
RESEARCH ARTICLE

P/Key: PUF based second factor

authentication

Ertan Uysal3, Mete AkgünID
1,2,3*

1 Medical Data Privacy and Privacy-Preserving ML on Healthcare Data, Department of Computer Science,
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Abstract

One-time password (OTP) mechanisms are widely used to strengthen authentication pro-

cesses. In time-based one-time password (TOTP) mechanisms, the client and server store

common secrets. However, once the server is compromised, the client’s secrets are easy to

obtain. To solve this issue, hash-chain-based second-factor authentication protocols have

been proposed. However, these protocols suffer from latency in the generation of OTPs on

the client side because of the hash-chain traversal. Secondly, they can generate only a lim-

ited number of OTPs as it depends on the length of the hash-chain. In this paper, we pro-

pose a second-factor authentication protocol that utilizes Physically Unclonable Functions

(PUFs) to overcome these problems. In the proposed protocol, PUFs are used to store the

secrets of the clients securely on the server. In case of server compromise, the attacker can-

not obtain the seeds of clients’ secrets and can not generate valid OTPs to impersonate the

clients. In the case of physical attacks, including side-channel attacks on the server side,

our protocol has a mechanism that prevents attackers from learning the secrets of a client

interacting with the server. Furthermore, our protocol does not incur any client-side delay in

OTP generation.

Introduction

The proliferation of Internet services means that more and more companies and individuals

are doing business online. However, because the internet is accessible to everyone, the security

problems faced by individuals and companies can have increasingly serious consequences.

According to the statistics from Norton [1], more than half of all consumers have experienced

cybercrime.

User authentication is the most important cybersecurity solution used to establish trust

between users (devices) and servers. Authentication is the process of proving one’s identity

while trying to access a system [2]. The clients are registered by the authentication server in

the initialization step of the authentication protocols. If the client is registered in the system in

the initialization part, it is granted access to the system. After successful authentication, the
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system checks whether a client is authorized for the desired event, e.g., by looking at the autho-

rized entity list. Authentication is also vital for systems in which trust between devices and

servers are needed such as in the Internet of Things (IoT) in which physical devices connecting

to the network collect and share data to each other [3–5].

Authentication mechanisms can be classified into two groups: Single Factor Authentication

(SFA) and multi-factor authentication (MFA). SFA systems are the simplest form of authenti-

cation mechanism [6]. In SFA, the client is authenticated by the system with a single secret.

Authentication is generally provided with a username and password in SFA. A one-time pass-

word or facial recognition system may also serve as a single factor for authentication [7]. SFAs

are preferred because of their easy deployment [8, 9]. However, passwords that are widely used

as single-factor authentication provide what is considered a low level of security. This low level

of security is due to the low entropy of passwords [10], possible database attacks [11], password

reuse for the same or different services [12], and phishing attacks [13].

To protect users from attacks against password-based single-factor solutions, service pro-

viders offer second-factor authentication mechanisms which are a sub-branch of MFAs [14–

16]. This second-factor authentication is typically based on QR codes, push notifications, or

one-time passwords generated using a hardware token or a phone app. MFAs, which generally

find use in systems with advanced security measures, aim to increase security by combining

various forms of authentication factors in addition to the single factor when the user logs into

the system [17–20]. Other factors that are independent of the first factor can be biometric fea-

tures, OTP, security questions, or dedicated hardware tokens.

Second-factor authentication is provided in many ways, such as password-face recogni-

tion, and password-OTP pairs. Applications such as Google Authenticator [21] and DUO

[22] generate time-based OTPs and provide a second-factor authentication mechanism inte-

grated with different applications. OTP is often used as the second factor in authentication

protocols. Being one-time use creates extra security as it provides instant use. As a first fac-

tor, static passwords are generally used. Many second factor authentication mechanisms

have been proposed using OTP. Huszti and Oláh present a OTP based second factor authen-

tication scheme using Merkle tree [23, 24]. Shivraj et al. proposed a one-time password

mechanism using elliptic curve cryptography scheme and Lamport’s OTP algorithms [25].

Time-based one-time password (TOTP) is one of the widely used second-factor authentica-

tion mechanisms [26]. In TOTP, secrets are stored both on server and client side [26–29].

Therefore, once attackers access the server, they are able to capture the secrets of the regis-

tered clients. Thus, attackers can act as a client and be authenticated by the system. This risk

has been encountered not only theoretically but also in practice. RSA and Linode companies

got hacked, and clients’ secrets stored on their servers were stolen [30]. Since the direct stor-

age of the keys on the server in TOTP poses a security risk, hash-chain-based mechanisms

have been proposed [29, 31]. Each value in a hash-chain is used to compute different OTPs.

However, the number of OTPs produced in hash-chain mechanisms is limited. After the

OTPs are depleted, re-initialization of the protocol is required for OTP generation. The

number of OTPs produced depends on the length of the hash-chain. If the hash-chain is kept

long, the number of OTPs will increase, and the verification time will be delayed. If not, due

to short hash-chains the requirement of re-initialization very often interrupts the authentica-

tion flow. The success of second-factor authentication mechanisms is evaluated by the level

of security they provide, as well as the latency caused by the computational load. Designing

second-factor authentication protocols that will not cause any extra computation costs in

OTP generation due to providing security against server-side compromise is an open prob-

lem that needs to be addressed.
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Our contributions

In this paper, we propose a second-factor authentication mechanism called P/Key. We

improve the security of standard TOTP systems against server-side compromise attacks by

using Physically Unclonable Functions (PUFs) on the server side. PUF is a unique digital fin-

gerprint of each device, originating from the production of microprocessor and semiconduc-

tor devices. PUF produces different values for each device, as it is a result of the differences

that occur as a result of the production of the devices. Detailed information about PUFs is

given in the Physical Unclonable Function section. The use of PUF on the server side ensures

that the secret values of the clients are stored securely on the server against unauthorized access

by attackers. Instead of storing clients’ secrets in plain-text form, challenges that produce cli-

ents’ secrets when applied to PUFs are stored on the server in masked form. Thus the attacker

can not learn the challenges without knowing their masks in case of gaining unauthorized

access to the server. During authentication, the client’s secrets are generated with the PUF and

are deleted immediately after authentication. In the case of physical attacks on the server side,

the PUF’s characteristics are affected, and the PUF will start behaving differently from its nor-

mal behavior. Thus attackers can not learn the clients’ secrets. In our solution, each client

has two secrets and they are not present in the server’s memory at the same time during the

authentication. Thus the attacker performing a cold-boot attack can learn only one of the cli-

ent’s two secrets. These show that our second-factor authentication protocol is secure against
server-side compromise as well as physical attacks on the server. Furthermore, we propose solu-

tions to make corrupted PUFs available again and to determine when to direct users to re-ini-

tialization to avoid possible security vulnerabilities.

