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We introduce a class of states characterized by proposed conditions of homogeneity and isotropy in loop
quantum gravity and construct concrete examples given by Bell-network states on a special class of
homogeneous graphs. Such states provide new representations of cosmological spaces that can be explored
for the formulation of cosmological models in the context of loop quantum gravity. We show that their local
geometry is described in an automorphism-invariant manner by one-node observables analogous to the
one-body observables used in many-body quantum mechanics, and compute the density matrix
representing the restriction of global states to the algebra of one-node observables. The von Neumann
entropy of this density matrix provides a notion of entanglement entropy of a local region that is invariant
under automorphisms and can be applied to states involving superpositions of distinct graphs.
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I. INTRODUCTION

Quantum effects in gravitation are expected to play a
significant role in the dynamics of the Universe at times
sufficiently far in the past for the energy density to reach the
Planck scale. In this regime, quantum corrections to the
Friedmann equation should become relevant, leading to
modifications of the dynamics of the standard cosmological
model. Possible signals from the dynamics of the Planck
era in cosmological observations have been investigated as
a potential path for the observation of quantum gravity
phenomena [1–3]. Models of quantum cosmology are also
explored for the analysis of conceptual and foundational
questions in quantum gravity [4–6].
The general strategy pursued in quantum cosmology is

the quantization of a classical minisuperspace [4–6]. After
restricting to a special class of highly symmetric classical
spacetimes, the remaining global degrees of freedom of the
symmetry-reduced model are then quantized. For instance,
if one restricts to homogeneous and isotropic spaces, then
the geometry is described by a single degree of freedom—
the scale factor, evolving according to the Friedmann
equation—which can be quantized for the formulation of
a quantum cosmology. In the case of loop quantum
cosmology (LQC), the geometry is quantized with loop
inspired techniques [6,7].

A robust prediction of LQC is the resolution of the big
bang singularity, which is replaced in the model by a
bounce connecting a contracting universe to our expanding
universe through a Planck era where the gravitational
interaction becomes effectively repulsive due to quantum
gravity effects [6]. The model also predicts quantum
gravity corrections to the CMB spectra [2], which can in
particular alleviate tensions observed between the predic-
tions of the ΛCDM model and CMB data [8,9].
It is natural to ask whether the picture provided by LQC

can be recovered as an effective description of the dynamics
of symmetric spacetimes in the full theory of loop quantum
gravity. This would clarify how the dynamics of the
symmetry-reduced model captures the evolution of sym-
metric states in the full theory and under what conditions its
predictions can be trusted. Alternative formulations of the
dynamics of loop quantum gravity (LQG) have been
explored with this purpose in view, as quantum reduced
loop gravity [10,11], spinfoams [12,13] and group field
theory [14–16]. The results obtained so far present indi-
cations that a bouncing cosmology as described by LQC
might be recovered, but a clear correspondence has not yet
been reached.
In order to study the dynamics of a quantized cosmo-

logical spacetime of LQC in the framework of LQG,
two main questions must be addressed. First, one must
find an adequate representation in LQG for the semi-
classical homogeneous and isotropic geometries described
by the effective equations of LQC. Next, given such a
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representation, one must compute the evolution of the
relevant geometric properties. In analogy with classical
cosmology, the first question corresponds to the identifi-
cation of a quantum version of FLRW spaces. As LQC
describes an effective evolution of classical geometries, one
must also identify the relevant semiclassical states within
the family of homogeneous and isotropic quantum geom-
etries. The second question is analogous to the derivation of
the Friedmann equation from the Einstein field equations.
In this work, we are concerned with the first problem

regarding the construction of states representing cosmo-
logical spaces in LQG and the identification of semi-
classical states among them. We introduce an abstract class
of quantum states of the geometry characterized by
symmetry conditions that mirror the properties of homo-
geneity and isotropy of classical cosmological spacetimes,
which we call cosmological states jΨi ∈ K. For such states,
all nodes are equivalent, as well as all links at each node.
They are defined as superpositions of automorphism-
invariant states on so-called 2-CH graphs ΓC,

K ¼ ⨁
ΓC

KΓC
; ð1Þ

where KΓC
is the space of gauge- and autormophism-

invariant states on ΓC. In a 2-CH graph, for any two pairs
of adjacent nodes n1 ∼ n01 and n2 ∼ n02, there is an auto-
morphism A ∈ AutðΓCÞ such that

Aðn1Þ ¼ n2 and Aðn01Þ ¼ n02: ð2Þ

As a result, the quantum geometry of automorphism-
invariant states on 2-CH graphs does not distinguish among
the nodes or links of the graph. Examples of connected
2-CH graphs are represented in Fig. 1.
The cosmological states jΨi ∈ K generalize the cases of

a coherent state peaked on a cubic lattice over a cubulation,
as used in quantum reduced loop gravity, or on a gluing of
two regular tetrahedra, as used in spinfoam cosmology. We
show that a new family of concrete examples of cosmo-
logical states are given by Bell-network states [17] on
arbitrary 2-CH graphs. Bell-network states are obtained
by maximizing the correlations between the fluctuations
of the geometry for neighboring regions [17]. On a 2-CH
graph, this can be done in a uniform way, allowing the

construction of states satisfying the required symmetry
conditions for a large class of graphs. These provide a new
set of candidates for the analysis of the evolution of the
effective geometry of cosmological spacetimes in LQG.
In the combinatorial definition of the space of states of

LQG, it is natural to require physical states of the geometry to
be invariant under the graph automorphisms [18]. This
condition ensures that the definition of the states depends
only on the combinatorial structure of the graph, and not on
the choice of a particular presentation, and can be seen as a
discrete analogue of diffeomorphism invariance [19,20].
More specifically for our purposes, the invariance under
autormorphisms is crucial for the states to satisfy the proposed
conditions of homogeneity and isotropy. Autormophism-
invariance severely restricts the space of states and observ-
ables on the class of highly symmetric 2-CH graphs explored
for the definition of cosmological states.
We develop a basic set of tools for the study of

homogeneous states in an automorphism-invariant way.
We show that local properties of the geometry are captured
by one-node observables analogous to the one-body
observables used in many-body quantum mechanics [21].
We obtain such one-node observables O1

inv through the
application of a group-averaging procedure to noninvariant
observables On that act on a specific node:

On → O1
inv ¼

1

jAutðΓÞj
X
A

UAOnU−1
A ; ð3Þ

where UA is the representation of an automorphism A. The
definition of the one-node observables can be extended to
homogeneous states involving a superposition of states on
distinct graphs. We derive an explicit formula for the
density matrix ρC representing the restriction of a cosmo-
logical state jΨi to the algebra of invariant one-node
observables OC on K. The density matrix ρC characterizes
the properties of the quantum geometry as observed at a
single node, whose location remains indefinite, however, as
required by automorphism-invariance on homogeneous
graphs.
A simple criterion for the identification of semiclassical

states of the geometry in any theory of quantum gravity has
been proposed in [22]. It is argued there that, for semi-
classical states of the geometry, the entanglement entropy
of a bounded region of space must be proportional to the
area of its boundary. In order for this proposal to be
applicable to the case of cosmological spaces in LQG, a
precise definition of the geometric entanglement entropy is
required. This is not trivial for two reasons. First, the space
of physical states does not admit a factorization into a
tensor product of local Hilbert spaces associated with
specific regions of space. In fact, all nodes are equivalent
for homogeneous graphs. Second, it is not immediately
clear how to identify a local region when the state of the
geometry includes a superposition of distinct graphs.

FIG. 1. Examples of 2-CH graphs. Left: The pentagram graph
K5. Right: The hypercube graph Q4.
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We show that these obstructions can be overcome if a
local region is specified by the observation of a boundary
geometry; for instance, by the observation of some boun-
dary spins fjag. Under the condition that a boundary region
has been observed, measurements performed within such a
region can be described by invariant observables for
general states that may include a superposition of graphs.
When the local region corresponds to a single node, it is
characterized by the restriction ρC of the state of the
geometry to the algebra of one-node observables. In this
case, we define the geometric entanglement entropy as the
von Neumann entropy of such a density matrix,

SC ¼ −TrðρC log ρCÞ: ð4Þ

This provides a strategy for the calculation of the geometric
entropy of cosmological states that can be applied to check
whether an area law is satisfied or not. The construction
can be extended for larger local regions including more
than one node. In order to illustrate the application of the
method, we compute the entanglement entropy of a node
and of a region formed by two adjacent nodes for a
cosmological state involving a superposition of Bell states
on distinct graphs.
This manuscript is organized as follows. In Sec. II, we

review results on symmetric graphs in order to fix the
notation, and introduce the connected-homogeneous graphs
used later in the paper for the construction of homogeneous
and isotropic states in LQG. In Sec. III, we discuss auto-
morphism-invariant states and observables on arbitrary
graphs, and show that certain Bell-network states are auto-
morphism invariant in all graphs. Thenwe focus on the cases
of 1-CH and 2-CH graphs and show that the symmetries of
invariant states on such graphs can be interpreted as discrete
versions of homogeneity and isotropy, respectively. A space
of homogenous and isotropic states that allows for the
superposition of graphs is introduced at the end of the
section. In Sec. IV, we define the entanglement entropy of a
local region for homogeneous states and compute it for an
example involving a superposition of Bell-network states on
distinct graphs. In Sec. V, we summarize the results and
discuss possible further developments of the techniques
introduced in this work.

II. GRAPH THEORY AND NOTIONS OF
SYMMETRY

A graph Γ is a pair ðNðΓÞ; LðΓÞÞ, consisting of a set of
nodes NðΓÞ and a set of links LðΓÞ, where a link l ∈ LðΓÞ
is a pair of nodes. The order N ¼ jNðΓÞj and size
L ¼ jLðΓÞj of Γ are the number of nodes and links in Γ,
respectively. If a link l includes the node n, we say that the
link is attached to this node. Ordering the links attached to
a node n, we can denote the ath link attached to it by
l ¼ ðn; aÞ or l ¼ na. A directed graph is a graph equipped

with an ordering of the nodes of each link. A link with
ordered nodes is called an oriented link or an arc.
A graph is simple if it has no self-loops (a link

connecting a node to itself) and no multilinks (two or
more links connecting the same pair of nodes); otherwise,
the graph is called a multigraph. The size of a simple graph
is bounded by the order of the graph, L ≤ NðN þ 1Þ=2. An
example of a simple, regular graph is the complete graph
K5 depicted in Fig. 1.
Let us list some basic definitions used in graph theory in

order to fix our notation [23–25]. A list of graphs, including
those relevant for the classification theorems that will be
described in this section, is presented in the Appendix.

(i) Two nodes n, n0 are adjacent if they belong to a
common link. The relation of adjacency is repre-
sented by n ∼ n0. The nodes n, n0 of a link l are
called the end points of the link l.

(ii) The adjacency matrix A is defined as the N × N
matrix with elements Ann0 ¼ 1, if n ∼ n0, and
Ann0 ¼ 0, otherwise. It describes the connectivity
of the graph.

(iii) The total number of links attached to the node n is
the valency (or degree) Vn of the node. The sum of
the valencies of all nodes in the graph is twice the
size of the graph,

P
n Vn ¼ 2L. A graph is V regular

if all nodes have the same valency, Vn ¼ V, ∀ n. A
graph is regular if it is V regular for some V ∈ N.

(iv) A graph is finite if both its node set and link set are
finite. It is locally finite if the valency of each node is
finite (the order of the graph can still be infinite).

(v) Two links intersect when they have a common node.
A graph is connected if, for any pair of nodes n, n0,
there is a sequence of links fligri¼1 such that n ∈ l1,
n0 ∈ lr and li intersects liþ1, for i ¼ 1;…; r − 1.
The graph distance dðn; n0Þ is the minimum number
of links in any such a sequence connecting the
nodes. Any graph decomposes into a family of
maximal connected components.

(vi) The complement of a graph Γ is a graph Γ� with the
same set of nodes as Γ such that two nodes of Γ� are
adjacent if and only if they are not adjacent in Γ.

(vii) Let Ñ ⊂ N be any subset of the set of nodes N
of a graph Γ ¼ fN;Lg. Then the induced subgraph
Γ̃ ¼ fÑ; L̃g is the graph with node set Ñ and whose
link set consists of all of the links in L that have both
end points in Ñ.

(viii) The links, nodes, or both may be assigned specific
values or labels, in which case the graph is called a
labeled graph. A graph or directed graph together
with a function that assigns a positive real number to
each link is a network.

A. Symmetries of graphs

The symmetries of a graph are described by its auto-
morphism group AutðΓÞ. An automorphism A ∈ AutðΓÞ is
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a graph isomorphism, defined as a bijection A∶NðΓÞ →
NðΓÞ that preserves the adjacency matrix Ann0 of the
graph [25]. An automorphism is described by a permutation
π of the node set NðΓÞ such that any pair of nodes are
adjacent if and only if their images under the permutation
are also adjacent, n ∼ n0 ⇔ πðnÞ ∼ πðn0Þ.
Graph automorphisms are adjacency, valency and dis-

tance preserving. For oriented graphs, orientations must be
preserved; for graphs with labeled links or nodes, labels
must also be preserved. Special families of symmetric
graphs are defined by specific properties of their auto-
morphism groups, such as [25]:

(i) Node transitivity: A graph is node transitive if, for
any pair of nodes n; n0 ∈ NðΓÞ, there is an auto-
morphism A such that AðnÞ ¼ n0, i.e., if its auto-
morphism group acts transitively on the nodes of
the graph.

(ii) Link transitivity: A graph is link transitive if, for any
pair of links l;l0 ∈ LðΓÞ, there is an automorphism
A such that AðlÞ ¼ l0. Every link can be mapped by
an automorphism into any other link.

(iii) Arc transitivity: A graph is arc transitive if for any
pair of oriented links l;l0 ∈ LðΓÞ, there is an
automorphism A such that AðlÞ ¼ l0.

(iv) Distance transitivity: A graph is distance transitive
if, for any two pairs of nodes ðm; nÞ and ðm0; n0Þwith
distances dðm; nÞ ¼ dðm0; n0Þ, there is an auto-
morphism A such that AðmÞ ¼ m0 and AðnÞ ¼ n0.

Node transitivity is the weakest symmetry condition
among those listed above or considered in this work. In a
node-transitive graph, all individual nodes are equivalent,
but this equivalence does not extend to regions formed by
more than one node. The link-transitivity property is a
stronger restriction, since all pairs of adjacent nodes are
equivalent in a link-transitive graph. Distance transitivity is
even stricter as it involves the comparison of pairs of
equidistant nodes that can be anywhere in the graph.
Distance-transitive graphs are arc transitive, and every
arc-transitive graph is both link and node transitive.
Families of highly symmetric homogeneous graphs will
be discussed in the next section.
Regularity is not a form of symmetry, in the sense of not

being a property naturally associated with the automor-
phism group of the graph. The regularity of a graph can be
checked directly from the adjacency matrix, in contrast
with the properties listed above. A regular graph can have
no nontrivial symmetry, as for instance the Frucht graph,
represented in Fig. 2. All node-transitive graphs are regular
but not all regular graphs are node transitive, and not all
homogeneous graphs are regular (see Fig. 2).

