and the following formula holds

T(Σ0,n, {hΣ0,n
η }10) = T(Σ0,3, {hΣ0,3

η }10) T(Σ0,n−1, {hΣ0,n−1
η }10)

× T(S1, {hS1
η }10)−1.(3.21)
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By [7, Thm. 3.5] and (3.21), we obtain

(3.22) |T(Σ0,n, {hΣ0,n
η }10)| = |T(Σ0,3, {hΣ0,3

η }10)||T(Σ0,n−1, {hΣ0,n−1
η }10)|.

Applying (3.22) inductively, we get

|T(Σ0,n, {hΣ0,n
η }10)| =

n−2∏
ν=1

|T(Σν
0,3, {h

Σν
0,3

η }10)|.

Case 2 : For the decomposition Σ1,1 = Y ∪
∂Y

Σ0,3, where

Y = S′ × [−ε,+ε],

∂Y = S′ × {−ϵ} ⊔ S′ × {+ϵ},

and Σ0,3 is the pair of pants with boundaries S′ × {−ε}, S′ × {ε}, S for sufficiently
small ε > 0, we have the following short exact sequence of the chain complexes

(3.23) 0 → C∗(Σ0,3 ∩ Y ) → C∗(Σ0,3)⊕ C∗(Y ) → C∗(Σ1,1) → 0

and the corresponding Mayer-Vietoris sequence H∗. If we follow the arguments in the

proof of Theorem 1.1 for the given bases h
Σ1,1
η and hS′

η , η ∈ {0, 1}, then we get the

bases h
Σ0,3
η and hY

η such that the R-torsion of H∗ in the corresponding bases equals
to 1 and the formula is valid

T(Σ1,1, {hΣ1,1
η }10) = T(Σ0,3, {hΣ0,3

η }10) T(Y, {hY
η }10) T(S′, {hS′

η }10)−2.

From [7, Thm. 3.5] and Corollary 2.1 it follows

|T(Σ1,1, {hΣ1,1
η }10)| = |T(Σ0,3, {hΣ0,3

η }10)|.

Case 3 : Let Σg−1,1∪S1Σ1,1 be the decomposition of Σg,0, g ≥ 2, where Σ1,1 and
Σg−1,1 are glued along the common boundary circle S1. By the decomposition, there
exists the natural short exact sequence

0 → C∗(S1) → C∗(Σg−1,1)⊕ C∗(Σ1,1) → C∗(Σg,0) → 0

and its corresponding Mayer-Vietoris sequence

H∗ : 0 → H2(Σg,0)
δ2→ H1(S1)

f→ H1(Σg−1,1)⊕H1(Σ1,1)
g→ H1(Σg,0)

δ1→ H0(S1)
i→ H0(Σg−1,1)⊕H0(Σ1,1)

j→ H0(Σg,0)
k→ 0.

For the given bases h
Σg,0
ν and hS1

η with the condition δ2(h
Σg,0

2 ) = hS1
1 , ν ∈ {0, 1, 2},

η ∈ {0, 1}, if we use the arguments stated in the proof of Theorem 1.1, then we obtain

the bases h
Σg−1,1
η and h

Σ1,1
η such that the R-torsion of H∗ in the corresponding bases

becomes 1 and the following formula holds

T(Σg,0, {hΣg,0
ν }20) = T(Σg−1,1, {hΣg−1,1

η }10) T(Σ1,1, {hΣ1,1
η }10) T(S1, {hS1

η }10)−1.
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By [7, Thm. 3.5], we obtain

|T(Σg,0, {hΣg,0
ν }20)| = |T(Σg−1,1, {hΣg−1,1

η }10)| |T(Σ1,1, {hΣ1,1
η }10)|.