The rest of the article is as follows: In Section II, we review previously proposed second-fac-

tor authentication mechanisms and their advantages and disadvantages. In Section III, the

PUF concept, working principle, and types are mentioned. In Section IV, P/Key: PUF-based

second-factor authentication protocol (P/Key) is presented. In Section V, the security of the P/

Key protocol is analyzed. In Section VI, our protocol is compared with previously proposed

protocols and discussed according to criteria. Lastly, we bring our research to a conclusion in

Section VII.

Related work

In this section, we review IoT Authentication protocols, TOTP, S/Key, T/Key and PUF-based

authentication protocols.

With the increase in IoT devices, new threats are emerging in the authentication process. It

is estimated that there are more than 10 million vulnerable IoT devices [32]. Computational

cost and effiency, if needed privacy preserving of user are criteria in IoT authentication [33].

Based on these problems, studies have been presented to increase authentication security in

IoT devices. Fan et al. proposed a new authentication mechanism that improves IoT device

security with blockchain technology [34]. Kang et al. proposed a lightweight authentication

mechanism to eliminate security vulnerabilities in room services [35]. In order to provide

security in cloud computing that is components of IoT, Moghaddam et al. have introduced an

authentication scheme [36]. Vinoth et al. proposed an anonymous authentication and key

sharing scheme for Medical IoT [37].

The advancement of IoT has also popularized the use of one-time passwords (OTP) in

authentication protocols. Because lightweight communication protocols can be established

between OTP servers and devices. In OTP mechanisms, the password is generated based on

seed and moving factors [38]. Moving factor in HMAC one-time password (HOTP) is a

counter value [39]. Counter value provides different OTPs to be produced within the HMAC
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function with a fixed seed value. When authentication occurs, the counter value is incremen-

ted by one on both server and client sides in the HOTP mechanism [39]. Thus, it is ensured

that both parties generate the same hash values. However, in cases where the client does not

send the generated password to the server, there may be a synchronization problem between

the client and server counter values. Although the server checks the passwords sent by the cli-

ent with more than one hash value in the window range, in case of synchronization problems,

re-initialization is required between the client and server. Brute force attack poses a threat in

HOTP mechanisms where the window size is wider [38].

In the time-based one-time password (TOTP) mechanism, time is a moving factor [26].

TOTP is a protocol that allows one-time use and generates a time-based password [26]. This

protocol is executed over the shared secret key stored on both server and client. Passwords are

valid for certain periods such as thirty seconds or one minute. Passwords are generated by per-

forming the HMAC operation on the shared secret and time period. Since the client and server

generate a password using a shared key, if unauthorized people obtain the shared key, they can

generate new OTPs. TOTP is used in software-based second-factor one-time password appli-

cations such as Google Authenticator [21].

S/Key protocol overcomes the shared key storage problem on the server-side [31]. S/Key

generates passwords based on a hash-chain structure, and each hashing output is a password

that can only be used once [31]. Only the tail of the hash-chain is stored on the server. In the

authentication phase, the user sends the hash value which is the predecessor of the tail as OTP

to the server. However, S/Key is not time-based. For this reason, in case of no authentication

for a long time, the same password is stored on the server. S/Key scheme is designed for a

small number of login operations. The number of generated passwords is directly proportional

to the length of the hash-chain. However, it is not clear how the length of the hash-chain affects

the security [29]. Re-initialization is needed when the passwords created with the hash func-

tions are depleted. Since the same hash function is used in each iteration, if the hash function

is known, passwords can be generated by unauthorized people. In the case of a distributed

server structure, passwords must be updated in a coordinated and secure manner on each

server. In this way, all servers agree on the same response [29].

T/Key protocol proposed by Kogan et al. is a combination of TOTP and S/Key [26, 29, 31].

It aims to create an extra layer of security by adding time information to OTP as an additional

feature to S/Key. However, adding time information greatly increases the computational cost

of password generation and verification [40]. When authentication is required, it necessitates

performing hash operations from expiration time tend to the current time, one for each inter-

val. If the validity gap is taken as 30 seconds for each OTP, it is necessary to generate 220 hash

operations for a period of one year. Although Kogan et al. proposed checkpoints to improve

the performance of the hash-chain, in the worst-case scenario, password generation and verifi-

cation times are still costly [40].

Many studies have been conducted on using PUF to authenticate IoT applications [41–44].

One of the important reasons is that the use of PUF provides a solution to the problem of stor-

ing keys in IoT devices vulnerable to tampering. Thanks to the PUF, instead of storing the key

in the device, when authentication is required, the key is generated in the PUF. Yoon et al. pro-

posed an authentication mechanism based on the usage of PUF on the client-side [41]. In [42],

a PUF-based key agreement scheme has been presented for IoT devices. Wallrabenstein pre-

sented a low-cost tamper resistance authentication protocol using PUF in 2016 [43]. However,

this protocol does not generate OTP and is not a second-factor mechanism. In addition to

these studies, Bicakci and Baykal proposed an OTP mechanism based on asymmetric cryptog-

raphy [45] with PUF. However, key generation and verification steps have higher computa-

tional costs than other protocols [46].
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Physically unclonable function

Physical Unclonable Functions (PUF) is a device-specific digital fingerprint that consists of

differences in the manufacturing processes of semiconductors. These differences are uncon-

trollable and unpredictable. PUF mechanism can occur with the help of different physical

materials such as optical materials, and RAMs on microchips. Uncontrollable temperature,

electromagnetic wave, and voltage in the production processes on these physical materials

cause the devices to form their own digital fingerprints and lead to each device being different

at the micro level. PUFs rely on a challenge-response mechanism. When the physical structure

is stimulated, the PUF produces unpredictable responses as a result of differences in this

microstructure. While the stimulation of the physical structure is called the challenge, the

result of the physical structure against this stimulation is called the response.

A PUF instance needs to have the following properties [47, 48]:

• Robustness: Responses of the PUF to the same challenge values at different times need to be

the same or correctable with helper functions.

• Unclonability: A PUF structure can not be copied or imitated. It is not possible to perfectly

emulate the physical conditions of one PUF for a different PUF instance.

• Unpredictability: Even if a sufficient number of challenge-response pairs has been obtained,

it is not possible to predict beforehand the response generated in the PUF against a given

challenge value.

• Tamper-evident: Any unauthorized access attempt to the PUF causes its behavior to change

and accordingly generate different challenge-response values.

PUF can be implemented as means of low-cost hardware security by leveraging the unique

inherent randomness of a device. Since this randomness in the microstructure may serve as a

device-specific key or ID, the PUF mechanism can be applied in systems that require high

security. The key of the device can be generated with answers corresponding to certain chal-

lenge values. The unique key of the same device must always be reproducible with the PUF.

Against the same challenge values in the same device, PUF is expected to produce the same

response, but this may not be possible due to changing physical conditions. Especially the vary-

ing noise level affecting the PUF may be a big challenge. Environmental factors such as tem-

perature, pressure, magnetic field or power fluctuations are other factors that change the

behavior of the PUF. These factors lead to the degradation of the “digital fingerprint” charac-

terization representing the PUF. Incorrect bits occurring in the PUF need to be corrected.