B. Maximally symmetric graphs: Homogeneous graphs

A graph is called homogeneous if every isomorphism
between two induced subgraphs extends to an automor-
phism of the graph [26]. In particular, a locally finite graph

Γhom is called homogeneous if, for any isomorphic sub-
graphs Γ1, Γ2 with node sets N1ðΓ1Þ; N2ðΓ2Þ ⊆ NðΓhomÞ of
the same order, N1 ¼ N2 ≤ N, and for every isomorphism
Ā∶N1ðΓ1Þ → N2ðΓ2Þ, there exists an automorphism A of
Γhom such that AjN1ðΓ1Þ ¼ Ā and A−1jN2ðΓ2Þ ¼ Ā−1. The
classification of finite homogeneous graphs is known
[26,27]. Any such graph is isomorphic to one of the
following graphs (see the Appendix for the definition of
the graphs involved in the classification below):
(1) The cluster graph mKN , a disjoint union of m

complete graphs KN with N nodes.
(2) Turán graphs, the complements ðmKNÞ� of the

cluster graphs.
(3) The pentagon C5.
(4) The line graph LðK3;3Þ of the complete bipartite

graph K3;3, i.e., the 3 × 3 rook’s graph.
The only countably infinite homogeneous graphs Γ∞

hom
are, up to isomorphisms [28–30]:
(1) Disjoint unions of isomorphic complete graphs,

where the size of each complete graph (K∞), the
number of copies (m → ∞), or both, are countably
infinite, and complements of such unions.

(2) The Rado graph.
(3) The Henson graphs and their complements.

Note that there is no locally finite connected regular
homogeneous graph that is infinite.
Homogeneous multi-graphs are not completely classi-

fied. The so-called dipole graph (see Fig. 4), which consists
of two nodes (N ¼ 2) connected by an arbitrary finite
number of links (L), is the simplest example of homo-
geneous multi-graph. We will mostly consider simple
graphs in this work.
A subclass of interest of the locally finite homogeneous

graphs Γhom is obtained by restricting to connected and
regular graphs. The classification of connected and regular

FIG. 2. Top left: Frucht graph, a three-regular graph with no
nontrivial symmetry. Top middle: four-regular connected homo-
geneous graph with N ¼ 8. Top right: A node-transitive graph,
the 3-prism Ci6½2; 3�. Bottom left: A cluster graph, the disjoint
union of K1, K2, and K3. Bottom middle: A link-transitive graph,
K2;3. Bottom right: An arc-transitive graph, the cubical graph Q3

with V ¼ 3.
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locally finite homogeneous graphs, which we will shortly
present, follows from the previous results. The pentagon C5

and the rook’s graph with fixed number of nodes and
valency are in this class (see Fig. 3). It also includes the
complements of cluster graphs, ðmKNÞ�, which are exam-
ples of Turán graphs. Let us describe the relevant Turán
graphs for this classification.
ATurán graph T ðN0; rÞ is a complete multi-partite graph

obtained by first partitioning a set of N0 nodes into r
subsets, with sizes as close as possible, i.e., each two
independent sets differing in size by at most one node, and
then connecting two nodes by a link if and only if they
belong to different subsets. It is regular if the number of
subsets r is a divisor of the number of nodes N0. The graphs
ðmKNÞ� are regular Turán graphs, ðmKNÞ� ¼ T ðmN;mÞ.
Any V-regular and connected locally finite homo-

geneous graph with N nodes, except for C5 and LðK3;3Þ,
is the complement of a disjoint union of identical complete
graphs KN−V ,

�
N

N − V
KN−V

��
→ T

�
N;

N
N − V

�
; ð5Þ

which is the Turán graph with N0 → N nodes and r →
N=ðN − VÞ ∈ Nnf0; 1g subsets.
The construction of the graphs T ðN;N=ðN − VÞÞ is

illustrated in Fig. 5, where all Turán graphs with V ¼ 4 are
represented. One starts with a collection of N=ðN − VÞ
identical complete graphs KN−V with N − V nodes. Next,
the complement ofN=ðN − VÞKN−V is taken by connecting
nodes that are not adjacent in N=ðN − VÞKN−V and
removing the links between adjacent nodes in each KN−V .
The number of nodes N in Turàn graphs of the form

T ðN;N=ðN − VÞ is bounded by the valency V, which can
be seen from the relation between N and the number of
independent subsets r ¼ N=ðN − VÞ,

N ¼ V
r

r − 1
; r > 1 ⇒ V þ 1 ≤ N ≤ 2V: ð6Þ

This implies the existence of a finite number #T V of such
graphs for a given finite valency V, equal to the number of
positive divisors of V:

#T V ¼ ðe1 þ 1Þ � � � ðek þ 1Þ; if V ¼
Yk
i¼1

pei
i ; ð7Þ

where the pi’s are prime numbers in the prime factorization
of V > 1, and #T 1 ¼ 1, the only graph with V ¼ 1 being
the graph T ð2; 2Þ ¼ K2. For small valencies, the allowed
number of nodes is given by

V ¼ 3∶ N ¼ 4; 6;

V ¼ 4∶ N ¼ 5; 6; 8;

V ¼ 5∶ N ¼ 6; 10;

V ¼ 6∶ N ¼ 7; 8; 9; 12:

The number of links in regular Turàn graphs is also
bounded by the valency,

FIG. 3. Left: The pentagon C5. Right: The line graph LðK3;3Þ of
K3;3.

FIG. 5. The complete set of four-regular Turán graphs.

FIG. 4. The (undirected) dipole graph: a multigraph without
self-loops consisting of two nodes connected by L links.
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1

2
ðV2 þ VÞ ≤ L ≤ 2V2: ð8Þ

The complete set of connected locally finite and
V-regular homogeneous graphs is�

C5;LðK3;3Þ; T
�
N;

N
N − V

�
jV ≥ 1

�
; ð9Þ

the union of the pentagon, the rook’s graph and the regular
Turán graphs with N nodes and N=ðN − VÞ subsets.

C. Connected-homogeneous graphs

The condition of homogeneity can be weakened in
several ways. It is indeed of interest to consider weaker
symmetry conditions for the introduction of discrete
versions of cosmological spaces in loop quantum gravity.
The classification of homogeneous graphs includes the
pentagon C5 but not the polygons Cn with more than
five nodes, for instance, while in a description of one-
dimensional cosmological spaces it would be natural to
include all polygons as viable graphs.
A graph is connected homogeneous (C homogeneous) if

any isomorphism of connected induced subgraphs can be
extended to the full graph. Any homogeneous graph is
connected-homogeneous, but the converse is not true. The
classification of C-homogeneous graphs is thus an enlarge-
ment of the list of homogeneous graphs discussed in the
previous section.
In a homogeneous graph, any two nodes n, n0 are

equivalent: as the node n and the node n0 are isomorphic
as induced subgraphs, there is an automorphism of the graph
relating them. This implies that any homogeneous graph is
node transitive. Nowconsider two pairs ðn1; n01Þ and ðn2; n02Þ
of nonadjacent nodes. Then the induced subgraphsΓ1 andΓ2

associated with these sets are trivial graphs, since there is no
link connectingni to n0i. As a result, they are isomorphic, and
there is an automorphism of the graph that takes n1 to n2 and
n01 to n02. Hence, any two pairs of nonadjacent nodes are
equivalent in a homogeneous graph.As a result, the diameter
of a homogeneous graph is at most two: if there were nodes
such that dðn; n0Þ ¼ 3, then this pair would not be equivalent
to a pair of points with distance two, and the graphwould not
be homogeneous. This is the reason why polygons with
more than five nodes are not homogeneous, having a
diameter larger than two. The equivalence of all pairs of
nonadjacent nodes is too restrictive a condition for the
construction of cosmological spaces.
In a C-homogeneous graph, the argument cannot be

reproduced. Since the graphs Γi are not connected, the
condition of C homogeneity does not imply that the
isomorphism between them can be extended to the full
graph. The equivalence of all nodes and links still holds,
however: C-homogeneous graphs are node transitive and
link transitive. Moreover, local neighborhoods of any node

can also be mapped isomorphically into local neighbor-
hoods of any other point via the extended automorphism
relating the nodes. Every C-homogeneous graph is also
distance transitive. The converse is also true for locally
finite graphs. Hence, for locally finite graphs, C homo-
geneity is equivalent to distance transitivity.
Special classes of C-homogeneous graphs have been

classified, including the families of finite, locally finite
and countable C-homogeneous graphs. The classification
of finite C-homogeneous graphs was obtained in
[31,32], and the classification of countable locally finite
C-homogeneous graphs was given in [32]. Countable
C-homogeneous graphs were classified in [30].
Any connected V-regular finite C-homogeneous graph

(see Fig. 6) is isomorphic to one of the following:
(1) Regular Turán graphs: T ðN;N=ðN − VÞ

ðV ≥ 1; V þ 1 ≤ N ≤ 2VÞ.
(2) Complement of a perfect matching (V ≥ 2).
(3) Line graph of a complete bipartite graph:

LðKV
2
þ1;V

2
þ1ÞðV ≥ 4Þ.

(4) Cycle graphs: CNðV ¼ 2; N ≥ 5Þ.
(5) Peterson graph: O3ðV ¼ 3; N ¼ 10Þ.
(6) Clebsch graph: □5ðV ¼ 5; N ¼ 16Þ.
A countable C-homogeneous graph is the disjoint union

of a countable number of isomorphic copies of a countable
connected C-homogeneous graph. In particular, a finite
C-homogeneous graph is a finite disjoint union of iso-
morphic copies of a finite C-homogeneous graph. The set
of connected V-regular finite homogeneous graphs is a
subset of that of connected countable, locally finite,
and V-regular C-homogeneous graphs. Examples of con-
nected, countably infinite, locally finite, and regular
C-homogeneous graphs are represented in Fig. 7.

FIG. 6. Left: Petersen graph O3. Middle: Clebsch graph □5.
Right: Complement of a perfect matching ð2 · K4Þ2, with N ¼ 3.

FIG. 7. Left: The infinite regular tree graph X1;3 or Bethe
lattice, with V ¼ 3. Right: X2;4, with V ¼ 2.
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D. k-homogeneous and k-CH graphs

The symmetry conditions of homogeneity and C homo-
geneity are sufficiently restrictive to allow for the classi-
fication of graphs satisfying them. Weaker symmetry
conditions are obtained by restricting the order of the
isomorphic subgraphs required to be related by automor-
phisms of the graph, leading to the notion of k homogeneity
and k-CH graphs.
For any positive integer k, a graph is k homogeneous if

any isomorphism between induced subgraphs of order at
most k extends to an automorphism of the graph. The graph
is homogeneous if it is k homogeneous for all k. For each k,
there are uncountably many countable k-homogeneous
graphs that are not (kþ 1) homogeneous [33]. The locally
finite k-homogeneous graphs have been classified for
2 ≤ k ≤ 4 in [34–36].
A graph is k-C homogeneous, or k-CH, if any isomor-

phism between connected induced subgraphs of order at
most k extends to an automorphism of the graph. It is
C homogeneous, or CH, if it is k-CH for all k. The 1-CH
and 2-CH graphs are the node-transitive and arc-transitive
graphs, respectively. The notions of 1-homogeneous and
1-CH graphs are equivalent. Any 2-CH graph is both node
transitive and link transitive, as implied by arc transitivity,
as well as regular, by the node transitivity.
The sets of C-homogeneous graphs and homogeneous

graphs are subsets of the set of 2-CH graphs, since every
connected C-homogeneous (and homogeneous) graph is
arc transitive. They match up to N ¼ 9 (with the exception
of the cubic graph Q3 for N ¼ 8 which is not homo-
geneous). Partial classifications of 2-CH graphs were
obtained by restricting the valency or the order of the
graphs [37–39]. For instance, any connected 2-CH graph
with valency 2 is isomorphic to a cycle graph CN . Explicit
lists of a connected 2-CH graph of a fixed valency up to a
certain order have also been presented [40,41], which are
extensions of the Foster census [42].
Let us list some special families of 2-CH graphs. All

hypercube graphs Qn are connected 2-CH graphs. The
locally finite 2-CH graphs include the n-dimensional

lattices LðVÞ
n and the dual graphs Hcðfr; q; pgÞ of infinite

regular honeycombs for three or higher dimensions with
Schläfli symbol fp; q; rg. The valency V of the nodes of
Hcðfr; q; pgÞ is

V ¼ 4q
2ðpþ qÞ − pq

; p; q > 2: ð10Þ

It must be finite for finite cells, which is only possible for
the Platonic solids (fp; qg ¼ f3; 3g, f4; 3g, f5; 3g, f3; 4g,
f3; 5g). The graphs formed by the vertices and edges of the
Platonic solids are also 2-CH.

III. HOMOGENEITY AND ISOTROPY
IN LOOP QUANTUM GRAVITY

In this section, we discuss states in the Hilbert space of
loop quantum gravity (LQG) that satisfy a discrete version
of the conditions of homogeneity and isotropy. We first
discuss maximally symmetric classical discrete geometries
as a preparation for the quantum case. Then we introduce
homogeneity and isotropy conditions for a quantum geom-
etry through the selection of an adequate class of graphs
and the restriction on the space of states and on the algebra
of observables to objects that are invariant under the
automorphism group of the graph.