Case 4 : Consider the decomposition Σg,n = Σg−1,n+1 ∪S1 Σ1,1 for g ≥ 2, n ≥ 1,
where Σ1,1 and Σg−1,n+1 are glued along the common boundary circle S1. Then there
is the natural short exact sequence of the chain complexes

(3.24) 0 → C∗(S1) → C∗(Σg−1,n+1)⊕ C∗(Σ1,1) → C∗(Σg,n) → 0,

and the corresponding Mayer-Vietoris sequence H∗. Using the arguments in the proof

of Theorem 1.1 for the given bases h
Σg,n
η and hS1

η , η ∈ {0, 1}, we get the bases hΣg−1,n+1
η

and h
Σ1,1
η such that the R-torsion of H∗ in the corresponding bases is 1 and

T(Σg,n, {hΣg,n
η }10) = T(Σg−1,n+1, {hΣg−1,n+1

η }10) T(Σ1,1, {hΣ1,1
η }10) T(S1, {hS1

η }10)−1.

By [7, Thm. 3.5], the R-torsion of Σg,n satisfies the following formula

|T(Σg,n, {hΣg,n
η }10)| = |T(Σg−1,n+1, {hΣg−1,n+1

η }10)| |T(Σ1,1, {hΣ1,1
η }10)|.

Applying the Cases 1-4 inductively, we have the following R-torsion formula for
the compact orientable surfaces Σg,n, g ≥ 2, n ≥ 0

|T(Σg,n, {hΣg,n
η }10)| =

2g−2+n∏
ν=1

|T(Σν
0,3, {h

Σν
0,3

η }10)|.

□

4 Applications

4.1 Compact 3-manifolds with boundary

Let N be a smooth compact orientable 3-manifold whose boundary consists of finitely
many closed orientable surfaces ∂N = Σg

1
,0 ⊔ Σg

2
,0 ⊔ · · · ⊔ Σgm ,0. Let d(N) be the

double of N. Consider the natural short exact sequence of the chain complexes

(4.1) 0 → C∗(∂N) → C∗(N)⊕ C∗(N) → C∗(d(N)) → 0

and the corresponding Mayer-Vietoris sequence H∗. For the given bases hN
µ , h∂N

ν ,

and h
d(N)
µ , ν ∈ {0, 1, 2}, µ ∈ {0, 1, 2, 3}, we will denote the corresponding basis of H∗

by hn, n ∈ {0, . . . , 11}. As the bases in the sequence (4.1) are compatible, [3, Thm.
3.2] yields

(4.2) T(N, {hN
µ }30)2 = T(∂N, {h∂N

ν }20) T(d(N), {hd(N)
µ }30) T(H∗, {hn}110 ).

By [7, Thm. 3.5] and (4.2), we have

(4.3) |T(N, {hN
µ }30)| =

√
|T(∂N, {h∂N

ν }20)||T(H∗, {hn}110 )|.
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Note that ∂N is equal to Σg
1
,0 ⊔ Σg

2
,0 ⊔ · · · ⊔ Σgm ,0. By [7, Lem. 1.4], we get

(4.4) |T(∂N, {h∂N
ν }20)| =

m∏
i=1

|T(Σg
i
,0, {h

Σg
i
,0

ν }20)|.

For each i ∈ {1, . . . ,m}, consider the given basis h
Σg

i
,0

ν for ν ∈ {0, 1, 2} and pants

decompositions {Σj,i
0,3}

2g
i
−2

j=1 of Σg
i
,0. By using Theorem 1.2, we obtain the basis h

Σj,i
0,3

η ,
η ∈ {0, 1}, j ∈ {1, . . . , 2g

i
− 2} such that

(4.5) |T(∂N, {h∂N
ν }20)| =

m∏
i=1

2gi−2∏
j=1

|T(Σj,i
0,3, {h

Σj,i
0,3

η }10)|.

Equations (4.4) and (4.5) yield the following formula

|T(N, {hN
µ }30)| =

√√√√ m∏
i=1

2gi−2∏
j=1

|T(Σj,i
0,3, {h

Σj,i
0,3

η }10)| |T(H∗, {hi}110 )|.

Corollary 4.1. Let N be the handlebody of genus g ≥ 2. Clearly, the boundary ∂N of
N is an orientable closed surface Σg,0 and the double d(N) of N is equal to #

g
(S×S2).

Then we have the short exact sequence

(4.6) 0 → C∗(Σg,0) → C∗(N)⊕ C∗(N) → C∗(d(N)) → 0

and the corresponding Mayer-Vietoris sequence H∗. For the given bases h
d(N)
µ and

hN
µ µ ∈ {0, 1, 2, 3}, following the arguments above, there exists a basis h

Σg,0

i for i ∈
{0, 1, 2} such that in the corresponding bases the R-torsion of H∗ is 1 and from [7,
Thm. 3.5] it follows

|T(N, {hN
µ }30)| =

√
|T(Σg,0, {h

Σg,0

i }20)|.