Otherwise, responses consisting of PUF become meaningless, and the responses cease to be

device-specific. Multiple fuzzy extractor techniques may serve to correct corrupted bits [49–

51]. Taniguchi et al. proposes the new soft-decision fuzzy extractor to solve instability caused

by power fluctuation [51]. Aung et al. obtained stable bits using the Data Remanence algo-

rithm on the SRAM PUF [50].

One of the major attack mechanisms that pose the threat to PUF mechanisms is “side-chan-

nel attacks”. Due to increasing security threats of side-channel attacks, defense mechanisms

have become an increasingly important topic in PUF research, and some methods have been

applied to PUF design to prevent side-channel information leakage [52]. For example, Yuan

Cao proposed a RO PUF to protect against electromagnetic side-channel attacks [52, 53]. With

the increasing emphasis on side-channel attacks by PUF designers and the combination of

different defense techniques, traditional attack methods become increasingly obsolete [52].

Another significant mechanism of dealing with PUFs is “modeling attack” [54–56]. These

attacks on PUFs rely on creating a dataset from challenge-response pairs (CRP) and building a
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new machine learning model from these CRPs. However, studies have shown that strong

PUFs that are resistant to modeling attack are possible [57, 58].

PUF has been used for key generation [59, 60], key sharing [61], group key establishment

[62], and IP protection [63, 64] in hardware security area. Also, PUF has become a viable work

topic for IoT security and privacy due to resource constraints and access difficulties of IoT

devices and found a wide variety of uses in the field [65–67]. Maurya and Bagchi propose a

unilateral factor authentication mechanism for use in RFID systems [65]. Implementing PUF-

based authentication schemes that ensure reasonable security of RFID tags under resource

constraints is an effective way to avoid RFID deployment concerns. In a different field, due to

resource constraints in IoT meters, Boyapally et al. proposed a PUF-based authentication

mechanism that performs cryptographic operations on the server to provide secure communi-

cation between smart meters at consumers and the servers at the utility operators [66]. There

are also studies on the use of PUF in the authentication and key-sharing processes of sensors

in the wireless sensor network (WSN) [67].

PUFs can be implemented without taking up much space on hardware. It may be deployed

even without using any extra equipment. To our knowledge, PUFs are not widely available to

end-user on personal computers. In [68], the presence of PUFs in CPUs and GPUs was investi-

gated. It was stated that CPU manufacturers could introduce the PUF feature on their devices

by making minor changes in the hardware features. Intel employed PUF in its SGX-enabled

processors [69, 70]. However, there is no commercial CPU or GPU having an integrated PUF

that users can access. FPGA producers have already used PUF technology in their products.

For example, Intel Stratix 10 FPGAs [71] and Xilinx UltraScale+ FPGAs [72] are equipped

with PUF. These FPGA products can be easily integrated into servers and used as a PUF

source. This allows our solution to be run on powerful servers.

PUF-based second factor authentication

We propose an authentication protocol that utilizes PUFs to create a second factor. The proto-

col offers a time-based second factor, as in the TOTP [26]. As mentioned earlier, TOTP stores

clients’ secrets on the server in plain text. However, in our proposed protocol, they are not

stored on the server. PUFs are used as secure storage for them. The secrets are generated dur-

ing the authentication request on the server side and deleted after use. Thus, if the server is

compromised, the attacker cannot obtain them. Furthermore, our protocol is resistant to phys-

ical attacks, including side-channel attacks, according to the referred attack analysis in the

previous section for the specification of general and strong PUFs. This means the physical

attacker can not learn two secrets belonging to a client at the same time, as they are revealed to

the server’s memory only during the protocol execution.

Assumptions

We have the following assumptions:

• Sadeghi [73] defined the idealized behavior of PUF: it produces the same response against

the same challenge value at different times and, in case of any tampering attempt on the

server, PUF is destroyed and shows different characteristics than before. We assume that the

ideal PUF meeting this definition is used in the protocol.

• The client and server have a synchronized clock to calculate the time period [74]. They agree

beforehand on the time interval, I, required to calculate the number of elapsed periods.
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Protocol description

The proposed second-factor authentication protocol has two phases: initialization and authen-

tication. The notations used in the protocol description are given in Table 1. We assume that

the server has n different PUFs.

Initialization. Initialization is a process in which a client and server agree on common

secrets. They will be used to authenticate the client that wants to benefit from a service pro-

vided by the server. In the proposed initialization protocol which is depicted in Fig 1, a client

chooses four different random values a1, a2, s1, s2 and sends them to the server. The server

gets these random values and performs the following steps in order:

1. The server gets s1 challenge seed value which is sent by the client and put it in PUF P1. The

response value produced by P1 is the secret k1 of the client. Then XOR operation is per-

formed between P1(s1) value and a1 value. The XOR operation hides the secret k1 within u1.

2. Server chooses an l-bit random value c1.

3. The server performs an XOR operation between the client’s secret seed value s1, and the

random value c1 of the server. Thus, the server hides the value s1 in d1. In case the server is

hacked, the attacker cannot access the secret k1 of the client. Because to reach the secret k1,

the attacker must know the value of s1 and put this value in the P1 as the challenge value.

4. To be able to use other PUFs in authentication, the server computes XOR of P1(s1) and

each Pi(s1) where i 2 [2, n] and stores the result as ei
1
. e1

1
naturally equals 0.

5. The server deletes the values Pi(s1) where i 2 [1, n], a1 and s1, so that in case of an attack, the

attacker cannot obtain the secret k1 of the client.

6. The server generates the secret k2 of the client with P1, and then XORes k2 with a2 value.

This XOR operation hides the secret k2 within u2.

Table 1. P/Key notation table.

Symbol Description

s1 s1 represents the challenge seed value that the client sends to the server to generate the first key.

s2 s2 represents the challenge seed value that the client sends to the server to generate the second key.

k1 k1, (i.e., P(s1)) is the first key value of the client. It is obtained by putting the client seed value s1 in the

PUF.

k2 k2, (i.e., P(s2)) is the second key value of the client. It is obtained by putting the client seed value s2 in the

PUF.

a1 a1 is a random value that is chosen by the client

a2 a2 is a random value that is chosen by the client.

c1 c1 is a random value that is chosen by the server.

c2 c2 is the random value that is chosen by the server.

d1 d1 is the partial seed of one of the client’s secret.

d2 d2 is the partial seed of one of the client’s secret.

r r is a random value chosen by the client.

I I is the time interval between two timestamps. It also determines the validity period of OTP.

M1 M1 is the first OTP.

M2 M2 is the second OTP.