A. Maximally symmetric cell decompositions
and dual graphs

Let Δ be some polytopal decomposition of a 3-manifold
and Γ its dual graph. A metric is introduced on the
topological 3-manifold Δ by the assignment of a specific
geometry to each cell in the decomposition. If each

topological polyhedron Δð3Þ
i ∈ Δ is a flat polyhedron, for

instance, we obtain a piecewise linear geometry.
The quantum geometry described by loop quantum

gravity is the quantization of classical piecewise linear
geometries called twisted geometries, in which glued faces
always have the same total area but can have distinct
shapes [43]. The metric can then be discontinuous at the
boundaries of the polyhedra in twisted geometries. We will
discuss symmetries of classical piecewise linear geometries
before moving to the discussion of symmetries in the
corresponding quantized geometries.
A polyhedron embedded in R3 is completely

characterized by the area Aa of each face a and the unit
vector n⃗a normal to it. These quantities satisfy the closure
relation

XV
a¼1

Aan⃗a ¼ 0⃗; ð11Þ

which ensures that the data ðAa; n⃗aÞ is uniquely associated
with some polyhedron in R3, up to isometries of the
ambient space [43,44]. The space of shapes is characterized
in this way by a simple condition on the variables ðAa; n⃗aÞ.
This is not an invariant characterization of the polyhedron,
however, as the unit normals n⃗a depend on how the
polyhedron is embedded in R3.
The geometry of the polyhedron can be described in

terms of invariant quantities, instead, as for instance the
areas Aa and angles θab among the normals to the faces.
Introducing the face vectors

E⃗a ¼ Aan⃗a; ð12Þ

we can write
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Aa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⃗a · E⃗a

q
ð13Þ

and

cos θab ¼
E⃗a · E⃗bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E⃗a · E⃗a

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E⃗b · E⃗b

q : ð14Þ

All the invariant information required to reconstruct the
intrinsic geometry of the polyhedron (its shape) is con-
tained in the matrix

gab ¼ E⃗a · E⃗b; ð15Þ

which provides a local description of the metric. After
quantization, this matrix corresponds to the Penrose metric,
which describes the local geometry of a quantum poly-
hedron in loop quantum gravity [45].
Let us consider piecewise linear approximations to

homogeneous and isotropic 3d geometries. Such maxi-
mally symmetric spaces admit special discretizations com-
posed of simple blocks glued in a regular fashion. A simple
example is the discretization of an Euclidean plane as a
square lattice. Similarly, the two-dimensional sphere can be
discretized as the boundary of a Platonic solid, and the
two-dimensional hyperbolic space as a hyperbolic tessel-
lation [46]. These examples share the property that their
dual graphs are 2-CH graphs. Regular discretizations with
dual 2-CH graphs also exist in higher dimensions for
maximally symmetric spaces of positive, zero and negative
curvature [46]. Examples of regular decompositions of
homogeneous and isotropic 3d spaces with dual 2-CH
graphs are listed below [46,47].

(i) R3: Graphs dual to regular decompositions ofR3 are

given by infinite 3d lattices LðVÞ
3 with valence V ≥ 4.

Each V-valent node is dual to a convex polyhedron
with V faces and each link is dual to a polygonal
face. The canonical example is the infinite cubic

lattice or cubulation: Lð6Þ
3 .

(ii) H3: Graphs dual to regular decompositions of the
hyperbolic space H3 are given by graphs
Hcðfr; q; pgÞ with valency V ≥ 4 (given by (10),
dual to the infinite hyperbolic regular 3d honey-
combs with Schläfli symbol fp; q; rg. The values of
p, q and r satisfy the condition

μ ¼ sin

�
π

p

�
sin

�
π

r

�
− cos

�
π

q

�
< 0;

with p, r, q > 2. Examples are given by the regular
hyperbolic honeycombs with Schläfli symbols
f3; 5; 3g; f4; 3; 5g; f5; 3; 4g; f5; 3; 5g.

(iii) S3: Examples of graphs dual to regular decomposi-
tions of S3 are provided by finite connected

C-homogeneous graphs with valencies V ≥ 4,
which include: □5, T ðN; N

N−VÞ, ð2 · KVþ1ÞV−1,
LðKV

2
þ1;V

2
þ1Þ.

Piecewise linear geometries composed of identical poly-
topes glued along a 2-CH dual graph thus form a natural
class of discrete approximations of spatial sections of
cosmological spacetimes. It is convenient to require, in
addition, that the graph automorphisms are associated with
isometries that map the polyhedra onto each other isomet-
rically.1 This ensures that the group of isomorphisms
preserving the combinatorial structure of a 2-CH graph
mirrors the key properties of the group of isometries of
maximally symmetric continuous geometries, as wewish to
discuss now. Analogous conditions will later be imposed on
states of the geometry in loop quantum gravity for the
description of cosmological spaces.
Let Δ be a regular decomposition of a cosmological

space and Γ its dual graph. We assume that any auto-
morphism A of the dual graph is associated with an
isometry of the space that maps the polyhedra isometrically
among themselves, i.e. preserving the metric gab. Since the
graph Γ is 2-CH, it must also be 1-CH. This means that the
automorphism group acts transitively on the nodes. As a
result, the polyhedra represented by the nodes of the dual
graph are all equivalent, in the sense that there exists an
isometry relating them, just as for points in a homogeneous
space. In short, the 1-CH property corresponds to the
homogeneity of the decomposition. In addition, the 2-CH
property corresponds to the isotropy of the decomposition.
The automorphism group of a 2-CH graph acts transitively
on its arcs; in particular, any two links emanating from
a given node can be related by an automorphism of the
graph that preserves the source node. This means that all
directions from a given node along the dual graph of the
decomposition are equivalent in a 2-CH graph, in a manner
analogous to the equivalence of all directions from a given
point in an isotropic space.
Any k-CH graph with k > 2 is also a 2-CH graph and

thus satisfies the properties discussed above. In addition,
regions of the graph larger than individual nodes and arcs
are also all equivalent along the graph. For instance, in a
3-CH graph, any pair of induced subgraphs with three
nodes can be related by an automorphism of the graph. As
each such subgraph naturally describes a wedge, that is, a
pair of links emanating from a common node, then all
wedges are equivalent in a 3-CH graph. For a graph with
valency V ¼ 4, the 3-CH property implies that the nodes
represent regular tetraheda: the fact that any two wedges

1This prevents, for instance, rectangles to be employed in a
decomposition of the Euclidean plane based on a square lattice. A
rotation of π=2 is an isometry of the space and is associated with a
graph automorphism, but does not map the rectangular building
blocks isometrically onto each other.
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can be mapped into each other means that all dihedral
angles in the decomposition are equal.
We will restrict in what follows to connected graphs, so

that the associated geometries are connected, and to locally
finite graphs, in order that the polyhedra of the decom-
position have a finite number of faces. As all nodes must be
equivalent, they must have the same valency V. We denote a
generic connected locally finite 1-CH graph by ΓH, or by

ΓðVÞ
H when of interest to explicitly specify the valenceV of its

nodes. Similarly, we denote a generic connected locally

finite 2-CH graph with valency V by ΓC, or by Γ
ðVÞ
C . For the

description of 3d spaces, we further restrict to V ≥ 4.
The classes of homogeneous, C-homogeneous and higher
k-CH graphs constitute special families of highly symmetric
2-CH graphs that can be explored for the construction of the
simplest concrete examples of cosmological discrete spaces.

B. Space of states and observables
in loop quantum gravity

Let us briefly review the basics of loop quantum
gravity [48–50]. The kinematical Hilbert space Hkin of
the theory is defined as (see [18,45])2

Hkin ¼ ⨁
Γ
HΓ ¼ ⨁

Γ;fjlg
HΓ;fjlg: ð16Þ

The first sum runs over all oriented graphs Γ, and the
second sum runs over all oriented graphs Γ and spins
jl ¼ n=2, with n ¼ 1; 2;…, where the spins are assigned
to the unoriented links of the graph, so that jl ¼ jl−1 . The
space HΓ is isomorphic to the Hilbert space of gauge-
invariant states ΨΓðhlÞ ∈ L2

Γ½SUð2ÞL=SUð2ÞN � over the
graph Γ that satisfy the invariance condition

ΨΓðhlÞ ¼ ΨΓðUsðlÞhlU−1
tðlÞÞ; ð17Þ

for all UsðlÞ; UtðlÞ ∈ SUð2Þ, where the labels sðlÞ and tðlÞ
describe the source and target nodes of the link l.
The Hilbert spaceHΓ decomposes into a direct sum over

subspaces HΓ;fjlg with fixed configurations fjlg of non-
zero spins. Each subspace HΓ;fjlg has the tensor product
structure

HΓ;fjlg ¼ ⊗
N

n¼1
Hn; ð18Þ

whereHn is the space of SU(2) intertwiner states jikni at the
individual nodes n,

Hn ¼ InvSUð2Þ

��
⊗

sðlÞ¼n
Vjl

�
⊗

�
⊗

tðlÞ¼n
V�
jl

��
: ð19Þ

The tensor product at n involves a representation space Vjl
of spin jl of SUð2Þ if l points outward from the node, or its
dual V�

jl
, if the link is oriented toward the node.

A basis of HΓ is provided by the family of spin network
states

jΓ; jl; ini ¼ ⊗
n
jini; ð20Þ

labeled by the spins jl and a basis vector jini ofHn at each
node of the graph. More explicitly, under the isomorphism
HΓ ≅ L2

Γ½SUð2ÞL=SUð2ÞN �, the wave function of a spin
network state jΓ; jl; ini is

ψΓ;jl;inðhlÞ ¼
Xjna

mna¼−jna

�Y
n

½in�mn1���mnμ
mnðμþ1Þ���

�

×

�Y
l

½DjlðhlÞ�mtðlÞ
msðlÞ

�
; ð21Þ

where Djl and in are Wigner matrices and intertwiner
tensors in the magnetic number basis, respectively. The set
of indices a ¼ 1;…; Vn orders the links l ¼ na at each
Vn-valent node n, and the magnetic numbers msðlÞ; mtðlÞ
are at the source and target nodes of l. The number μ of
upper indices in in corresponds to the number of links
pointing outwards from the node; the lower indices
correspond to links pointing toward the node.
Although a choice of orientation for the links is

employed in the definition of the states ΨΓ, it does not
carry any physical meaning. In fact, orientation reversal
operations are introduced together with an equivalence
relation that factors out the arbitrary choice of orientations.
Let RlΓ be the graph obtained from Γ by reversing the
orientation of a link l. Denote by l−1 the link l with the
reverse orientation, and put hl−1 ¼ h−1l . A state Ψ ∈ HΓ is
then mapped into a state RlΨ ∈ HRlΓ by the isometry

ðRlΨÞðh1;…; hl−1 ;…; hLÞ ¼ Ψðh1;…; hl;…; hLÞ:

An equivalence relation ΨΓ ∼ RlΨΓ; ∀ Rl, is then intro-
duced in the direct sum HΓ̄ ¼ ⨁HΓ, where the sum runs
over all oriented graphs Γ on the unoriented graph Γ̄. In this
way, the same amplitude is assigned for a given configu-
ration of holonomies regardless of the orientation of the
links, under the identification hl−1 ¼ h−1l . A representative

2We adopt the combinatorial definition of the space of states
[18,45]. Alternatively, the physical states can be defined over
equivalence classes of embedded graphs γ on a fixed three-
dimensional manifold Σ under extended diffeomorphisms ϕ ∈
Diff�ðΣÞ [45,51]. Graphs in distinct knot classes then define
distinct Hilbert subspaces of states of the geometry. In another
approach, motivated by category theory, the group of diffeo-
morphisms of Σ is extended to the automorphism group of the
path groupoid of Σ [52]. In this case, the states of the geometry do
not depend on how the graphs are embedded in Σ, leading to a
space of states that is equivalent to that obtained through the
combinatorial definition.
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of each equivalence class can be specified by fixing an
orientation for all links arbitrarily and letting hl refer to this
orientation.
A holonomy operator hl and a flux operator E⃗l are

associated with each link l equipped with the orientation
specified by Γ. These operators generate the holonomy-flux
algebra A of observables of loop quantum gravity. Their
commutators are

½hl; hl0 � ¼ 0; ½hl; Ei
l0 � ¼ −

1

2
a0δll0hlσi;

½Ei
l; E

j
l0 � ¼ ia0δll0ϵijkEk

l; ð22Þ

where a0 ¼ 8πGℏγ is a constant with units of area, σi are
the Pauli matrices and ϵijk is the Levi-Civita symbol with
ϵ123 ¼ 1. Operators associated with distinct links commute.
The holonomy operators act as multiplication operations in
the holonomy representation. The flux operator E⃗l ¼ a0J⃗l
is proportional to the left-invariant vector field J⃗l that acts
in the holonomy representation as a derivative of the wave
function Ψðh1;…; hLÞ with respect to the holonomy hl.
The flux operators are the quantization of the face

vectors introduced in Eq. (12). If n ¼ sðlÞ, then E⃗l ¼
E⃗na is precisely the operator corresponding to the classical
face vector at the face corresponding to the link a at the
node n. Each intertwiner space Hn corresponds to a
quantum polyhedron associated with the node n [43].
The intertwiner states jini satisfy the Gauss constraint

XV
a¼1

E⃗najini ¼ 0; ð23Þ

which is the quantized version of the closure relation (11).
The flux operators describe the intrinsic geometry of the
quantum polyhedron at the node n through the promotion
of the matrix gab defined in Eq. (15) to the Penrose metric
(or shape) operator

ĝabðnÞ ¼ E⃗na · E⃗nb: ð24Þ

The area and dihedral angle operators are then given by the
formulas (12) and (13), now written in terms of flux
operators E⃗na,

Âna ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝaaðnÞ

p
;

cos θ̂abðnÞ ¼
ĝabðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝaaðnÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

ĝbbðnÞ
p ; for a ≠ b:

The intertwiner states jini are eigenstates of the area
operator

Ânajini ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnaðjna þ 1Þ

p
jini: ð25Þ

Heisenberg uncertainty relations for the quantum geometry
hold as a result of the noncommutativity of different
components of the shape operator ĝabðnÞ,

½ĝabðnÞ; ĝacðnÞ� ¼ ia0E⃗na · ðE⃗nb × E⃗ncÞ;
½ĝabðnÞ; ĝaaðnÞ� ¼ ½ĝaaðnÞ; ĝbbðnÞ� ¼ 0; ð26Þ

where a < b < c ≤ V. The dispersions ΔĝabðnÞ in the
quantum shape of the polyhedron satisfy the inequality

ΔĝabðnÞΔĝacðnÞ ≥
a0
2
jhinjE⃗na · ðE⃗nb × E⃗ncÞjinij: ð27Þ

We will omit the hats over operators of the quantum
geometry from now on.