Let us consider the pants decomposition {Σj
0,3}

2g−2
j=1 of Σg,0. By Theorem 1.2, there

exists the basis h
Σj

0,3
η for each j ∈ {1, . . . , 2g−2} and η ∈ {0, 1} such that the following

formula holds

|T(N, {hN
µ }30)| =

√√√√2g−2∏
j=1

|T(Σj
0,3, {h

Σj
0,3

η }10)|.

4.2 Product of 2d-manifolds and compact 3-manifolds with
boundary Σg,0

Let M be a smooth closed orientable 2d-manifold (d ≥ 1) and N an smooth compact
orientable 3-manifold whose boundary consists of closed orientable surface Σg,0 (g ≥
2). Let X be the product manifold M ×N and d(X) denote the double of X. Clearly,
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the boundary of X is M × Σg,0. Consider the natural short exact sequence of the
chain complexes

(4.7) 0 → C∗(M × Σg,0) → C∗(X)⊕ C∗(X) → C∗(d(X)) → 0

and the Mayer-Vietoris sequence H∗ corresponding to (4.7). Let hX
i , h

d(X)
i , hM

k ,

and h
Σg,0

ℓ be given bases for i ∈ {0, · · · , 2d + 3}, k ∈ {0, . . . , 2d}, ℓ ∈ {0, 1, 2}. Let
h
M×Σg,0
ν denote the basis ⊕

i
hM
i ⊗ h

Σg,0

ν−i of Hν(M × Σg,0), ν ∈ {0, . . . , 2d + 2}. For

n ∈ {0, . . . , 6d+ 11}, let hn be the corresponding basis of H∗. Let {Σj
0,3}

2g−2
j=1 be the

pants decomposition of Σg,0. Note that the bases in the sequence (4.7) are compatible.
Thus, by [7, Lem. 1.4], we obtain

T(X, {hX
i }2d+3

0 )2 = T(M × Σg,0, {hM×Σg,0
ν }2d+2

0 ) T(d(X), {hd(X)
i }2d+3

0 )

× T(H∗, {hn}6d+11
0 ).(4.8)

From [7, Thm. 3.5] and (4.8) it follows that

(4.9) |T(X, {hX
i }2d+3

0 )| = |T(M × Σg,0, {hM×Σg,0
ν }2d+2

0 )|1/2 |T(H∗, {hn}6d+11
0 )|1/2.

By [4, Thm. 3.1], the R-torsion of M × Σg,0 satisfies the equality

|T(M × Σg,0, {hM×Σg,0
ν }2d+2

0 )| = |T(M, {hM
k }2d0 )|χ(Σg,0)

× |T(Σg,0, {h
Σg,0

ℓ }20)|χ(M).(4.10)

Here, χ is the Euler characteristic. Then equations (4.9) and (4.10) yield

|T(X, {hX
i }2d+3

0 )| = |T(M, {hM
k }2d0 )|χ(Σg,0)/2 |T(Σg,0, {h

Σg,0

ℓ }20)|χ(M)/2

× |T(H∗, {hn}6d+11
0 )|1/2.(4.11)

Since {Σj
0,3}

2g−2
j=1 is the pants decomposition of Σg,0 as in Theorem 1.2, there exists a

basis h
Σj

0,3
η of Hη(Σ

j
0,3) for j ∈ {1, . . . , 2g − 2}, η ∈ {0, 1} so that

|T(Σg,0, {h
Σg,0

ℓ }20)| =
2g−2∏
j=1

|T(Σj
0,3, {h

Σj
0,3

η }10)|.(4.12)

Equations (4.11) and (4.12) yield

|T(X, {hX
i }2d+3

0 )| =
2g−2∏
j=1

|T(Σj
0,3, {h

Σj
0,3

η }10)|
χ(M)

2

|T(M, {hM
k }2d0 )|

χ(Σg,0)

2

× |T(H∗, {hn}6d+1
0 )|1/2.
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