P PUF. {0, 1}l! {0, 1}l

� XOR operator

2 2 is elements of operator

H Hash function. {0, 1}l × {0, 1}l! {0, 1}l.

https://doi.org/10.1371/journal.pone.0280181.t001
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7. The server chooses an l-bit random value c2.

8. The server hides the seed of the secret, k2, by performing an XOR operation between the

seed value, s2, and the random value c2. Thus, in case the server is hacked, and unauthorized

people gain database access, the attacker cannot extract the seed of the secret k2 from d2.

9. To be able to use other PUFs in authentication, the server computes XOR of P1(s2) and

each Pi(s2) where i 2 [2, n] and stores the result as ei
2
. e1

2
naturally equals 0.

Fig 1. P/Key: Initialization scheme.

https://doi.org/10.1371/journal.pone.0280181.g001
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10. The server deletes the values Pi(s1) where i 2 [1, n], a2 and s2 in order to prevent the

attacker from accessing the secret k2.

11. The server sends u1, u2, c1 and c2 values to the client. u1 and u2 hide the secrets k1 and k2,

respectively. These values are hidden by the XOR operation as mentioned above. c1 and c2
values are also sent to the client so that the client’s s1 and s2 values can be generated on the

server-side in the authentication phase.

12. The server deletes c1 and c2 values after sending them to the client. If these values are not

deleted and stored in the server’s database, the attacker having the credentials of the server

can obtain the values s1 and s2 using the equations s1 = d1� c1 and s2 = d2� c2. After

obtaining the s1 and s2 values, it can obtain the secrets k1 and k2 by evaluating s1 and s2,

respectively, with the PUF.

13. The server stores ½d1; d2; e1
1
; e2

1
; . . . ; en

1
; e1

2
; e2

2
; . . . ; en

2
� that are generated for each registered

client along with the client’s descriptive and complementary information.

At the end of the initialization phase, the correctness test is performed for all PUFs in the

system. If even one of the PUFs fails the correctness test, the initialization is performed again.

Corrupted PUFs are marked for already defined clients in the system.

Authentication. In the proposed authentication protocol, the client computes two OTPs

that are valid for a certain period. Our protocol requires a synchronized clock between the cli-

ent and the server like other TOTP protocols. When authentication is needed, the client calcu-

lates the elapsed time and uses it in the computation of OTPs.

In the calculation of OTPs, a random value r is used. r is used to make two OTPs to be

dependent on each other. Thus, the server that is able to generate the secrets of the client can

extract the random value r from the first OTPM1 and use it in the verification of the second

OTPM2.

Each client secret is used to calculate only one OTP. This means one is used to calculateM1

and the other is used to calculateM2. The server uses the PUF to generate the secrets of the cli-

ent sequentially to verify the authentication request of the client. In the case of physical attacks

(e.g. side-channel attacks), since the characteristics of the PUF change, at least one of the PUF

execution will behave differently and incorrect key values will be generated. For this reason,

the server will not be able to verify the client.

The client registers to the server in the initialization phase and obtains the s1, s2, c1 and c2
values required for authentication from the server.

The authentication protocol is depicted in Fig 2 which only shows the calculations required

for the validation of OTPs using PUF by the server. A detailed explanation of how the PUF

recovery and redirecting to the initialization process takes place on the server during authenti-

cation is given in Algorithm 1. The steps of the authentication protocol are as follows:

1. The client generates two OTPs and sends them to the server. The steps that the client has to

do are the followings:

1. The client chooses l-bit random value r.

2. The time period that OTPs will be valid is calculated. The current time is subtracted

from the time t0, and the result is divided by interval I to calculate the valid time period.

3. In this step, the secret value k1 is hashed with the time period calculated in the previous

step. Then, the XOR operation is performed with the result and the r value. Thus, the
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first OTP is calculated. In this way, it is ensured that different values are produced in

each authentication request, even if it is in the same time period.

4. In the calculation of the second OTP,M2, firstly, XOR operation is performed with the

k2 value and r. The result is hashed with the time period.

5. M1,M2, c1 and c2 values are sent to the server as an authentication request.

2. After receiving two OTPs, the server verifies them to identify the client. The steps that the

server has to do are the followings:

1. The server randomly selects a PUF. If the selected PUF is not working correctly, the

server will randomly select another PUF. The server continues this selection process

until it finds a correctly working PUF. The selected PUF is represented by Pi.

2. The server calculates the seed s1 the client by performing an XOR operation between the

c1 value that the client sends and the d1 value it stores. It gets the secret k1 by putting s1
value in Pi.

3. The server hashes the time period with the secret k1 obtained in the previous step. Then,

an XOR operation is performed between theM1 value sent by the client and the hash

result. Thus, the random value r is obtained. r value is authentication specific and differ-

ent for each authentication request. The important point is that the server extracts the r
value in the same time period as the client generated. If the r value is extracted after a

long time has passed, the r value obtained will not be the same as the one produced by

the client, since the time period will change.

Fig 2. P/Key: Authentication scheme.

https://doi.org/10.1371/journal.pone.0280181.g002
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4. The server deletes the k1, Pi(d1� c1), c1 values. The reason for this is to ensure that in

case of an attack in further steps, the attacker cannot learn the secret k1.

5. The server calculates the seed s2 of the client by performing XOR operation between the

c2 and d2. It gets the secret k2 by putting s2 value in Pi.

6. The server has the necessary r and k2 values to generate theM2 message. As in the client

side, it generates the OTPM�
2

and compares it withM2. IfM2 andM�
2

are equal, the

server authenticates the client.

7. The server deletes the k1, Pi(d1� c1), c1 values. The reason for this is to ensure that in

case of an attack in further steps, the attacker cannot learn the secret k2.

Algorithm 1: Detailed Authentication Phase with PUF Recovery on Server Side
/� U

l
is a client wanting to access the system �/

while True do
Pi =2 in the list of corrupted PUFs for U

l
;

if Pi is not corrupted then
k1 ¼ Piðd1 � c1Þ � ei1;
foreach Pj 2 in the list of corrupted PUFs for U

l
do

ej1 ¼ Pjðd1 � c1Þ � k1; // The corrupted PUF Pj is made to derive the k1
of U

l
.
end
r = M1 � H(k1, (t − t0)/I);
delete k1, Pi(d1 �c1), c1;
if Pi is corrupted then
foreach U 2 Clients do
Mark Pi as corrupted in the list of corrupted PUFs for U;

end
Redirect U

l
to initialization;

Exit loop; // Pi is corrupted. Thus one secret of U
l
may have been

compromised. The authentication process is terminated and U
l
is redi-

rected to initialization to determine its new secrets.
end
k2 ¼ Piðd2 � c2Þ � ei2;
foreach Pj 2 in the list of corrupted PUFs for U

l
do

ej2 ¼ Pjðd2 � c2Þ � k2; // The corrupted PUF Pj is made to derive the k2
of U

l
.
Mark Pj as uncorrupted in the list of corrupted PUFs for U

l
;

end
if M2 = H(k2 � r, (t − t0)/I) then

U
l
is authenticated;

end
delete k2, Pi(d2 � c2), c2;
if Pi is corrupted then

Redirect U
l
to initialization in the next authentication request; // Pi

is corrupted. Thus one secret of U
l
may have been compromised. U

l
is

authenticated and U
l
will be redirected to initialization to determine

its new secrets in the next authentication request.
foreach U 2 Clients do
Mark Pi as corrupted in the list of corrupted PUFs for U;

end
end
Exit loop;

else
foreach U 2 Clients do
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Mark Pi as corrupted in the list of corrupted PUFs for U;
end

end
end

PUF Recovery and re-initialization of secrets. In the authentication phase, before verify-

ing the OTPs of a client, the server checks the correctness of the PUF that it randomly chose.