C. Automorphism invariant states and observables

1. Automorphism-invariant states

If the automorphism group AutðΓÞ of the graph Γ is
nontrivial, then the physical states of the geometry must be
invariant under the graph automorphisms [18]. This con-
dition is analogous, in the combinatorial definition of the
space of states, to the invariance under diffeomorphisms in
the construction of the space of states based on graphs
embedded on some fixed differentiable manifold [19,20]. It
ensures that the definition of the states depends only on the
combinatorial structure of the graph, and not on the choice
of a particular representation of the graph. States jΨΓi and
jΨ0

Γi in HΓ are said to be equivalent under graph auto-
morphisms if they are related by an automorphism of Γ.
The action of an automorphism A∶ Γ → Γ on HΓ is

given by the unitary operator defined by

ΨðhlÞ ↦ ðUAΨÞðhlÞ ¼ Ψ0ðhlÞ ¼ ΨðhAðlÞÞ; ð28Þ

or, inserting the arguments explicitly,

Ψ0ðhl1 ;…; hhlL Þ ¼ ΨðhAðl1Þ;…; hAðlLÞÞ:

Under this action, the wave function is simply carried along
by the automorphism, and the argument of the wave
function is inverted for links whose orientation is flipped
by the automorphism. We denote byKΓ ⊂ HΓ the subspace
formed by states invariant under the automorphism group
AutðΓÞ of the graph Γ, and by PA∶ HΓ → HΓ the projector
to such invariant subspace,

PAHΓ ¼ KΓ: ð29Þ

For graphs with a finite automorphism group, the
kinematical Hilbert space KΓ can be obtained from HΓ
by a procedure of group averaging under the action of
AutðΓÞ. The projector is given for such graphs by
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PA ¼ 1

jAutðΓÞj
X

A∈AutðΓÞ
UA: ð30Þ

A state described by a density matrix ρinvΓ in KΓ is invariant
under the automorphism group AutðΓÞ when

UAρ
inv
Γ U−1

A ¼ ρinvΓ ; ∀ UA ∈ AutðΓÞ: ð31Þ
Forgraphswith an infinite automorphismgroup, the spaceKΓ
is still defined as the space of states invariant under the
action of the symmetries, but it cannot be constructed by a
procedure of group averaging, since jAutðΓÞj ¼ ∞ in
this case.
The action of automorphisms on spin network states is

obtained by the direct application of Eq. (28). The trans-
formation moves the spins and intertwiners around accord-
ing to its action on the graph. Let us describe this action
more explicitly.
Consider a link l for which AðlÞ ¼ l̄−1, where l̄ is a

link of the oriented graph Γ. In this case, the orientation of
the transformed link is the opposite of that originally fixed
in the graph. Let m ¼ sðlÞ and n ¼ tðlÞ be the source and
target nodes of the link l. Denote their images under the
automorphism A by m̄ ¼ AðmÞ, n̄ ¼ AðnÞ. The spin net-
work state jΓ; jl; ini depends on hl through

½im�α���½DjlðhlÞ�βα½in�β���: ð32Þ

After the application of the automorphism, the new state
depends on the holonomy hl̄ through

½im�α���½Djlðh−1l̄ Þ�βα½in�β���: ð33Þ

We raise and lower indices with the isomorphisms

vm ¼ ϵðjÞmnvn; vm ¼ vnϵðjÞnm; ð34Þ
where

ϵðjÞmn ¼ ϵðjÞmn ¼ ð−1Þj−mδm;−n: ð35Þ
In addition, the Wigner matrix satisfies the identity:

½Djðg−1Þ�mn ¼ ϵðjÞmm0
ϵðjÞnn0 ½Djðg−1Þ�n0m0 : ð36Þ

It follows that the transformed state satisfies

½im�α���½Djlðh−1
l̄
Þ�βα½in�β��� ¼ ð−1Þ2jl ½im�α���½Djlðhl̄Þ�αβ½in�β ���:

ð37Þ

If, on the other hand, the orientation of a transformed
link agrees with the original orientation, so that AðlÞ ¼ l̄
for some l̄, there is no need to raise or lower indices in the
intertwiners. We conclude that the transformed state is a
new spin-network state

UAjΓ; fjlg; fingi ¼ sA;jl jΓ; fj0lg; fi0ngi; ð38Þ

with the configurations of spins and intertwiners carried by
the automorphism,

j0l ¼ jA−1ðlÞ; i0n ¼ iA−1ðnÞ;

and intertwiner indices raised and lowered when necessary
with the isomorphism (34). The factor sA;jl ¼ ð−1ÞR is a
possible sign flip, with R corresponding to the number of
links with semi-integer spins whose image under A has an
orientation that disagrees with that of the graph. The action
of an automorphism A defines permutations of the spins
and intertwiners, which we will represent as

ðjl; inÞ ↦ Aðjl; inÞ ¼ ðAjl; AinÞ
¼ ðj0l; i0nÞ
¼ ðjA−1ðlÞ; iA−1ðnÞÞ:

A generic state jΨinv
Γ i in KΓ is the projection of a

superposition of spin-network states,

jΨinv
Γ i ¼ PAjΨΓi; jΨΓi ¼

X
jl;in

cjl;in jΓ; fjlg; fingi:

Distinct spin-network states can have the same image under
the projection PA. We introduce an equivalence relation
jΓ; fjlg; fingi ∼ jΓ; fj0lg; fi0ngi for states with the same
image, PAjΓ; fjlg; fingi ¼ PAjΓ; fj0lg; fi0ngi. The equiv-
alence classes of spin-network states under such a relation
form a basis of KΓ.
A special class of states in KΓ is given by the completely

symmetric states jΨΓi invariant under the permutation
group SN acting on the nodes of the graph. When the
graph Γ is a complete graph KN with N nodes, the
completely symmetric states span the full space KKN

.

2. Automorphism-invariant observables

An operator Oinv acting on the Hilbert space HΓ is
invariant under automorphisms if Oinv ¼ UAOinvU−1

A ,
∀UA ∈ AutðΓÞ. Given any observable O, not necessarily
automorphism-invariant, we can construct an observable
Oinv that is automorphism-invariant through

Oinv ¼
1

jAutðΓÞj
X
A

UAOU−1
A : ð39Þ

The subspace of automorphism-invariant states KΓ is
invariant under the action of Oinv, so that the restriction
Oinv∶ KΓ → KΓ is well defined. Since physical states are
required to be invariant under graph automorphisms,
physical observables must also be invariant under graph
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automorphisms. The factor of 1=jAutðΓÞj can be dropped in
Eq. (39), and the result is still an invariant observable.
As a direct consequence of Eq. (39), the averages of the

operators O and Oinv are the same for an invariant state
described by a density matrix ρinvΓ ,

TrðρinvΓ OinvÞ ¼
1

jAutðΓÞj
X
A

TrðρinvΓ UAOU−1
A Þ

¼ 1

jAutðΓÞj
X
A

TrðρinvΓ OÞ

¼ TrðρinvΓ OÞ: ð40Þ

D. Automorphism-invariant states:
Bell-network states

Bell-network states [17] are a special class of entangled
states in loop quantum gravity that maximize correlations
of neighboring quantum polyhedra. For large spins, they
describe a superposition of vector geometries, a collection
of polyhedra glued together so that normals of glued faces
are back to back, even though in general the faces do not
have the same shape. This class of geometries plays an
essential role in the study of the asymptotic behavior of
topological SUð2Þ spinfoam vertex amplitudes [53–58]. In
this section, we will show that Bell states are autorphism-
invariant states on any graph.
Bell-network states are defined by exploring the tech-

nique of squeezed vacua in the bosonic representation of
loop quantum gravity [59–61]. In this representation, the
Hilbert space HΓ of gauge-invariant states on a graph Γ
corresponds to a subspace of a bosonic Hilbert spaceH⊗4L

osc

of 4L harmonic oscillators, where each link l is equipped
with a pair of oscillators aα†sðlÞ at its source node sðlÞ and a

pair of oscillators aα†tðlÞ at its target node tðlÞ, where α ¼ 1,

2 [60]. To each link there corresponds then a Hilbert space
H4

osc of four oscillators. We denote the projector onto the
subspace HΓ by PΓ∶ Hbos → HΓ.
A Bell state is first defined at a link l through

jλl;Bi ¼ ð1 − jλlj2Þ exp
�
λlϵαβa

α†
sðlÞa

β†
tðlÞ

�
j0isj0it; ð41Þ

where the squeezing parameter λl is a complex number that
encodes the average area and the average extrinsic angle
associated with the link [17]. The Bell-network state on a
graph Γ is the gauge-invariant projection of the tensor
product of Bell states at all links,

jΓ; fλlg;Bi ¼ PΓ⊗
l∈Γ

jλl;Bi: ð42Þ

The projection can be implemented using the resolution of
the identity in the spin-network basis,

PΓ ¼
X
jl;in

jΓ; fjlg; fingihΓ; fjlg; fingj; ð43Þ

leading to a formula for the Bell-network states as an
expansion over spin configurations,

jΓ; fλlg;Bi ¼
X
jl

Y
l

qjlðλlÞjΓ; fjlg;Bi ð44Þ

with expansion coefficients

qjlðλlÞ ¼ ð1 − jλlj2Þλ2jll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p
; ð45Þ

and Bell-network states at fixed spin configuration given by

jΓ; fjlg;Bi ¼
1ffiffiffiffiffi
N

p
X
in

AΓðjl; inÞ jΓ; fjlg; fingi: ð46Þ

The quantity N is a normalization constant, and the
amplitude A is the SUð2Þ symbol of the graph Γ,

AΓðjl; inÞ ¼
X
fmg

Y
n

½in�mn1���mnμ
mnðμþ1Þ���; ð47Þ

where the indices of the intertwiner tensors ½in� are
contracted according to the combinatorics of the graph Γ.
We wish to prove that Bell-network states jΓ; fλlg;Bi

with the same squeezing parameter at all links, λl ¼ λ, are
invariant under the action of automorphisms on any graph
Γ. We denote these states by jΓ; λ;Bi. We start by proving a
basic property of the Bell states jλl;Bi defined at the links
of the graph by Eq. (41). It is convenient to use the
holonomy representation for this purpose. At each link l,
states in the bosonic representation H are mapped to the
holonomy representation through the identification

ð−1Þjl−ml jjl; mlitðlÞjjl;−nlisðlÞ
↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p
½DjlðhlÞ�ml

nl ; ð48Þ

where the spin states in the magnetic number basis are
defined at any end point of a link in terms of the
corresponding pair of oscillators by

jj; mi ¼ ða0†Þjþmða1†Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!ðj −mÞ!p j0i: ð49Þ

The Bell state at a link with squeezing parameter
λl ¼ λ assumes the following form in the holonomy
representation:

ψðhlÞ ¼ hhljλ;Bi
¼ ð1 − jλj2Þ

X
jl

λ2jl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p
Tr½DjlðhlÞ�: ð50Þ

B. BAYTAŞ and N. YOKOMIZO PHYS. REV. D 107, 066009 (2023)

066009-12



The SUð2Þ character Tr½DjlðhlÞ� is invariant under inver-
sion of its argument. As a result, the state has the symmetry
ψðhlÞ ¼ ψðh−1l Þ. Therefore, the state is invariant under
orientation reversal.
We can now show that the tensor product

Ψðhl1 ;…; hlLÞ ¼ ψðhl1Þ � � �ψðhlLÞ ð51Þ

of Bell states with the same squeezing parameter λl ¼ λ at
all links of a graph is invariant under the action of an
automorphism:

ðUAΨÞðhl1 ;…; hhlL Þ ¼ ΨðhAðl1Þ;…; hAðlLÞÞ

¼
YL
l¼1

ψðhAðliÞÞ

¼
YL
l¼1

ψðhliÞ ¼ Ψðhl1 ;…; hhlL Þ;

where we used the fact that ψðhAðliÞÞ ¼ ψðhljÞ for some j,

regardless of whether AðliÞ equals lj or the link l−1
j

with the reverse orientation, due to the symmetry
ψðhlÞ ¼ ψðh−1l Þ, and that the automorphism produces a
permutation of the unoriented links. We conclude that

UA⊗
l∈Γ

jλ;Bi ¼⊗
l∈Γ

jλ;Bi: ð52Þ

In addition, the orthogonal projector PΓ onto the sub-
space of gauge-invariant states is automorphism invariant.
Indeed, for any gauge-invariant Ψ, its image UAΨ under an
automorphism A is also gauge invariant:

ðUAΨÞðUsðlÞhlUtðlÞÞ ¼ ΨðUsðAðlÞÞhAðlÞUtðAðlÞÞÞ
¼ ΨðhAðlÞÞ
¼ ðUAΨÞðhlÞ: ð53Þ

As the automorphism is invertible and its inverse is an
autormorphism, any gauge-invariant state is in the image of
UA. Therefore,HΓ is mapped onto itself byUA. SinceUA is
unitary, the orthogonal complement of HΓ is also mapped
onto itself. It follows that

UAPΓU−1
A ¼ PΓ: ð54Þ

The invariance of the Bell-network states under auto-
morphisms now follows directly from Eqs. (52) and (54):

UAjΓ; λ;Bi ¼ UAPΓ⊗
l∈Γ

jλ;Bi

¼ UAPΓU−1
A UA⊗

l∈Γ
jλ;Bi

¼ PΓ⊗
l∈Γ

jλ;Bi

¼ jΓ; λ;Bi;

completing the proof.

E. Homogeneity and isotropy

As discussed in Sec. III A, 1-CH and 2-CH graphs are
associated with regular decompositions of homogeneous
and isotropic spaces. Their symmetries mirror at a com-
binatorial level the symmetries of homogeneous and
isotropic geometries in the continuum. In this section,
we discuss states and observables invariant under graph
automorphisms on k-CH graphs and describe their proper-
ties of homogeneity and isotropy.

1. 1-CH graphs

Let ΓH be a 1-CH graph. A state jΨHi ∈ KΓH
⊂ HΓH

can
be written in the spin-network basis as

jΨHi ¼
X
jl;in

cjl;in jΓH; fjlg; fingi; ð55Þ

and satisfies UAjΨi ¼ jΨi, ∀A ∈ AutðΓHÞ, where the
sums over spins run over jl ¼ 1=2; 1;…, and the sums
over intertwiner indices run over in ¼ 1;…; dimHn. Let its
density matrix be represented by

ρH ¼ jΨHihΨHj:

In this section, we will construct observables onKΓH
that

represent measurements performed on a single node and
respect the symmetry under automorphisms of the theory.
As all nodes are equivalent in a 1-CH graph, this cannot be
done by taking an operator that acts nontrivially on a single
node, which would break automorphism invariance. In fact,
we are led to introduce one-node observables that are
similar in nature to the one-body operators used in many-
body quantummechanics [21]. We also introduce a reduced
density matrix that describes the statistics of one-node
observables, which will later be used for the definition of
the entanglement entropy of a single node on the graph.
Local observables.—If r ∈ NðΓHÞ is a node of the graph

ΓH, we say that an operatorOr∶ HΓH
→ HΓH

is a local one-
node operator at the node r if its action on the spin-network
basis has the form

OrjΓH; fjlg; fingi ¼
X
i

Oir;ijΓH; fjlg;

× fi1;…; ir−1; i; irþ1;…; iNgi: ð56Þ
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Such an operator preserves the spins and, for any spin
configuration, has a nontrivial action only in the intertwiner
space Hr associated with the node r. Its restriction to a
subspace of fixed spins has the form

OrjHΓH;fjlg
¼ 1 ⊗ � � � ⊗ Ofjrag ⊗ � � � ⊗ 1; ð57Þ

for some operator Ofjrag∶ Hr → Hr, where jr1;…; jrV are
the spins at the node r. A local one-node operator is
completely characterized by the list of operators Ofjrag for
all possible spin configurations fjrag at the node.
Under an automorphism A for which AðrÞ ¼ s, the

operator Or transforms as

UAOrU−1
A jΓH; fjlg; fingi

¼ sA−1;jlUAOrjΓH; fj0lg; fi0ngi
¼ sA−1;jlUA

X
k

O0
i0r;k

jΓH; fj0lg; f…; i0r−1; k; i
0
rþ1;…gi

¼
X
k

Ois;kjΓH; fjlg; f…; is−1; k; isþ1;…gi

¼ OsjΓH; fjlg; fingi:

In the second line, i0n ¼ iAðnÞ. The matrix O0 describes the
operator Or in the basis jΓH; fj0lg; fi0ngi. In the passage
from the second to the third line, it was used that i0r ¼ is,
and one can recognize the action of a local operator at the
node s, which we denote by Os, with the same matrix
elements as O0. We have found that

UAOrU−1
A ¼ Os; ð58Þ

i.e., the local operator at the node r is transformed into a
local operator at the node s ¼ AðrÞ.
It follows from Eq. (58) and the definition (39) that the

invariant observables associated with a local operator Or
and its image Os under an automorphism are the same:

Or;inv ¼ Os;inv ≡O1
inv:

Now, from Eq. (40), we find that the averages of local
operators Or, Os agree, for any invariant state ρinvΓH

:

TrðρinvΓH
OrÞ ¼ TrðρinvΓH

O1
invÞ ¼ TrðρinvΓH

OsÞ: ð59Þ

We call the invariant operator Or;inv associated with a local
one-node operator Or an invariant one-node operator.
The operator O1

inv∶ KΓH
→ KΓH

is the adequate tool to
describe the measurement of a local property of the
geometry at a single node in the space of automor-
phism-invariant states. The node at which the measurement
is performed is not specified by the operator, due to the
group averaging over the actions of the automorphisms,
which makes the operator nonlocal with respect to the

graph. As all nodes are equivalent in a 1-CH graph, any
operator that distinguishes between nodes cannot in fact be
an observable on the space KΓH

of automorphism-invariant
states. Such a nonlocality becomes more evident in an
explicit representation of the invariant operator as an
average of local one-node operators over the graph, which
we discuss now for the case of 1-CH graphs.
We have seen that a local operatorOm at a nodem can be

associated with a given local operator On at a node n
through Eq. (58). This association is not unique, however, if
there is more than one automorphism relating the nodes.
Suppose, for instance, that a particular component of the
Penrose metric, say g12, is measured at n. It might happen
that this operator transforms under an automorphism into
an operator g12 at m, while transforming into g23 under
another automorphism. However, if the operator On is
invariant under automorphisms that preserve n, its image at
m is always the same, for any automorphism relating the
two nodes, as we will show now. Examples of such
observables are the total area and the volume at a node.
Consider a one-node local observableOn that is invariant

under automorphisms that preserve n, and let A, A0 be
automorphisms for which AðnÞ ¼ A0ðnÞ ¼ m. Denote its
transformation under the automorphisms by

UAOnU−1
A ¼ Om;

UA0OnU−1
A0 ¼ O0

m: ð60Þ

The composition ðA0Þ−1∘A is an automorphism that pre-
serves the node n. Therefore,

On ¼ ðU−1
A0 UAÞOnðU−1

A0 UAÞ−1;
¼ U−1

A0 OmUA0 :

This implies that

UA0OnU−1
A0 ¼ Om;

which, together with Eq. (60), leads to Om ¼ O0
m.

Let the set of automorphisms that preserve the node n be
denoted by ½AutðΓHÞ�n and the set of automorphisms that
map the node n to the node m by ½AutðΓHÞ�n→m. From
Eqs. (39) and (58), we have then

O1
inv ¼

1

jAutðΓHÞj
X
A

UAOnU−1
A

¼ 1

jAutðΓHÞj
X
A

OAðnÞ

¼ 1

jAutðΓHÞj
X
m

j½AutðΓHÞ�n→mjOm:

We claim that j½AutðΓHÞ�n→mj ¼ j½AutðΓHÞ�nj. Let us enu-
merate the automorphisms in ½AutðΓHÞ�n→m as f1;…; fp
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and the automorphisms in ½AutðΓHÞ�n as h1;…; hq. We first
note that fi ¼ f1∘ðf−11 ∘fiÞ, where f−11 ∘fi ∈ ½AutðΓHÞ�n.
Therefore, any element of ½AutðΓHÞ�m→n can be written
as the composition of an element of ½AutðΓHÞ�n and a
fixed automorphism f1. Moreover, if fi ≠ fj, then
f−11 ∘fi ≠ f−11 ∘fj, since f−11 is invertible. Hence,
j½AutðΓHÞ�n→mj ≤ j½AutðΓHÞ�nj. Moreover, for any hj, the
composition f1∘hj is in ½AutðΓHÞ�n→m. If hk ≠ hl, then
f1∘hk ≠ f1∘hl, since f1 is invertible. Therefore,
j½AutðΓHÞ�n→mj ≥ j½AutðΓHÞ�nj, and the result follows.
A direct consequence of this result is that j½AutðΓHÞ�n→mj

is independent of m. Moreover, since ∪m ½AutðΓHÞ�n→m ¼
AutðΓHÞ, it follows that j½AutðΓHÞ�n→mj ¼ jAutðΓHÞj=N.
Therefore,

O1
inv ¼

1

N

X
m

Om: ð61Þ

The invariant observable is just the average of the local
operators over all nodes of the graph, as could be expected.
This is true for 1-CH graphs, but not for general graphs, in
which there can be no automorphism relating a given pair
of nodes.
The formula (61) for the invariant observable associated

with a local one node is reminiscent of the definition
of one-body operators in many-body quantum mec-
hanics [21]. In our approach, such a representation of
invariant one-node observables appears naturally for the
description of local measurements performed at a single
node on 1-CH graphs, respecting the invariance under
automorphisms, and for local one-node operators that are
invariant under automorphisms that preserve the node.
Removing the factor of 1=N in Eq. (61), we obtain another
invariant observable,

O1
inv;T ¼

X
m

Om; ð62Þ

that describes the total sum of the local operators over the
nodes, instead of their average.
The result can be extended to local one-node observables

that are not invariant under automorphisms that preserve
the node. In the case of a local operator On that can be
mapped into distinct local operators Om;O0

m;… at m by
distinct automorphisms, one can still define a one-node
observable through (61) by choosing a particular repre-
sentation Om at each node m. The matrix elements of the
resulting operator are independent of this choice for states
on KΓH

, since the matrix elements of Om ¼ UAOnU−1
A and

O0
m ¼ UA0OnU−1

A0 are the same for such states:

PAOmPA ¼ PAUAOnU−1
A PA

¼ PAOnPA;

and, similarly, PAO0
mPA ¼ PAOnPA, showing that

PAOmPA ¼ PAO0
mPA. As a result, we can express the

invariant observable associated with On as the restriction
PAO1

invPA with O1
inv given by Eq. (61), for an arbitrary

choice of representation Om for the image of the local
operator at each node.
A simple example of a one-node observable is the total

area JH at a node,

JH ¼ 1

N

X
n

1 ⊗ � � � ⊗ Jn ⊗ � � � ⊗ 1; ð63Þ

where the action of Jn at the node n is given by

Jn ¼
XV
a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gaaðnÞ

p
: ð64Þ

Another example is the volume VH at a node,

VH ¼ 1

N

X
n

1 ⊗ � � � ⊗ Vn ⊗ � � � ⊗ 1; ð65Þ

where Vn is the volume operator at the node n onHΓH
. For

a 4-valent node, for instance, the volume operator can be
expressed in terms of the Penrose metric as

Vn ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				 i
a0

½gabðnÞ; gacðnÞ�
				

s
; ð66Þ

where a, b, c label any three distinct links at the node.
Volume operators can also be defined for nodes of arbitrary
valency [43,62,63]. Distinct versions of the volume oper-
ator have been constructed, due to regularization ambigu-
ities, but invariant observables can be associated with any
of them, as far as the volume operator is a local one-node
observable, which is true for both the Rovelli-Smolin [62]
and the Ashtekar-Lewandowski operators [63], as well as
for that proposed by Bianchi in [43]. The total volume is
also an invariant observable:

VH;T ¼
X
n

1 ⊗ � � � ⊗ Vn ⊗ � � � ⊗ 1; ð67Þ

Invariant observables describing measurements per-
formed on a pair of nodes can be similarly constructed,

O2
mn;inv ¼

1

jAutðΓHÞj
X
A

UAOmOnU−1
A

¼ 1

jAutðΓHÞj
X
A

OAðmÞOAðnÞ:

From Eq. (40), their averages on automorphism-invariant
states are given by
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TrðρinvΓH
O2

mn;invÞ ¼ TrðρinvΓH
OmOnÞ:

When the local operators Om, On describe the same
physical quantity at the distinct nodes, the observable
O2

inv describes its correlation function through

hOOimn ¼ TrðρinvΓH
O2

mn;invÞ − TrðρinvΓH
O1

m;invÞTrðρinvΓH
O1

n;invÞ
¼ TrðρinvΓH

O2
mn;invÞ − TrðρinvΓH

O1
invÞ2;

where we used the fact that, for any pair of nodes m, n in a
1-CH graph, the invariant one-node observables sat-
isfy O1

m;inv ¼ O1
n;inv ¼ O1

inv.
It is not possible to map any two pairs of nodes into each

other by some automorphism in a 1-CH graph. As a result,
the observable O2

mn;inv does not admit a simplification
analogous to the formula (61). Nevertheless, in analogy
with two-body operators in quantum mechanics, we can
define invariant two-node physical observables as

O2
inv ¼

2

NðN − 1Þ
X
m≠n

OmOn; ð68Þ

for any local operator On that is invariant under automor-
phims that preserve the node n. The extension to multiple-
node invariant observables Or

inv for r > 2 is immediate.
The two-node observable (68) is the average of the
invariant observables O2

mn;inv,

O2
inv ¼

2

NðN − 1Þ
X
m≠n

O2
mn;inv:

Invariant one-node reduced density matrix.—We can
introduce a reduced density matrix ρ1 that describes the
statistics of invariant one-node observables on a 1-CH
graph as follows. Let r be an arbitrary node, and consider a
local one-node operator of the form (56), with O1

inv its
associated invariant observable. The orientations of all links
at the node r can be chosen to point outwards from the
node. Each of the orthogonal subspaces HΓH;fjlg of fixed
spins is invariant under the action of local operators. As a
result, the average of any one-node observable has the form

hO1
invi ¼ hOri ¼

X
fjrag

pfjragTrðOfjragρfjragÞ;

with

pfjrag ¼
X

fjl≠jrag

X
fing

jcjl;in j2; ð69Þ

where the first sum runs over all spins, except those at the
node r, which are fixed with values jra ¼ ja, the second
sum runs over all intertwiner indices, and

ρfjrag ¼
1

pfjrag

X
fjl≠jrag

X
fin≠irg

X
i;ī

cjl;fi1;…;i;…;iNg

× c�jl;fi1;…;ī;…;iNgjiihīj; ð70Þ

where the sums over i; ī run over all orthogonal intertwiners
of InvSUð2Þ½⊗

a
Vja �.

The reduced density matrix ρfjrag is an operator on the
intertwiner space Hr with spins jra ¼ ja associated with
the node r. Now, for an automorphism-invariant state, the
same density matrix is obtained at any node s, if the links at
s are ordered so that AðraÞ ¼ ðsaÞ, for some automorphism
that takes r to s, and if the same spin configuration is
considered, jsa ¼ ja. To prove it, we first note that, for any
invariant state

jΨi ¼
X
jl;in

cjl;in jΓH; fjlg; fingi; ð71Þ

it follows from Eq. (38) that

jΨi ¼ UAjΨHi ¼
X
j0l;i

0
n

sA;jlc
0
j0l;i

0
n
jΓH; fj0lg; fi0ngi; ð72Þ

with c0j0l;i0n ¼ cjl;in , for j0l ¼ jA−1l; i
0
n ¼ iA−1n. Fixing

j0sa ¼ ja, we have

pfjsag ¼
X

fj0l≠j0sag

X
fi0ng

jc0j0l;i0n j
2; with j0sa ¼ ja

¼
X

fjl≠jrag

X
fing

jcjl;in j2; with jra ¼ ja

¼ pfjrag:

A similar argument shows that ρfjsag and ρfjrag have the
same matrix elements:

hκjρfjsagjκ̃i ¼
1

pfjsag

X
fj0l≠j0sag

X
fi0n≠i0sg

c0j0l;fi01;…;κ;…;i0Ngc
0�
j0l;fi01;…;κ̃;…;i0Ng

¼ 1

pfjrag

X
fjl≠jrag

X
fin≠irg

cjl;fi1;…;κ;…;iNgc
�
jl;fi1;…;κ̃;…;iNg

¼ hκjρfjragjκ̃i; ð73Þ
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where the indices κ; κ̃ refer to the intertwiner basis i0s in the
first line, and to the intertwiner basis ir in the second and
third lines.
The property expressed in Eq. (73) is perhaps the most

direct way to characterize the homogeneity of states inKΓH
:

the reduced density matrix ρfjag that describes the statistics
of observations performed on a single node is the same for
all nodes.
From Eq. (59), the average of an invariant observable

O1
inv on a 1-CH graph can be computed using its associated

local one-node operator On at a node n, for any node n.
Hence, all invariant observables can be studied at a
common reference node, which we take to be r. In a
1-CH graph, all nodes have the same valency V. Let us
introduce an abstract intertwiner space

H1 ¼ ⨁
fjag

Hfjag;Hfjag ¼ InvSUð2Þ

�
⊗
V

a¼1
Vja

�
; ð74Þ

isomorphic to the intertwiner stace at the node r,H1 ≃Hr, in
order to describe the statistics of invariant one-node observ-
ables associated with local operators. A local invariant obser-
vable O1

inv on KΓH
is naturally associated with an operator

O1 ¼ ⨁
fjag

Ofjag ð75Þ

on H1, with

Ofjag ¼ Ofjrag; ð76Þ

and an automorphism-invariant state is represented by a
density matrix ρ1∶ H1 → H1 defined as

ρ1 ¼
X
fjag

pfjagρ
1
fjag; ð77Þ

which we call the invariant one-node density matrix, where
ρ1fjag ¼ ρfjrag and pfjag ¼ pfjrag. Then:

hO1
invi ¼ TrH1ðρ1O1Þ: ð78Þ

The average of an invariant one-node observable can thus be
calculated as an average on an abstract intertwiner space with
orthogonal subspaces labelled by boundary spins ja.
The matrix elements of the density matrix ρ1 and of the

observable O1 depend on the choice of an intertwiner basis
at the reference node r used to establish the isomorphism
H1 ≃Hr, as well as on the choice of the reference node.
We can impose a consistency condition on the intertwiner
bases, however, which ensure that ρ1 and O1 become
independent of the choice of reference node. Let s be any
node, and A an automorphism such that AðrÞ ¼ s. For a
given intertwiner basis jiri at the node r, there corresponds

an intertwiner basis ji0si ¼ UAjiri at the node s. From (73),
the reduced density matrix has the same form at both nodes
in these bases. As a result, in such bases, the same invariant
one-node density matrix ρ1 is obtained whether r or s is
taken as a reference node. Consider now a local operatorOr

at the node r with associated invariant observable O1
inv.