For this purpose, a predetermined challenge-response pair (x, y) is stored on the server for

each PUF. If a PUF cannot produce the response y corresponding to challenge x, this indicates

that the PUF is corrupted. To make the corrupted PUF Pj become available again, new ej1 and

ej2 values are calculated for a client whose authentication request is received. First, the server

finds a PUF that is uncorrupted and computes k1 of the client. The server learns a new ej1 for

the corrupted PUF Pj by computing Pj(d1� c1)� k1. Second, the server computes k2 of the cli-

ent using the uncorrupted PUF. The server learns a new ej2 for the corrupted PUF Pj by com-

puting Pj(d2� c2)� k2. Thus, the re-initialization of the corrupted tag for the client is done by

performing two additional computations in the authentication phase.

During authentication, only one of client’s secrets can be obtained by the attacker with a

cold boot attack. In another authentication session where another PUF is used, the attacker

can obtain the other key of the same client with a cold boot attack. Thus the attacker can

impersonate the client. For this reason, clients whose one key is likely to be learned by the

attacker are detected during authentication and directed to initialization in the next authenti-

cation request. These clients are detected by PUF correctness tests to be performed before

the generation of k2 and after the deletion of k2. The former correctness test detects that the

attacker obtained k1 and the latter one detects that the attacker obtained k2. How the PUF

recovery process takes place on the server side during the authentication phase is explained in

detail in Algorithm 1.

Security analysis

In this section, we will present the security analysis of our authentication protocol.

Threat model

We assume that the user device (client) meets the required security requirements, and does

not carry any malware so that the user session cannot be hijacked by an attacker. We also

assume that the communication channel between the user device and the server is protected

by TLS [75], thus man-in-the-middle (MITM) attacks are not possible. All TOTP schemes are

vulnerable to online phishing attacks, where users’ short-term one-time passwords are com-

promised. However, the time limit of one-time passwords makes it difficult to carry out an

attack using them.

We assume that adversaries are able to access the server multiple times and obtain the nec-

essary information to authenticate the clients. For our protocol, the information received from

the compromised server is the seeds of the clients’ secrets and the passwords that can be

retrieved from the memory during the execution of the protocol for a specific client.

We assume that attackers with physical access to the server can perform side-channel

attacks [76], especially cold boot attacks, to extract client passwords and secrets.

Formal definition of one-time password protocol

A one-time password protocol is defined by the following procedures:

PLOS ONE P/Key: PUF based second factor authentication

PLOS ONE | https://doi.org/10.1371/journal.pone.0280181 February 9, 2023 12 / 22

https://doi.org/10.1371/journal.pone.0280181


• PPGenð1sÞ: is an algorithm that outputs the password length l with the given security param-

eter s.

• KeyGenðlÞ: is a probabilistic polynomial-time algorithm that outputs the secrets k1 and k2 of

the prover and the internal state of the verifier consisting of partial seeds d1 and d2 of the

prover’s secrets and masks e1
1
; e1

1
; . . . ; en

1
and e1

2
; e1

2
; . . . ; en

2
of PUFs in the system.

• Proverðt; k
1
; k

2
Þ: is a polynomial time algorithm that takes the time t and the prover’s secrets

k1 and k2 and outputs the one-time passwordsM1 andM2 and masks c1 and c2.

• Verifierðt; d
1
; d

2
;M

1
;M

2
; c

1
; c

2
; e1

1
; e1

1
; . . . ; en

1
; e1

2
; e1

2
; . . . ; en

2
Þ: is a polynomial time algorithm

that takes as input the time t and the verifier’s internal state d1, d2, e1
1
; e1

1
; . . . ; en

1
and

e1
2
; e1

2
; . . . ; en

2
, and one-time passwordsM1 andM2. It outputs accept or reject based on

whether one-time passwords are verified successfully.

In order to prove the correctness, our protocol must output “accept” for every

Verifierðt; d
1
; d

2
;M

1
;M

2
; c

1
; c

2
; e1

1
; e1

1
; . . . ; en

1
; e1

2
; e1

2
; . . . ; en

2
Þ call, where t is monotonically

increasing and,M1 andM2 are produced with Proverðt; k
1
; k

2
Þ.

PPGen and KeyGen procedures correspond to the initialization phase of our protocol.

Prover and Verifier procedures correspond to the authentication phase of our protocol.

Adversary model

The adversary is mainly defined by specifying the actions she is allowed to take (the oracles she

can query), the purpose of her attack (the definition of the game), and the way she interacts

with the server and clients.

An adversary is an algorithm that can run the following oracles

• Launch: enables the client to start a new protocol instance π at time t.

• SendServerðm; p; tÞ: sends a messagem to the server in a protocol instance π for the time t.
Then, it receives the messagem0 as an answer.

• ResultðpÞ: returns 1 if the server verifies a client, and 0 otherwise at the end of the protocol

session π.

• CorruptServerðÞ: corrupts the server and gets its internal state.

Analysis

In this section, we analyze the security of the proposed protocol.

Definition 1 (Hash Function). Let l 2N be a security parameter, γ, κ 2 N be polynomially
bounded in l. A hash function H is defined as {0, 1}γ! {0, 1}κ with the following basic
requirements:

1. For a given output yi, it is computationally infeasible to find an input xi satisfying h(xi) = yi.

2. It is computationally infeasible to find a pair (xi, xj) satisfying xi 6¼ xj and h(xi) = h(xj).

3. Any probabilistic polynomial time adversary who queried H for a polynomial number of
times can distinguish the output of H with at most negligible probability.

Definition 2 (Physically Unclonable Function (PUF) [73]). Let l 2N be a security parame-
ter, γ, κ 2N be polynomially bounded in l. An ideal PUF P is defined as {0, 1}γ! {0, 1}κ that
has the following parameters:
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1. For all c 2 {0, 1}γ and all pairs (ri, rj) 2 [P(c)]2, it holds that probability Pr[ri = rj] = 1.

2. Any physical attempt to tamper with the device on which P is implemented results in the
destruction of P. Thus P cannot be evaluated correctly anymore because its behavior has
changed.

3. Any probabilistic polynomial time adversary who queried P for a polynomial number of times
can compute the output of P with at most negligible probability.

Lemma 1. LetA be an adversary. The advantage ofA of obtaining the secrets k1 and k2 by
corrupting a server during the execution of the initialization protocol is negligible.
Proof. We assume that there is an adversary A that can learn the secrets k1 and k2 of a client

by corrupting the server during the execution of the initialization protocol. If A corrupts the

server while it is not interacting with any client, A does not learn anything because the volatile

memory is empty. In the case where A corrupts the server while interacting with a client, cor-

ruption time is important to determine what the attacker can learn because deletions of some

values are performed two times during the protocol execution. Assume that A corrupts the

server before the first deletion and obtains a1, a2, s1, s2, u1, c1, d1, and ðe1
1
; . . . ; en

1
Þ. A extracts

the secret k1 by computing k1 = u1� a1 and wants to infer the secret k2. In order to infer k2, A
has to simulate the PUF Pi(.), i 2 [1, n] but this contradicts the security of PUF (Definition 2).

Assume that A corrupts the server before the second deletion and obtains a2, s2, u1, u2, c1, c2,

d1, d2, ðe1
1
; . . . ; en

1
Þ, and ðe1

2
; . . . ; en

2
Þ. A computes the secret k2 = u2�a2 and wants to infer the

secret k1. In order to infer k1, A has to expose it from u1 but u1 and a1 are random it is not pos-

sible extract k1 from u1 without knowing a1. Alternatively, A can calculate Piðd1 � c1Þ � ei1 to

get the secret k1, but this means A can simulate Pi(.). This contradicts the security of PUF (Def-

inition 2). As a result, A can learn k1 and k2 by corrupting the server during the execution of

the initialization protocol with negligible probability.

Lemma 2. LetA be an adversary. The advantage ofA of obtaining the secrets k1 and k2 by
corrupting a server during the execution of the authentication protocol is negligible.
Proof. We assume that there is an adversary A that can learn the secrets k1 and k2 of a

tag by corrupting the server during the execution of the authentication protocol. If A
corrupts the server while it is not interacting with a client, A does not learn anything

because the volatile memory is empty. In the case where A corrupts the server while inter-

acting with a client, corruption time is important to determine what the attacker can learn

because deletions of some values are performed two times during the protocol execution.

Assume that A corrupts the server before the first deletion and obtains M1, M2, c1, c2, k1, r,
d1, d2, ðe1

1
; . . . ; en

1
Þ, and ðe1

2
; . . . ; en

2
Þ. A knows the secret k1 and wants to infer the secret k2. In

order to infer k2, A has to expose it from M2 but this contradicts the security of hash func-

tions (Definition 1). A knows that k2 ¼ Piðd2 � c2Þ � ei2, i 2 [1, n] so the other way to infer

k2 is to simulate Pi(.). This contradicts the security of PUF (Definition 2). Assume that

A corrupts the server before the second deletion and obtains M1, M2, c1, c2, k2, r, d1, d2,

ðe1
1
; . . . ; en

1
Þ, and ðe1

2
; . . . ; en

2
Þ. A knows the secret k2 and wants to infer the secret k1. In order

to infer k1, A has to expose it from M1 but this contradicts the security of hash functions

(Definition 1). A knows that k1 ¼ Piðd1 � c1Þ � ei1 so the other way to infer k1 is to simulate

Pi(.). This contradicts the security of PUF (Definition 2). As a result, A can learn k1 and k2

by corrupting the server during the execution of the authentication protocol with negligible

probability.

Lemma 3. LetA be an adversary. The advantage ofA of obtaining the secrets k1 and k2 by
corrupting a server during the execution of different sessions of the authentication protocol is
negligible.
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Proof. Lemma 2 states that A who corrupts the server during an authentication session of a

client can only obtain one of the secrets of that client. However, if A corrupts the server during

another authentication session of the same client, she can obtain the other secret of that client.

The main reason for this attack is that multiple PUFs are used in our system and all PUFs

derive the same secrets for a client.

By performing PUF accuracy tests, we can detect whether the PUF used during the client’s

authentication session is corrupted. The corruption of the used PUF means that at most one

secret of the client may be obtained by A. To prevent A from obtaining the other secret of the

client, in such cases we redirect the client to the initialization phase to change its secrets. As a

result, A can learn k1 and k2 by corrupting a server during the execution of different sessions

of the authentication protocol with negligible probability.

Theorem 1. The proposed authentication protocol provides second-factor authentication.

Proof. We assume that there is an adversary A that can generate validM1,M2, c1 and c2 for

a given client. A wins the security experiment ifM1 andM2 pass the verification in the server.

The communication between the client and server is secured so A cannot listen to the channel

between them.

Assume that during the execution of the initialization and authentication protocols between

the client and server, A calls CorruptServerðÞ oracle to obtain the secrets of the client. This will

contradict Lemma 1 stating that A can not learn the secrets of a given client by corrupting the

server during the execution of the initialization protocol and with Lemma 2 stating that A
can not learn the secrets of a given client by corrupting the server during the execution of the

authentication protocol.

Assume that during the execution of the authentication protocol between the client and

server, A call CorruptServerðÞ oracle on different authentication sessions of the client to obtain

its secrets. This will contradict Lemma 3 stating that A can not learn the secrets of a given cli-

ent by corrupting the server on different authentication sessions of the client.

A performing the server corruption can obtain one-time passwordsM1 andM2 created by

the client. The time limitation of one-time passwords makes it difficult to perform an imper-

sonation attack using them. This is the common problem of all TOTP protocols.

Additionally, an adversary who obtains server login credentials learns partial seeds of client

secrets from the server database and can execute the PUF without breaking it. It is impossible

for an attacker to learn secrets from partial seeds. The adversary who has accessed the server

can learn the secrets of the clients that sent authentication requests to the server during the

time when the adversary has control of the server. Since we can assume that it is very difficult

to learn the login credentials of the server and that the detection time of an adversary who has

accessed the server is very short, the probability of such an attack is negligible.

Impersonation attacks. In order to impersonate a client, an adversary A must either

compute or learn valid one-time passwordsM1 andM2. To compute validM1 andM2, A
needs to know the secrets k1 and k2 of the client. Lemma 1, Lemma 2, and Lemma 3 show that

it is impossible to learn the secrets of any client by corrupting the server.

By hijacking the client device, A can learn k1 and k2. As we stated in our threat model, we

assume that the necessary security measures are taken for the client’s device. The best counter-

measure for masquerading attacks is not to store customer secrets on the client device or keep

them encrypted [77].

Since the communication between the client and server is protected by TLS, it is impossible

for A to monitor and eavesdrop on outgoing messages. Therefore, it is not possible to apply a

replay attack and a man-in-the-middle attack to impersonate a client. A compromising the

server may attempt to use previous one-time passwords to impersonate the client. A cannot

utilizeM1 andM2 used in previous sessions becauseM1 andM2 are valid in a certain time
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interval. Besides,M1 andM2 can only be used once hence, if they are used for authentication

again, they will not be accepted by the server [78].