Then Os ¼ UAOrU−1
A is a local operator at the node s

associated with the same invariant observable. Its matrix
elements in the basis ji0si are equal to those of Or in the
basis jiri,

hi0sjOsjĩ0si ¼ hi0sjUAOrU−1
A jĩ0si ¼ hirjOrjĩri:

Hence, the same operator O1 is associated with O1
inv

regardless of the choice of the reference node. We require
that a consistent choice of intertwiner bases is made for the
representation of invariant states and observables in the
abstract intertwiner space H1, so that the construction is
independent of the choice of reference node.
The invariant one-node density matrix ρ1 describes the

statistics of measurements of the geometry performed on a
single node, which remains unspecified. It decomposes
into a direct sum of density matrices ρ1fjag labelled by

the possible boundary spins, and each component ρ1fjag
describes the statistics of measurements performed within
the region delimited by the specified boundary spins. One
can ask, for instance, what is the average volume of a node,
given that spins ja were observed at its links, without
specifying the node at which the observations are to be
made. On the other hand, one cannot ask about the average
volume at a specific node, as no invariant operator
describing such a measurement exists on KΓH

. Later, we
will also explore the density matrix ρ1 as a tool for the
description of measurements performed on a single node
for states involving a superposition of graphs.
For two-node observables on a 1-CH graph, there is no

direct analogue of the one-node density matrix defined on
an abstract space that is independent of the nodes. It is
straightforward to introduce a density matrix ρ2mn analogous
to ρ1 following similar steps, but in general it will depend
on the choice of the nodes m, n. If two pairs ðr; sÞ and
ðm; nÞ can be related by an automorphism, then it must be
ρ2mn ¼ ρ2rs, since the invariant observables must then satisfy
O2

mn;inv ¼ O2
rs;inv. When this is not the case, the density

matrices can differ, and there will be a two-node density
matrix for each class of pairs of nodes that cannot be related
by any automorphism.

2. 2-CH graphs

Let ΓC be a 2-CH graph, and KΓC
⊂ HΓC

be the space of
automorphism-invariant states on this graph. Any 2-CH
graph is also 1-CH, hence the states jΨCi ∈ KΓC

are
homogeneous and all nodes are equivalent. In addition,
in a 2-CH graph, any two oriented links l and l0 are also
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equivalent. This allows the notion of local one-link observ-
ables to be introduced, in analogy with local one-node
observables. As any two links at a node can be related by
an automorphism that preserves the node, as depicted in
Fig. 8, the invariant states display a discrete version of the
property of isotropy: distinct links at a node describe the
directions from the node in the graph, and local measure-
ments cannot distinguish among the links.
In the holonomy representation, a generic state jΨCi ∈

KΓC
is represented by a wavefunction ΨCðhlÞ that is

invariant under gauge transformations and automorphisms.
The space of automorphism invariant states is a subspace
KΓC

⊂ HΓC
⊂ ⊗

l
Hl, where Hl ¼ L2½SUð2Þ� is a local

Hilbert space associated with the link l. We say that an
operator Ol∶ HΓC

→ HΓC
is a local link operator if it acts

nontrivially only on a single link:

Ol ¼ 1 ⊗ � � � ⊗ O ⊗ � � � ⊗ 1;

where O∶ Hl → Hl is an operator defined at the link l.
Any state ΨCðhlÞ is a linear combination of product states
of the form:

φl1ðhl1Þ � � �φlLðhlLÞ: ð79Þ

The operator Ol is completely characterized by the action
of O on the local states:

OφlðhlÞ ¼ φ0
lðhlÞ:

For any link l, we represent the local wave function for
the link l−1 with the reverse orientation as

φl−1ðhÞ ¼ φlðh−1Þ:

Under an automorphism,

UAOlU−1
A ðφl1ðhl1Þ � � �φlLðhlLÞÞ ¼ UAOlðφl1ðhA−1ðl1ÞÞ � � �φlLðhA−1ðlLÞÞÞ

¼ UAOlðφAðl1Þðhl1Þ � � �φAðlLÞðhlLÞÞ
¼ UAðφAðl1Þðhl1Þ � � � ðOφAðlÞÞðhlÞ � � �φAðlLÞðhlLÞÞ
¼ φl1ðhl1Þ � � � ðOφAðlÞÞðhAðlÞÞ � � �φlLðhlLÞ
¼ OAðlÞðφl1ðhl1Þ � � �φlLðhlLÞÞ:

The local operator at the link l was transformed by the
automorphism into a local operator OAðlÞ at the link AðlÞ:

UAOlU−1
A ¼ OAðlÞ:

Let l̄ ∈ flig be the link such that AðlÞ equals l̄ or its
inverse l̄−1. Then the action of OAðlÞ on the local wave
function at l̄, φl̄ðhl̄Þ ↦ ðOφAðlÞÞðhAðlÞÞ, is given by

ðOφAðlÞÞðhAðlÞÞ ¼
(
ðOφl̄Þðhl̄Þ; if AðlÞ ¼ l̄;

ðOφl̄−1Þðh−1l̄ Þ; if AðlÞ ¼ l̄−1:

An observable O1L
inv invariant under autormorphisms can

be associated with a local one-link operatorOl through the
application of the general prescription presented in Eq. (39):

O1L
inv ¼

1

jAutðΓHÞj
X
A

UAOlU−1
A

¼ 1

jAutðΓHÞj
X
A

OAðlÞ

¼ 1

jAutðΓHÞj
X
l̄

j½AutðΓHÞ�l→l̄jOl̄;

where the sum in the last line runs over all oriented links l̄.
In analogy with the case of local node observables, we
can simplify the expression by proving that the number
j½AutðΓHÞ�l→l̄j is independent of l̄. The argument is a
simple adaptation of the previous case, as follows.
Let ½AutðΓHÞ�l→l̄ ¼ ff1;…; fpg be the set of auto-

morphisms that map l to l̄, and ½AutðΓHÞ�l ¼ fh1;…; hqg
be the set of automorphisms that preserve l. Any fi ∈
½AutðΓHÞ�l→l̄ can be written as the composition
f1∘ðf−11 ∘fiÞ of an element f−11 ∘fi ∈ ½AutðΓHÞ�l and a
fixed automorphism f1 of ½AutðΓHÞ�l→l̄. If fi ≠ fj, then
f−11 ∘fi ≠ f−11 ∘fj, since f−11 is invertible. Hence,
j½AutðΓHÞ�l→l̄j ≤ j½AutðΓHÞ�lj. Moreover, for any hi, the
composition f1∘hi is in ½AutðΓHÞ�l→l̄. If hi ≠ hj, then
f1∘hi ≠ f1∘hj, since f1 is invertible. Therefore,
j½AutðΓHÞ�lj ≤ j½AutðΓHÞ�l→l̄j, and the result follows.
From the fact that the quantities j½AutðΓHÞ�l→l̄j are

independent of l̄ and sum to jAutðΓHÞj, we obtain

O1L
inv ¼

1

2L

X
l̄

Ol̄;

where the sum runs over all oriented links, including two
terms for each unoriented link. For an observable such that
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Ol̄ ¼ Ol̄−1 , i.e., that is invariant under link reversals, we
can write

O1L
inv ¼

1

L

X
l

Ol; ð80Þ

where the sum runs over all links, each with a fixed,
arbitrary orientation. We call an observable of the form (80)
an invariant one-link observable.
An example of an invariant one-link observable is the

area ÂC at a link

ÂC ¼ 1

L

X
l

1 ⊗ � � � ⊗ Âl ⊗ � � � ⊗ 1: ð81Þ

Two-link operators and higher can be constructed in a
straightforward way.
The invariant observables associated with Ol and its

image OAðlÞ under some automorphism are the same. It
follows then from Eq. (40) that, for states in KΓC

, the
averages of Ol and OAðlÞ are the same. In particular, for
any pair of links na; nb at a node n, the averages of local
link operators Ona and Onb must be the same, and as a
result independent of the direction from the node n in the
graph. This constitutes a discrete version of the property of
isotropy: the statistics of local quantities measured at a
single link is independent of the choice of the link at any
node of the graph.

3. k-CH graphs

It was shown in Sec. III E 1 that the reduced density
matrix ρfjrag for a single node with boundary spins fjrag is
the same for all nodes on a 1-CH graph ΓH, that is,
ρfjrag ¼ ρfjsag, ∀ r; s ∈ NðΓHÞ. This result can be extended
to connected regions formed by k nodes in a k-CH graph.
We shall now prove this generalization.
Let Γ be a k-CH graph, and ΓR;ΓR0 ⊂ Γ be isomorphic

connected subgraphs of Γ with k nodes. Then there is an
automorphism A ∈ AutðΓÞ that maps ΓR into ΓR0 , due to
the k-CH property. Let fjBag be the spins at links l ¼ Ba
that connect a node in NðΓRÞ to a node in its complement
NðΓRÞ. This set of links provides a natural notion of
boundary for the region R formed by the quantum poly-
hedra dual to nodes in ΓR. We denote by fjRbg the spins at
links l ¼ Rb in ΓR, and by fjR̄cg the spins at links l ¼ R̄c
in the induced subgraph ΓR̄ with node set NðΓRÞ, which
represents the complement R̄ of the region R. If we fix the
boundary spins fjBag, we obtain a subspaceHΓ;fjBag that is
a tensor product,

HΓ;fjBag ¼ HΓR
⊗ HΓR̄

;

of an internal Hilbert space

HΓR
¼ ⨁

fjRbg
⊗

n∈NðΓRÞ
Hn;

and an external Hilbert space

HΓR̄
¼ ⨁

fjR̄cg
⊗

n̄∈NðΓRÞ
Hn̄;

with the boundary spins fjBag kept fixed in both cases. Let
PfjBag be the orthogonal projection to the subspace of fixed
boundary spins, PfjBagHΓ ¼ HΓ;fjBag. For any boundary
configuration, the reduced density matrix associated with
ΓR is defined as:

ρΓR;fjBag ¼ TrHΓR̄
ðPfjBagjΨihΨjPfjBagÞ:

We represent the state jΨi as in Eqs. (71) and (72), and
automorphism-invariance again implies that c0j0l;i0n ¼ cjl;in ,

for j0l ¼ jA−1l; i
0
n ¼ iA−1n. It is convenient to explicitly

distinguish the spins and intertwiners according to their
position relative to the region R,

cjl;in ¼ cfjBag;fjRbg;fjR̄cg;fing;fin̄g:

We wish to compare the reduced density matrices for the
subgraphs ΓR and ΓR0 . Let the boundary links of ΓR0 be
represented as B0a ¼ AðBaÞ. We denote the links of ΓR0 by
R0b ¼ AðRbÞ and the links in the induced graph ΓR0 with

node set ¯NðΓR0 Þ by R̄0c ¼ AðR̄cÞ. Then the reduced density
matrix associated with ΓR0 for boundary spins fj0B0ag reads

ρΓR0 ;fj0B0ag ¼ TrHΓ
R0
ðPfj0

B0agjΨihΨjPfj0
B0agÞ:

Its matrix elements read

FIG. 8. Action of automorphisms on a 2-CH graph. The node n
can be mapped into any node n0 by some automorphism Ann0 . The
link l is mapped into the link l0. Any two links l0 and l00 at a
node are related by an automorphism An0 .
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hfj0R0bg; κ1;…; κkjρΓR0 ;fj0B0agjfj̃
0
R0bg; κ̃1;…; κ̃ki ¼

X
fj0

R̄0cg

X
i0
n̄0

c0fj0
B0ag;fj

0
R0bg;fj

0
R̄0cg;fκ1;…;κkg;fi0n̄0 g

c0�fj0
B0ag;fj̃

0
R0bg;fj

0
R̄0cg;fκ̃1;…;κ̃kg;fi0n̄0 g

¼
X
fjR̄cg

X
in̄

cfjBag;fjRbg;fjR̄cg;fκ1;…;κkg;fin̄gc
�
fjBag;fj̃Rbg;fjR̄cg;fκ̃1;…;κ̃kg;fin̄g

¼ hfjRbg; κ1;…; κkjρΓR;fjBagjfj̃Rbg; κ̃1;…; κ̃ki;

where j0R0b ¼ jRb, j̃0R0b ¼ j̃Rb, and the indices κi; κ̃i refer to
the intertwiner bases fi0ng of nodes in Γ0 in the first line and
to the intertwiner bases fing of nodes in Γ in the last line.
This shows that the matrix elements of the reduced density
matrix are the same for the regions R and R0.

F. A cosmological sector

On 2-CH graphs, automorphism-invariant states were
shown to display a discrete version of the properties of
homogeneity and isotropy: the nodes that constitute the
building blocks of space are indistinguishable, as well as
directions from each node, represented by links. More
general homogeneous and isotropic states can be built as
superpositions of such states on distinct graphs. Let us
introduce the Hilbert space

K ¼ ⨁
ΓC

KΓC
; ð82Þ

which we call the space of cosmological states, where the
direct sum runs over all 2-CH graphs. States of the
geometry in K are generic superpositions of homogeneous
and isotropic quantum geometries over 2-CH graphs,

jΨi ¼
X
Γα

jΓα;ψαi; ð83Þ

where states on distinct graphs are orthogonal. For a
normalized state, hΨjΨi ¼ 1, the probability pα associated
with a given graph Γα is

pα ¼ hΓα;ψαjΓα;ψαi: ð84Þ

Explicit examples of cosmological states in K are given
by arbitrary superpositions of Bell-network states jΓC; λ;Bi
on 2-CH graphs ΓC. As shown in Sec. III D, Bell-network
states are automorphism-invariant on any graph Γ; in
particular, they are invariant on 2-CH graphs. The projec-
tion of a state jΓC; λ;Bi to the subspace with fixed spins
jl ¼ j is also invariant, since these subspaces are invariant
under the action of the automorphisms. Therefore, super-
positions of Bell-network states jΓC; fjl ¼ jg;Bi with
identical fixed spins jl ¼ j [see definition in Eq. (46)]
also constitute simpler examples of cosmological states.
Graph-preserving operators on K can be defined by

taking direct sums of operators defined on fixed graphs.
Consider, for instance, a family of invariant one-node

observables OΓα
∶ KΓα

→ KΓα
, each defined on a fixed

2-CH graph Γα. An observable onK can be defined through

OC ¼ ⨁
Γα

OΓα
: ð85Þ

Its action on a generic state (83) reads

OCjΨi ¼ OC

X
Γα

jΓα;ψαi

¼
X
Γα

OΓα
jΓα;ψαi;

and its expected value is

hΨjOCjΨi ¼
X
Γα

pαhOΓα
i;

hOΓα
i ¼ hΓα;ψαjOΓα

jΓα;ψαi
hΓα;ψαjΓα;ψαi

; ð86Þ

the average of the expected values of the observables over
all graphs.
Of special interest are graph-preserving operators OC

with restrictions OΓα
that describe a measurement of the

same local quantity in all graphs. Consider, for instance, a
measurement of the volume of a single node for a region
with V boundary links. Let VC be the operator on K that
describes this measurement. The invariant volume operator
at a node, for a fixed 1-CH graph, was defined in Eqs. (65)
and (66). For each graph Γα, it reads

Vα ¼
1

Nα

X
n∈Γα

1 ⊗ � � � ⊗ Vn ⊗ � � � ⊗ 1; ð87Þ

where Nα is the number of nodes in Γα. The associated
operator on K is

VC ¼ ⨁
Γα

Vα; ð88Þ

where the sum runs over all V-valent 2-CH graphs.
Similarly, the total volume operator is defined on each
graph by Vα;tot ¼ NαVα, and the associated operator on K
is VC;tot ¼ ⨁

Γα

Vα;tot.