Re-initialization of second factor. In case, the client device is lost, the client who suc-

cessfully passes the first-factor authentication can access the service with another authentica-

tion mechanism provided by the service provider. The client can re-enable our second-factor

authentication protocol for the relevant service using our initialization protocol. Password

recovery corresponds to the initialization phase of our protocol. In case the client loses his/

her device or all PUFs on the server are corrupted, the client is directed to the re-initializa-

tion phase. This redirection is done via the e-mail address linked to the user account. This

shows that if the adversary can pass the first-factor authentication and gain access to the

legitimate user’s email account, she can initiate the initialization protocol instead of the legit-

imate user.

Performance evaluation

In this section, we present the performance of the proposed scheme in terms of storage cost,

communication cost, and computational cost, similar to the performance analysis done in

[79]. Table 2 summarizes the costs of our protocol and other related schemes.

In our protocol, a client stores 4 values size of ℓ-bit and the server storesm(2n + 2) ℓ-bit

where n is the number of PUF instances andm is the number of clients. The storage cost of

our protocol on the client side is higher than TOTP. Considering the level of security provided

by our protocol compared to TOTP, this difference is negligible. Our protocol has more stor-

age costs on the server side than other protocols. This cost difference is also negligible, assum-

ing the servers are powerful devices. For example, if ℓ is 160, n is 100 andm is 100, 000, 000,

404 GB of storage space is needed on the server. It is a very small storage space requirement

for a system serving 100, 000, 000 clients.

Our protocol requires 2 hash computations on the client and 2 hash and 2 PUF computa-

tions on the server. The computation cost of our protocol on the client side is nearly the same

or less than other protocols. The computation cost of other protocols on the server side is

the computation of a single hash. This difference is negligible for powerful servers when con-

sidering the security, and the lower computation cost of it on the client side provided by our

protocol.

Table 2. Storage, computation, and communication costs of various protocols.

Storage Computation Communication

Client Server Client Server

TOTP ℓ mℓ H H ℓ
S/Key (log k)ℓ mℓ log k

2
H H ℓ

T/Key (log k)ℓ � mℓ log k
2
H� H ℓ

P/Key 4ℓ m(2n + 2)ℓ 2H 2H + 2P 4ℓ

ℓ: the bit length of secret parameters and OTPs

m: the number of clients

n: the number of PUF instances

k: the size of hash chain

H: Hash computation

P: PUF computation

� Most likely larger because of arbitrary gaps in the hash chain evaluation

https://doi.org/10.1371/journal.pone.0280181.t002

PLOS ONE P/Key: PUF based second factor authentication

PLOS ONE | https://doi.org/10.1371/journal.pone.0280181 February 9, 2023 16 / 22

https://doi.org/10.1371/journal.pone.0280181.t002
https://doi.org/10.1371/journal.pone.0280181


The communication cost of our protocol is 4ℓ-bits. If l is assumed to be 160, the transmis-

sion of 80 bytes can be done easily with today’s technology. When evaluated with the

communication cost of other protocols, it shows that our protocol does not have a heavy com-

munication cost.

Discussion

A comparison of the proposed protocol with the other three protocols is given in Table 3.

Under this section, we will evaluate every feature provided in this table.

In the case of physical attacks, including side-channel attacks on the server for our proposed

protocol P/Key, the physical structure of the PUF will change. Therefore, the server will not be

able to generate the correct secrets using the PUF. Hence, the protocol is resistant to physical

attacks on the server side. In the case of physical attacks in the T/Key protocol, the OTPs

obtained by the attacker are insufficient for impersonation, because OTPs are time-dependent

and the attacker cannot obtain the previous hash values to generate the future OTPs. In the

S/Key protocol, the OTP of a client obtained by the attacker can be used to impersonate that

client with high probability because the OTP is not time-dependent. But, as in T/Key, the

attacker cannot obtain the previous values in the hash-chain and cannot generate future

OTPs. In the TOTP mechanism, the secret of a client sending the authentication request to the

server can be obtained with physical attacks and then used to impersonate the client, thus, it is

accepted to be not resistant to physical attacks.

An attacker compromising the server can not obtain the secrets of the clients in our proto-

col as explained in detail in section IV since the seeds of the clients’ secrets are stored on the

server in a hidden format. However, the attacker compromising the server can learn the secrets

of the clients who at the moment send an authentication request to the server in our protocol.

But, in this case, the secrets of other clients previously registered on the server are still safe. For

this reason, our protocol is partially resistant to server-side compromising. In T/Key and S/

Key protocols, secrets are kept hashed on the server. Thus, these protocols are also resistant to

server-side compromising. But the situation is different in TOTP. The attacker who takes over

the server by getting the server credentials can generate the OTP because it knows the secret of

the clients and therefore which is not resistant to server-side compromise attacks.

Our P/Key protocol differs from other competitors and does not use the hash-chain struc-

ture. Because many hash operations take place on the client side, the generation of OTPs can

be costly in hash-chain-based systems. In our protocol, the authentication and key generation

processes are done with the PUF for each authentication and can be completed quickly with a

limited number of steps. Thanks to PUF, the P/Key protocol responds quickly to authentica-

tion requests on the server side as intended.

At last, we evaluate the protocols related to replay attack possibilities for the server-side

secret values. In time-based OTP protocols, secrets are periodically renewed on the server side.

For this reason, the same secret is not stored on the server for a long time. TOTP, T/Key, and

Table 3. Comparison of the proposed protocol with various protocols.

TOTP S/Key T/Key P/Key

Resistance to Server-Side Physical Attacks No Yes Yes Yes

Resistance to Server-Side Compromise Attacks No Yes Yes Partial�

Hash-chain Usage No Yes Yes No

Resistance to Replay Attacks (Time-based Passwords) Yes No Yes Yes

�Only the secrets of the clients that send the authentication request to the compromised server are revealed.

https://doi.org/10.1371/journal.pone.0280181.t003
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P/Key are time-based OTP mechanisms. However, in the S/Key protocol, the stored secret

required for verification on the server is not updated until a new authentication occurs. It is

only updated when it is used in the S/Key mechanism. Because of that, OTP can be valid for a

long time. Storing the same secret on the server for a long time poses a security threat.

As a result, our second-factor authentication protocol keeps clients’ secrets secure even if

the server is compromised because their secrets are stored on the server in masked form. It

provides resistance to physical attacks because the clients’ secrets are generated by executing

PUFs on the server side. The attacker can not obtain two secrets of a client at the same time.

Our protocol also generates OTPs in constant time (two hash calls) on the client side because

it does not depend on the hash-chain mechanism. This also speeds up the authentication

process.

Conclusion

In this paper, we presented a second-factor authentication protocol called P/Key. Our protocol

is resistant to server-side compromise attacks that reveal the clients’ secrets to the attacker.

Prior works such as S/Key and T/Key based on the hash-chain mechanism remain secure in

case of server compromise. However, the number of OTPs to be generated is limited as it

depends on the length of the hash-chain. As the length of the hash-chain increases, the number

of OTPs increases, but the generation of OTPs and their verification on the server side can

take longer, which slows down the authentication process. Since the number of OTPs is lim-

ited, they require re-initialization after a certain period. Our work combines the basic idea

behind TOTP with the utilization of PUFs on the server side to resist server-side compromise

attacks. We show that in case of compromised server and physical attacks, including side-

channel attacks, the secrets of the clients remain secure. Furthermore, we showed that our pro-

tocol works with multiple PUF instances, each possibly dedicated to a different server. Usage

of the multiple PUF instances ensures that our protocol continues to serve by detecting and

using uncorrupted PUFs even if there are PUFs that are corrupted due to reasons such as side-

channel attacks, thus exhibiting different behavior.

In future work, we would like to work on a solution to the instance when an attacker having

access to the compromised server is able to learn the secrets of a client that sends the authenti-

cation request to the compromised server at the time of the attack. We also would like to work

on customizing our protocol to IoT usage domains.
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23. Huszti A, Oláh N. A simple authentication scheme for clouds. In: 2016 IEEE Conference on Communi-

cations and Network Security (CNS). IEEE; 2016. p. 565–569.

24. Sheik SA, Muniyandi AP. Secure authentication schemes in cloud computing with glimpse of artificial

neural networks: A review. Cyber Security and Applications. 2023; 1:100002. https://doi.org/10.1016/j.

csa.2022.100002

25. Shivraj VL, Rajan MA, Singh M, Balamuralidhar P. One time password authentication scheme based on

elliptic curves for Internet of Things (IoT). In: 2015 5th National Symposium on Information Technology:

Towards New Smart World (NSITNSW); 2015. p. 1–6.

PLOS ONE P/Key: PUF based second factor authentication

PLOS ONE | https://doi.org/10.1371/journal.pone.0280181 February 9, 2023 19 / 22

https://doi.org/10.1145/358790.358797
https://www.centrify.com/blog/sfa-mfa-difference/#:~:text=Single%2Dfactor%20authentication%20is%20the,this%20type%20of%20authentication%20method
https://www.centrify.com/blog/sfa-mfa-difference/#:~:text=Single%2Dfactor%20authentication%20is%20the,this%20type%20of%20authentication%20method
https://doi.org/10.3745/JIPS.2011.7.1.187
https://doi.org/10.1145/1053291.1053327
https://doi.org/10.1145/2751323.2751327
https://doi.org/10.1109/TDSC.2014.2355850
https://doi.org/10.3233/JCS-2007-15503
https://doi.org/10.3233/JCS-2007-15503
https://doi.org/10.1109/TIFS.2012.2225048
https://safety.google/authentication
https://guide.duo.com
https://doi.org/10.1016/j.csa.2022.100002
https://doi.org/10.1016/j.csa.2022.100002
https://doi.org/10.1371/journal.pone.0280181


26. M’Raihi D, Machani S, Pei M, Rydell J. Totp: Time-based one-time password algorithm. Internet

Request for Comments. 2011; p. 685E.

27. Uymatiao MLT, Yu WES. Time-based OTP authentication via secure tunnel (TOAST): A mobile TOTP

scheme using TLS seed exchange and encrypted offline keystore. In: 2014 4th IEEE International Con-

ference on Information Science and Technology. IEEE; 2014. p. 225–229.

28. Park WS, Hwang DY, Kim KH. A TOTP-based two factor authentication scheme for hyperledger fabric

blockchain. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN).

IEEE; 2018. p. 817–819.

29. Kogan D, Manohar N, Boneh D. T/key: second-factor authentication from secure hash chains. Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017. https://

doi.org/10.1145/3133956.3133989

30. Zetter K. RSA Agrees to Replace Security Tokens After Admitting Compromise. Threat Level, Privacy,

Crime and Security Online. 2011;.

31. Haller N. RFC1760: The S/KEY One-Time Password System; 1995.

32. Haseeb J, Mansoori M, Welch I. A Measurement Study of IoT-Based Attacks Using IoT Kill Chain. In:

2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communica-

tions (TrustCom); 2020. p. 557–567.

33. Jiang Y, Zhang K, Qian Y, Zhou L. Anonymous and Efficient Authentication Scheme for Privacy-Pre-

serving Distributed Learning. IEEE Transactions on Information Forensics and Security. 2022;

17:2227–2240. https://doi.org/10.1109/TIFS.2022.3181848

34. Fan Q, Chen J, Deborah LJ, Luo M. A secure and efficient authentication and data sharing scheme for

Internet of Things based on blockchain. Journal of Systems Architecture. 2021; 117:102112. https://doi.

org/10.1016/j.sysarc.2021.102112

35. Kang D, Lee H, Lee Y, Won D. Lightweight user authentication scheme for roaming service in GLOM-

ONET with privacy preserving. Plos one. 2021; 16(2):e0247441. https://doi.org/10.1371/journal.pone.

0247441 PMID: 33635893

36. Moghaddam FF, Varnosfaderani SD, Ghavam I, Mobedi S. A client-based user authentication and

encryption algorithm for secure accessing to cloud servers based on modified Diffie-Hellman and RSA

small-e. In: 2013 IEEE Student Conference on Research and Developement. IEEE; 2013. p. 175–180.

37. Vinoth R, Deborah LJ, Vijayakumar P, Gupta BB. An Anonymous Pre-Authentication and Post-Authen-

tication Scheme Assisted by Cloud for Medical IoT Environments. IEEE Transactions on Network Sci-

ence and Engineering. 2022;. https://doi.org/10.1109/TNSE.2022.3176407

38. n a na. OTP, TOTP, HOTP: What’s the difference?: OneLogin; 0AD. Available from: https://www.

onelogin.com/learn/otp-totp-hotp.

39. M’Raihi D, Bellare M, Hoornaert F, Naccache D, Ranen O. Hotp: An hmac-based one-time password

algorithm. The Internet Society, Network Working Group RFC4226. 2005;.

40. Yin X, He J, Guo Y, Han D, Li KC, Castiglione A. An efficient two-factor authentication scheme based

on the Merkle Tree. Sensors. 2020; 20(20):5735. https://doi.org/10.3390/s20205735 PMID: 33050225

41. Yoon S, Kim B, Kang Y, Choi D. PUF-based Authentication Scheme for IOT devices. 2020 International

Conference on Information and Communication Technology Convergence (ICTC). 2020.

42. Braeken A. PUF based authentication protocol for IoT. Symmetry. 2018; 10(8):352. https://doi.org/10.

3390/sym10080352

43. Wallrabenstein JR. Practical and secure IOT device authentication using physical unclonable functions.

2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud). 2016.
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