Let us restrict to the case of graph-preserving operators
OC for which the operators OΓα

are invariant one-node
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observables describing the same physical quantity (e.g., the
volume of a node). By this we mean that all operators OΓα

are associated with the same node observable O1
α on H1:

O1
α ¼ O1 ¼ ⨁

fjag
Ofjag; ð89Þ

where H1 is the abstract intertwiner space defined in
Eq. (74), and the node observable O1

α is defined in
Eqs. (75) and (76). We will further discuss this condition
later in this section, but for now let us assume that it is
satisfied. We call such operators OC invariant one-node
observables onK. From Eq. (78), the mean valued hOΓα

i of
its restriction to each graph is then given by

hOΓα
i ¼ TrH1ðρ1αO1

αÞ;

where the density matrix ρ1α is defined in Eq. (77). It follows
that

hΨjOCjΨi ¼ TrH1ðρCO1Þ; ð90Þ

where

ρC ¼
X
Γα

pαρ
1
α; ð91Þ

and the statistics of invariant one-node observables on K is
completely described by a density matrix ρC consisting of a
mixture of the one-node density matrices for the individual
graphs in superposition.
From Eq. (77), we can express this density matrix as

ρC ¼
X
Γα

X
fjag

pαpα;fjagρ
1
α;fjag: ð92Þ

Summing over the graphs, we obtain the representation

ρC ¼
X
fjag

Pfjagρfjag; ð93Þ

with

Pfjag ¼
X
Γα

pαpα;fjag;

ρfjag ¼
1

Pfjag

X
Γα

pαpα;fjagρ
1
α;fjag: ð94Þ

The density matrix ρfjag encodes the statistics of measure-
ments of the local observable at a node, given that spins
fjag where observed at its boundary, and Pfjag is the
probability of the configuration fjag. The graph and node
at which the observation is performed remain unspecified:
the invariant observable includes the possibility that the
measurement is performed in any node of any graph in the

superposition, and these possibilities are averaged over, for
each boundary spin configuration.
Let us now discuss the interpretation of the

condition (89) that defines invariant one-node observables
on K. For that, suppose that a local property O of the
geometry is measured at a node with V links, say a
dihedral angle, a face area, the volume, or any other local
quantity, for a state that involves a superposition of states
on distinct graphs. Any such a measurement must be
represented by an invariant operator OC∶ K → K of the
form (85) that vanishes on graphs that are not V valent.
Choose a reference node rα with links rαa in each V-valent
graph. Now let I be a local quantity represented by an
observable

IC ¼ ⨁
Γα

IΓα
;

where the sum runs over all V-valent 2-CH graphs, and the
operators IΓα

∶ KΓα
→ KΓα

are invariant one-node observ-
ables on KΓα

,

IΓα
¼ 1

Nα

X
nα∈Γα

Inα ;

Suppose that, for any configuration of boundary spins jrαa,
the restriction Ifjrαag of the local operator Irα to the
intertwiner space for such spins has eigenvalues I κ that
are all distinct, where κ ¼ 1;…; d, with d ¼ dimHrα . For
instance, in a four-valent node, I can be the spin at a virtual
link connecting the links 1 and 2 to the links 3 and 4 of the
node. Let jrα; κi ∈ Hrα be the normalized eigenstate
associated with the eigenvalue Iκ. Then the sets fjrα; κi;
κ ¼ 1;…; dg provide orthonormal bases for the intert-
winer spaces at each node rα. By identifying states
jrα; κi ≃ jrβ; κi, we obtain isomorphisms Gαβ∶ Hrα → Hrβ

with action

Gαβjrα; κi ¼ jrβ; κi: ð95Þ

Similarly, local operators Onα are associated with the
quantity O. Denote by Ofjrαag the restriction of the local
operatorOrα to the subspace with boundary spins fjrαag. If
the corresponding operator Ofjrβag in the graph Γβ, for the

same boundary spins jrαa ¼ jrβa ¼ ja, is given by the
image of Ofjrαag under the isomorphism that mapsHrα into

Hrβ , Ofjrβag ¼ GαβOfjrαagG
−1
αβ , then the operators Ofjrαag

and Ofjrβag have the same matrix elements in the bases

fjrα; κig and fjrβ; κig:

hrα; κ0jOfjrαagjrα; κ00i ¼ hrβ; κ0jOfjrβagjrβ; κ00i: ð96Þ
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We interpret this as representing that the same quantity was
measured on all graphs.
We can now compute the node observables O1

α on the
abstract intertwiner space H1, for each OΓα

, following the
general prescription described in Sec. III E 1. As discussed
there, the matrix elements of O1

α are independent of the
choice of reference node in Γα if the intertwiners bases are
chosen in a consistent way for all nodes in Γα. In addition,

for a superposition of graphs, we can choose intertwiner
bases fjirαig that satisfy

jirβ ¼ κi ¼ Gαβjirα ¼ κi: ð97Þ

The matrix elements of O1
α can be computed in such bases

by taking the nodes rα as reference nodes on each graph,
leading to

hirβ ¼ κjOfjrβagjirβ ¼ κ̃i ¼
X
κ0κ00

hirβ ¼ κjrβ; κ0ihrβ; κ0jOfjrβagjrβ; κ00ihrβ; κ00jirβ ¼ κ̃i

¼
X
κ0κ00

hirα ¼ κjrα; κ0ihrα; κ0jOfjrαagjrα; κ00ihrα; κ00jirα ¼ κ̃i

¼ hirα ¼ κjOfjrαagjirα ¼ κ̃i; ð98Þ

where we used Eqs. (95)–(97). The matrix elements of
Ofjrβag are then the same for all graphs, which implies that

O1
α has the same form on all graphs. The condition (89) is

thus satisfied.
The construction of invariant one-node observables and

the reduced density matrix for a single node, while
considered here for the case of interest of homogeneous
and isotropic spaces described by 2-CH graphs, extends
without modifications to a superposition of 1-CH graphs,
since only the 1-CH property was used. In addition, for
2-CH graphs, not only isolated nodes are all equivalent, but
also pairs of adjacent nodes can always be related by some
automorphism. As a result, the reduced density matrix of a
pair of adjacent nodes for a given boundary geometry has
always the same form on a 2-CH graph, regardless of
the choice of the pair of adjacent nodes, as discussed in
Sec. III E 3. One can then introduce an invariant two-node
reduced density matrix that describes the statistics of
invariant observables representing measurements per-
formed on a pair of adjacent nodes, for any superposition
of states on 2-CH graphs, in analogy with the case of a
single node. More generally, in k-CH graphs, isomorphic
subgraphs with k nodes can be related by automorphisms,
and an invariant reduced density matrix can be assigned to
such regions.

IV. ENTANGLEMENT ENTROPY FOR A
SUPERPOSITION OF GRAPHS

In the last section, we introduced the density matrix
ρC ∈ H1 that describes the statistics of invariant one-node
observables for a state involving a superposition of graphs.
This density matrix is the restriction of a state jΨi ∈ K
to the subalgebra of observables formed by invariant
one-node observables, which characterizes a subsystem
composed of a single node in an automorphism-
invariant way.

The density matrix ρC provides us with a tool to
introduce a notion of geometric entropy in K for a
subsystem formed by a single node. The entropy of a
node is defined as the von Neumann entropy associated
with the reduced density matrix ρC:

SC ¼ −TrH1ðρC log ρCÞ: ð99Þ

The entropy is completely determined by ρC, and therefore
invariant under automorphisms and well defined for states
involving superpositions of graphs. Let us express it in a
more explicit form in order to discuss its main properties.
From Eq. (93), the density matrix ρC has a block

diagonal form with respect to the direct sum
H1 ¼ ⨁

fjag
Hfjag. The trace can then be decomposed into

a sum of contributions from each component, and we
obtain the formula

SC ¼ −
X
fjag

Pfjag logPfjag þ
X
fjag

PfjagSfjag; ð100Þ

where

Sfjag ¼ −TrHfjag
ðρfjag log ρfjagÞ

is the entropy for fixed boundary spins fjag. The entropy
SC includes a contribution from the classical distribution of
probabilities Pfjag for the spins, given by the first term in
Eq. (100), and independent contributions from each spin
configuration fjag, given by the von Neumann entropy of
the associated density matrix ρfjag, weighted by the spin
configuration probabilities.
When the state of the geometry does not involve a

superposition of graphs, the probability Pfjag and the
reduced density matrix ρfjag reduce to that of any single
node in the graph. The formula (100) then corresponds to
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that of a mixture of the reduced density matrices for all spin
configurations, at any node, weighted by the associated
probabilities, as could be expected. Such a formula for the
entropy was previously employed for the analytical and
numerical determination of the entropy of Bell states on
fixed graphs in [64], where only CH graphs were consid-
ered. The entropy formula (100) obtained in our invariant
approach thus reduces to that considered in [64] at a fixed
graph and extends it to the case of a superposition of
graphs.
The distribution of probabilities pi for a superposition of

graphs Γi contributes to the entanglement entropy differ-
ently from the probability distribution for the spin con-
figurations. Consider, for example, a state for which the
one-node density matrices ρ1i are the same for all graphs Γi,
that is, ρ1i ¼ ρ1. From (91), it follows that ρC ¼ ρ1. The
entropy SC is then the same as for any individual graph in
the superposition. That this must be so follows from the fact
that the entropy SC is completely determined by the
statistics of observations performed within a node, given
that some spin configuration was observed at its boundary.
If the geometries of the nodes are the same, for any
boundary configuration, for all graphs in the superposition,
then the entropy should indeed not be affected by the graph
superposition.
As discussed in the previous section, for cosmological

states based on 2-CH graphs, a reduced density matrix can
also be associated in an invariant way with regions formed
by two adjacent nodes. In analogy with the case of a single
node, the entropy of a region formed by two adjacent nodes
can then be defined in an automorphism-invariant way as
the von Neumann entropy of such a two-node reduced
density matrix. More generally, the entropy of regions
formed by k nodes can be analogously defined for states
formed by the superposition of automorphism-invariant
states on k-CH graphs.
We will now illustrate the application of the entropy

formula (100) through the analysis of a concrete example of
invariant state involving a superposition of graphs.

A. Superposition of Bell states on Γ5 and Γ6

Let Ψ ∈ K be a superposition

jΨi ¼ ffiffiffiffi
p

p jΓ5;ψ5i þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
jΓ6;ψ6i ð101Þ

of a state jΓ5;ψ5i on the pentagram Γ5 [Fig. 5(a)] and a
state jΓ6;ψ6i on the Tùran graph T ð6; 3Þ [Fig. 5(b)], where
p ∈ ½0; 1� is the probability of the graph Γ5. Both graphs are
four-regular and homogeneous. From their homogeneity,
they must also be 2-CH graphs. We take jΓ5;ψ5i and
jΓ6;ψ6i to be Bell-network states with fixed spins jl ¼ 1=2
[Eq. (46)],

jΓ5;ψ5i ¼ jΓ5; fjl ¼ 1=2g;Bi

¼
ffiffiffiffiffi
18

7

r X1
in¼0

AΓ5
ðjl; inÞ jΓ5; fjl ¼ 1=2g; fingi;

jΓ6;ψ6i ¼ jΓ6; fjl ¼ 1=2g;Bi

¼
ffiffiffiffiffiffiffiffi
324

73

r X1
in¼0

AΓ6
ðjl; inÞ jΓ6; fjl ¼ 1=2g; fingi;

The sum over intertwiners restricts to in ¼ 0, 1 because all
links are colored with spins jl ¼ 1=2. At each node, we
choose the intertwiner basis:

½i0�m1m2m3m4 ¼ 1

2
ϵm1m2

ϵm3m4
;

½i1�m1m2m3m4 ¼ 1

2
ffiffiffi
3

p
X3
i¼1

ð−1Þ−m2−m4 ½σ1�m1
−m2

½σ1�m3
−m4

;

where

ϵmm0 ¼
�

0 1

−1 0

�
;

and the matrices ½σi�mm0 are the Pauli matrices,
with m;m0 ¼ �1=2.
We denote by ρ15 and ρ16 the invariant one-node density

matrices of jΓ5;ψ5i and jΓ6;ψ6i, respectively. In order to
determine them, we compute the reduced density matrix of
the corresponding states at an arbitrary node on each graph.
We find

ρ15 ¼
1

2
ðj0ih0j þ j1ih1jÞ;

ρ16 ¼
1

73

�
34j0ih0j − 5

ffiffiffi
3

p

2
ðj0ih1j þ j1ih0jÞ þ 39j1ih1j

�
:

We checked that the same density matrix is obtained for all
nodes in each graph. The state ρ15 is maximally mixed, with
entropy S15 ¼ ln 2 ≃ 0.6931. The entropy S16 of ρ

1
6 is slightly

smaller, S16 ≃ 0.6837.
The invariant one-node density ρC for the state jΨi

obtained by the superposition of the states on both graphs is
given by Eq. (91). We obtain

ρC ¼ pρ15 þ ð1 − pÞρ16:

The entropy of the node is given by Eq. (100). Its
dependence on the probability p of the graph Γ5 is plotted
in Fig. 9. As p varies from 0 to 1, the entropy interpolates
between the values of the entropies of the individual states
jΓ5;ψ5i and jΓ6;ψ6i of the superposition, and is maximal
for p ¼ 1, when the superposition becomes trivial and the
state of the geometry reduces to jΓ5;ψ5i.

COSMOLOGICAL STATES IN LOOP QUANTUM GRAVITY ON … PHYS. REV. D 107, 066009 (2023)

066009-23



We can also compute the entropy of a region formed by
two adjacent nodes. We denote by ρ25 and ρ26 the invariant
density matrices for two adjacent nodes of jΓ5;ψ5i and
jΓ6;ψ6i, respectively. As for a single node, we can compute
the reduced density matrix of each invariant state for any
pair of adjacent nodes. Since both graphs are 2-CH, the
result is independent of the choice of adjacent nodes.
We find

ρ25 ¼
1

28

0
BBBBB@

6 −
ffiffiffi
3

p
−

ffiffiffi
3

p
0

−
ffiffiffi
3

p
8 2

ffiffiffi
3

p

−
ffiffiffi
3

p
2 8

ffiffiffi
3

p

0
ffiffiffi
3

p ffiffiffi
3

p
6

1
CCCCCA;

ρ26 ¼
1

292

0
BBBBB@

63 −15
ffiffiffi
3

p
−15

ffiffiffi
3

p
−3

−15
ffiffiffi
3

p
93 3 5

ffiffiffi
3

p

−15
ffiffiffi
3

p
3 93 5

ffiffiffi
3

p

−3 5
ffiffiffi
3

p
5

ffiffiffi
3

p
43

1
CCCCCA;

in the basis fj00i; j01i; j10ij11ig. The entropy of the state
ρ25 is S

2
5 ≃ 1.30131, and that of the state ρ25 is S

2
6 ≃ 1.27207.

Again, the entropy is smaller in the graph Γ6. For the
superposition (101), the two-node density matrix is

ρ2C ¼ pρ25 þ ð1 − pÞρ26;

and the entropy S2C of two adjacent nodes is the von
Neumann entropy of ρ2C. Its dependence on the probability
p of the graph Γ5 is plotted in Fig. 10. The entropy has a
maximum at p ≃ 0.84. Therefore, in this example the
entropy of the superposition can exceed that of each graph
in the superposition. One can expect the same to occur for
states involving superpositions of a larger number of more
complex graphs.

V. SUMMARY AND DISCUSSION

We introduced a general spaceK of quantum states of the
geometry in loop quantum gravity whose symmetry proper-
ties correspond to discrete versions of the properties of
homogeneity and isotropy, and constructed a nontrivial
family of concrete examples consisting of Bell-network
states [17] on generic 2-CH graphs. Such states constitute a
new class of quantum geometries that can be used as
boundary states for the computation of transition ampli-
tudes in spinfoam cosmology, or as initial states for a
Hamiltonian description of the dynamics of quantum
cosmological spacetimes. The local geometry of a
generic cosmological state jΨi ∈ K, which can include
superpositions of states defined on distinct graphs, is
captured by one-node observables analogous to the one-
body operators routinely used in many-body quantum
mechanics [21]. We derived an explicit formula for the
density matrix describing the restriction of a cosmological
state jΨi to the algebra of one-node observables. The von
Neumann entropy of this density matrix provides a natural
definition of the entanglement entropy associated with a
node. We computed the geometric entanglement entropy
for a superposition of Bell states on distinct graphs in order
to illustrate the application of the techniques introduced
here in an explicit example.
Homogeneous and isotropic states were first defined on

fixed 2-CH graphs ΓC, a class of highly symmetric graphs
that includes dual graphs of regular discretizations of
homogeneous and isotropic spaces, and generalizes, in
particular, cubulations and regular decompositions of the
3-sphere. The automorphism group of a 2-CH graph is node
and link transitive, which implies that all its nodes are
equivalent, as well as all its links. We adopted the require-
ment that physical states and observables of the geo-
metry must be invariant under all automorphisms of the
graph [18]. The symmetries of the graphs are then inherited
by the states of the geometry, and measurements of the
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FIG. 10. Entropy S2C of two adjacent nodes for a superposition
of Bell-network states on graphs Γ5 and Γ6 described by the state
(101) as a function of the probability p associated with the
graph Γ5.
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FIG. 9. Entropy SC of a single node for a superposition of Bell-
network states on graphs Γ5 and Γ6 described by the state (101) as
a function of the probability p associated with the graph Γ5.
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geometry cannot distinguish among the nodes or the links
of the graph. The indistinguishability of the nodes char-
acterizes a notion of homogeneity for the quantum geom-
etry, and that of the links at any node characterizes a
discrete notion of isotropy. A generic cosmological state
was then defined as a generic superposition of automor-
phism-invariant states on 2-CH graphs.
We proved that a special class of Bell-network states

satisfies the proposed conditions of homogeneity and
isotropy. Bell-network states are constructed by using
squeezed vacua techniques in the bosonic representation
of LQG [17,59,60]. In this representation, opposite end-
points of a link represent faces of adjacent polyhedra that
are glued along the link. The building blocks of a Bell-
network state are individual link states whose opposite
endpoints are maximally entangled. In addition, each link
state is invariant under orientation reversal. Gluing identical
copies of such maximally entangled pairs according to the
graph structure produces automorphism-invariant states
jΓC; λ;Bi on 2-CH graphs ΓC, as desired. In contrast with
coherent states [65–67], the construction of Bell-network
states does not require the specification of a local classical
discrete geometry at each node on which the state would
be peaked on. Instead, they are superpositions of states
weighted by their SUð2Þ symbols and a simple function of
the parameter λ, which on the average produce a regular
geometry. On a pentagram, for instance, in the large spin
limit, a Bell-network state at fixed spins is a superposition
of coherent states peaked on all classical vector geometries
with equal weights [17]. The homogeneity and isotropy of
the state result from the uniform superposition of states
peaked on a large family of classical geometries.
As the states jΓC; λ;Bi are not peaked on a classical

piecewise linear geometry, their effective geometry does
not necessarily correspond to that of flat polyhedra. The
mean volume and boundary area of a node, for instance,
may not always be related as the volume and boundary area
of a regular tetrahedron. As a result, the effective geometry
might better approximate a regular curved tetrahedron [68].
We will analyze the dependence of the effective geometry
of Bell-network states on the parameter λ and graph ΓC in
our further works in order to clarify whether they can be
used to describe an effective geometry formed by gluing
regular curved polyhedra.
The condition that states and observables of the geom-

etry are automorphism-invariant severely restricts the space
of states and the algebra of observables in the highly
symmetric 2-CH graphs. In particular, observables that act
nontrivially only on a single node, as local area and volume
operators, are not invariant. In order to obtain observables
that describe measurements on a single polyhedron while
respecting automophism invariance, we applied a group
averaging to the local operators. On 2-CH graphs, this
produces invariant one-node observables that are propor-
tional to sums of local operators over all nodes of the graph,

analogous to one-body operators in many-body quantum
mechanics. The invariant volume operator, for instance, is
the average of the volume operators of all nodes of the
lattice. Such one-node observables describe measurements
performed on a single node, which remains unspecified.
By taking their direct sum over all 2-CH graphs, we
constructed invariant observables that act on generic
cosmological states, possibly including superpositions of
states on distinct graphs. They describe measurements
performed on a single node, whose graph and location
on a graph remain unspecified. The resulting formalism is
reminiscent of the framework of group field theory [69], in
which the quantum geometry is described in terms of
excitations of indistinguishable building blocks of space,
and cosmological degrees of freedom can be captured by
one-body operators that describe averaged properties of the
geometry [16]. In our case, we arrived at the one-node
observables as a direct consequence of the requirement of
automorphism invariance on 2-CH graphs in the standard
formalism of loop quantum gravity. We can further analyze
the construction of cosmological states, which can be
linked to group field theory formalism.
The space of cosmological states does not have a natural

decomposition into a tensor product of local spaces. In fact,
there are no local states in KΓC

, as any state on a 2-CH
graph is completely delocalized, due to its invariance under
the automorphism group, which is node transitive. In
addition, the geometry can involve a superposition of states
on distinct graphs. Nevertheless, we showed that a notion
of entanglement entropy of a single node can be introduced.
Suppose that a measurement of the spins at a node returns a
spin configuration fjag with a probability Pfjag. One can
then ask about the statistics of volume measurements, for
instance, or of any other internal property of the dual
polyhedron, under the condition that the boundary spins
fjag were observed. The statistics of one-node observables
describing such measurements is completely characterized
by a reduced density matrix ρC ¼ P

fjag Pfjagρfjag. We
defined the entanglement entropy of the node as the von
Neumann entropy of ρC. In this way, instead of describing a
local region by selecting a specific node in a graph, we
characterized it by the measurement of a boundary geom-
etry, which can be in any graph, and the entropy of the
region was defined as that of the density matrix describing
the statistics of measurements of the geometry enclosed by
such a boundary geometry. This definition of the entropy
can be extended to larger local regions on k-CH graphs.
We analyzed a concrete example involving the super-

position of automorphism-invariant states on two distinct
2-CH graphs. We considered the superposition of Bell-
network states with fixed spins on graphs Γ5 and Γ6 with
5 and 6 four-valent nodes, respectively. We set all spins
jl ¼ 1=2, for simplicity, and computed the entropy in terms
of the probability p associated with the graph Γ5, both for a
single node and for two adjacent nodes. The entropy of the
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superposition can exceed that of the individual states, as
could be expected, opening the possibility of fixing the
amplitudes of the states in the superposition by imposing a
maximization of the entropy. It would be interesting to
study more general superpositions involving larger spins
and more complex graphs in order to determine the
consequences of a condition of maximal entropy for
superpositions of graphs.
The entropy of a local region was defined in this work for

a cosmological state, but it should be possible to extend the
strategy adopted for that purpose to more general circum-
stances, presenting another natural direction for the exten-
sion of our results. We expect that the entropy of a local
region specified by a boundary geometry can be likewise
defined for any state of the geometry, and more general
cases than those explored here can be studied elsewhere.
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APPENDIX: A LIST OF USEFUL GRAPHS,
INCLUDING NOMENCLATURE, DEFINITIONS

AND BASIC FEATURES

General references for the definitions below are
[23,24,47,70,71].
Cycle graph CN : A graph with N nodes comprising a

single cycle through all nodes. The number of nodes in CN
equals the number of links, and every node has valence two.
Complete graph KN : A simple graph with the property

that each pair of distinct nodes is connected by a link (see
Fig. 1). There is only one complete graph with N nodes up
to a graph isomorphism. The size of a complete graph is
given by L ¼ NðN þ 1Þ=2.
Complete multipartite graph Kðr; sÞ of r parts of size

s: The node set is the union of r sets X1;…; Xr of order
jXij ¼ s. Two nodes are adjacent if and only if they belong
to distinct sets Xi and Xj, i ≠ j.
Complete bipartite graph KN;M: A graph whose node set

can be partitioned into two subsets M and N such that no
link has both endpoints in the same subset, and any point in
M is adjacent to any point in N.
Line graph LðΓÞ of a graph Γ: The node set of LðΓÞ is

the link set of Γ. Two nodes in the line graph are joined if
and only if they correspond to links sharing a common node
in the original graph.
Cayley graph: A (uncolored and undirected) Cayley

graph ΓðG; SÞ is labelled by a group G and a generating set
S ofG. The node set of the Cayley graph is the groupG. For

any g ∈ G and s ∈ S, the nodes g and gs are joined by a
link, i.e., the link set is formed by pairs fg; gsg.
Tree graph Tr: A tree is a connected graph without

cycles. A tree is regular if all vertices have the same degree.
We denote by Tr the regular tree of valency r.
Schläfli symbol: Schläfli symbols are finite lists

fp; q; r;…g of natural numbers used to represent regular
polytopes and tessellations of spheres, hyperbolic and
Euclidean spaces. A Schläffi symbol with a single index
fpg represents a p-sided regular polygon. A Schläfli
symbol fp; qg with two indices represents the object
formed by p-sided regular polygons glued so that q
polygons meet at each node. Put μ ¼ ðp − 2Þðq − 2Þ − 4,
with p, q > 2. The symbols fp; qg describe tessellations of
the Euclidean plane (μ ¼ 0), sphere (μ < 0) and the
hyperbolic plane (μ > 0) [46,47]. There is a finite number
of solutions for the spherical case (the Platonic solids) and
for the plane case (triangular lattice: f3; 6g, square lattice:
f4; 4g and hexagonal honeycomb f6; 3g), but an infinite
number of solutions for the hyperbolic case. Similarly,
a Schläfli symbol fp; q; rg with three indices describes
the object formed by gluing regular polytopes fp; qg so
that r such polytopes meet at each link. As in the two-
dimensional case, the type of curvature of the embedding
space is determined by μ ¼ sinðπ=pÞ sinðπ=rÞ − cosðπ=qÞ,
which gives Euclidean (μ ¼ 0), spherical (μ > 0) and
hyperbolic (μ < 0) 3d spaces, respectively [46,47]. For
instance, f4; 3; 4g defines cubes as building blocks, with
four of them around each link, describing a cubic lattice.
Honeycomb: A honeycomb is a tessellation of an

n-dimensional Euclidean space with polyhedral or
higher-dimensional cells. A hyperbolic honeycomb is a
tessellation of an n-dimensional hyperbolic space with
hyperbolic polyhedra or higher-dimensional cells. A
honeycomb is called regular if the group of isometries
preserving the tessellation acts transitively on all the
elements of the honeycomb (vertices, edges, faces and
cells). The cubic lattice is the only regular honeycomb in 3d
Euclidean space. The dual graph of an infinite regular
honeycomb with Schläfli symbol fp; q; rg is denoted
by Hcðfr; q; pgÞ.
Lattice LðVÞ

n : An n-dimensional lattice LðVÞ
n in Rn is a

graph with valency V whose node set is a subgroup of the
additive group Rn that is isomorphic to the additive group
Zn. For example, for any basis of Rn, the subgroup of all
linear combinations of the basis vectors with integer

coefficients forms a lattice Lð2nÞ
n . A triangular grid, a

tessellation of the plane formed by identical equilateral

triangles, is a lattice Lð6Þ
2 .

Circulant graph CiN : A graph with N nodes
ni; i ¼ 0;…; N − 1, such that if nj and nðjþdÞ modN are
adjacent, then the nodes nj0 and nðj0þdÞ modN are also
adjacent, for all j0. The automorphism group of the graph
includes all cyclic permutations of its nodes.
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Hypercube graph Qn: A hypercube graph with valency
n is the graph formed by the nodes and links of an
n-dimensional hypercube. It has 2n nodes and 2n−1n links.
Perfect matching: A matching in a graph is a set of

pairwise non-intersecting links. A perfect matching is a
matching for which every node of the graph is in some link
of the matching. A perfect matching has N=2 links,
implying that perfect matchings only exist for graphs with
an even number of nodes.
Rado graph: The nodes of the Rado graph are the natural

numbers N ¼ f0; 1; 2;…g. For i < j, the nodes i and j are
joined if andonly if the ith digit of j (in base 2) is 1. TheRado
graph is a self-complementary graph, i.e., it is isomorphic to
its complement. The valency of the Rado graph is infinite.

Henson graphs: The Henson graph HN is the unique
countable infinite homogeneous graph that does not contain
a complete graph KN but contains all KN-free finite graphs
as induced subgraphs. For instance, H3 is a triangle-free
graph (no three vertices form a triangle of links) that
contains all finite triangle-free graphs. The valency of the
Henson graph is infinite.
Petersen graph O3: The Petersen graph is the comple-

ment of the line graph of K5. It has 10 nodes with valency
V ¼ 3 and 15 links. See Fig. 6.
Clebsch graph□5: The Clebsch graph has 16 nodes with

valency 5 and 40 links. It can be constructed from a
5-dimensional hypercube graph Q5 by identifying every
pair of opposite nodes. See Fig. 6.
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